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We examine the relationship between three approaches (Hadamard, DeWitt-Schwinger, and adiabatic) to
the renormalization of expectation values of field operators acting on a charged quantum scalar field. First,
we demonstrate that the DeWitt-Schwinger representation of the Feynman Green’s function is a particular
case of the Hadamard representation. Next, we restrict attention to a spatially flat Friedmann-Lemaitre-
Robertson-Walker universe with time-dependent, purely electric, background electromagnetic field,
considering two-, three-, and four-dimensional space-times. Working to the order required for the
renormalization of the stress-energy tensor, we find the adiabatic and DeWitt-Schwinger expansions of
the Green’s function when the space-time points are spatially separated. In two and four dimensions, the
resulting DeWitt-Schwinger and adiabatic expansions are identical. In three dimensions, the DeWitt-
Schwinger expansion contains terms of adiabatic order 4 that are not necessary for the renormalization of
the stress-energy tensor and hence absent in the adiabatic expansion. The equivalence of the DeWitt-
Schwinger and adiabatic approaches to renormalization in the scenario considered is thereby demonstrated
in even dimensions. In odd dimensions the situation is less clear and further investigation is required in
order to determine whether adiabatic renormalization is a locally covariant renormalization prescription.
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I. INTRODUCTION

In the absence of a full theory of quantum gravity,
the study of quantum fields on a fixed, curved, space-time
background has revealed many deep phenomena [I-4].
One of the most important of these is the production of
quantum particles in an expanding universe [5-8], which
leads to the subsequent generation of classical perturbations
in the very early Universe.

For a specific quantum field, once a suitable quantum
state has been specified, the properties of that state can be
studied via the evaluation of expectation values of observ-
ables. One of the key observables for any quantum field
is the stress-energy tensor (SET) operator T,w, since the
expectation value of this quantity governs the backreaction
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of the quantum field on the space-time geometry via the
semiclassical Einstein equations. The SET operator, in
common with many observables, involves products of
the quantum field operator evaluated at the same space-
time point. This means that a naive computation of its
expectation value will give a divergent result. Therefore
some kind of regularization (isolating the divergences)
and renormalization (removing the divergences) scheme
is required.

Of the many different renormalization prescriptions in the
literature (see, for example, [1,2,4]), adiabatic renormaliza-
tion is particularly well-adapted for finding expectation
values on cosmological space-times. Assuming that the
spatial geometry is flat, homogeneous, and isotropic, a free
classical field can be expanded into plane wave modes of
fixed momentum, multiplied by functions of time. The short-
distance singularity in the expectation values of operators
thus corresponds to a high-momentum divergence in such
expectation values when expressed as mode sums.

To renormalize the resulting divergence, an adiabatic
expansion of the modes is performed, valid for large
momenta. This adiabatic expansion depends on the back-
ground space-time geometry, but not on the quantum state
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of the field. Expectation values of operators are renormal-
ized by subtracting from their mode sum expression
sufficient terms in the adiabatic expansion of the modes
to yield finite quantities. The adiabatic expansion of the
modes can be found via an iterative method, with each
order in the expansion given by algebraic expressions of
increasing complexity, depending on the scale factor and
its derivatives, the mode frequency, and momentum, and
quantities appearing in the classical scalar field equation
such as the field mass. One key advantage of the method is
that the renormalization is performed mode by mode, with
the resulting mode sums being of a suitable form for
numerical computation.

Adiabatic renormalization was originally developed for
neutral scalar fields on cosmological space-times [9—14]
and further improved in [15] (see also [1,2,4]). It has been
extended to spin-half fields [16-18], scalar and spin-half
fields with a Yukawa coupling [19], and scalar fields with a
self-coupling [20]. Recently, time-dependent electric field
backgrounds have also been incorporated into the adiabatic
approach for both scalar and Dirac fields [21-24].

The adiabatic approach also serves to characterize the
ultraviolet behavior (in momentum space) of admissible
quantum states through the so-called adiabatic condition
(for subtle issues see [25]). However, one of its disadvan-
tages is that it only applies, by construction, to homo-
geneous space-times [12]. It is therefore useful to also have
a more general framework for renormalization, valid for
any space-time background and any quantum state.

One such framework is Hadamard renormalization. In this
approach, expectation values are computed using the Green’s
function of the quantum field. For example, to find the
expectation value of the SET for a free quantum field, a
second order linear differential operator is applied to the
Green’s function. The Green’s function depends on two
space-time points and is regular providing these two points
are distinct. However, it is divergent in the coincidence limit.
In Hadamard renormalization, the Hadamard representation
of the Green’s function is considered. The divergent terms
present in the Hadamard representation of the Green’s
function are known as the Hadamard parametrix, which
depends only on the background space-time geometry and
the properties of the quantum field under consideration, and
not on the quantum state. Renormalization of expectation
values is achieved by subtracting the Hadamard parametrix
from the Green’s function, applying the appropriate differ-
ential operator (if necessary) and then bringing the space-
time points together.

For a general space-time background, the Hadamard
parametrix is typically given as a covariant asymptotic
series expansion in derivatives of the square of the geodesic
distance between the two space-time points on which the
Green’s function depends. The coefficients in this expan-
sion depend on the background geometry and parameters in
the classical field equation. Explicit expressions for the

expansion coefficients have been given for neutral [26] and
charged [27] scalar fields. The Hadamard prescription has
also been developed for fermions [28-31], the electromag-
netic field [32], the Stiickelberg massive electromagnetic
field [33], p forms [34], gauge bosons [35], and one-loop
quantum gravity [36] (see also [35], where a general linear
covariant gauge is employed).

A natural question then arises: How does Hadamard
renormalization compare with adiabatic renormalization
when applied to scenarios where adiabatic renormalization
is applicable? If the answers yielded by these two methods are
to be physically relevant, one requires them to give results
which are equivalent up to the well-known renormalization
ambiguities (for example, the renormalized SET is unique
only up to the addition of a local, conserved, tensor [3,37]).

For a neutral scalar field, the equivalence of adiabatic
and Hadamard renormalization has been shown via two
steps. First, lengthy calculations [12,38] have demonstrated
that adiabatic renormalization gives identical answers to
DeWitt-Schwinger renormalization in two and four space-
time dimensions. Second, the DeWitt-Schwinger represen-
tation of the Green’s function is proven to be a special case
of the Hadamard parametrix for a neutral scalar field [39].
Since DeWitt-Schwinger renormalization is effected by
subtracting the DeWitt-Schwinger representation of the
Green’s function, the equivalence of Hadamard and adia-
batic renormalization is thereby verified [38,40—42].
A similar approach has also demonstrated the equivalence
of DeWitt-Schwinger and adiabatic renormalization for a
neutral Dirac field [38].

Our purpose in this paper is to investigate the equivalence
of adiabatic and Hadamard renormalization for a charged
scalar field on a cosmological geometry, using the above two
ingredients. The first step is contained in Sec. II. There we
show, using a straightforward generalization of the work of
Ref. [39], that the DeWitt-Schwinger representation of the
charged scalar Green’s function on a general background
metric and electromagnetic field [43,44] is a particular case
of the Hadamard parametrix [27]. This result is valid for any
number of space-time dimensions. Next, in Sec. III we
review the adiabatic formalism for a charged scalar field
on a flat Friedmann-Lemaitre-Robertson-Walker (FLRW)
universe with a background, time-dependent, electric field.
Restricting attention to two, three, and four dimensions,
respectively, in Secs. IV=VI, we then follow the method in
[38] to explore, via an explicit computation, whether the
adiabatic Green’s function, for spacelike separated points, is
equivalent to the DeWitt-Schwinger representation for our
particular background metric and electromagnetic potential.
In even dimensions, we find that the adiabatic Green’s
function is indeed equivalent to the DeWitt-Schwinger
representation, and hence adiabatic renormalization is a
locally covariant renormalization scheme. However, for
odd dimensions, we find terms in the DeWitt-Schwinger
expansion that are of higher adiabatic order than those
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required for the renormalization of the SET. As a result, it is
not clear whether adiabatic renormalization is a locally
covariant renormalization scheme in odd dimensions and
further investigation is required. Our conclusions are pre-
sented in Sec. VII. Two appendices include some lengthy
algebraic expressions that arise in the four-dimensional case
and details of the geodesic distance and Van-Vleck-Morette
determinant for general point-splitting on our background
space-time.

II. HADAMARD/DEWITT-SCHWINGER
RENORMALIZATION

In this section we briefly review the Hadamard and
DeWitt-Schwinger representations of the Feynman Green’s
function for a charged scalar field. We extend the result of
Ref. [39] to show that the DeWitt-Schwinger representation
for a charged scalar field is a special case of the Hadamard
representation.

A. Hadamard representation
of the Feynman Green’s function

We consider a massive charged scalar field ® coupled to
a classical electromagnetic background, propagating in an
N-dimensional space-time, satisfying the Klein-Gordon
equation
09

(D,D* —m* —ER)® = (1)

1

4n

—iGy(x, x') = (2]\(]5)_,\,2/)2' {[o(x,g)(ii);])”ﬂ-l +V(x, X
I'(N/2-1 Uxx
2((22)"’/2) {[a(x,x’)(+is])’v/2*1 + W(X, )C/)}

where £ is an arbitrary renormalization length scale. The
biscalars U(x,x") and V(x, x) are purely geometric, while
W(x,x’) may depend on the quantum state. For a charged
scalar field, the functions U(x, x"), V(x,x), and W(x,x’)
are complex sesquisymmetric biscalars that are regular
when x" — x, and can be expanded in powers of ¢(x, x’) as

h
Ux,x') = Z U,(x,x)o"(x,x'), (5a)
n=0
V(x,x') = i V,(x,x)o"(x,x'), (5b)
n=0
f: W, (x (x,x7), (5¢)

n=0

{V( )ln{;z)—i—ie}—}—W(X,x')}

where D, ® = (V, —igA,)®, with A, the electromagnetic
vector potential and g the scalar field charge, R is the Ricci
scalar, m the scalar field mass and £ is a dimensionless
coupling constant. We wuse the metric signature
(=, +,+, ....). The Feynman Green’s function of the scalar
field is a biscalar function of the space-time points x and x’
and satisfies the (inhomogeneous) scalar field equation

D, D%~ m? ~ ER|Gi(x.x') = ~[~g(x)| H (x— ). (2)

where g(x) is the determinant of the space-time metric.
We assume that the space-time point x” lies in a normal
neighborhood of the point x, so that there is a unique
geodesic connecting the two points. We also assume that
the field is in a Hadamard state. This assumption deter-
mines the form of the Feynman propagator for closely
separated space-time points.

The Hadamard expansion of the Feynman Green’s
function depends on the geodesic interval o(x,x’) that is
defined by the equation

(3)

20 = g, 00",

The form of the Hadamard representation of the Green’s
function Gy(x,x") depends on the number of space-time
dimensions [27,39]:

N =2,

)In ["(%’f/)%—ie} + W(x,x’)} N > 2 even,

N odd,

|

where h = N/2 — 2 for N > 2 even and i — oo for N odd.
The expansions in (5) are to be understood as asymptotic
expansions that are only convergent in analytic space-times
(in more general space-times these expansions can be
modified to give convergent quantities [45]). The recur-
rence relations for the Hadamard coefficients U, (x,x'),
V,(x,x"), and W, (x, x") can be directly obtained from (2).
For general background configurations it is not possible
to find a closed form for these Hadamard coefficients.
However, for the renormalization of expectation values, it is
very convenient to perform a covariant asymptotic expan-
sion of the coefficients, namely

iU,WI ()T (X, X')...0% (x, x'),  (6a)

j=0
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x)o® (x,x')...0% (x,x'),  (6b)

0
=2 V..

J=0

) =3 W (900 (1), (1), (60)

J=0

The coefficients of these asymptotic expansions are
symmetric tensors of rank (0, j) that only depend on the
space-time point x.

For completeness we give below the explicit recurrence
relations for the geometric Hadamard coefficients
U,(x,x), V,(x,x") and W,(x,x"). These recurrence rela-
tions involve the Van-Vleck Morette determinant AZ. This
is related to the D’ Alembertian of the geodesic interval by

V,Vio = N — 207 AL 0. (7)

From the recurrence relations given below it is possible
to obtain the coefficients of the asymptotic expansions
(6a), (6b), as explicitly shown in [27]. For any N, the
Hadamard coefficient Wy(x, x’) is not determined by the
recurrence relations; it may depend on the quantum state
under consideration. Once W (x, x) has been specified, the
remaining Hadamard coefficients W, (x,x"), n =1,2,...
are uniquely determined by the recurrence relations.

The Hadamard parametrix is the Green’s function of
the form (4) with a choice of the biscalar W(x,x'). In
Hadamard renormalization, W(x, x’) is set to vanish in the

function. Renormalization is then effected by subtracting
the chosen Hadamard parametrix from the Feynman
Green'’s function for the quantum state under consideration.
This process removes the short-distance singularities in
the Feynman Green’s function and the space-time points
can then be brought together to give a finite limit. The
renormalized Feynman Green’s function is thus

Gr(x. ) = Gp(x.x') = Gyy(x. ). (8)
The expectation value of the scalar condensate of a charged
scalar field is given by the coincidence limit of the
renormalized Feynman Green’s function; the expectation
value of the current follows from taking one derivative of
Gg(x,x") before bringing the points together, and the SET
expectation value requires two derivatives to be applied to
Gr(x, x") prior to taking the coincidence limit. The number
of terms in the Hadamard expansion (4), (6) that are
required to be subtracted from the Green’s function
depends on the expectation value under consideration
and the number of space-time dimensions. However, it is
always possible to also subtract higher-order terms that
vanish in the coincidence limit.

1. Recurrence relations for N =2
For N = 2 the coefficients V,,(x, x') satisfy, for n = 0,

0 = [6#D, — AL ¥V, (9a)

Hadamard parametrix [45,46]. The Hadamard parametrix with boundary condition V(x,x) = —=1.Forn =0, 1,2, ...
contains all the short-distance singularities in the Green’s  the recurrence relations are
|
. I
0= [D,D* — (m* + ER)|V, 4+ 2(n + 1)[6#D,, — A2 AL 0* + (1 4+ n)]V,,1. (9b)
The Hadamard coefficients W, (x, x") satisfy the recurrence relations
1
0= [D,D" - (m? + ER)|W,, + 2(n + 1)[e*D, - A‘?A2 o+ (1+n)W,
+2[0#D, — AL 0% + 2(1+ m)]V,yp1. (9%)

forn=20,1,2,....

In order to find the renormalized SET, the expansion of the Hadamard coefficient V,(x, x’) is required up

to and including terms containing ¢**'¢°*2 and the leading-order term in V(x,x’) is also necessary.

2. Recurrence relations for N > 2 even

For N > 2 even, the coefficients U, (x, x) satisfy, for n = 0,

1
0 = [A7AL6* — 6D, |U,,

with boundary condition Uy(x,x) =1, and for n =0, 1,2, ...

0 = [D,D* — (m* + ER)]U,,

—2(n+2-N/2)[A"

(10a)

a”—a”D —(n+ DU,4;1. (10b)
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The coefficients V,,(x, x") obey (for n > 0)

0= [D,D* — (m* + ER)|V, + 2(n+ 1)[6¥D, — AAL* + (N/2+ n)]V,ps 1. (10¢)
The coefficient Vj(x, x’) is obtained from the following boundary condition
0 =2[6*D, — A%ALe# + (N/2 = 1)V + [D,D¥ — (m? + ER)| Uy ps. (10d)
For n =0, 1, ..., the recurrence relation satisfied by the W, (x, x’) is
0 = [D,DF = (m? + ER)|W,, + 2(n + 1)[6¥D, — AAL,0% + (n + N/2)IW,..
+2[6#D, — ASALGH + (204 1+ N/2)V . (10¢)
In this case, renormalization of the SET requires knowledge of the Hadamard coefficients Uy (x,x), ..., Uy oo (x, x’), with

a covariant asymptotic series expansion of each U ,(x, x’) up and including terms containing *'...c**¥-2». In addition, the
Hadamard coefficients V(x, x") and V;(x, x') are necessary; with a covariant asymptotic series expansion of V(x, x") up to
and including terms containing 6°*'¢** and the leading-order term in V(x, x).

3. Recurrence relations for N odd

Finally, for N odd, the coefficient U(x, x") satisfies

1L
0= [¢"D, — A72A%0*]U,,
with boundary condition Uy(x,x) = 1, while for n =0, 1,2, ...

1
0= [DMD” - <m2 + éR)]Un + (2n +3- (N - 1))[6;”D/4 - A—%A;Z”GW + (}’L + 1)]Un+1'

(I1a)

we have

(11b)

In this case the recurrence relations satisfied by the Hadamard coefficients W, (x, x) are given by

0=(n+1)2n+N)W,.; +2(n+ DW,, 0% —2(n+ D)W, A"V2A 260 + (O, — m? — ER)W,,
+ i + H

for n =0,1,.... The renormalized SET can be found if
the Hadamard coefficients Uy (x, x'), ..., Uy o_12(x, ") are
known. The required asymptotic series expansion of
U,(x,x') contains terms up to and including those involv-
ing % ...0%2p,

B. DeWitt-Schwinger representation
of the Feynman Green’s function

The DeWitt-Schwinger representation of the Feynman
propagator Gpg(x,x’) is given by

“+oo

Gps(x,x') =1 H(s;x,x')ds, (12)

0

where the kernel H(s;x,x’) satisfies the equation

0
<i+D/,D” —m2—§R>H(s;x,x’) =0 fors >0,

ds
(13)

(11¢)

with boundary condition H(s;x,x') — (—g) 26" (x — x)
as s — 0. For s — 0 and x" near x the function H(s;x, x’)
admits the following expansionl:

H(s;x,x') = i(4xis)™N/? exp{zL [o(x,x") +ie] — imzs}
s

X {2 .A,,(x,x’)(is)"} (14)

The DeWitt-Schwinger coefficients A, are complex ses-
quisymmetric biscalars that are regular for x' — x and
admit covariant asymptotic expansions of the form

'In some references, the proper-time expansion of the Feyn-
man Green’s function is defined with an overall extra factor
Alx, x)'/2,
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A, (x,x") = ZA,,ja]___aj(x)a;"l (x,x)...0%(x,x").  (15)

Jj=0

The DeWitt-Schwinger coefficients are defined by the
recurrence relation

[(n+1) + 0#D, — A~2A 61 A, .
= (D,D" —¢R)A, forn=0,1,.... (16)

For n = —1 we can use the equation above by noting that
A_; = 0. Furthermore, for n = 0 we have the boundary
condition Ay(x,x) = 1.

Following [39], it is useful to define a new sequence of
geometric coefficients, that we call the mass-dependent
DeWitt-Schwinger coefficients, len(mz; x,x'), satisfying
the recurrence relations

[(n+1) + 6#D, — A™V2AY 6% A,
= (D, D" —m?—ER)A, forn=0,1,... (17)

Setting n = —1 in (17), we find that 4, = A, and does not
depend on the scalar field mass m. The mass-dependent
coefficients correspond to an alternative expansion of
H(s; x, x"), where the exponential mass term is not included
as in (14). From the expansion of e it is straightfor-
ward to see that the relation between the standard A, (x, x’)
and the mass-dependent .Zln(mz;x, x') coefficients is
given by

A, (m?2x,x) = Zn:ﬂ(mz)k.%ln_k(x,x’). (18)

!
— k!

The coefficients .4, can also be directly obtained from
the A, as follows

A, (x,x') = A,(m* = 0;x,x'). (19)

The advantage of the mass-dependent DeWitt-Schwinger
coefficients is that they can be directly related to the
geometric coefficients of the Hadamard expansion, as
we shall see in the next subsection. As with the
Hadamard coefficients, the mass-dependent DeWitt-
Schwinger coefficients can be given as covariant asymp-
totic series expansions [39].

In the next subsection we shall show that the DeWitt-
Schwinger representation of the Feynman Green’s function
has the Hadamard form (4) for a particular choice of the
biscalar W (x, x). The Green’s function is renormalized by
subtracting Gy (x, x") with this choice of W(x, x') using (8).
As can be seen below, the DeWitt-Schwinger representa-
tion is a large-mass expansion of the Feynman Green’s
function, and the number of terms in this expansion that

need to be subtracted from the Feynman Green’s function
to give finite renormalized expectation values depends on
the number of space-time dimensions N.

C. Relation between the Hadamard
and DeWitt-Schwinger representations

In this part of the section, we give the explicit relation
between the DeWitt-Schwinger and Hadamard coefficients in
N space-time dimensions. The relation between the geometric
coefficients U, (x, x") and V,(x, x") and the mass-dependent

DeWitt-Schwinger coefficients A, (m?; x, x') can be obtained
by direct comparison of their recurrence relations.
The correspondence between the Hadamard coefficients
W, (x,x") and the DeWitt-Schwinger coefficients A, (x, x")
is more complex. Its derivation requires lengthy intermediate
steps that are detailed in Appendix A of Ref. [39] for a
neutral scalar field and for N > 2. The key point of the
demonstration is to rewrite the DeWitt-Schwinger expan-
sion of the Feynman Green’s function as an asymptotic
expansion in the geodesic distance. To this end, the authors
of Ref. [39] assume that it is possible to exchange the
integral and the sum in (12) [see also (14)], then perform
the integration over s, make a short-distance expansion of
the resulting expressions and group terms with the same
characteristics to match (4). The extension to a charged
scalar field and N = 2 is straightforward, so here we only
give the final results.

As in [39], we find that the DeWitt-Schwinger expansion
of the Feynman Green’s function corresponds to the
Hadamard parametrix with a particular choice of the
Hadamard coefficient Wy(x,x’), which is undetermined
in the Hadamard formalism. Once this coefficient is
fixed, the remaining Hadamard coefficients W, (x, x") are
uniquely determined by the relevant recurrence relations.
While in Hadamard renormalization the Hadamard para-
metrix (4) with the choice Wy (x, x') = 0 is subtracted from
the Feynman Green’s function, in DeWitt-Schwinger
renormalization the DeWitt-Schwinger representation of
the Green’s function is subtracted.

Below, for ease of reference, we give the expressions
for the Hadamard coefficients U, (x,x’) and V,(x,x") in
terms of the mass-dependent DeWitt-Schwinger coeffi-

cients A,(m? x,x') and for the Hadamard coefficients
W,(x,x") in terms of the Hadamard coefficients V,,(x, x")
and the DeWitt-Schwinger coefficients A, (x,x’). For
N > 2, these expressions are identical to those in [39],
and all the dependence on the background electromagnetic
potential is contained in the DeWitt-Schwinger coefficients.
For completeness, we also provide the corresponding
expressions for the N = 2 case, which is not considered
in [39]. For all N, the Hadamard coefficients W, (x, x) are
divergent in the limit m> — 0, due to the singularity in this
limit of the DeWitt-Schwinger representation of the
Feynman Green’s function.
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1. N=2
Comparing (9b) with (17), and taking into account their
boundary conditions, the relation between the DeWitt-

Schwinger coefficients .Zln and the Hadamard coefficients
V,(x,x") reads

A, (m?*;x,x') forn=0,1,....  (20a)

2'n!

Furthermore, the W, (x, x') Hadamard coefficients associ-
ated with the DeWitt-Schwinger representation are

W, (x,x) = [m <’"22'“ﬂ2> 2y (n+ 1)] V,(x.x)
—Sif[§¥_”3mak(ﬁfé)waxf>

k=0 p=k+1
k! ,
- ZWAnJrch(xvx )} ’ (20b)
k=0

where #? is a renormalization length scale introduced so
that the argument of the logarithm is dimensionless and
w(n+1) is the digamma function. In particular, the
DeWitt-Schwinger representation of the Feynman
Green’s function takes the Hadamard form with the
following choice of the coefficient Wy (x, x'):

2.2

Wo(x,x') = [m (m j

+ Z 2)k+1 A1 (x.x),

) + 24 Vo(x.x')
(20¢)

where y is the Euler-Mascheroni constant. For N = 2,
evaluation of the renormalized SET requires the Hadamard
coefficients Vj(x, x") and V (x, x") and hence knowledge of
the DeWitt-Schwinger coefficients Ay (x, x’) and A, (x, x').
These are the only terms retained in W, (x, x’) given above.
This corresponds to an expansion of Wy(x,x’) up to and
including terms of order m~2. While both W,,(x, x’) (20b)
and the Hadamard parametrix (4) depend on the arbitrary
renormalization length scale ¢, when the form of W(x, x’)
in the DeWitt-Schwinger representation is substituted into
the Hadamard form (4), the terms dependent on #? cancel,
so that the DeWitt-Schwinger representation of the Green’s
function is independent of #. The renormalization length
scale ¢ has effectively been replaced by the scalar field
mass m, which is possible only in the massive case.

2. N > 2 even

As before, the Hadamard coefficients U, (x,x’),
V,(x,x") for N > 2 even can be directly obtained from
the mass-dependent DeWitt-Schwinger coefficients by
direct comparison between their recurrence relations [see
Egs. (10b), (10c) and (17)]. This time we obtain

N/2-2-n)! ~
U"(X’X/):(Z”/(N/T;)? 2(m*x,x') forn=0,1,...,N/2 =2, (21a)
, (_l)n+l ) ,
V,(x,x') = PN (N 2 = )] Aninjp-1(m*x,x") forn=0,1,.... (21b)
The W, (x,x’) Hadamard coefficients in the DeWitt-Schwinger representation are given by
m>¢?
W,(x,x') = [In( 5 > —{y(n+1)+w(n +N/2)}} V,(x,x)
" n+N/2-2 n+N/2-1
- . [+Z/ SRk ( +Z/ l)«‘l vj2-1-k (%, X')
n _ n+ —1- ’
2N (N/2 - 2) | k! Rt
VK A ! 21
- ;W niN/2 k(X X )} (21c)

so that the DeWitt-Schwinger representation of the Feynman Green’s function is of the Hadamard form with the choice

202

Wolx,x') = [m <m2

)+y—wwnﬂwww@

1 N/2-2 (—l)k(m2)k N/2-1
2NN j2 - 2)! [Z k! <Z

p=k+1

k=0

1
p) A1 (x,x') = ZWAN/QHc(x X

—+o00
k!
(21d)
k=0
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In this case, to find the renormalized SET, the DeWitt-
Schwinger coefficients Ay (x,x’), ..., Ayp(x,x’) are
required. This means that we keep terms up to and
including those of order m= in Wy(x,x’). As in two
space-time dimensions, we have introduced a renormaliza-
tion length scale in the argument of the logarithm in (21c);
however, when (21c¢) is substituted into the Hadamard form
(4), the resulting DeWitt-Schwinger Green’s function does
not depend on 7.

|

In this case the W, (x,
compared with N even, namely

W,(x,x") = -

2MHN2=InID(N /2 = 1)

k+1/2
_Z (m2)<+172

(—1)" {’l+1\7/2—3/2 (_l)k(mZ)kJrl/z

n+N/2—1/2+k(x’ x’)} .

3. Relation for N odd

Finally, for N odd we find, by comparing Egs. (11b)
and (17),

I'(N/2—1-n)

A, (m?;x,x') forn=0,1,....
PT(N/2=1T) A, (m*;x,x") forn=0,1,

Un(x7x,) =

(22a)

x') Hadamard coefficients for the DeWitt-Schwinger representation take a slightly simpler form

T(k + 3/2) ”An+N/2—3/2—k(x’ x')

(22b)

As for other values of N, the DeWitt-Schwinger representation of the Feynman Green’s function is a particular case of the
Hadamard representation, with the following choice of the Hadamard coefficient W (x, x'):

1 N/2—3/2(_1>k(m2)k+1/2 +oo k+ 1/2
Wo(x,x') = — —_— _ AL (22
0(x x) 2N/2_1F(N/2— 1) |: - F(k+3/2) ”AN/Z -3/2- k X, X ; k+l/2 AN/Z 1/2+k(x x) ( C)

Finding the renormalized SET for N odd involves
the  DeWitt-Schwinger  coefficients  Ay(x, x), ...,
Apja-1/2(x.x"), and thus an expansion of Wy(x,x’) up
to and including terms of order m~!.

III. ADIABATIC RENORMALIZATION

In this section we examine the adiabatic expansion of
the Feynman Green’s function for charged scalar fields in
homogeneous and time-dependent backgrounds. To this
end, we consider again the charged scalar field @ of the
previous section, coupled to a classical, time-dependent
electric background, whose vector potential is of the form

A, = (0,A(1),0,...,0), propagating in a N-dimensional
flat FLRW universe with line element
ds® = —di* + a(1)?dx>. (23)

Due to spatial homogeneity, we can perform a mode
expansion of the scalar field as follows

d(N—l)k
D(1,x) =

x (b @®*hy (1) + dj.e™™*h*, (1)). (24)

In (24), by, by, dy, and dj are the usual annihilation and
creation operators satisfying the commutation relations

[by.b))] = 5(k —K') = [dy.d}]. The mode function
hy (¢) satisfies a second order ordinary differential equation,
obtained from the Klein-Gordon equation (1)

. K? 2qgk,A(t 2A(1)?
hk+ _2+m2_QI2() q g) )((l) hk:()v
a a a
(25)
where k> = |k|?, k, is the first component of the momen-
tum k, and

)

ML -t

X0 = (N=3)(1=N) = 2 ver, (26)

together with the Wronskian condition

R — hi hye = 2i. (27)
From the mode expansion (24) we can easily compute the
vacuum expectation values of relevant operators in terms
of the mode functions. For example, the formal vacuum
expectation value of the two-point function (at coincidence)
(@) is given by

1

(DDT) _W/dw-”kmkﬁ (28)
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This quantity is manifestly UV divergent, and it has to be
renormalized in a consistent way, compatible with general
covariance. For time-dependent backgrounds there is a very
efficient and direct technique that takes advantage of the
isometries of the space-time: the adiabatic regularization
method. It is based on the adiabatic expansion of the field
modes, and works as follows.

Given a mode function /() it is possible to perform
an adiabatic expansion in terms of the time-dependent
background fields. For scalars it is based on the Wentzel-
Kramers—Brillouin (WKB) expansion,

. 1
1 6—1 f’o Qk(u)du’

hk ~
Qi (1)

(29)

where Q) can be expanded adiabatically in powers of the
derivatives of a(r), the function A(f) and its derivatives as
follows

(30)

The adiabatic expansion is uniquely determined once we
fix its leading order. We require this to be

o\ =w=\/k2)a* + m?.

Therefore, we are implicitly assuming that the function
A(?) is a function of adiabatic order one [24]. Subsequent
terms are obtained, by iteration, from the relation

(31)

GPA2 2gk A 3QF 18,

derived from the ansatz (29) and the mode equation (25).
We recall here that y(¢) is a function of adiabatic order two
(it contains two derivatives of a). Inserting the adiabatic
expansion (30) in (32), and grouping terms with the same
adiabatic order, it is possible to obtain the nth coefficient
from the lower order ones once the leading order term is
defined. For example, the next two terms are

RO _kigA
k o’
242 UDY2 402 N2 — 2w

C 2d*w 2w )

The main advantage of the adiabatic expansion is that it
captures, in its leading terms, the expected UV divergences
of the vacuum expectation values of physical observables
and therefore, it can be used for renormalization. The
renormalized version of the two-point function can be
obtained by subtracting terms up to and including the

(N — 2)th-order of its adiabatic expansion, namely

1

<(Dq)‘k>ren = W
N=2
<[ dN-lk(|hk|2—Z<sz;1><f>). (34)
=0

The number of subtractions required depends on the space-
time dimension N and also on the scaling dimension of the
operator. To renormalize the charge current we require
terms up to (N — 1)th adiabatic order, while renormalizing
the SET involves subtracting up to the Nth adiabatic order.

D2 =ty - X (32 The first few orders of the adiabatic expansion
K a’ @ A4 20, of |y | are
|
1
(QHO =—, (35a)
w
_ kiqA
(le)(l) = a;w:; , (35b)
@0 = _5m4c'12 m2a> N a2 m2a _a oy 3kiq*A? B q*A? (35¢)
k 82w’  2d*w’ 8t  4aw’® 4aw’ 20°  24d*@0°  24*@3]
kigA  kiqgA (5m*a  a 3A [ 3k 53
(QEI)(3):_ 12qj+_161_ 7 43,5 +q3 - ]5+ 317
4a*w a a \4aw' 4da’w a 2aw 2a°w
ki gA 35m*a?  Sm2a? 342 Sm2a 3d 3
+_1q_ - 2.9 77t e 5T 7 5_—)(5' (35d)
a a 8a‘w 2a°w 8a‘w daw’ 4daw’ 2w

The lengthy explicit expression for (Q;')® is given in Appendix A.
The mode expansion of the field also allows us to obtain the formal value of the two-point function at two spatially
separated points with spatial parts x and x’ (we define Ax = x — x’). In particular, it is possible to compute the Feynman

Green’s function at time coincidence
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—iGg(t, x;1,x') = (®(1,x)@ (1, X))
1 - ik-Ax

(36)
Therefore, its adiabatic expansion to adiabatic order n reads

- iGde)(t,X;l‘, x')

1 P
:W/dw Dkelk2x > (Qgh0). (37)

Jj=0

For future convenience, we define the following (adiabatic)
momentum integral

1

(n) _ 1)1 ,ik-Ax (O—1\(n
IN —W/duv l)kekA (le)( ) (38)

These integrals will be required in the following sections,
where we explicitly compute the adiabatic expansion of
the Feynman Green’s function (37) in two, three, and four
space-time dimensions. We will then compare the resulting
expressions with the DeWitt-Schwinger representation of
the Feynman Green’s function for spatial point splitting.
In N space-time dimensions, we will work to adiabatic
order N, sufficient for the renormalization of the SET.

IV.N=2
A. Adiabatic expansion

For N = 2 the scalar curvature is R = and therefore

the quantity y (26) takes the form

x(t) = (5__>§ % (39)

Since we only have one space dimension, for this section
only we use the notation k; = k € R. In this case we need
to study the adiabatic expansion up to and including the
second adiabatic order, namely

— ing(t, x;t,x")
1

=1 dke"‘”((ﬂ;‘ﬂO> + (9

—ingd) (t,x;t,x') =

L[ 26-ga &
+E(_W+E

The momentum integrals can be easily performed with the
aid of Mathematica software. For the leading and first
orders we find

) _ m
2 T p 47m( aKo(mae)),  (41)
ikAx

(42)

where K ;(z) are modified Bessel functions of the second
kind and ¢ = |Ax]|. For the second order integral we find

1£2> 471m dkelkAx(Qk )(2)’
_ 1 242,20 L oo
=ina ([—aq A%e +6€ a a}KO(mae)
+ [—%mezazaz +— 2 (é—é) ad] ek, (mae)).
(43)

The adiabatic expansion of the Feynman Green’s function
—ing(t,x; t,x') is given by the sum of these three
contributions. To compare this expansion with the
Hadamard representation of the Feynman Green’s function,
we require a short-distance expansion of the adiabatic
expansion (40). We have to consider terms up to order
O(e?). Recall the expansions for small z of the modified
Bessel functions [47]

(44b)

Introducing the expansions above in (43), we obtain the
short-distance expansion of the adiabatic expansion of the
Feynman Green’s function, which is

1 2 ) 2,22
— -1 —igAAx + S (a2 - eaa L
/4 2 2 4

@

{azmz <g_é>aa}_“_62)+ (). (43)

025004-10



EQUIVALENCE OF THE ADIABATIC EXPANSION AND ...

PHYS. REV. D 107, 025004 (2023)

We note that this expression is singular in the massless
limit m? — 0 and contains, as well as terms depending
logarithmically on m?, terms of order m~2 but no smaller
powers of m. Thus the powers of m in (45) match those in
the DeWitt-Schwinger representation of the Green’s func-
tion. We now investigate whether the expansion (45) is
identical to the corresponding DeWitt-Schwinger (and
thereby Hadamard) form of the Green’s function.

B. Hadamard/DeWitt-Schwinger expansion

Recall that in N =2 space-time dimensions, the
Hadamard representation of the Feynman Green’s function
reads

1 /
—iGg(x,x') = e {V(x, x')In [0();2)( )

—|—i€] + W(x,x’)}.

(46)
As discussed in Sec. ITA, V(x,x’) and W(x,x') admit
power series expansions in the geodesic interval (5), and the
coefficients of the expansion further admit asymptotic

series expansions (6). For N = 2 the relevant terms (for
renormalization) of the expansion are [27]

Vo(x,x") = Voo (x) + Vo1, (x)6% + Vg (x) 0¥ 6% +O(67/?),
(47a)
|

1 1 1
V(x,x')In <;2) = in [—1 —igAAx + > <q2A2 - Eaz

where we have used the short-distance expansion of the
geodesic distance ¢ derived in Appendix B [see Eq. (B3)]
with Ar =0,

a? ata?

_& o 4 6
0'—2€—|—24e+0(e). (49)

Comparing Eqgs. (45) and (48) we see that the adiabatic and
Hadamard short-distance expansions of the Green’s func-
tion coincide except for terms which are either finite or
vanish in the limit € — 0.

We now compute the finite contribution of the DeWitt-
Schwinger representation of the Feynman Green’s function.
Using the results (20a) we easily find

Ag(m?x,x') = =Vo(x, %), (50a)

Aj(m2x,x) =2V, (x. X). (50b)

We use these results to find the mass-dependent DeWitt-
Schwinger coefficient A;(m?;x,x’) and hence A, (x,x")

Vl (x,x') = VIO(X) + 0(61/2)’ (47b)
where
Voo = —1, (47¢)
VOlﬂ = —iqA#, (47d)
1 iq
Voo = —ﬁRQﬂy + ED(/JAI/)’ (47e)
and
Vio= -2 |m+ (= 1)R (471)
0="5 m 6 :

For our particular configuration, namely a flat FLRW
space-time (23) and an electric field background described
by the vector potential A, = (0,A(t)), the short-distance
expansion of the geometric term in (46) for spatially split
points (Ax # 0 but Ar = 0) reads

m* — fad) €* + O(é)] In (“262> - d—QeZ + O(e?), (48)

207 487w

using (19), where the DeWitt-Schwinger coefficient has a
covariant symptotic series expansion of the form

Ay (x,x') = Ajo(x) + Ajy(x)o™
+ Ajp (x)o#6* - O(63/?). (51)
Since evaluating the SET involves taking two derivatives of
the Feynman Green’s function, to renormalize this quantity

we require the coefficients Wy (x, x') and W (x, x'), given
by (20b)

Wolx,x') = [2}/ +n (mzf 2)] Vol(x, x)

+ 7“4‘5;2’)‘/) +O(m™), (52a)
Wi, x')=|-2+2y+ ln(m; >] Vi(x, x)
LAY (;’ *) 4 o). (52b)
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Therefore, the short-distance expansion of the relevant terms of W(x,x’) in our particular configuration reads
2

1 2 2 2{2
Wixw) = [_1 —igAAx +% (qu2 4 ;" - faéi)} {m <m2 > + 2}/]
T

e <_m+§ {aw T (g-é)mD +O@E). (53)

m-a

Combining (48) and (53), we find the short-distance expansion of the DeWitt-Schwinger representation of the Green’s
function, which does not depend on the renormalization length scale #. Furthermore, the resulting expression matches the
adiabatic result (45).

V.N=3

A. Adiabatic expansion

For N = 3 we have, from (26), since R = 2a_u22 + %,

2847 i
) =—"—+(46-1)—. 54
X0 = =3+ (4= 1) (54
In this case, we want to compute
. 3 1 ik-Ax — — — —
—iGR (X1 X) = 55 s / Phe ()0 + (@) + (@) + () ). (55)

As in the two-dimensional case, the momentum integrals can be performed using Mathematica. For the leading adiabatic

order we find

I(O) B eik-AX

1
3 _2(2ﬂ)2a2/d2k w

where J(ke) is a Bessel function of the first kind and we
have used the result

2r
/ eikecost gg — 277:]0(k€>. (57)
0

For the first adiabatic order, the integral is more subtle
because it explicitly depends on k;. However, we can use
the following identity

k- ik-Ax ik-Ax
/ Pk = o, / k€ (58)

) "

The left-hand side of the equation above is the integral in
which we are interested, and the integral of the right-hand

@ _e™el (1 mae
Iy = —|z—&+—+
3 Az {m<6 “24)(

Similarly, the third adiabatic order gives

1 [ Jolke) e 1
- / aieotke) _ e (56)
dra“ )y 0]

4z ae’

side can be easily computed using polar coordinates and
then differentiated with respect to x;. With this result, we
can systematically obtain the nonhomogeneous integrals
appearing in the adiabatic expansion from homogeneous
integrals. Using this method, the adiabatic order one
contribution reads

e Ax
—qgA. 59
dr aeq ( )

)=

The second adiabatic order can be obtained in the same
way. For the homogeneous integrals our computations are
based on (56), while, for the nonhomogeneous integrals
where k; explicitly appears, we use (58) and similar
expressions. After some algebra we find

-2 - 2.2 A 2
;Hf) _med ——quAZ} (60)

a 24 2ae

ie=mae [1 (1 2 2A Ax, . AF Ax
1 =1 [—<g—§+%><a_2+2g>quA—me xaqu+ﬂaA——xq3A3——qu} (61)
a a

Az |m 24

24 12 6ae 12m
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Using the short-distance expansion of the exponential, we easily arrive at the short-distance expansion of the (third order)
adiabatic expansion of the Feynman Green’s function

—iG(3)(t x;1,x') = 1 igAAx _m a? 3 éa? n a  &a _iquAx_ G*AAX?  igAd®Ax

AdR T dgea  4ame 4An  24a’mm 4a’mm 12amr  2amzn dr 8arne 24a’*mn
igAéa’Ax  igAqiAx  igAEiAx igAAx amPe dPe  EdPe  de  Eie iagAmPeAx

4a’mn 12amzn 2amrn 48mn 87  32an  4arxr l6m 2z 8z

_igAd’eAx  igAf@PeAx iqAdeAx N igA&ieAx N iagAeAx  iagAeAx _ig’A’AY

32an dar 167 2 487 487 24arwe
g*A’mAx? 3 a’m’e? 3 me*Eaq? n ame?a 3 ame’&i + o). (62)
8 24n 8 487 A
|
As in two dimensions, we see that the powers of m in the Uy = 1, (64c¢)

adiabatic expansion (62) are those found in the DeWitt-
Schwinger representation of the Green’s function, truncated

to the order necessary for the renormalization of the SET. Uoiy = iqAy. (64d)
B. Hadamard/DeWitt-Schwinger expansion 1 ig

X . P Uoow = 75 Ruw — 5 DAy (64e)
For N = 3, the Hadamard representation of the Feynman 12 2

Green’s function reads

1 iq ig
, 1 Ul(x, x') Uosws = =57 Riws) T DDAy + 5 AR, (64f)
—iGg(x,x") = — + W(x,x") p.  (63)
42x o(x, x') + ez
and
As in two space-time dimensions, the biscalars U(x, x) and
W (x, x') can be expanded as power series in the geodesic ) 1
interval o (5). Furthermore, for short distances, the coef- Up=m"+{¢- 6 R, (64g)
ficients of these expansions admit covariant asymptotic
series expansions (6). For the renormalization of the SET, | | | iq
the relevant coefficients of these expansions are [27] Ui, = -3 (5_6> R, +ig [mz + (5_6> R] A, _EV(I Fo.
Uo(x.x') = Upo(x) + Ugi,(x)o? + Ugay (x)o#0* (64h)
+ U03”D,1(x)0;”6;"0';1 + O(6?), (64a)
For our particular configuration of flat FLRW space-time
Uy (x,x) = Uyp(x) + Upu(x)a* + O(o), (64b)  (23) and electromagnetic potential A, = (0,A(#),0) the
short-distance expansion of the geometric part of the
where Hadamard parametrix reads

1 U(x,x) 1 igAAx am’e @PA’AX>  dPe  Edle  de  Ede  iaAmPgeAx  igPASAX
/

4N 2r o(x,x )% B drae + drae 8 Sarme>  32ar | 4am  l6m  2n: 87 24are
igAdleAx igAfaleAx iqaAeAx igAdeAx igAfieAx iagAeAx
— - O(e?), 65
ax | dan | a8z tor T 2 T ase 1O (65)
|
where we have used the result Comparing Eqgs. (62) and (65) we see that they differ only

by terms that are either finite or vanishing in the limit
. . . € — 0, so that the adiabatic and Hadamard expansions of
1 1 ea® 7(a* -24ad’d)e’ P

= + o). (66 the Green’s function have the same short-distance singu-
(26): ae 24a 5760a (). (68) larity structure.
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As in two dimensions, these finite or vanishing terms
can be directly obtained from the DeWitt-Schwinger
representation of the Feynman Green’s function, which
is a particular choice of the Hadamard representation,
with the coefficients W,(x,x") given by (22b). For
N = 3 the mass-dependent DeWitt-Schwinger coefficients
len(mz; x, x) that we require are related to the correspond-
ing Hadamard coefficients by (22a)

Wi (x,x') = —Qm%élo(x,x’) +Lm.A1 (x,x')+O(m™),

3 V2
(68b)

where we employ the following short-distance expansion of
the DeWitt-Schwinger coefficients:

Ag(m?;x,x') = Uy(x, X)), (67a)
- Ao(x, x') = Ago(x) + Ag1,(x)o* + Apa (x)oH 6"
A rton ) Ut oy o) = Aw() + Ao () A (0
+ Aoz (x)o* o6 + O(c?), (69a)
and using (19) we can find the DeWitt-Schwinger coef-
ficients Ay (x, x') and A, (x, x’). Therefore, from (22b), the
short-distance expansions of the biscalars W(x,x’) and
/
Wi (. read Ay (x,2) = A x) + Ay, (x)* + O(o). (69b)
/
Wo(x,x') = =vV2mAy(x, x') + % + O(m™3),
" Using the above results, the finite DeWitt-Schwinger
(68a) contribution to the Hadamard expansion reads as follows:
|
1 W(x.x) m a’ Ea? N i i igAmAx  igAAxa’® igAAxéa®  igAAxi
e W x) = - — — — —
4\/57; 4 24a*mr  4aPmr 12amnx 2amzn Az 24a’mr 4a’mrx 12amr
igAAxEL  igAxA  dPmie® PPAPmAX®  me*éd®  ame’d ame*éi
2amzm 48mn 24rx 8z 8z 487 4z
e2at e2&at  aa®  €2Eaal
- f _€f + O(€%). (70)
24a mn  4a*mrx  24mzn dmr

All the terms in the first three lines in (70) match the
remaining finite or vanishing terms in the adiabatic ex-
pansion (62). However, the four terms in the last line of (70)
do not appear in the adiabatic expansion (62). These terms
are of adiabatic order four and therefore do not appear in
the adiabatic expansion (62), where we have only consid-
ered terms up to and including the third adiabatic order.
Furthermore, these terms do not depend on the electro-
magnetic potential, are present for a neutral scalar field, and
do not appear to have been considered previously in the
literature.

Therefore, in three space-time dimensions, we find that
the DeWitt-Schwinger and adiabatic expansions of the
Green’s functions are not identical, although they have the
same short-distance singularity structure. They differ by
terms of order m~!, order €2, and adiabatic order four.
These will make a finite contribution to the renormalized
SET, and arise from terms in W(x,x’) proportional to
(6-=HR,0*. In a locally covariant renormalization
scheme, such finite terms will make a local, purely geo-
metric contribution to the renormalized SET [48]. Here the
presence of these additional terms in the DeWitt-Schwinger

expansion means that it is not clear whether adiabatic
renormalization is a locally covariant renormalization
scheme in three dimensions. One would need to examine
all the adiabatic order four terms in the adiabatic expansion,
and compare with the DeWitt-Schwinger expansion in
order to address this question.2

VI. N=4

A. Adiabatic expansion

In N = 4 dimensions, the scalar curvature in terms of
the scale factor is R = 6(2—; + ﬁ), and therefore, from (26),

we have
3\ & 3\ d

The adiabatic expansion of the Feynman Green’s function
up to and including the fourth adiabatic order is

*We thank the anonymous referee for their invaluable insight
on this point.
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1

- ~(4) .
_1G1<\d(t’ X; 1, Xl) = 2(7)303

[ RN (@O + (@)Y + (0) + @D+ (@)O). (72

We can systematically compute the momentum integrals using the same techniques as in two and three space-time
dimensions. The terms that only depend on |k| = k can be easily computed in (standard) spherical coordinates. For
example, for n = 0 we use the result

2 T in(k
/ / £ 050) sin(0)d0dep — 4n SKE) (73)
0 0 ke
to find
ik-Ax :
0) 1 3, € 1 / , sin(ke) 1 1 mK(mae)
1, =———= [ &k =——= [ dkkk ——=—5——F—=. 74
4 2(2ﬂ)3a3/ o) (2r)%a? ke o 4x°  ae (74)

Terms that have an explicit dependence on k; can be obtained from homogeneous integrals in the same way as in N = 3,
namely

k- ik-Ax ik-Ax
/d3k167n: —iax_/d3ke | (75)
(0} / (0}

where the right-hand side of the equation is homogeneous in £ and can be computed in spherical coordinates. The adiabatic
order one integral is then

1
i) =— (iqAAx (76)

mK,(mae)
4 4 '

ae

Similarly we can compute the subsequent adiabatic integrals. For n = 2 we find

2

. . 2 2-2 -2 . 2 2 2
@ 1 a a m-e*a mae (a* a Ax*q*A* mK | (mae)
ls m{a“‘&f) (Wa)’%(’"‘”)‘ % K0<m“€>+f<z+z>’<l<m“€>‘ > a0 T

and for n = 3 we have

3) _ 1gAAx (1 a*> a m’e’a? mae (a* a
Iy = s 5(1 - 6¢) P -l-; Ko(mae) — > Ko(mae) +? ?4-2 K, (mae)
1 [iAxgAa iAxq? A% K| (mae)  iAxqA
s [ D Z{maeKl (mae) — Ky(mae)} — . 1(a€ ) _ = Ky(mae)|. (78)

Using the same approach, we find the fourth adiabatic order integral 124). The resulting expression is somewhat lengthy and

is given in Appendix A.
Using the short-distance expansion of the modified Bessel functions (44), we obtain the short-distance expansion of the
adiabatic expansion of the four-dimensional Feynman Green’s function as follows:
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—iGl(fg(t, x;t,x') =

1 {2 2igAAx  ¢PAAX*  &* 3&* 4 3éa at 3&at 9&%at

22272 \a? | a*¢  a*é 3d> | & 3a | a @ Ad'm® d*m? | d*m?
2902 178G 188224 3@ S&? 984 A 3aa®  3Eaa®
30a3m? 2a3m2 a’m? 20a2m>  2d2m? | i@m* | 12dPm? 10azm2 2a%m?
a® Ea® ga 1 gh— iPASAX  iAxagA  igAAxad? N 3igAAxEL?  igAAxi
10am?®  2am®* 12 3a2e? 4a 3a? a? 3a
3igAA 3 1 1 3 . 3 2A2A 242
+ e ; xed 3 —a*mte* + - g m2e2a® + gamze% - Zmzezéaz —Zam 2e2Ei0 + —6a2x a
3q*A2Ax?Ed? N PA’AXPG 3qPA’Ax*Ea 2e’at 2éat N 5¢2éata 1, ,
- - - ——¢a
24> 6a 2a 4542 44 4a 40
1 127¢2d%i 1 1 1 G A*AXY GPAA 4 AX?
ZRE2 2 T 2h,03) L 22 B) L~ 4244 _
F A T g, Tgo€ daT Hgeaa d ppaetat £ n a s 4a

NI I 3 e’m’a’
~529 Ax“A —EqAAAx + O(€’) + |In ) —142y|wy ¢,
where we have defined the quantity

2 .2 3 -2 .. 3
Wln:m__a_+ﬁ_g+ﬁ+_1A 2Ax —

igAa®Ax n 3igA&a*Ax 3 igAdAx n 3igA&aAx

2 Z.a2 a’> 2a 2 2a® a’ 2a a
iqﬁ# %IQAAX - %quzmzAx2 + 1_16 a’m*e? + %;sz - % m2e*a? — %ﬁjzw

+ Zm%zﬁdz + f;j; 322526'14 + 96425;&4 + A2q22XZd - 1—12 am?*e*i — w Zam 2e2Ed
ejéa ~ 962855% 9625’;&2& ~ % 2 4 % EE qu:'xzé; A % EYLINCIN % EEYE

I 5 5 ! !
_EqZAAAx Tl 24aB) 4+ = echaa — g% 2a® 4 aezé’a +0(e).

B. Hadamard/DeWitt-Schwinger expansion

The Hadamard expansion of the Feynman Green’s function in N = 4 space-time dimensions is given by

~iGr(x.x) = 5 (21,,)2 {6 (S(;,)xg — V(x¥)In [G();zx/) + ie} + W(x, x’)}.

(79)

(80)

(81)

The coefficients V(x, x') and W(x, x’) can be expanded in powers of ¢(x, x') as detailed in (5). In this case, the expansion of
U(x,x') in terms of o only has one term, that is U(x, x") = Uy(x, x’). The coefficients V ,(x, x'), Uy(x, x"), and W, (x, x")

admit covariant asymptotic expansions (6). The relevant terms for renormalization of the SET are

UO(X’ x/) = UOO(X) + UOI”(.X')U;” + UOZﬂD(x)U;MU;D + UOSMM(X)O-;”G;DU;A + U04ﬁwﬂr( )5”0 o GT + O( 5/2)’

Vo(x.x') = Voo (x) + Voru(x)o* + Vg (x)a%6™ + O(a*/?),
Vil ) = Vig(x) + O(62),
where
Ug =1,

U01;4 = iqA”,
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1 iq
UOZ/U/ = ERIW - ED(”A’A’ (82f)
1 ig iq

Unzjws = _ﬁR(yv;i) + ED(ﬂDyAA) =+ EA(;:RM)’ (82g)

1 1 1 ig 'q
U04/w/11 = %R(/w;/lr) 360 u\y/\u /1|/7|7: 288 ( RM) 24 D( D D/lA )~ 24 (u [ADRiT)]a (82h)

and in addition
Voo = |m2+ (6= 1\r (82i)
= —1m _— s 1
0 =75 6

1 1 ig| , .
VO]”:_Z 5—6 R;ﬂ+§ m* + cf—— R|A ——V”Fa”, (82))

\% —i 2+ l R|IR, +— 1 £ i R LDR +LR{1R LRaﬂR LR{I/))YR
2 =g | ™ 6)" " T2 \"T20) " T 240 T 180 M T 360 M T 360 H
ig | 5 1 ig ! 7 3 7, e a

together with

s (o DRI 2L (eoDor— L gesg, L gesog 9 o (821)
m - — -——|&—= - — -— .
24 5 720 720 abrd 48 ap

The explicit computation of the short distance expansion using the metric (23) and A, = (0,A(),0,0) results in

Up(x,x') 2 2igAAx @A’Ax? &  a iPAAX | igAAxa? . igAAxd . igaAAx  g*A*Ax
o(x.x')  a’c*  a*é? a’e? 6a> 6a  3a’e® 6a’ 6a 6a 12a%€?
G*A’AX*a? erat gPATAxPG 2efdta ] PAAGAX? 1

— _ _ o 2a2 L O 33
Da T60@ T 120 T asa 8050 T ga o<t O, (83)

and

o 1 e2at et fata  eédla a’e?
Vi) In( 2 ) = — m2ea® - - o ! 84
(x. 5 n(ﬂ) A A e T g T ag O M n<2f2> (84)

where wy, is given by (80). We now combine (83), (84) and compare the result with the adiabatic expansion (79). As
anticipated, all singular terms in (83), (84) exactly match those in (79), but there are terms in (79) that are either finite or
vanishing as ¢ — 0 and that do not appear in the Hadamard parametrix.

To account for these additional terms, we turn to the DeWitt-Schwinger representation of the Feynman Green’s function,
obtained from Eq. (21), giving

Ao(m?;x,x') = Uy(x,x'), (85a)
Ay (m%;x,x) = =2V (x, X)), (85b)
Ay (m?;x,x') = 4V, (x.x'), (85c¢)
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and

Wo(x,x') = {—1 +2y—|—ln<

Wi(x,x') =

5
{—§+2y+ln<

2,02 / /
mzf >}V0(x,x’) A (X)) +A2(x,x)

For the short-distance expansions of the DeWitt-Schwinger coefficients we use

Ai(x,x') = A (x) + A (x)o* + Apgy (x)o# e + O(a*/?),

Aa(x,X) = Ay (x) + O(a'/?),

5 ) + O(m™), (86a)

m2¢? m? A, (x, x' 5 (x, X! ~
f )]Vl(x,x’)— “48( )+3A(8 ) o). (86b)
(87a)
(87b)

as required for the renormalization of the SET. A lengthy but straightforward calculation then gives the short-distance

expansion of the coefficient W(x, x') to be

W(x ! a®>  3&a*  a  3Ea 29a%a at 3Eat 9&rat 17&d*a 188%4Ra 3d?
X. X = —_—— _— _— —_— —_—
’ 2a? a? 2a a 30a°m?  4a*m?®  a*m? a*m? 2aPm? am? 20a?m?
58a% 9824 3aa®  3&qa® a® Ea® G?A? 1. . igAAxa®
523 23 1022 25 2 5555+ 5 18xgA - 2
2a m am 10a“m 2a°m 10am 2am 12a*m 12 2a

3igAAxEG?  igAAxd  3igAAxEd  iAxagA
.l ga” igq .l €+ qgA

3

1 . 1
—a?m*e? + —m2e2a® + — am?e?

3
a— 1 m2e*&Ea?

a’ 2a 12a 32 8 8
3 L, QAN 3GPAAER  PATAXG 3¢PATAXEG 43€*dta €*édta 3,
——am*e“a + 5 - > + - - ——e€d
4 4a 2a 4a 2a 240a a 80
Lon 7 5. 3) 1,,. 3) o, (4) [ NCIE YT SR ST szd‘fAA
e~ - — — — ARPAA — — AR PA - L L o
+4€§a 540 € aa +4€§aa +240a€a 58 S Axa g + O(e’)

+ (™

where wy, is given in (80). Combining (83), (84), (88), the
renormalization length scale £ drops out of the resulting
expression, and the DeWitt-Schwinger Green’s function
reproduces precisely the adiabatic expansion of the
Feynman Green’s function (79).

2f2
5 ) -1 —I—2y}wln,

VII. CONCLUSIONS

We have studied three approaches to the renormalization
of expectation values of operators acting on a charged
quantum scalar field: Hadamard, DeWitt-Schwinger, and
adiabatic. For any number of space-time dimensions greater
than or equal to 2, we have explicitly demonstrated that the
DeWitt-Schwinger representation of the Feynman Green’s
function has the Hadamard form, generalizing the result of
Ref. [39] for a neutral scalar field. The DeWitt-Schwinger
Green’s function corresponds to a particular choice of
the Hadamard coefficient W(x, x') depending on the back-
ground geometry, electromagnetic potential, and scalar
field parameters. This coefficient is set equal to zero in
Hadamard renormalization. As a result, while both

(88)

Hadamard and DeWitt-Schwinger renormalization yield
finite expectation values of the scalar field condensate,
charge current, and SET, the resulting renormalized SET
components will differ by a local, conserved, geometric
tensor, in accordance with Wald’s axioms [37].

Specializing to a background consisting of a spatially flat
FLRW universe in two, three, and four dimensions, with a
time-dependent electromagnetic potential, we calculated
the adiabatic expansion of the Feynman Green’s function
with spatial point splitting, working to the order required
for the renormalization of the SET. We also find expres-
sions for the Hadamard and DeWitt-Schwinger represen-
tations in this case, performing an asymptotic series
expansion in the spatial separation, again truncating the
expansion once we have sufficient terms for a computation
of the renormalized SET. The inclusion of a time-dependent
background electric field makes our expressions consid-
erably more complex than those for a neutral scalar.

As anticipated, all three representations of the Feynman
Green’s function (Hadamard, DeWitt-Schwinger, and adia-
batic) have identical terms singular in the coincidence limit.
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However, the terms which are finite (or vanishing) as the
spatial separation tends to zero do not always agree. In
two and four dimensions, the DeWitt-Schwinger and
adiabatic Green’s function match exactly, demonstrating
that adiabatic renormalization is a locally covariant
renormalization scheme for a charged scalar field in this
case. In three dimensions, we find terms in the DeWitt-
Schwinger Green’s function that are not present in the
adiabatic expansion. These terms are quadratic in the
spatial separation and hence make a finite contribution to
the renormalized SET. However, they are of higher
adiabatic order than required for the renormalization of
the SET, and hence have been ignored in the adiabatic
expansion. Therefore, in three dimensions, it is not
necessarily the case that adiabatic renormalization is a
locally covariant renormalization scheme.

Our results provide strong evidence for the robustness
of the adiabatic approach to renormalization for a charged
scalar field in even dimensions. Assuming that the back-
ground electromagnetic field is of adiabatic order one,
adiabatic renormalization gives the correct conformal
anomaly [21]. We have further demonstrated that the
results for the renormalized scalar condensate, charged
scalar current, and SET obtained using the adiabatic
approach are identical to those arising from DeWitt-
Schwinger renormalization. In odd dimensions, the sit-
uation is less clear. Further investigation of higher-order
|

adiabatic terms is required in order to ascertain whether
adiabatic renormalization is a locally covariant renorm-
alization prescription.
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APPENDIX A: N=4 DETAILS

The adiabatic function (Q!)®) is

(@)@ = 35ktq*A* 3 15k3q*A* 3 15k3g°A%  3q*A*  3¢*A% % 3 315m*q*k3A%a? 35mPkiqPA%a?
k 8abw’ 4abw’ 4a*w’ 8a*w’  4d’w’ 8w’ 164" 4abw’
35m*qPA%a? 35miya®  15kiqPA*a* SmPq*Ad® SmPya* 3¢*Aa® Sya® 1155mPat
16a*w’ 164’0’ 16a%w’ da*w’ 2a’0’  16a*@w’  164*0w’  128a*w"?
231mba*  357Tmta*  3m*at 3a* 35m2k3qPA%a  15K3qPA%G Sm*qPA%a SmPyi
16a*0w"  64a*0’ 16a*@w’  128a*@’ 8a’w’ 8a’w’ 8a’w’ 8aw’
3¢°A%a Sya 231mba*a  315m*a*a 81mPdta 3dfa 21m*a* 3mPd? 3a?
8’0  8aw’® 32a’w!! 32a%w’ Ra*0’  3Rd’e’  32d°0° 4’0’ 32d°@°
35kimPaq’AA  SKiqPAAa  Sm*agPAA  agPAA SIBPAT AT SIRgPAA | qPAA
da’w’ dadw’ da’w’ 4’  8dtew’  4d’e’  4adte’  4dPe’
Sm’ay  Say 7 Im*aa®  m?aa®  aa®  m?a® a® (A1)
8aw’ = 8aw’ 8w’  8a’w’ ao’  8a*w’ 16aw’  16aw’’
where y is given by (71). The integral of fourth adiabatic order
@) _ 1 37 ,ik-Ax (O—1)(4)
I, =——— | &k Q A2
= s | e (A2)
can be split into two parts as follows:
1) = Ity + Iz, (A3a)
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where
K . .
11(51\)/1 45716:’21:12)6 [—12m*ac*Ax*aq’AA + 6€2q2A2 + @?A’m? Ax? (6¢* A% Ax* — a*e’R))
K, 0 . . .
%Aﬁ {4gq2AA + 2¢2A% + 4gPAA + PA%(m2e2d® + 2(6E — 1)R) |, (A3b)
Ko(mae a2a e2aka eat a2 a<3) a®
19 = % [6(43 2405) S 1m? — Tm? 183 - zog) +6(7 ~605) — 7}

K
723(1)2’3‘16)2 ae{ [Sm*a‘e* +720(1 — 6£)% + 16m*a*
mn
2i

+ 8[348 + 180£(36¢ — 17) + m?ae>(1 + 905)}

APPENDIX B: o, A:

The defining equation for the geodesic interval o is

20 = g, 0"c". (B1)
For the space-time defined by the metric (23), the above
relation takes the form

2, 1 2 2, 1 2
26 = —(0,06)* + P (0;0)* = —(0,0)* + P (0.0)*.  (B2)
For small space-time separations, we propose the following
ansatz

(B3)

0= 33 culi)(ar

n=2 i—

where the coefficients ¢, ; depend only on the time ¢ and
satisfy the boundary conditions c¢,, = —5, ¢y =0, and
€20 :% Although we are interested in the case with
At =0, to compute a short-distance expansion for ¢ we
need to include all the above terms.

Inserting (B3) into (B2) and grouping terms with the
same short-distance order n, we can iteratively obtain the
higher order terms from the lowest orders. The first few
nonvanishing coefficients are

1 Lo 1
31 :_Eaa, C40—ﬂa a c4y2:6aa,
1
— -3 2. .. _ S (3)
Cs.1 24(aa +a*aa), C53 24(aa aa®),
_ 24 2
C6.0 —720(a a*+3a%d),
cor = = (3laa*d + 8a*d® + 9a’aa),
’ 720
C64 = 3e0a (64%d — Tad® — 6aaa® + 3a*a™). (B4)

e
€2(45¢ — 8)] +48(a m2e? — 18 + 90¢) azz

a®

+ 288(5¢ — 1) 9 13612 + a?m?e® + 40£(18¢ — 5)| = }

(A3c)

The defining equation for the Van Vleck—Morette deter-
minant A? is
i
V,Vig = N = 2A73A% 6. (B5)

In flat FLRW coordinates and in terms of ¢, the above
equation reads

do &
_Po-(N-1)% 00+ (N=-2) -y
a € a
2/ .. oA,
=N+ (atma,a - ;2 "). (B6)

As for the geodesic distance, we propose the following
short-distance expansion for A2

Az—1+Zan,

n=2 i=

(AD)i(e)™,  (B7)

where again the coefficients f, ; depend only on ¢. Inserting
the ansatz (B7) together with (B3) into the defining
equation, we can iteratively find the coefficients of the
expansion. The second order coefficients are

1 .
f20 :z(ad‘f' (N=-2)a?),
f21=0,

(N=1)d
= BS§
fra=—ts (B3)
As expected, our expansion coincides with the short-
distance covariant expansion of the Van Vleck-Morette
determinant, given, for example, in [26].
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