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In time-independent quantum systems, entanglement entropy possesses an inherent scaling symmetry
that the energy of the system does not have. The symmetry also assures that entropy divergence can be
associated with the zero modes. We generalize this symmetry to time-dependent systems all the way from
a coupled harmonic oscillator with a time-dependent frequency, to quantum scalar fields with time-
dependent mass. We show that such systems have dynamical scaling symmetry that leaves the evolution of
various measures of quantum correlations invariant; entanglement entropy, GS fidelity, the Loschmidt
echo, and circuit complexity. Using this symmetry, we show that several quantum correlations are related at
late times when the system develops instabilities. We then quantify such instabilities in terms of scrambling
time and Lyapunov exponents. The delayed onset of exponential decay of the Loschmidt echo is found
to be determined by the largest inverted mode in the system. On the other hand, a zero mode retains
information about the system for a considerably longer time, finally resulting in a power-law decay of the
Loschmidt echo. We extend the analysis to time-dependent massive scalar fields in (1þ 1)-dimensions and
discuss the implications of zero modes and inverted modes occurring in the system at late times. We
explicitly show the entropy scaling oscillates between the area-law and volume-law for a scalar field with
stable modes or zero modes. We then provide a qualitative discussion of the above effects for scalar fields in
cosmological and black hole spacetimes.
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I. INTRODUCTION

Entanglement, popularly measured in terms of von
Neumann entropy, is a fundamental property that captures
nontrivial correlations in interacting bipartite quantum
systems [1–5]. While the wave function can be used to
describe the system as a whole, quantum correlations
preclude us from constructing a separate wave function
for each subsystem. Entanglement has been widely studied
in literature, in simple quantum systems such as the
hydrogen atom all the way to black holes [1–5]. Some
relevant applications of entanglement include diagnosing
quantum chaos [6], identifying signatures of quantum
crossovers and phase transitions [3,7,8], testing eigenstate
thermalization [9,10] understating the thermodynamics of
spacetime horizons [11,12], and analyzing quantum fluc-
tuations during cosmological inflation [13].

However, measuring entanglement entropy in quantum
fields is problematic as it is divergent. It is cumbersome
to extract valuable information about the quantum field
without utilizing regularization, such as by employing
an ultraviolet (UV) cutoff [14]. While this divergence is
commonly attributed to the UV (high-energy) limit, it
was recently shown that there is a more general criterion
for entropy divergence—the generation of zero modes
[12,15,16]. This is made possible through an inherent
scaling symmetry of the entanglement entropy that con-
nects the UV, and the IR (infrared) [15]. The current authors
have shown that such a scaling symmetry exists in time-
independent quantum systems such as the hydrogen atom
to quantum fields in asymptotically flat and nonflat space-
times [12,15,16]. The key advantage of mapping the
entropy divergence to the occurrence of zero modes is
isolating the divergence part from the nondivergence part.
More importantly, in the rescaled variables, the entangle-
ment entropy is not sensitive to UV physics.
Given these advantages, it is natural to ask whether the

same scaling symmetry applies to time-dependent systems.
Specifically, what new information does such a scaling
symmetry provide about quantum correlations and diver-
gence in time-dependent systems? Unlike time-independent
systems, the entanglement entropy of time-dependent
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systems has explicit time dependence. This leads us to
ask: Knowing the asymptotic behavior of entanglement
entropy, can we infer the kind of instabilities in the system
and help quantify them? This work addresses these questions
by considering coupled harmonic oscillator with time-
dependent frequency. We then extend the analysis to
time-dependent Bosonic quadratic Hamiltonian and 2D
scalar field.
Entanglement dynamics of continuous-variable quantum

systems are relatively less explored. They have become
increasingly relevant over the last decade [17–21]. The
simplest models involve studying subsystem dynamics in
response to a quench in the quantum system, wherein the
free parameters of the global Hamiltonian are made time
dependent. Its wave function is allowed to evolve unitarily
with time. For a general bosonic quadratic Hamiltonian, the
time evolution of entanglement entropy has been shown to
take the following form [22]:

SAðtÞ ¼ ΛAtþ CA lnðtÞ þ XAðtÞ; ð1Þ

where ΛA is a real number, CA is an integer, and XA is a
bounded function. Whereas linear growth is a characteristic
feature of unstable systems, logarithmic growth arises from
metastable systems. Such instabilities can occur in a variety
of scenarios, ranging from inverted harmonic oscillators to
momentum modes of quantum fluctuations that exit the
Hubble radius during cosmic inflation [23]. It is also to be
noted that while saturation of entropy occurs following a
linear growth for finite systems, it can grow unbounded
in systems with continuous degrees of freedom. Here, we
show that the logarithmic growth of entanglement entropy
is related to the appearance of zero-modes, and CA is
related to the number of zero modes.
As demonstrated in Eq. (1), entropy can serve as a

diagnostic tool for stability. However, it is still a single
number and can not capture the processes in detail. This
necessitates using alternative measures to quantify the
instabilities in the system systematically. For example,
while out-of-time-order-correlators have been widely used
to identify quantum chaos in various many-body systems
[10], measures like the Loschmidt echo [24–26] and circuit
complexity [27–30] are more recent, valuable additions to
the toolbox when it comes to measuring the scrambling time
(how quickly information is disseminated throughout the
system) and Lyapunov exponents (a measure of exponential
sensitivity to initial conditions) [23,31]. However, a key
difference is that, unlike entanglement entropy, a subsystem
quantity, the measures above are properties of the global
wave function. This brings us to the following question:
Since all of these different quantities contain information
about the quantum correlations in the systems, are these
measures related to each other in the asymptotic limit?
Interestingly, we demonstrate that asymptotically in time and

in the presence of instabilities, all these measures are
interrelated through simple expressions.
In this work, we study the subsystem dynamics of

entanglement entropy in quadratic Hamiltonians, where
the system initially in its ground state undergoes a quantum
quench. We first generalize the scaling symmetry of
entanglement entropy to dynamical systems. We then
outline an analytical proof in the real space for Eq. (1)
while also fixing the unknown coefficients for harmonic
chains. Along with entanglement entropy, we also test the
presence of both zero modes and unstable modes with
the help of quantum fidelity, Loschmidt echo, and circuit
complexity of the evolving wave function and obtain
relations in the asymptotic limit. In the case of unstable
modes, we can characterize both the scrambling time and
Lyapunov exponents from the above measures. Finally, we
also run numerical simulations of entanglement dynamics
in a lattice-regularized quantum scalar field in (1þ 1)-
dimensions upon performing (i) a global mass quench and
(ii) a boundary condition quench. In both cases, the quench
results in “entanglement ripples” traveling throughout the
system, whereas in mass quenches we further observe
subsystem scaling of entanglement featuring area-law to
volume-law oscillations.
Quantum fields in time-dependent backgrounds are ideal

settings to study these effects. Especially in gravity, there
are two settings where quantum physics at short distances
(high energies) influences the physics at long distances
(low energies). These are: (i) Cosmological inflation,
where the putative exponential expansion of the very
early (≈ 10−34 seconds after the big bang) and very small
(≈ 10−26 m) Universe causes quantum effects in that epoch
to show up in current observations, such as the cosmic
microwave background radiation (CMBR) [32,33], and
(ii) black holes, where outgoing low-energy quantum
modes from the horizon evolve from high energy modes
due to high gravitational redshifts [34,35]. Such exotic
physical scenarios can in principle be studied by looking at
the global quench dynamics of the massive scalar field in
corresponding background spacetimes.
The boundary quench is useful in simulating the

dynamical Casimir effect (DCE) [36,37], which serves
as a heuristic model for Hawking radiation, the Unruh
effect, and various other phenomena [38]. The DCE is
brought about by moving mirrors in the vacuum that leads
to a dissipative force on the plate, resulting in field
excitations [39–41]. Alternatively, DCE can be simulated
by fixing the boundary and switching to a time-dependent
Robin boundary condition instead [42,43]. Upon imple-
menting this, the ensuing entanglement dynamics help
capture the signatures of DCE in massive scalar fields.
The paper is organized as follows: In Sec. II we introduce

the model and the quantifying tools employed. We general-
ize the scaling symmetry of entanglement entropy to
dynamical systems and show how the late-time behavior
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of these systems can be used to understand quantum
correlations. We numerically obtain the entanglement
entropy and fidelity at all times and show that the analytical
results for the asymptotic limit match the numerical results.
In Sec. IV, we apply the dynamical scaling symmetry in
lattice-regularized time-dependent scalar field theories and
discuss the difference in the late-time correlations due to
boundary quench and mass quench. In Sec. V, we conclude
by discussing the physical interpretations of this crossover,
as well as directions for future research. Throughout this
work, we use natural units ℏ ¼ c ¼ 1.

II. DYNAMICAL SCALING SYMMETRY
AND ENTANGLEMENT ENTROPY

In theory, the time-dependent Schrödinger equation
[44,45]

iℏ
∂Ψðx; tÞ

∂t
¼ HðtÞΨðx; tÞ; ð2Þ

can be solved using the time evolution operator given
formally by

Uðt; t0Þ ¼ T̂

�
exp

�
−
i
ℏ

Z
t

t0

Hðt0Þdt0
��

; ð3Þ

where T̂ is the time-ordering operator which orders
operators with larger times to the left. This unitary operator
takes a state at time t0 to a state at time t so that

Ψðx; tÞ ¼ Uðt; t0ÞΨðx; t0Þ:

However, explicit construction of (3) is rarely possible.
Nevertheless, it is possible to obtain the time evolution
operator for a specific form of a quadratic Hamiltonian
[45–47]. Since our goal is to quantify quantum correlations
in field-theoretic systems, in this section, we will begin
by focusing our attention on the two coupled harmonic
oscillators (CHO) with time-dependent frequency. The
Hamiltonian of this system is

H̃ðt̃Þ ¼ p̃2
1

2
þ p̃2

2

2
þ 1

2
ω̃2ðt̃Þðx̃21 þ x̃22Þ þ

α̃2

2
ðx̃1 − x̃2Þ2; ð4Þ

where ω̃ðt̃Þ is the time-dependent frequency and α̃ is the
coupling constant. Here, we have used tildes to represent
dimensionfull variables and parameters, to distinguish them
from their dimensionless counterparts that will appear
in subsequent sections. Under the transformations x̃� ¼
ðx̃1 � x̃2Þ=

ffiffiffi
2

p
, the above Hamiltonian reduces to

H̃ðt̃Þ ¼ p̃2þ
2

þ p̃2
−

2
þ 1

2
ω̃2þðt̃Þx̃2þ þ 1

2
ω̃2
−ðt̃Þx̃2−; ð5Þ

where the time-dependent normal modes are

ω̃−ðt̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̃2ðt̃Þ þ 2α̃2

q
; ω̃þðt̃Þ ¼ ω̃ðt̃Þ: ð6Þ

We solve the time-dependent Schrödinger equation for each
uncoupled oscillator as elaborated in Appendix A. For this,
we consider the form-invariant Gaussian state, which evolves
from an initial ground state (GS) at time t ¼ 0 and develops
excitations in the instantaneous eigenbasis defined at each
time slice. Such a solution takes the form [48],

Ψ̃GSðx̃þ;x̃−;tÞ¼
Y

j¼fþ;−g

�
ω̃jð0Þ
πb̃2jðt̃Þ

�
1=4

×exp

�
−

 
ω̃jð0Þ
b̃2jðt̃Þ

−i
_̃bjðt̃Þ
b̃jðt̃Þ

!
x̃2j
2
−
i
2
ω̃jð0Þτ̃jðt̃Þ

�
;

ð7Þ

where τ̃j ¼
R
b̃−2j ðt̃Þdt. The scaling parameters b̃j are

solutions of the nonlinear Ermakov-Pinney equation
[44,48–50],

̈b̃jðt̃Þ þ ω̃2
jðt̃Þb̃jðt̃Þ ¼

ω̃2
jð0Þ

b̃3jðt̃Þ
: ð8Þ

Note that b̃jðt̃Þ is nonzero at all times [51,52], and in the
time-independent limit ω̃ðt̃Þ → ω̃, we see that b̃j ¼ 1 and
_̃bj ¼ 0. Thus, in the time-independent limit τ̃j ¼ t. Also,
b̃jðt̃Þ is related to the classical-time dependent oscillator
solution as follows [48]:

f̈ þ ω̃2
jðt̃Þf ¼ 0; b̃2jðt̃Þ ¼ ω̃jð0Þff21 þW−2f22g; ð9Þ

where f1, f2 are linearly independent solutions of the
harmonic oscillator with frequency ω̃þðt̃Þ [or ω̃−ðt̃Þ] and
the Wronskian W ¼ f1 _f2 − _f1f2 is a nonzero constant.
The solution b̃jðt̃Þ is crucial in constructing the class of
invariants (known as Lewis invariants) corresponding to a
time-dependent oscillator system [44,50], whose eigen-
values are time-independent and evenly spaced [48].
Recently, the authors have shown that entanglement

entropy of various time-independent systems—CHO, the
scalar field in ð1þ 1Þ–dimensions, and scalar fields in
black-hole space-times—is invariant under a scaling trans-
formation even though the Hamiltonian is not [12,15,16,53].
We generalize the scaling relations to time-dependent
systems. Moreover, we explicitly show that the presence
of zero modes corresponds to the divergence entanglement
entropy also in time-dependent systems.
In the rest of this section, we define two quantifying tools

for quantum correlations—entanglement entropy and quan-
tum fidelity—and use the generalized scaling symmetry to
relate the presence of the zero modes to divergent entan-
glement entropy for time-dependent systems.
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A. Entanglement entropy and fidelity

Like in the case of time-independent CHO [54,55], to evaluate the entanglement entropy, we must first calculate the
reduced density matrix (RDM) of the system [18,54],

ρ2ðx̃2; x̃02Þ ¼
Z

dx̃1Ψ̃�
GSðx̃1; x̃02ÞΨ̃GSðx̃1; x̃2Þ

¼
�

ω̃þð0Þω̃−ð0Þ
2πb̃2þðt̃Þb̃2−ðt̃ÞReðAÞ

�
1=2

exp

�
−
γ

2
ðx̃22 þ x̃022 Þ þ i

δ

2
ðx̃22 − x̃022 Þ þ βx̃2x̃02

�
; ð10Þ

where

A ¼ 1

4

"
ω̃þð0Þ
b̃2þðt̃Þ

þ ω̃−ð0Þ
b̃2−ðt̃Þ

− i

 
_̃bþðt̃Þ
b̃þðt̃Þ

þ
_̃b−ðt̃Þ
b̃−ðt̃Þ

!#

B ¼ 1

4

"
ω̃þð0Þ
b̃2þðt̃Þ

−
ω̃−ð0Þ
b̃2−ðt̃Þ

þ i

 
_̃bþðt̃Þ
b̃þðt̃Þ

−
_̃b−ðt̃Þ
b̃−ðt̃Þ

!#

γ ¼ 2ReðAÞ −
�
ReðBÞ2 − ImðBÞ2

ReðAÞ
�

β ¼ jBj2
ReðAÞ

δ ¼ 2 ImðAÞ − 2ReðBÞ ImðBÞ
ReðAÞ : ð11Þ

Since both the harmonic oscillators have the same fre-
quency dependence (4), the functional form of RDM
evaluated by integrating over x̃1 or x̃2 is the same, and
leads to an identical spectrum. However, it should be noted
that unlike the time-independent case, the RDM is not
symmetric in x̃2 and x̃02. This is because δ vanishes for the
time-independent CHO. The eigenvalues of the RDM at an
instantaneous time can be obtained by solving the follow-
ing integral equation [54,55]:

Z
dx̃02ρ2ðx̃2; x̃02Þfnðx̃02Þ ¼ pnfnðx̃2Þ: ð12Þ

The solution for the above integral equation is [18]

fnðxÞ ¼
1ffiffiffiffiffiffiffiffiffi
2nn!

p
�
ϵ

π

�
1=4

Hnð
ffiffiffi
ϵ

p
x̃Þ exp

�
−ðϵþ iδÞ x̃

2

2

�

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − β2

q
pn ¼

�
1 − ξ̃ðt̃Þ

�
ξ̃nðt̃Þ

ξ̃ðt̃Þ ¼ β

γ þ ϵ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω̃þð0Þ
b̃2þðt̃Þ

þ ω̃−ð0Þ
b̃2−ðt̃Þ

�
2 þ

� _̃bþðt̃Þ
b̃þðt̃Þ −

_̃b−ðt̃Þ
b̃−ðt̃Þ

�
2

r
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̃þð0Þω̃−ð0Þ
b̃þðt̃Þb̃−ðt̃Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω̃þð0Þ
b̃2þðt̃Þ

þ ω̃−ð0Þ
b̃2−ðt̃Þ

�
2 þ

� _̃bþðt̃Þ
b̃þðt̃Þ −

_̃b−ðt̃Þ
b̃−ðt̃Þ

�
2

r
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̃þð0Þω̃−ð0Þ
b̃þðt̃Þb̃−ðt̃Þ

q : ð13Þ

For the instantaneous GS wave function subject to an
adiabatic evolution of H̃ðt̃Þ [56], the entanglement entropy
is calculated as follows:

S̃ðt̃Þ ¼ −
X
n

pn log pn

¼ − log ½1 − ξ̃ðt̃Þ� − ξ̃ðt̃Þ
1 − ξ̃ðt̃Þ log ξ̃ðt̃Þ: ð14Þ

It is important to note that the entanglement entropy only
depends on time as the eigenvalues are time-dependent.

The above formalism can in fact be extended to a system
of N time-dependent oscillators. See Appendix B for
details.
Fidelity (or overlap function) can be used to determine

the extent of the time evolution of a quantum state [8,57].
The overlap between the initial and final states during the
evolution is

F 0ðt̃Þ ¼ jhΨ̃ð0ÞjΨ̃ðt̃Þij: ð15Þ

S. MAHESH CHANDRAN and S. SHANKARANARAYANAN PHYS. REV. D 107, 025003 (2023)

025003-4



For the ground state of system, this can be calculated to be

F 0ðt̃Þ ¼ 2
Y

n¼þ;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω̃nð0Þ

b̃nðt̃Þ
	
ω̃2
nð0Þ

�
1þ 1

b̃2nðt̃Þ

�
2 þ _̃b

2
nðt̃Þ

b̃2nðt̃Þ



vuuut

¼
Y
n

F ðnÞ
0 ðtÞ: ð16Þ

B. Dynamical scaling symmetry and its consequences

In the time-independent case, the entanglement entropy
was shown to have an inherent scaling symmetry that the
Hamiltonian of the system did not have [15,16,23]. Upon
rescaling the Hamiltonian by a constant factor, the entropy
remained invariant, whereas the Hamiltonian did not. Such
a rescaling is convenient as it reduces the number of
independent parameters in the Hamiltonian and allows
us to probe the cause of entropy divergence. For instance,
the divergence of entanglement entropy can be attributed to
the occurrence of zero modes in the scalar field. Here, we
generalize the idea to account for a time-dependent system
under similar transformations and assess its consequences.
Let us rescale the Hamiltonian (4) w.r.t. the coupling

constant α̃, i.e.,

HðtÞ ¼ H̃ðt̃Þ
α̃

¼ p̃2
1

2α̃
þ p̃2

2

2α̃
þ ω̃2ðt̃Þ

2α̃
ðx̃21 þ x̃22Þ þ

α̃

2
ðx̃1 − x̃2Þ2:

ð17Þ

On performing the canonical transformations

pi ¼ α̃−1=2p̃i; xi ¼ α̃1=2x̃i where i ¼ 1; 2;

the rescaled Hamiltonian (H), which is now dimensionless,
can be brought to canonical form,

HðtÞ ¼ 1

2
fp2

1 þ p2
2 þ ΛðtÞðx21 þ x22Þ þ ðx1 − x2Þ2g;

ΛðtÞ ¼ ω̃2ðt̃Þ
α̃2

: ð18Þ

It is to be noted that rescaled time t corresponding to the
rescaled Hamiltonian is also dimensionless. Furthermore,
the rescaled Hamiltonian is now characterized by a single
parameter ΛðtÞ. The normal modes of the above rescaled
Hamiltonian are

ω− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛðtÞ þ 2

p
; ωþ ¼

ffiffiffiffiffiffiffiffiffi
ΛðtÞ

p
: ð19Þ

The GS wave function for HðtÞ is

ΨGSðxþ; x−; tÞ ¼
Y

j¼fþ;−g

�
ωjð0Þ
πb2jðtÞ

�
1=4

exp

�
−
�
ωjð0Þ
b2jðtÞ

− i
_bjðtÞ
bjðtÞ

�
x2j
2
−
i
2
ωjð0ÞτjðtÞ

�
; ð20Þ

where the scaling parameter bjðtÞ for each of these modes
satisfies the following Ermakov-Pinney equation:

b̈jðtÞ þ ω2
jðtÞbjðtÞ ¼

ω2
jð0Þ

b3jðtÞ
; j ¼ þ;−: ð21Þ

The GS entanglement entropy corresponding to H̃ðtÞ is

SðtÞ ¼ − log ½1 − ξðtÞ� − ξðtÞ
1 − ξðtÞ log ξðtÞ ð22aÞ

ξðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ωþð0Þ
b2þðtÞ þ

ω−ð0Þ
b2−ðtÞ

�
2 þ
�
_bþðtÞ
bþðtÞ−

_b−ðtÞ
b−ðtÞ
�
2

r
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþð0Þω−ð0Þ
bþðtÞb−ðtÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ωþð0Þ
b2þðtÞ þ

ω−ð0Þ
b2−ðtÞ

�
2 þ
�
_bþðtÞ
bþðtÞ−

_b−ðtÞ
b−ðtÞ
�
2

r
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþð0Þω−ð0Þ
bþðtÞb−ðtÞ

q :

ð22bÞ

Let us now compare the expressions (14) and (22a). Using
the fact that the rescaled and original variables are related
as b̃jðt̃Þ ¼ bjðtÞ and ξ̃ðt̃Þ ¼ ξðtÞ, we see that S̃ðt̃Þ ¼ SðtÞ
when t ¼ α̃ t̃. In other words, we see that b̃j and S̃
are invariant under the transformations H̃ → H̃=α̃ and
t̃ → α̃ t̃. This is valid provided α̃ is a constant. To further
explore the consequences of this symmetry, let us look at
the following scaling transformations:

ω̃ → ηω̃; α̃ → ηα̃ ð23Þ

In the time-independent case, it was shown that these
transformations left the entanglement entropy invariant
[12]. However, in the time-dependent case, we see that:

(i) For the rescaled HamiltonianH, the entropy remains
invariant,

Sðηω̃; ηα̃; tÞ ¼ Sðω̃; α̃; tÞ: ð24Þ
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(ii) For the original Hamiltonian H̃, the entropy trans-
forms as

S̃ðηω̃; ηα̃; η−1 t̃Þ ¼ S̃ðω̃; α̃; t̃Þ: ð25Þ

In the time-independent case, we were able to group all
systems with the same Λ into a class of systems with the
same entropy distinguished only by their energies [12]. The
transformations in (23) would then take us from one system
to another in the same Λ class, and the energy gets rescaled
appropriately. However, in the time-dependent case, while
we can still group the systems into a ΛðtÞ-class where they
have the same functional form, the transformation (23) will
rescale not only energy but also the timescale of evolution.
To illustrate this, we consider the following two different

functional forms of ω̃ðtÞ for which the exact solution to the
Ermakov equation is known,
(1) The simplest ω̃ðt̃Þ for which solutions are well

known is

ω̃2ðt̃Þ ¼
�
C0α̃

2 if t̃ ¼ 0

C1α̃
2 if t̃ > 0:

ð26Þ

In this case, the scaling parameter for the two normal
modes are [18]

b̃þðt̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
C0

C1

− 1

�
sin2ðα̃

ffiffiffiffiffiffi
C1

p
t̃Þ

s

b̃−ðt̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
C0 þ 2

C1 þ 2
− 1

�
sin2ðα̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ 2

p
t̃Þ

s
:

ð27Þ

For the rescaled Hamiltonian H ¼ α̃−1H̃, we have

ΛðtÞ ¼
�
C0 if t ¼ 0

C1 if t > 0:
ð28Þ

The rescaled scaling parameters in this case are

bþðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
C0

C1

− 1

�
sin2ð

ffiffiffiffiffiffi
C1

p
tÞ

s

b−ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
C0 þ 2

C1 þ 2
− 1

�
sin2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ 2

p
tÞ:

s

ð29Þ

Comparing Eqs. (27) and (29), we see that b̃jðt̃Þ ¼
bjðt → α̃ t̃Þ, and in extension, S̃ðt̃Þ ¼ Sðt → α̃ t̃Þ.

(2) Consider the following form of ω̃ðtÞ:

ω̃2ðt̃Þ ¼ P̃2 þ 2

Q̃2
sech2

�
t̃

Q̃

�
: ð30Þ

Here, the parameter P̃ ¼ jω̃ð�∞Þj is the asymptotic
value of a bell-shaped frequency curve centered at
t ¼ 0, whereas Q captures the “squeeze” of the bell-
curve. The solutions for this form have recently been
worked out in Ref. [21],

b̃2þðt̃Þ ¼
�
1þ tanh2ðt̃=Q̃Þ

P̃2Q̃2

�0B@1 −
sin2
�
P̃ t̃þtan−1

�
tanhðt̃=Q̃Þ

P̃ Q̃

��
ð1þ P̃2Q̃2Þ2

1
CA

b̃2−ðt̃Þ ¼
�
1þ tanh2ðt̃=Q̃Þ

ðP̃2 þ 2α̃2ÞQ̃2

�0BB@1 −
sin2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P̃2 þ 2α̃2
p

t̃þ tan−1
�

tanhðt̃=Q̃Þffiffiffiffiffiffiffiffiffiffiffiffi
P̃2þ2α̃2

p
Q̃

��
ð1þ ðP̃2 þ 2α̃2ÞQ̃2Þ2

1
CCA: ð31Þ

The corresponding functional form in the rescaled Hamiltonian H ¼ α̃−1H̃ will be

ΛðtÞ ¼ P2 þ 2

Q2
sech2

�
t
Q

�
; ð32Þ

where P̃ ¼ α̃P and Q̃ ¼ α̃−1Q. In this case, the solutions are
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b2þðtÞ ¼
�
1þ tanh2ðt=QÞ

P2Q2

�0B@1 −
sin2
�
Ptþ tan−1

�
tanhðt=QÞ

PQ

��
ð1þ P2Q2Þ2

1
CA

b2−ðtÞ ¼
�
1þ tanh2ðt=QÞ

ðP2 þ 2ÞQ2

�0BB@1 −
sin2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þ 2
p

tþ tan−1
�

tanhðt=QÞffiffiffiffiffiffiffiffi
P2þ2

p
Q

��
ð1þ ðP2 þ 2ÞQ2Þ2

1
CCA: ð33Þ

From here it is easy to see that b̃ðt̃Þ ¼ bðt → α̃ t̃Þ, and in
extension, S̃ðt̃Þ ¼ Sðt → α̃ t̃Þ. In this case, we see that to
preserve the dynamical scaling symmetry of entanglement,
and we must also rescale the parameters P̃ and Q̃ as they are
dimensionfull in time. In other words, they represent some
other timescales in the evolution of the system. From Fig. 1,
we can observe that frequency evolutions with appropri-
ately rescaled timescales in the original and rescaled
Hamiltonians will lead to the same entanglement dynamics.
In general, it is not possible to obtain the exact solution

to the Ermakov equation (8). However, it is possible to
obtain the approximate solution to the Ermakov equation in
the asymptotic future provided ω̃ðt̃Þ or ΛðtÞ relaxes to a
constant value. Moreover, since the dynamical scaling
symmetry connects the scale-factors of H and H̃, it is
possible to map the dynamics of original Hamiltonian H̃ðt̃Þ
to that of the rescaled Hamiltonian HðtÞ at all times. In the
following subsection, we obtain analytical results by
studying the late-time behavior of the scale factors.

C. Using late-time behavior to understand quantum
correlations

Upon rescaling the Hamiltonian H ¼ α̃−1H̃, we were
able to simplify the problem by shifting to a Hamiltonian
which has only a single, dimensionless time-dependent
parameter ΛðtÞ that drives the quench. Since ΛðtÞ also

contains the coupling parameter α̃, we refer to ΛðtÞ as the
quench function. Since the dynamical scaling symmetry of
entanglement connects the scale-factors of H and H̃, it is
sufficient to work with one to understand the results of
the other.
As we will see in Sec. IV, this will have important

consequences in field theory. However, first, we fully flesh
out the dynamics for a coupled harmonic oscillator. Of
special interest is the late-time behavior of entanglement
entropy, which not only serves as a diagnostic tool for
quantum chaos [22], but helps identify the presence of
zero modes.
To understand the long-term behavior of entanglement

due to the quench function, we analyze the solutions to the
Ermakov equation. First, let us look at a case where a
rescaled frequency ΛðtÞ undergoes a time evolution and
relaxes to a constant value in the asymptotic future,

ΛðtÞ ¼
�Λ0 if t ¼ 0

Λ1 if t → ∞:
ð34Þ

Thus, the asymptotic values of the two normal modes
—ωþðtÞ ¼

ffiffiffiffiffiffiffiffiffi
ΛðtÞp

and ω−ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛðtÞ þ 2

p
—are

(a) (b)

FIG. 1. (a) Time dependence of ΛðtÞ (32) and ω̃2ðtÞ (30) for α̃2 ¼ 2 and 4, (b) Dynamics of entanglement entropy in the rescaled
system SðtÞ and the original system S̃ðt̃Þ for α̃2 ¼ 1, 2. Here, P ¼ Q ¼ 1.
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uj ¼ lim
t→∞

ωjðtÞ ¼
8<
: ffiffiffiffiffiffi

Λ1

p
if j ¼ þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ1 þ 2
p

if j ¼ −:
ð35Þ

In the asymptotic future (t → ∞), the Ermakov equation
takes the following form:

b̈jðtÞ þ u2jbjðtÞ ∼
ω2
jð0Þ

b3jðtÞ
; j ¼ þ;−: ð36Þ

Since the coefficient in the second term of the above
equation is time independent, we can obtain the following
solutions [18]:

bjðtÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
ω2
jð0Þ
u2j

− 1

�
sin2ujt

s
;

_bjðtÞ ∼ ðω2
jð0Þ − u2jÞ

sin 2ujt

2ujbjðtÞ
: ð37Þ

From the above expression, we see that the late-time
behavior of the scaling parameter crucially depends on
the nature of asymptotic normal mode frequencies. Since
the asymptotic normal modes can be of three types, the late-
time behavior of the scaling parameter can be grouped into
the following three categories:

(i) Stable mode u2j > 0: The solutions bðtÞ and _bðtÞ are
finite, bounded oscillations at late times. If both the
normal modes are stable, then bjðtÞ and _bjðtÞ are
bounded at all times, and it clear from Eq. (22) that
the eigenvalues and entropy are finite at all times.

(ii) Zero mode u2j ¼ 0: At late times, the solutions (37)
further reduce to

bjðtÞ ∼ ωjð0Þt; _bjðtÞ ∼ ωjð0Þ; ð38Þ

(iii) Inverted mode u2j < 0: At late times, the solutions
(37) further reduce to

bjðtÞ ∼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ωjð0Þ2

v2j

s
evjt;

_bjðtÞ ∼
vj
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ωjð0Þ2

v2j

s
evjt; ð39Þ

where we have defined uj ¼ ivj.
Armed with the asymptotic form of the scaling param-

eters bjðtÞ, we now obtain the quantum correlations
(entanglement entropy and fidelity) for the quench (34)
in the asymptotic limit. As shown in the next subsection,
the asymptotic analysis is sufficient for any quench with
constant values in the two asymptotic limits (t → −∞
and t → ∞).

1. Zero mode: Λ1 = 0

Let us consider that case where one of the normal modes
(ωþ) vanish in the asymptotic future. (Note that in the case
of CHO only one normal mode can vanish.) The scaling
parameter takes the form in Eq. (38). Substituting Eq. (38)
in Eq. (22), the eigenvalues and entropy reduce to,

ξzeroðtÞ ∼ 1 −
4b−ðtÞ

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω−ð0Þ

ωþð0Þ½ω2
−ð0Þ þ b2−ðtÞ _b2−ðtÞ�

s

SzeroðtÞ ∼ log

"
t
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþð0Þ
ω−ð0Þ

�
ω2
−ð0Þ

b2−ðtÞ
þ _b2−ðtÞ

�s #
∝ logðtÞ:

ð40Þ

Similarly, the overlap between initial and final states (16)
reduces to

F zero
0 ðtÞ ∼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω−ð0Þ

ωþð0Þb−ðtÞt
h
ω2
−ð0Þ

�
1þ 1

b2−ðtÞ
�
2 þ _b2−ðtÞ

b2−ðtÞ
i

vuut
∝ t−1=2: ð41Þ

This is the first key result of this work, regarding which we
would like to stress the following points: First, Eq. (40)
implies that if any of the normal modes relaxes to a zero
mode, the entropy of the system increases logarithmically
with time, S ∼ logðtÞ. Second, from Eqs. (40) and (41), we
obtain the following relation: S ∝ − logF 2

0. While this
relation might look very speculative at present, as we show
later, this is indeed the case.

2. Inverted modes: Λ1 < 0

This category has three possible scenarios:
(1) −2 < Λ1 < 0: Consider the scenario, when the

system relaxes to one inverted mode (ωþ) and
one oscillator mode (ω−) in the asymptotic future.
The solutions for the inverted mode reduce to

bþðtÞ ∼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2þð0Þ

v2þ

s
evþt;

_bþðtÞ ∼
vþ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2þð0Þ

v2þ

s
evþt; ð42Þ

where, limt→∞ωþðtÞ ¼ ivþ. Substituting the above
expression in Eq. (22), the parameter ξ and entropy S
reduce to

ξðIÞInvðtÞ ∼ 1 −
8vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþð0Þω−ð0Þ

p
expf−vþtg

jb−ðtÞvþ − _b−ðtÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2þ þ ω2þð0Þ

p
SðIÞInvðtÞ ∼ vþt: ð43Þ
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Similarly, the overlap between initial and final states
(16) reduces to

F ðIÞ
0 ðtÞ ∝ exp

�
−
vþt
2

�
: ð44Þ

(2) Λ1 ¼ −2: Consider the scenario when the system
relaxes to one inverted mode (ωþ) and one zero
mode (ω−). Now, the solutions to ω− mode are no
longer bound, and the scaling parameter is

b−ðtÞ ∼ ω−ð0Þt; _b−ðtÞ ∼ ω−ð0Þ: ð45Þ

Substituting the above scaling parameter in Eq. (22),
the parameter ξ and entropy S in the asymptotic
future reduce to

ξðIIÞInvðtÞ ∼ 1 −
8

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþð0Þ

ω−ð0Þðv2þ þ ω2þð0ÞÞ

s
exp f−vþtg

SðIIÞInvðtÞ ∼ vþtþ log t: ð46Þ

Similarly, the overlap between initial and final states
(16) reduces to

F ðIIÞ
0 ðtÞ ∝ t−1=2 exp

�
−
vþt
2

�
: ð47Þ

(3) Λ1 < −2: Consider the scenario when the
system relaxes to two inverted modes (ωþ, ω−). The
scaling parameter corresponding to ω− also grows
exponentially,

b−ðtÞ ∼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω−ð0Þ2

v2−

s
ev−t;

_b−ðtÞ ∼
v−
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω−ð0Þ2

v2−

s
ev−t; ð48Þ

where limt→∞ω−ðtÞ ¼ iv−. Substituting the above
scaling parameter in Eq. (22), the parameter ξ and
entropy S in the asymptotic future reduce to

ξðIIIÞInv ðtÞ ∼ 1 −
16vþv−
vþ − v−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþð0Þω−ð0Þ

½v2þ þ ω2þð0Þ�½v2− þ ω2
−ð0Þ�

s

× exp f−ðvþ þ v−Þtg
SðIIIÞInv ðtÞ ∼ ðvþ þ v−Þt: ð49Þ

Similarly, the overlap between initial and final states
(16) reduces to

F ðIIIÞ
0 ðtÞ ∝ exp

�
−
ðvþ þ v−Þt

2

�
: ð50Þ

This is the second key result of this work, regarding
which we would like to stress the following points: First,
from the three scenarios, we see that the eigenvalues ξðtÞ
and the overlap function have the same functional behavior
with respect to t. Moreover, the eigenvalues and the overlap
function have an exponential dependence with respect to
the inverted mode frequencies. Second, the asymptotic
value of the entanglement entropy scales linearly with time
and the normal mode frequency. Third, from the above
results, we can conclude that the general late-time behavior
of entanglement entropy for CHO is given by

S ∼

 Xn
i¼1

vi

!
tþ log tþ S0ðtÞ; ð51Þ

where the linear term arises from n (can take 0,1, or 2)
inverted modes, the logarithmic term arises from a zero
mode, and S0ðtÞ is a bounded function arising from stable
modes. In the presence of zero modes and inverted modes,
the entropy grows unbounded, ultimately diverging as
t → ∞. This may be explained by looking at the instanta-
neous GS wave function corresponding to the normal mode
in question [18,48],

ΨðjÞ
GSðxj; tÞ ¼

�
ωjð0Þ
πb2jðtÞ

�
1=4

exp

�
−
�
ωjð0Þ
b2jðtÞ

− i
_bjðtÞ
bjðtÞ

�
x2j
2
−
i
2
ωjð0ÞτjðtÞ

�

¼ exp

�
i _bjðtÞx2j
2bjðtÞ

−
i
2
ωjð0ÞτjðtÞ

�
ψ0

�
xj;ωj →

ωjð0Þ
b2jðtÞ

�
; ð52Þ

where j ∈ fþ;−g is the normal mode index, and ψ0 is the
ground state solution for the time-independent HO, whose
frequency is instantaneously rescaled by scaling parameter
bjðtÞ. Here, we see that the Gaussian has both real and
imaginary parts in the exponential when the evolution

timescale is finite, irrespective of whether the mode is
stable, zero, or inverted. Due to the real part being nonzero
for finite timescales, the wave function is normalizable
throughout the evolution. However, in the late-time limit, if
the normal mode relaxes to zero, using (38) we get
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lim
t→∞

ΨðjÞ
GSðxj; tÞ ∼ e−

i
2
ωjð0Þτjð∞Þψ0 ðxj;ωj → 0Þ ∼ ψfp; ð53Þ

where we see that the oscillator is approximated by a free-
particle wave function ψfp as t → ∞ [16]. Similarly, in the
case of an inverted mode in the late-time limit, using (39)
we get

lim
t→∞

ΨðjÞ
GSðxj; tÞ ∼ e

i
2
vjx2j−

i
2
ωjð0Þτjð∞Þψfp: ð54Þ

Interestingly, this is similar to the functional form obtained
in Refs. [58,59]. For the zero-mode and inverted modes,
we see that the real part of the exponential in the Gaussian
vanishes, and the wave function is non-normalizable
as t → ∞. In the time-independent case, it was shown
that entropy divergence is a direct consequence of free
particles in the system, as their wave function is non-
normalizable [12,16]. This divergence was then truncated
by introducing an IR cutoff in the system. In the time-
dependent case, the generation of zero modes and inverted
modes leads to non-normalizability exactly as t → ∞.
Therefore, entanglement entropy diverges in this limit
unless we introduce an IR cutoff.
We further see that in the presence of zero modes and

inverted modes, entropy and fidelity are related as

S ∼ − log F 2
0: ð55Þ

Thus the above expression suggests that in the presence
of instabilities, subsystem quantities such as entropy may
converge to a full system quantity such as logarithmic
fidelity at late times. While the above relation is obtained
by studying the asymptotic properties of the system, in the
next subsection, we show that the asymptotic analysis is
sufficient for any quench that has constant values in the two
asymptotic limits (t → −∞ and t → ∞).

D. Exact results from a quench model

In this subsection, we will simulate the entanglement
dynamics of the CHO subject to a nontrivial evolution of
rescaled frequency ΛðtÞ. To clearly capture the asymptotic
solutions we obtained in the earlier section, we will
consider the following functional form:

ΛðtÞ ¼
( aþ b−a

1þðt−tqP Þ2Q if t ≤ tq

cþ b−c
1þðt−tqP Þ2Q if t ≥ tq:

ð56Þ

Here, ΛðtÞ resembles an asymmetric trough. P represents
the width of the trough, Q captures the steepness, and tq
is the center of the trough. Also, we have introduced
parameters a ¼ Λð−∞Þ, b ¼ ΛðtqÞ, and c ¼ Λð∞Þ that fix
the values of frequency at key points in the evolution.
In Fig. 2, we see that during the evolution, the parameters

have been tuned such that the time-evolution of rescaled
frequency ΛðtÞ covers three regions—positive (stable),
negative (unstable), and zero (metastable). From Fig. 2,
we also observe that in each of these regions, despite the
time-intervals being small, the entropy behaves exactly as
predicted by the late-time entropy analysis in Sec. II C.
Interestingly, the entanglement entropy and fidelity satisfy
the relation (55). Thus, the numerical analysis points to
the fact that the asymptotic analysis captures the entangle-
ment dynamics of CHO. This is the third key result of
this work.
If we were to now shift to the original Hamiltonian H̃ðt̃Þ,

we can invoke the scaling symmetry argument by rescaling
(23) the following parameters:

a → α̃2a; b → α̃2b; c → α̃2c;

tq → α̃tq; P → α̃P: ð57Þ

(a) (b)

FIG. 2. (a) Evolution of rescaled frequency ΛðtÞ, (b) Dynamics of entanglement entropy SðtÞ and logarithmic fidelity due to the
quench. Here, a ¼ 0.5, b ¼ −0.5, c ¼ 0, P ¼ 10, Q ¼ 15, and tq ¼ 20.
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We may then use the relations S̃ðt̃Þ ¼ Sðt → α̃ t̃Þ and
F 0ðtÞ ¼ F̃ 0ðt → α̃ t̃Þ to reproduce the dynamics of original
system H̃ðt̃Þ from HðtÞ.
In this section, we have shown how the scaling symmetry

of entanglement entropy for the time-independent case [12]
can be extended to the time-dependent case. In the time-
independent case, we were able to group all systems in the
same Λ class, which are found to be generated by the
transformations (23). Since entropy was found to depend
on Λ alone monotonically, all such systems with the
same Λ have the same entropy and vice versa. Under
the transformations (23), entropy also, therefore, remains
invariant, while the ground state energies differ. We group
all systems with the same functional form of ΛðtÞ when
considering a time-dependent Hamiltonian. In this case,
the dynamical scaling symmetry (24) implies that while
the entropy is invariant under transformations (23), the
evolution time-scales must be rescaled accordingly.
Consequently, all systems in the same ΛðtÞ class will have
the same functional form for entropy but with different
instantaneous ground state energies and timescales of
evolution.
We also studied the late-time behavior of entanglement

and the fidelity function using the dynamical scaling
symmetry. The linear and logarithmic contributions to
entropy from inverted (unstable) and zero (metastable)
modes are in agreement with results in Ref. [22], and the
corresponding coefficients have been exactly derived for
the CHO. These contributions grow unbounded in time,
and entropy divergence as t → ∞ is explained by the non-
normalizability of the normal mode wave function in this
limit. Here, while we see that the late-time behavior of
entropy can serve as a diagnostic test for quantum chaos, it
may be insufficient to measure the scrambling time and
Lyapunov exponents associated with the chaotic behavior.
For this, we must explore measures such as Loschmidt echo
and circuit complexity that can be used to quantify such
instabilities. Therefore, in the next section, we focus on
understanding these measures and seeing how they may
relate to entropy and fidelity in the late-time limit.

III. QUANTIFYING INSTABILITIES USING
DYNAMICAL SCALING SYMMETRY

In Sec. II, we derived the dynamical scaling symmetry of
entanglement entropy, and studied its late-time behavior.
We saw that there were linear and logarithmic contributions
that grow unbounded with time, arising from instabilities
in the system. We also saw that in this limit, entanglement
entropy which is a subsystem quantity can be related to
GS fidelity corresponding to the global wave function. To
quantify the instabilities, we may use well-established
measures such as the Loschmidt echo and circuit complex-
ity, which are codified by the global wave function. Here,
we use the dynamical scaling symmetry of entanglement to

explore the following: (i) The late-time behavior of the
Loschmidt echo and circuit complexity and (ii) their
relation to entanglement entropy in this limit. This would
help us see how measures characterizing chaos such as
Lyapunov exponents may also be derived from entangle-
ment entropy in the late-time limit, in spite of it being a
subsystem quantity.

A. Loschmidt echo

A standard way of measuring the sensitivity to pertur-
bations in a quantum system is by looking at the overlap
between states that follow slightly different evolutions of
the Hamiltonian. This can be defined by what is known as
the fidelity function [25,60],

F ðtÞ ¼ jhΨðtÞjΨ1ðtÞij; ð58Þ

where the Hamiltonian H0ðtÞ that evolves Ψ1ðtÞ is slightly
different from the Hamiltonian HðtÞ that evolves ΨðtÞ.
Numerically, this is also the same as the Loschmidt echo
[24,25], which similarly measures the sensitivity of the
system to perturbations in time-evolved quantum systems,
but instead is carried out by performing a forward evolution
followed by a backward evolution on the initial state Ψ0.
In the case of CHO, this can be done by taking slightly
different Hamiltonians HðtÞ and H0ðtÞ, respectively, result-
ing in a new state Ψ2,

MðtÞ ¼ jhΨ0jei
R

H0dte−i
R

HdtjΨ0i ¼ jhΨ0jΨ2ij: ð59Þ

While F ðtÞ and MðtÞ have the same value, the states
prepared for both overlaps are different. A quantity that can
help distinguish these two different scenarios is the circuit
complexity calculated from the wave function [29], which
we will discuss in the latter part of this section.
In the case of CHO, we can calculate the ground-state

Loschmidt echo corresponding to Hamiltonians HðΛ; tÞ
and H0 ¼ HðΛþ δΛ; tÞ as follows:

MðtÞ ¼
Y

j¼þ;−
Mj ¼ 2N=2

Y
j¼þ;−

	
ωjð0Þω0

jð0Þ
b2jðtÞb02j ðtÞκj



1=4

;

κj ¼
	
ωjð0Þ
b2jðtÞ

þ ω0
jð0Þ

b02j ðtÞ


2

þ
	 _bjðtÞ
bjðtÞ

−
_b0jðtÞ
b0jðtÞ


2
: ð60Þ

Here, the modification is brought about by an infinitesimal
change δΛ in the evolution of physical parameter ΛðtÞ.
Suppose the rescaled mass relaxes to a constant Λ1 at late
times; we may consider the asymptotic solutions of the
scaling parameter as discussed in Sec. II C. In the asymp-
totic limit, we isolate the contribution MþðtÞ from the ωþ
mode for three different categories discussed in Sec. II C,
by expanding M about δΛ:
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(i) Λ1 > 0: In this category, ωþ mode is stable and the
Loschmidt echo contribution takes the form,

MþðtÞ ∼ 1 −OðδΛ2Þ: ð61Þ

We can see that the effect of infinitesimal change δΛ
on stable modes is negligible even at late times.

(ii) Λ1 ¼ 0: In this category, ωþ mode is a zero mode
and we have

MþðtÞ ∼
8<
:

1 −OðδΛ2Þ if 0 ≪ t ≪ tzeroffiffiffiffiffiffiffiffiffiffi
2

ωþð0Þt
q �

1 − δΛ
8ω2

þð0Þ
�

if t ≫ tzero:

ð62Þ

Thus, the Loschmidt echo behaves differently above
and below the new timescale tzero ¼ 2ωþð0Þ=δΛ. In
the asymptotic limit, Mþ has the same behavior as
the ground state overlap function (41). Thus, one can
interpret tzero as the delay experienced by the system
for the Loschmidt echo to switch to a power-law
decay after quench. We also see that when t ≫ tzero,
Loschmidt echo is related to entropy as

S ∼ − log M2 ∼ − log F 2
0: ð63Þ

(iii) Λ1 < 0: In this category, ωþ mode is inverted and
the Loschmidt echo is

MþðtÞ ∼
8<
:

1 − δΛ
8ω2

þð0Þ if 0 ≪ t ≪ tscram�
1 − δΛ

8ω2
þð0Þ
�
expf−vþðt − tscramÞg if t ≫ tscram;

ð64Þ

where we obtain a new timescale tscram arising due to the
infinitesimal change (δΛ),

tscram ∼ −
1

2vþ
log

δΛ
vþωþð0Þ

: ð65Þ

Here, we see that the Loschmidt echo undergoes an
exponential decay, but there is sufficient delay tscram from
the quench time for this decay to kick in. Since tscram
captures how quickly the information about the original
wave function is lost upon introducing a slight change
in the initial conditions, it is natural to identify tscram as
the scrambling time [31]. Another way to quantify
the exponential decay of the Loschmidt echo is the
maximal Lyapunov exponent [31]. The maximal Lyapunov
exponent is

λL ¼ − lim
t→∞

1

t
log M ∼ vþ; ð66Þ

We see that the Lyapunov exponent is independent of
the perturbation δΛ. It is to be noted that when we have

two inverted modes with different timescales ftðjÞscramg, the
scrambling time corresponds to the earliest onset of
exponential decay. This is determined by the mode with
the largest vj as can be seen in (65). For CHO, this always
corresponds to the smallest (more negative) normal mode
ω2þðtÞ. The Lyapunov exponent, in this case, becomes
λL ¼ vþ þ v−. We also see that for inverted modes, we get
a slightly different asymptotic relation between the entropy
and fidelity as compared to the zero-mode case,

S ∼ − log M ∼ − log F 2
0: ð67Þ

To our knowledge, the relevance of the timescale tzero has
not been discussed earlier in the literature. However, for
sufficiently small δΛ, we see that the scale tzero is much
larger as compared to ts, i.e., a zero-mode instability retains
information about the original wave function for a consid-
erable amount of time when subject to a small change in
initial conditions. For instance, setting δΛ ∼Oð10−10Þ and
other constants to be Oð1Þ, we see that

tzero ∼Oð1010Þ; tscram ∼Oð10Þ: ð68Þ

This has important implications for quantum perturbations
generated during cosmological inflation and the black hole
physics. We will discuss the implications in Sec. V.
Similar to previous sections, we now show that the

analytic results obtained in the late-time limit match with
numerics for a generic quench function. We consider the
following evolution of the rescaled frequency (quench
function),

ΛðtÞ ¼ 1 −
P
2
ð1þ tanh ½Qðt − tqÞ�Þ; ð69Þ

where P ¼ jΛð∞Þ − Λð−∞Þj is the depth of quench, Q is
the speed of quench, and tq is the time about which the
quench function is centered. The results of the numerics
are plotted in Figs. 3–5 which we discuss below: Fig. 3
shows that:

(i) The Loschmidt echo remains very close to 1 for a
stable/zero mode, whereas for an inverted mode, the
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Loschmidt echo begins to exponentially decay as
predicted.

(ii) There is a time lag for the exponential decay to kick
in from when the quench occurs.

To further investigate this, in Figs. 4 and 5, we plot the lag
with respect to quench parameters. The lag is calculated as
the time difference tlag between the beginning of quench
tquench when Λðtþ δtÞ − ΛðtÞ > 10−5, and texp, the begin-
ning of exponential decay when MðtþδtÞ−MðtÞ>10−5.
The time steps here are fixed to be δt ∼ 0.005. From the two
figures, we see that the lagmatches with the scrambling time
that were obtained for late times in Eq. (65). Also, as can be
seen in the Fig. 5, the numerically evaluated Lyapunov
exponent [λnumL ¼ −ðtmax−tquenchÞ−1 logMðtmaxÞ] matches
with the late-time predictions in (66).
The above results are obtained for the rescaled

Hamiltonian, and, as mentioned, the above results are
identical to a group of systems with the same Λ class.
Using the dynamical scaling symmetry in Sec. II B, we can

infer some key properties of the Loschmidt echo for the
original Hamiltonian [H̃ðt̃Þ]. This is the third key result of
this work, regarding which we would like to discuss the
following points: First, under the dynamical scaling sym-
metry, we have

M̃ðt̃; δω̃2Þ ¼ Mðt → α̃ t̃; δΛ → α̃−2δω̃2Þ;
ω̃jðt̃Þ ¼ α̃ωjðt → α̃ t̃Þ; ṽj ¼ α̃vj ð70Þ

Therefore, the scrambling time and Lyapunov exponents
for the original system are given by

t̃scram ¼ α̃−1tscram; λ̃L ¼ α̃λL: ð71Þ

We thus see that a larger coupling leads to quicker
scrambling and increased exponential sensitivity to initial
conditions. Second, while scrambling time tells us how
quickly information about the original wave function is lost
when the system is subject to small change δΛ in the initial

(a) (b)

FIG. 3. (a) Quench functions ΛðtÞ and (b) Loschmidt echo MðtÞ for the corresponding quenches. Here, Q ¼ 10, tq ¼ 20 and
δΛ ¼ 10−10.

(a) (b)

FIG. 4. (a) Quench function and (b) scrambling time for exponential decay. Here, tq ¼ 20, P ¼ 2 and Q ¼ 10.
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conditions, the Lyapunov exponent is independent of δΛ
and is instead a characteristic feature of inverted modes
in the system. For the CHO, we may therefore relate it to
entanglement entropy as follows:

λL ¼ lim
t→∞

1

t
SðtÞ ¼

X
i

vi; ð72Þ

where vi is summed over all the inverted modes in the
system at late times. The late-time linear growth of
entanglement entropy for CHO is, therefore, a quantum
version of a well-known relation for statistical entropy in
classical chaotic systems [61,62],

S ¼ hKSt; ð73Þ

where hKS is the Kolmogorov-Sinai rate defined as the sum
of positive Lyapunov exponents [63]. Lyapunov exponents
typically characterize the exponential divergence of nearby
phase-space trajectories of the entire dynamical system.
However, the entanglement entropy exactly mirrors its
classical, full system counterpart, whose production rate
is determined by these exponents. Nevertheless, such a
mapping between classical and quantum measures of
entropy in dynamical systems is not always trivial [62],
particularly when we consider arbitrary subsystem sizes as
discussed in Sec. IV.

B. Circuit complexity

The unitary time-evolution operator (3) can, in principle,
be implemented as a quantum circuit. Circuit complexity
[27–29] measures the computational cost associated with
each such circuit and essentially tells us with what ease a
certain target state can be prepared. To calculate circuit
complexity from the wave function, let us first consider a
unitary transformation UðtÞ that represents a quantum

circuit that inputs a reference state jΨRi at time t ¼ 0

and outputs a target state jΨTi at a later time t,

jΨTðtÞi ¼ UðtÞjΨRð0Þi: ð74Þ

The unitary operator can be written as a path-ordered
exponential as follows [27–29]:

UðtÞ ¼ P⃖ exp

�
i
Z

t

0

dτHðtÞ
�
; ð75Þ

where HðtÞ is Hermitian. We can decompose this operator
as follows:

HðtÞ ¼
X
I

YIðtÞMI: ð76Þ

Here, the basis fMIg is the set of fundamental gates, and
the control functions fYIðtÞg determine the contribution of
each gate to the circuit. For instance, the scaling/entangling
gate is one such fundamental gate [27],

Qab ¼ expfϵMabg; Mab ¼ ixapb þ
δab
2

; ð77Þ

where ϵ is an infinitesimal parameter. The functions
fYIðtÞg can be obtained using the identity,

YIðtÞMI ¼ ∂tUðtÞU−1ðtÞ: ð78Þ
To proceed further, let us rewrite the ground state for the
CHO as follows:

ΨðtÞ ¼ N ðtÞ exp
�
−
1

2
X̃TWðtÞX̃

�
; ð79Þ

where WðtÞ is a diagonal matrix and N ðtÞ is the normali-
zation factor,

(a) (b)

FIG. 5. (a) Scrambling time and (b) Lyapunov exponents of the system with respect to quench depth P. Here, tq ¼ 20, Q ¼ 10,
δΛ ¼ 10−10, and tmax ¼ 45. The deviation in the right plot is found to reduce for a longer time tmax, but it is constrained by the
exponentially growing scaling parameters [bkðtÞ] that demand higher-computational capacity.
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Wnn ¼
ωnð0Þ
b2nðtÞ

− i
_bnðtÞ
bnðtÞ

;

N ðtÞ ¼
�Y

n

ωnð0Þ
πb2nðtÞ

�
1=4

exp

�
−
i
2

XN
n¼1

ωnð0Þτn
�
;

n ¼ þ;−: ð80Þ

We now choose a matrix representation for the fundamental
gates which act on diagonal matrix W as follows:

WðtÞ ¼ UðtÞ:Wð0Þ:UTðtÞ; U ¼ exp

�X
k

αkðtÞMD
k

�
;

ð81Þ

where fαkg are complex, and the fMD
k g are diagonal

generators of GLðN;CÞ (since W is complex) with only
one identity in the ðk; kÞ position. We now apply the
boundary conditions,

WðtÞ ¼ UðtÞ:Wð0Þ:UTðtÞ;
Wð0Þ ¼ Uð0Þ:Wð0Þ:UTð0Þ: ð82Þ

We may now parametrize the unitary operator as follows:

UðtÞ ¼ P⃖ exp

�Z
t

0

YIðtÞMIdt

�
: ð83Þ

The control functions can therefore be obtained from

YI ¼ trð∂tŨðtÞ · ŨðtÞ−1 · ðMIÞTÞ; ð84Þ

While complexity measures the cost of the optimal circuit
that implements unitary, there can be multiple ways in
which the contributions from each gate can be accumu-
lated. Here, we choose the following definition:

CðUÞ ¼
X
þ;−

jαkj: ð85Þ

For the CHO, the above choice of calculating complexity
from the wave function leads to [29]

CWF ¼
1

2

X
k¼þ;−

	�
1

2
ln

�
ω2
kð0Þ

b4kðtÞ
þ

_b2kðtÞ
b2kðtÞ

��
2

þ
�
tan−1

�
_bkðtÞbkðtÞ
ωkð0Þ

��
2


1=2

¼
X
k

CðkÞ
WF: ð86Þ

Another popular definition involves computing the circuit
complexity from covariance matrix [28] as opposed to the
wave function, leading to the following expression [29]:

CCM ¼ 1

2

X
k¼þ;−

cosh−1
�
ω2
kð0Þð1þ b2kðtÞÞ þ _b2kðtÞ

2ω2
kð0Þ

�

¼
X
k

CðkÞ
CM: ð87Þ

Unlike CCM, CWF is able to distinguish between the
evolution routes of fidelity and the Loschmidt echo [29].
In this work, we further elaborate on the features that
distinguish the two measures, along with their connection
with entanglement entropy.
With the help of asymptotic solutions to the Ermakov

equation, we can also calculate the long-term behavior of
complexity in the two categories:

(i) Zero mode: Substituting bkðtÞ ∼ ωkð0Þt in Eqs. (86)
and (87), we have

CWF ∼
1

2
log t; CCM ∼ log t: ð88Þ

(ii) Unstable mode: Let us consider the mode
contributions individually. Substituting bkðtÞ ∼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

kð0Þ
v2k

r
evkt in Eq. (86), we have

CðkÞ
WF ∼

(
vkt if 0 ≪ t ≪ tðkÞsat

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2

16
þ ðlog vkÞ2

q
if t ≫ tðkÞsat :

ð89Þ

We see that the wave function complexity saturates
after a time tsat given by

tsat ¼ maxftðkÞsat g ∼
1

2vk
log

4ωkð0Þvk
ω2
kð0Þ þ v2k

; ð90Þ

where vk corresponds to the inverted mode that takes
the longest time to saturate. Adding them up, we see
that the complexity at late-times (t ≫ tsat) becomes
constant,

CWF ¼
1

2

X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2

16
þ ðlog vkÞ2

r
: ð91Þ

As for CCM, we obtain a late-time behavior that is
similar to that of entanglement entropy,

CCM ∼
�X

k

vk

�
t ¼ hKSt: ð92Þ

As a result, we demonstrate that, similar to entropy,
the rate of development of complexity for unstable
quantum systems is identical to the classical
Kolmogorov-Sinai rate.

Like in the case of entropy, fidelity, and the Loschmidt
echo, we now show that the analytic results obtained in the
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asymptotic limit match with the numerically evaluated
complexity for a generic quench function. For the quench
model (69), we obtain the dynamics of circuit complexity
for the three categories; stable, zero, and unstable modes.
Figure 6 is the plot of the numerical results from which we
infer the following: The stable oscillator modes result in a
periodic behavior. In contrast, the onset of metastable (zero)
and unstable (inverted) modes increase complexity. For both
CWF and CCM, zero modes result in a logarithmic increase
with time, similar to that of entanglement entropy. However,
for inverted modes, CWF exhibits an initial increase until it
attains saturation, whereas CCM exhibits a linear, unbounded
increase with time, similar to entanglement entropy.
These measures can therefore be used depending on

what modes we are interested in—CWF picks up zero-mode
contributions at late times, whereas CCM picks up inverted
mode contributions at late times. Interestingly, CWF has
also been shown to exhibit a linear increase with time for
unstable modes in cosmological models [23].
Since the results derived in this section hold for all

systems in the same ΛðtÞ class, we can obtain the complex-
ity of the original Hamiltonian ½H̃ðt̃Þ� using the dynamical
scaling symmetry in Sec. II B. We see that like entropy and
fidelity, complexity also remains invariant,

C̃WFðt̃Þ ¼ CWFðt → α̃ t̃Þ; C̃CMðt̃Þ ¼ CCMðt → α̃ t̃Þ:
ð93Þ

As a result, the saturation timescale for wave function
complexity gets rescaled as t̃sat ¼ α̃−1tsat. Similar to scram-
bling time, the saturation time decreases with an increasing
coupling constant.

C. Connection between correlation measures

Having studied the dynamics of CHO using dynamical
scaling symmetry, we now arrive at the connection between
these four correlation measures in the asymptotic limit.

In the presence of a zero mode/inverted modes at late-times,
we see that,

S∼− logF 2
0 ∼CCM ∼

�
− logM2 ∼ log t zero mode

− logM∼ hKSt inverted mode:

ð94Þ

The above relations for correlation measures in the presence
of a zero mode/inverted mode instability can be observed in
Fig. 7. In classical chaotic systems, the Lyapunov exponents
characterize the exponential divergence of nearby phase-
space trajectories of the full dynamical system. In quantum
systems, while the earlier notion of chaos was initially
attributed to systems whose classical counterparts were
already known to be chaotic, its more recent definitions
account for exponential sensitivity of the wave function to
nearby paths in the parameter space via the Loschmidt
echo [31], or in the space of all unitary transformations
via circuit complexity [29]. The quantum Lyapunov expo-
nents that characterize this sensitivity are the inverted modes
in the system, which in turn determine entanglement entropy
analogously to its classical counterpart, the Kolmogorov-
Sinai entropy. Despite being a subsystem measure, entangle-
ment entropy is thermal in the presence of instabilities [64],
and converges with the global measures such as fidelity, the
Loschmidt echo, and complexity at late times. Such a late-
time convergence is still intact even when the Kolmogorov-
Sinai rate hKS approaches zero, and the resultant zero mode in
the system leads to a logarithmic growth typical of metastable
[22] or MBL (many-body localized) phases [65,66].

IV. MASSIVE SCALAR FIELD
IN (1 + 1)-DIMENSIONS

In the earlier two sections, we used dynamical scaling
symmetry in time-dependent CHO to study the late-time
behavior of entanglement and its relation to measures that

(a) (b)

FIG. 6. Circuit complexity as calculated from (a) wave function and (b) covariance matrix for a quenched coupled harmonic oscillator.
Here, tq ¼ 10 and Q ¼ 10.
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quantify instabilities in the system, such as the Loschmidt
echo and circuit complexity. This section studies the
implications of scaling symmetry in lattice-regularized
time-dependent scalar field theories. The Hamiltonian of
a time-dependent massive scalar field (φ̃) in (1þ 1)-
dimensions is [12,53]

H̃ ¼ 1

2

Z
dx̃ ½π̃2 þ ð∇φ̃Þ2 þ m̃2

fðt̃Þφ̃2�; ð95Þ

where m̃fðt̃Þ is the mass of the scalar field with an explicit
time dependence. To evaluate the real-space entanglement
entropy, we discretize the above Hamiltonian into a chain
of harmonic oscillators by imposing a UV cutoff ã and an
IR cutoff L̃ ¼ ðN þ 1Þã. Employing a midpoint discreti-
zation procedure, the resultant Hamiltonian takes the
following form [11,12]:

H̃ ¼ 1

2ã

X
j

½π2j þ ΛðtÞφ2
j þ ðφj − φjþ1Þ2� ¼

1

a
H;

H ¼ 1

2

"XN
j¼1

π2j þ
XN
i;j¼1

KijðtÞφiφj

#
; ð96Þ

where ΛðtÞ ¼ ã2m̃2
fðt̃Þ. The time-dependent Hamiltonian

(96) is crucial for understanding quantum correlations of
scalar fields in dynamical backgrounds such as cosmologi-
cal inflation and understanding the stability of horizons.
Appendix D shows that the Hamiltonian of a massive scalar
field propagating in a time-dependent spherically symmet-
ric spacetime, when discretized, effectively reduces to (96).
In Sec. V we discuss the implications of the results for this
model Hamiltonian for the time-dependent spacetimes.
Here, we have mapped the degrees of freedom of a scalar

field to a lattice of harmonic oscillators with nearest-
neighbor coupling. All information about correlations is

therefore encoded in the coupling matrix KðtÞ with time
evolution (See Appendix B for details about the N–CHO
system). The form of KðtÞ also depends on the boundary
conditions employed [12]:
(a) Dirichlet Condition (DBC): Here, we impose the

condition φ0 ¼ φNþ1 ¼ 0. The coupling matrix Kij
becomes a symmetric Toeplitz matrix with the follow-
ing nonzero elements,

Kjj ¼ ΛðtÞ þ 2

Kj;jþ1 ¼ Kjþ1;j ¼ −1: ð97Þ

The normal modes are [67]

ω̃2
kðtÞ ¼ ΛðtÞ þ 4sin2

kπ
2ðN þ 1Þ k ¼ 1;…N: ð98Þ

(b) Neumann Condition (NBC): We impose the condition
∂xφ ¼ 0 at the two ends of the chain by setting φ0 ¼
φ1 and φNþ1 ¼ φN . The resultant coupling matrix is,
therefore, a perturbed symmetric Toeplitz matrix
whose nonzero elements are given below,

Kjj≠1;N ¼ ΛðtÞ þ 2

K11 ¼ KNN ¼ ΛðtÞ þ 1

Kj;jþ1 ¼ Kjþ1;j ¼ −1: ð99Þ

The normal modes for this boundary condition are [67]

ω̃2
kðtÞ ¼ ΛðtÞ þ 4sin2

ðk − 1Þπ
2N

; k ¼ 1;…N: ð100Þ

In both the above cases, it is to be noted that the smallest
mode corresponds to k ¼ 1. On invoking the dynamical
scaling symmetry of entanglement that was developed in

FIG. 7. Asymptotic behavior of various correlation measures in CHO in the presence of (a) zero mode and (b) inverted mode. Here, we
use the quench function in (69) where Q ¼ 1 and tq ¼ 2. For calculating the Loschmidt echo MðtÞ, we have fixed δΛ ¼ 0.01.
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Sec. II, we can therefore obtain the entanglement entropy of
the field (H̃) from the rescaled Hamiltonian H as follows:

S̃ðt̃Þ ¼ Sðt → ã−1t̃Þ: ð101Þ

From its definition, it is also clear that ΛðtÞ is invariant
under the scaling (η) transformations,

ã → ηã; m̃f → η−1m̃f: ð102Þ

Under these scaling transformations, the entanglement
entropy of the original system varies as

S̃ðη−1m̃f; ηã; ηt̃Þ ¼ S̃ðm̃f; ã; t̃Þ: ð103Þ

In the rest of this section, we will explore the entangle-
ment dynamics of the lattice-regularized field subject to
two different quenches.

A. Obtaining late-time behavior using covariance
matrix approach

The covariance matrix is given by σ ¼ 1
2
MSðtÞMT,

where S ¼ ⊕ Si, whose elements are [20]

Si ¼
	

BiðtÞ −CiðtÞ
−CiðtÞ AiðtÞ



; ð104Þ

where,

Ai ¼
ωið0Þ
b2i ðtÞ

þ
_b2i ðtÞ
ωið0Þ

; Bi ¼
b2i ðtÞ
ωið0Þ

; Ci ¼
biðtÞ _biðtÞ
ωið0Þ

:

ð105Þ

It is also useful to note that

AiBi − C2
i ¼ 1: ð106Þ

For the single-oscillator reduced state, the reduced covari-
ance matrix has the following elements [15,53]:

σ1 ¼
1

2

2
64
P
i
M2

1iBi −
P
i
M2

1iCi

−
P
i
M2

1iCi
P
i
M2

1iAi

3
75: ð107Þ

The entanglement entropy of the system is then given by
[15,53,68]

S1 ¼
�
αþ 1

2

�
log
�
αþ 1

2

�
−
�
α −

1

2

�
log
�
α −

1

2

�
;

ð108Þ

where α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfσ1g

p
. If the determinant (and hence α) is

very large, we may simplify the expression as follows:

S1 ≈ logα ¼ 1

2
log ðdetfσredgÞ: ð109Þ

First, we note that the diagonalizing matrix M is
independent of the mass ΛðtÞ [53]. Therefore, global mass
quenches will not affect the matrix elements of M at any
time. It is therefore sufficient to look at the asymptotic
behavior of the elements of Si. Like in the case of CHO, we
now consider two categories:

(i) Suppose, at late times, the lowest mode ωkðtÞ
corresponds to a zero-mode, we have:

Ak ∼
1

ωkð0Þ
; Bk ∼ ωkð0Þt2; Ck ∼ t: ð110Þ

The determinant on tracing out the first oscillator can
then be rewritten as

detfσredg ∼
1

4

	�
M2

1kBk þ
X
j≠k

M2
1jBj

�

×

�
M2

1kAk þ
X
j≠k

M2
1jAj

�

−
�
M2

1kCk þ
X

j≠kM
2
1jCj

�
2


: ð111Þ

At late times, we see that the Bk ∝ t2 and C2
k ∝ t2

terms dominate,

detfσredg ∼
t2

4

�
ωkð0ÞM2

1k

X
j

M2
1jAj −M4

1k

�

¼ ωkð0ÞM2
1kt

2

4

X
j≠k

M2
1jAj: ð112Þ

The entanglement entropy at late times in the
presence of a zero mode reduces to

S1 ∼
1

2
log ðdetfσredgÞ ∼ log t: ð113Þ

(ii) Suppose, at late times, a single mode ωkðtÞ becomes
an inverted mode (limt→∞ωk → ivk), we see that

Ak ∼ v2kBk ;

Bk ∼
1

4ωkð0Þ
�
1þ ω2

kð0Þ
vk

�
expf2vktg ;

Ck ∼ vkBk: ð114Þ

Similar to what was done for zero modes, the
determinant can be simplified as follows:
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detfσredg ∼
M2

1kBk

4

	
v2k
X
j≠k

M2
1jAj − 2vk

X
j≠k

M2
1jCj

þ
X
j≠k

M2
1jBj



: ð115Þ

The entanglement entropy at late times in the
presence of an inverted mode, therefore, reduces to

S1 ∼
1

2
log ðdetfσredgÞ ∼ vkt: ð116Þ

Generalizing these results for an arbitrary subsystem size
using the same approach is nontrivial. For inverted modes,
however, the entanglement entropy of a subsystem has a
known form and is bounded by its classical counterpart,
the Kolmogorov-Sinai entropy that arises from Lyapunov
exponents of exponentially diverging phase-space trajec-
tories in chaotic systems [62],

Sn ∼

 X2n
k¼1

λk

!
t ≤ hKSt; ð117Þ

where Sn is the entanglement entropy of the n-oscillator
subsystem, fλkg are the 2n largest positive Lyapunov
exponents, and hKS is the sum of all positive Lyapunov
exponents. It can be noted from here that the half-chain
entropy SN=2 always saturates the bound. From the
Lyapunov exponents derived in Sec. III A, we can deduce
that for a massive scalar field,

Sn ∼

 X2n
k¼1

vk

!
t; lim

t→∞
ωkðtÞ → ivk; ð118Þ

where fvkg are automatically indexed from largest inverted
mode to the smallest based on Eqs. (98) and (100).

B. Late-time dynamics after quenching

In this section, we analyze the entanglement dynamics
of a lattice-regularized massive scalar field that undergoes
two different kinds of quench: (i) Quench of the rescaled
field mass by considering a global evolution of ΛðtÞ, and
(ii) Quench of boundary conditions from Dirichlet to
Neumann, which is a localized event implemented at the
edges of the harmonic chain. We see distinct characteristics
in the dynamics that follow, particularly how entanglement
peaks travel throughout the system.

1. Quench of the scalar field mass

Similar to previous sections, we will consider the generic
quench function (69). From Eqs. (98) and (100), it is clear
that a global evolution in ΛðtÞ will drive the evolution of
all the normal modes. Like in the case of CHO, we will
consider three categories of evolution:

Stable modes: Let us look at a global evolution of ΛðtÞ
which only results in stable modes at late times. For
this, we may consider lim

t→∞
ΛðtÞ → 0 in the DBC chain,

where Eq. (98) ensures that all modes remain stable at
late-times for a finite N. Figure 8 is the plot of the
numerical results from which we infer the following:
First, the entanglement dynamics is multioscillatory
across various subsystem sizes. Hence, unlike time-
independent systems, we do not observe a fixed
subsystem scaling behavior of entropy. Second, there
is a periodic linear growth, plateau, and descent of
entropy with time. This tells us that entropy periodi-
cally mimics inverted-mode dynamics (linear growth)

(a) (b)

FIG. 8. Entanglement dynamics after a mass quench (ΛðtÞ) for DBC resulting in late-time stable modes: (a) Time-evolution for various
subsystem sizes where we see a periodic linear growth, plateau and descent, and (b) Sub-system scaling of entanglement entropy at each
time slice in the evolution. Here, N ¼ 100, P ¼ 1, Q ¼ 1, and tq ¼ 15.
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despite all modes being stable. We also see that the
time-scale for this linear growth increases with sub-
system size, reaching a maximum when the bipartition
is at the middle of the chain. The entanglement
dynamics is therefore always bounded by the half-
chain entropy SN=2 at late-times. Lastly, whenever the
half-chain entropy peaks, we see from Fig. 10 that the
entanglement entropy satisfies the volume law.

Zero mode: Let us now consider a situation where, at late
times, the system has a zero mode. For this, we may
consider the same evolution ΛðtÞ (69), but now for an
NBC chain. Here, Eq. (100) ensures that there will be
exactly one zero mode at late times, even for a finiteN,
in clear contrast with DBC. From Fig. 9, we see that
there is a logarithmic production of entropy with
time that dominates the oscillatory behavior across
all subsystem sizes. Just like in DBC, entanglement
entropy of any subsystem size at late times is bounded
from above by SN=2, corresponding to the half-chain
entropy. From Fig. 10, similar to the case of stable
modes, we see that the volume-law of entropy features
during the peaks of SN=2.

Inverted modes: Lastly, we consider a quench that results
in late-time inverted modes. For this, we may consider
an evolution such that lim

t→∞
ΛðtÞ < 0 in an NBC chain.

Here, Eq. (100) ensures that the system generates a
finite number of inverted modes depending on the
system size N. From Fig. 11, we see that there is an
overall linear growth of entropy with time, whose
slope varies with subsystem size as predicted in
Eq. (118). Similar to previous cases, we expect the
late-time entropy of any subsystem size to be bounded
by SN=2 corresponding to the half-chain entropy,
however we are unable to simulate the dynamics

for longer times due to the exponentially growing
solutions bkðtÞ of the Ermakov equation. From Fig. 12,
we see that subsystem scaling of entropy deviates
from the area-law with time, but we are unable to
obtain the late-time scaling relation the system ex-
hibits due to computational constraints.

2. Boundary quench

In contrast with a global quench of the rescaled field
mass ΛðtÞ, we may also consider a local quench in the lattice
and analyze the subsequent entropy evolution. For this, we
consider the lattice-regularized field that initially obeys DBC
and at late times evolves to NBC. Physically, this corresponds
to a system in constant contact with an infinite “bath” and is
insulated from the “bath” at late times. Such a setup can be
used to simulate the dynamical Casimir effect, which leads
to particle creation due to time-dependent properties of the
material. Here, this can be simulated by imposing time-
dependent Robin boundary conditions at the boundaries that
undergo a quantum quench [42,43]. The Robin boundary
condition at each time slice is imposed as follows:

φþ ζðtÞ∂xφ ¼ 0; ð119Þ
where ζiðtÞ is time dependent. When ζðtÞ → 0 it takes the
Dirichlet formandwhen ζðtÞ→∞ it takes theNeumann form.
Aboundary quench can also be brought about by constructing
the nonzero elements of the coupling matrix as follows:

K11 ¼ KNN ¼ Λþ 1þ g2ðtÞ
Kjj ¼ Λþ 2 j ≠ 1; N

Kj;jþ1 ¼ Kjþ1;j ¼ −1

g2ðtÞ ¼ 1

2
½1 − tanh fQðt − tqÞg�: ð120Þ

(a) (b)

FIG. 9. Entanglement dynamics after a mass quench (ΛðtÞ) for NBC resulting in a late-time zero mode: (a) Time-evolution for various
subsystem sizes where we see an overall logarithmic growth, and (b) Subsystem scaling of entanglement entropy at each time slice in the
evolution. Here, N ¼ 100, P ¼ 1, Q ¼ 1, and tq ¼ 15.
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From the above construction, it can be seen that Kðt →
−∞Þ ¼ KDBC and Kðt → ∞Þ ¼ KNBC. Simulating this in
Fig. 13, we see that there are entanglement peaks or “ripples”
that travel from the edges to the middle of the chain, where
they meet to form overtones that later spread outwards. This
contrasts with the global quench ofΛðtÞ where entanglement
always traveled from the middle of the chain towards the
edges, with the half-chain entropy consistently serving as an
upper bound to subsystem entropy. Furthermore, we see that
in the case of boundary quench these peaks initially propagate

with a constant velocity through the chain, resembling a light
conelike structure. This may serve as an indication of particle
creation at the boundaries as a consequence of DCE, the
details of which will be addressed in a separate work.

C. Scaling symmetry and connection between
correlation measures

The calculation of correlation measures associated with
the global wave function, such as GS fidelity, Loschmidt

(a) (b)

FIG. 10. Area-law to volume-law transition of entanglement entropy for a massive scalar field with (a) a stable mode spectrum (DBC),
and (b) a zero mode instability (NBC). Here, we use quench function (69), where P ¼ 1, Q ¼ 1, and tq ¼ 15 for a system of N ¼ 100

oscillators. At t ¼ 0, when the rescaled field mass is Λ ¼ 1, the entanglement entropy follows a typical area-law for 1D systems
(Sn ∼ n0). At the peak of linear growth of half-chain entropy SN=2, the entropy assumes a volume-law (Sn ∼ n) for 1D systems. Further
evolution indicates that the scaling oscillates between a volume-law (at the peaks of SN=2) characteristic of thermal behavior, and an area-
law (at the troughs of SN=2).

(a) (b)

FIG. 11. Entanglement dynamics after a mass quench [ΛðtÞ] for NBC resulting in late-time inverted modes: (a) Time evolution for
various subsystem sizes where we see an overall linear growth, and (b) Subsystem scaling of entanglement entropy at each time slice in
the evolution. Here, N ¼ 100, P ¼ 1.1, Q ¼ 1, and tq ¼ 15.
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echo and complexity, can be easily generalized for the
lattice as follows:

F 0ðtÞ ¼
YN
j¼1

F ðjÞ
0 ðtÞ; MðtÞ ¼

YN
j¼1

MjðtÞ;

CCMðtÞ ¼
XN
j¼1

CðjÞ
CM; ð121Þ

where the individual normal mode contributions have been
defined in Eqs. (16), (60), and (87), respectively. In the
presence of a zero mode, entanglement entropy for any
subsystem size has a dominant logarithmic behavior at late

times as seen in Fig. 9. Therefore, similar to the CHO,
entropy for a subsystem size n converges with other
correlation measures at late times as was established in
Sec. III C, and confirmed by Fig. 14,

Szeron ∼ − logF 2
0 ∼ − logM2 ∼ CCM ∼ log t: ð122Þ

However, entropy growth in the presence of late-time
inverted modes depends drastically on the subsystem size as
can be seen in Eq. (118). More specifically, the entanglement
entropy Sn only includes the number of inverted modes up
to 2n. However, we expect entropy to converge with other
measures only when the Kolmogorov-Sinai bound in
Eq. (117) is saturated. To see this, let us suppose that there
are m late-time inverted modes fvkg in the system. For a
massive scalar field, these are automatically indexed with
decreasing magnitude as per Eqs. (98) and (100). Let us
now consider the entanglement entropy of subsystem size n.
If m > 2n, the Kolmogorov-Sinai bound is not saturated,
and we see that the entropy does not converge with other
correlation measures. However, ifm ≤ 2n, the Kolmogorov-
Sinai bound is saturated, and we see that the entropy
converges with other correlation measures in the asymptotic
limit. If all the modes are inverted, i.e., if m ¼ N, then only
the half-chain entropy SN=2 converges with other correlation
measures. From the above arguments, and from the results in
Fig. 14, we conclude that

Sinvn≥m
2
∼ − logF 2

0 ∼ − logM ∼ CCM ∼ hKSt: ð123Þ

The scrambling time and Lyapunov exponents for the
massive scalar field are therefore

tscram ∼ −
1

2v1
log

δΛ
v1ω1ð0Þ

; λL ¼
Xm
k¼1

vk ¼ hKS: ð124Þ

FIG. 12. Area-law violation of entanglement entropy for a
massive scalar field with an inverted mode instability. Here, we
use the quench function in (69), whereP ¼ 1.2,Q ¼ 1 and tq ¼ 5

for a system of 100 oscillators. At t ¼ 0, the entanglement follows
a typical area-law, and the entropy scaling is found to deviate from
it with time. However, due to the exponentially growing solutions
bkðtÞ arising from inverted mode instability, we are unable to
obtain the late-time scaling relation of entropy.

(a) (b)

FIG. 13. Entanglement dynamics after a boundary condition quench from Dirichlet to Neumann: (a) Time evolution for various
subsystem sizes, and (b) Subsystem scaling of entanglement entropy at each time slice in the evolution. In (b) we have suppressed the
edge entropies, namely for the first two and last two oscillator subsystems, for better visual clarity. Here, N ¼ 100,Q ¼ 1, and tq ¼ 15.
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Let us now go back to the original Hamiltonian H̃ðt̃Þ.
Using the dynamical scaling symmetry developed in
Sec. II B, we obtain the following relations for a massive
scalar field,

S̃ðt̃Þ ¼ Sðã−1t̃Þ; F̃ 0ðt̃Þ ¼ F 0ðã−1t̃Þ;
M̃ðt̃Þ ¼ Mðã−1t̃Þ; C̃CMðt̃Þ ¼ CCMðã−1 t̃Þ: ð125Þ

From the above relation, we see that as we take the
continuum limit ã → 0, the field correlations even at early
times correspond to the late-time behavior of correlations in
the rescaled systemHðtÞ. Exactly at ã ¼ 0, however, entropy
and complexity diverge, whereas fidelity and Loschmidt
echo vanish. We also see that the symmetry implies,

t̃scram ¼ ãtscram; λ̃L ¼ ã−1λL: ð126Þ

As we take the continuum limit ã → 0, we see that there is
instant scrambling, and the exponential sensitivity to initial
conditions is divergent.

V. CONCLUSIONS AND DISCUSSIONS

Unitary evolution ensures that the state remains pure for
an isolated quantum system that is initially in a pure state.
As a result, the entropy for the total state is trivially zero.
However, a natural, nontrivial description of entropy arises
from the quantum entanglement between its constituent
subsystems, wherein we obtain a thermal-like mixture of
states upon integrating out some of the degrees of freedom.
Entanglement entropy and other measures of quantum
correlations provide a framework in which we can study

the less-understood thermal properties of quantum systems
compared to their well-understood classical counterparts.
Our results show that an explicit connection between the
quantum and classical regimes can indeed be established
in the presence of instabilities, and we see that it has
direct consequences in simple systems such as the CHO all
the way to quantum fields propagating in time-dependent
backgrounds.
In Sec. II, we looked at the simple case of a CHO with

time-dependent frequencies and reviewed the prescriptions
for calculating entanglement entropy (S) and GS fidelity
(F 0) assuming pure-state adiabaticity. Then, in Sec. II B,
we showed that the dynamical evolution of quadratic
Hamiltonians such as that of a CHO exhibits an inherent
scaling symmetry that proves to be useful in more ways
than one. For instance, with the help of some special
transformations, we shifted back and forth between differ-
ent Hamiltonian descriptions that belonged to the same
ΛðtÞ class and therefore correspond to the same dynamical
evolution of quantum correlations. In Sec. II C, we
employed this scaling symmetry to analytically obtain
the late-time behavior of correlations for ΛðtÞ classes that
result in inverted-mode or zero-mode instabilities. Such
instabilities resulted in an unbounded entropy growth
(logarithmic for zero modes and linear for inverted modes)
as t → ∞, culminating in a quantum state that is non-
normalizable. Finally, in Sec. II D, we simulated a realistic
quench scenario to show that the analytic predictions of
correlations at late times also manifest over shorter time-
scales of instability in the system. Quantum correlations,
therefore, serve as an effective diagnostic tool for insta-
bilities in the system.

FIG. 14. Asymptotic behavior of various correlation measures in a lattice-regularized massive scalar field with N ¼ 20 oscillators
satisfying NBC in the presence of (a) zero mode and (b) inverted modes. Here, we use the quench function in (69) where Q ¼ 1 and
tq ¼ 2. For calculating Loschmidt echo MðtÞ, we have fixed δΛ ¼ 0.01. In (b), setting P ¼ 1.5 results in five inverted modes at late
times, as a result of which entropy shares the same leading-order behavior as other correlation measures when Kolmogorov-Sinai bound
is saturated as per Eq. (123), i.e., when subsystem size n ≥ 3.
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In Sec. III, we used the dynamical scaling symmetry to
formulate a general prescription for quantifying zero-mode
and inverted-mode instabilities. First, in Sec. III A, we used
the Loschmidt echo (M) arising from an infinitesimal
change in the initial conditions to identify the scrambling
time (tscram) and Lyapunov exponent (λL) corresponding
to a mode that undergoes inversion. The largest inverted
mode is responsible for the earliest onset of exponential
decay of the echo, whereas the smallest inverted mode
was responsible for the last bout of exponential decay. The
overall rate of exponential decay of the Loschmidt echo at
late times was found to coincide exactly with the classical
Kolmogorov-Sinai rate hKS, which is the sum of all positive
Lyapunov exponents. In addition to this, we obtained a
much longer time scale, tzero, that corresponds to the onset
of a power-law decay of the echo arising from a zero-mode
instability. Therefore, a CHO with zero-mode instability
remains stable to small changes in the initial conditions
for a much longer time than one with an inverted-mode
instability.
In Sec. III B, we compared two different measures of

circuit complexity, namely, the wave function complexity
CWF and correlation matrix complexity CCM. While these
measures exhibited a logarithmic growth similar to entan-
glement entropy in the case of a zero-mode instability,
they responded differently to an inverted-mode instability.
While CCM exhibited a linear growth similar to entangle-
ment entropy, CWF grew linearly until it saturated after a
time tsat. Therefore, in systems that are dominated by
inverted mode effects, we may employ CWF to pick up
signatures of zero-mode instabilities that are otherwise
suppressed. From the results of Secs. II and III, we
conclude that for a CHO, leading-order terms of quantum
correlations converge at late times in the presence of
instabilities,

SCHO ∼ − logF 2
0 ∼ CCM

∼
�
− logM2 ∼ log t zero mode

− logM ∼ hKSt inverted mode:
ð127Þ

In Sec. IV, we extended the dynamical scaling symmetry
to a massive scalar field propagating in a (1þ 1)-
dimensional flat space-time. Using the dynamical scaling
symmetry, we explored the late-time dynamics of entan-
glement when the field is subjected to two different types of
quench scenarios. First, we considered the mass quench of
a scalar field and analyzed the stable modes, zero modes,
and inverted modes at late times on a case-by-case basis.
We observed the following: (i) Like the CHO, a logarith-
mic/linear entropy growth manifested in scalar fields for
zero/inverted mode instabilities for arbitrary subsystem
sizes; (ii) Entanglement evolution for stable modes was
found to periodically mimic the inverted-mode instability
by way of a linear entropy growth (followed by a plateau
and descent); (iii) Unlike the CHO, however, the slope of

linear entropy growth for inverted mode instability is only
bounded by the Kolmogorov-Sinai entropy rate as opposed
to being equal to it; and (iv) The convergence of entangle-
ment entropy with other asymptotic quantum correlations
occur only for subsystem sizes for which this bound is
saturated, i.e., wherein the mapping to its classical counter-
part holds exactly. For an inverted mode instability at late-
times, we see that

Sinvn≥m
2
∼ − logF 2

0 ∼ − logM ∼ CCM ∼ hKSt: ð128Þ

A similar convergence of leading-order terms of quantum
correlations holds for zero-mode instability at late-times,
even as the Lyapunov exponents vanish, corresponding to a
meta-stable phase,

Szeron ∼ − logF 2
0 ∼ − logM2 ∼ CCM ∼ log t: ð129Þ

For a global quench of the scalar field mass, the mapping
between entanglement entropy and thermal entropy also
manifests in the subsystem scaling of entropy, regardless
of mode-stability. For stable modes and zero modes, when
the half-chain entropy SN=2 peaks periodically (following a
linear growth that mimics inverted mode dynamics), the
entropy was found to scale linearly with subsystem size.
Hence, the entropy scaling oscillates between an area law
and a volume law with time. Similarly, for inverted modes,
entanglement entropy consistently violates area law. Since
we have shown the area-law to volume-law transition to
occur for stable and zero modes, it is expected that the
same transition will also occur for the inverted modes.
Therefore, our analysis potentially points to the possibility
that the entanglement entropy of the scalar field assumes
thermal characteristics in the presence of instabilities. This
is currently under investigation.
Secondly, we looked at a scenario wherein the boundary

condition that the scalar field satisfied transitioned from
Dirichlet to Neumann. Physically, this models the dynami-
cal Casimir effect. We saw that after the quench, there
were entanglement peaks or “ripples” that originated at the
boundaries and traveled at almost a constant velocity to
the center of the chain (resembling a light cone). This is
possibly an indication of particle creation at the boundaries
due to DCE, which we wish to address in a later work.
Furthermore, for a global quench of scalar field mass, we
observed that the half-chain entropy bounded the subsys-
tem entropy. In contrast, a local quench at the boundaries
often violated the bound, as the peaks traveled from the
edges to the middle.
Additionally, we explored the consequences of dynami-

cal scaling symmetry on a massive scalar field regularized
by a UV cutoff ã. We showed that the timescales for
scrambling (t̃scram ∝ ã) and complexity saturation (t̃sat ∝ ã)
approached zero on taking the continuum limit ã → 0,
whereas the Kolmogorov-Sinai rate diverged as a power
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law (h̃KS ∝ ã−1). Taking this limit, we also showed that
the early-time behavior of quantum correlations of the
scalar field (described by H̃) corresponded to the late-
time behavior of these measures in the rescaled system
(described by H).
The results reported here have implications for cosmo-

logical perturbations and black hole quasinormal modes
(QNMs). For instance, the action for the first-order scalar
perturbations for a canonical scalar field (φ) driven infla-
tion is [69]

S ¼ 1

2

Z 	
v02 þ v∇2v −

z00

z
v2


dηd3x z ¼ aφ0

H
; ð130Þ

where η is the conformal time and prime denotes the
derivative with respect to η and H ¼ a0=a. For any back-
ground evolution aðηÞ, the quantum scalar fluctuations
satisfy the following time-dependent equation,

v00k þ
	
k2 −

z00

z



vk ¼ 0: ð131Þ

Like in the CHO, as in Sec. II C, we have three categories:
(1) Sub-Hubble scales: In this category k2 ≫ z00=z and

the above differential equation reduces to

v00k þ k2vk ≃ 0 ð132Þ

and the effective frequencies are always positive
corresponding to plane-wave solutions in Minkow-
ski background.

(2) Horizon crossing: This corresponds to the category
k2 ¼ z00=z and the differential equation (131) has a
zero mode.

(3) Super-Hubble scales: In this category k2 ≪ z00=z
and the differential equation (131) reduces to

v00k −
z00

z
vk ≃ 0: ð133Þ

Two points to note: First the solution to the differ-
ential equation is identical for all the k modes.
Second, the effective frequency for all k modes is
negative.

For any background evolution aðηÞ, the quantum tensor
fluctuations satisfy the following time-dependent equation,

μ00T þ
	
k2 −

a00

a



μT ¼ 0: ð134Þ

The same analysis can be extended to the tensor perturba-
tions; however, the only difference is that the zero mode
occurs at a different horizon crossing; k2 ¼ a00=a. Since the
horizon crossing occurs differently for the scalar and tensor,
there will be a slight difference in the evolution of the two

perturbations. Studying the quantum correlations in infla-
tion and bounce can hence be potentially be useful in
systematically distinguishing between these two early
Universe scenarios.
For black holes, in Ref. [70], the authors proved that

the strength of the Cauchy horizon instability is determined
by the half-life of the most slowly decaying quasinormal
modes. In Ref. [71], the authors studied this for Riessner-
Nordstrom-de Sitter spacetime by numerically evaluating
the QNM frequencies. In this case, the authors excluded the
zero mode in their analysis. Our analysis show that system
with zero modes decays slowly compared to the unstable
modes. Thus, the analysis of Cauchy horizon instability is
incomplete without a complete understanding of the zero
modes. Since QNMs are dissipative systems, the analysis
reported here can be translated to black-holes. This is
currently under investigation.
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APPENDIX A: SOLUTION TO THE TIME-
DEPENDENT SCHRÖDINGER EQUATION

Let us consider the Schrödinger equation for a harmonic
oscillator with time-dependent frequency

i
∂Ψðx; tÞ

∂t
¼ −

1

2

∂
2Ψðx; tÞ
∂x2

þ 1

2
ω2ðtÞx2Ψðx; tÞ: ðA1Þ

We are interested in a particular class of solutions, known
as form-invariant Gaussian states (GS). This approach is
fundamental to understanding how particle creation man-
ifests when an initial quantum vacuum state evolves with
respect to a time-dependent Hamiltonian [72,73],

ΨGS ¼ N ðtÞ expf−RðtÞx2g; ðA2Þ

where N is the time-dependent normalization factor.
Upon solving the time-dependent Schrödinger equation,
we obtain the following equations:

i
_N
N

¼ R; i _R ¼ 2R2 −
ω2ðtÞ
2

: ðA3Þ

The nonlinear Riccati-type equation in RðtÞ given above
is equivalent to the nonlinear Ermakov equation [44,50]
in bðtÞ, which can be seen by making the following
substitution:
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RðtÞ ¼ 1

2

	
ωð0Þ
b2ðtÞ − i

_bðtÞ
bðtÞ



⇒ b̈ðtÞ þ ω2ðtÞbðtÞ ¼ ω2ð0Þ

b3ðtÞ :
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The general solution to the Schrödinger equation is there-
fore [48,72],
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where τ ¼ R b−2ðtÞdt. At t ¼ 0, we see that this form-
invariant Gaussian state coincides with the ground state of
the system. In the adiabatic limit, Eq. (A3) can be solved to
obtain [72],
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The wave function therefore takes the following form:
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We see that in this case the adiabatic Gaussian state Ψadia
coincides with the instantaneous ground state at all times, in
agreement with the quantum adiabatic theorem [56]. The
theorem states that for slow-changing HðtÞ, if the system
begins close to an eigenstate, it remains close to that
eigenstate throughout.
Using the adiabatic theorem, we can similarly define the

full spectrum of instantaneous eigenstates fϕnðx; tÞg at
each time slice as follows [72,73]:
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With respect to the instantaneous eigenbasis, the general
solution ΨGS for a nonadiabatically evolving Hamiltonian
HðtÞ can be decomposed as follows [72,73]:

ΨGS ¼
X
n

CnðtÞϕnðx; tÞ: ðA9Þ

The state ΨGS no longer coincides with the instantaneous
ground state for t > 0, i.e., it develops excitations in the
instantaneous eigenbasis defined at each time slice. The
above picture is therefore a natural way to describe particle
creation in vacua due to a time-dependent Hamiltonian.

APPENDIX B: ENTANGLEMENT ENTROPY OF
N-HO WITH TIME-DEPENDENT FREQUENCIES

Consider the following Hamiltonian [18]:

H ¼ 1

2

XN
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p2
i þ

1

2
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Kijxixj; ðB1Þ

The coupling matrix (Kij) here has time-dependent entries
and captures all the necessary information about correla-
tions in the system. For the lattice-regularized massive
scalar field described in Sec. IV, we see that the time-
dependent entries are confined only to the diagonal terms
in the matrix for a mass quench. On the other hand, a
boundary condition quench can have time-dependent
entries that are nondiagonal as well.
The initial values of normal modes, labeled as fωið0Þg,

are the eigenvalues of K1=2ð0Þ. The ground-state wave
function here is given by

ΨGSðX̃; tÞ ¼
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where X̃ ¼ MX is the normal mode coordinate system that
diagonalizes the Hamiltonian. We also see that ΩD and ZD
are diagonal matrices whose entries are given below,

ðΩDÞnn ¼
ωnð0Þ
b2nðtÞ

; ðZDÞnn ¼
_bnðtÞ
bnðtÞ

: ðB3Þ

In the physical coordinates, the wave function is entangled,
taking the following form:

ΨGSðX; tÞ ¼
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where Z ¼ MZDMT and Ω ¼ MΩDMT . In order to trace
out some m degrees of freedom from the system, let us first
rewrite the following matrices:

Ω ¼
	 ðAÞm×m ðBÞm×N−m

ðBTÞN−m×m ðCÞN−m×N−m



;

Z ¼
	 ðZAÞm×m ðZBÞm×N−m

ðZT
BÞN−m×m ðZCÞN−m×N−m



: ðB5Þ

Following the same procedure to calculate entanglement
entropy, we first obtain the reduced density matrix as follows:
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where we see that
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Now we perform a series of diagonalizations to simplify the
RDM further. Let V be a diagonalizing matrix for γ such
that γ ¼ VTγDV and β̃ ¼ γ−1=2D VβVTγ−1=2D . Let W diago-
nalize β̃ such that

β̃ ¼ WT β̃DWδ̃ ¼ Wγ−1=2D VδVTγ−1=2D WT: ðB8Þ

In the new coordinates Y ¼ Wγ1=2D VXout ¼ fyjg, the RDM
can hence be rewritten as
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where β̃j are the eignevalues of β̃. The integral eigenvalue
equation for RDM will therefore have the following
solution:
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The entanglement entropy therefore accumulates contribu-
tions from each of the remaining degrees of freedom as
S ¼PN

j¼mþ1 SjðtÞ where SjðtÞ has the familiar form,

SjðtÞ ¼ − log ½1 − ξjðtÞ� −
ξjðtÞ

1 − ξjðtÞ
log ξjðtÞ: ðB11Þ

APPENDIX C: ASYMMETRY OF
ENTANGLEMENT ACROSS BIPARTITION

When we have a pure state jΨi that describes N-coupled
oscillators, a bipartition the system as H ¼ HA ⊗ HB
ensures that SA ¼ SB. However, in the time-dependent
formalism considered here, we see that SA ≠ SB as we
move further away from pure state adiabaticity. We can
show this from the Eqs. (B6) and (B7). From Eq. (B7), γ
and β are related by the following relation:

γ ¼ C − β þ ZT
BA

−1ZB ¼ VTγDV: ðC1Þ
Substituting this in Eq. (B8) and after some rearrangement,
we obtain the following:

β̃ ¼ γ−1=2D V½Cþ ZT
BA

−1ZB�VTγ−1=2D − 1; ðC2Þ

ZB → 0 and the second term in the bracket above vanishes in
the time-independent limit. On further diagonalizing β̃, we
see that the dimensionality as well as the nonzero eigen-
values of β̃ðAÞ and β̃ðBÞ match, and hence, SA and SB are
identical. However, due to the contribution from Z in the
time-dependent case, we see that the spectra of β̃ðAÞ and β̃ðBÞ

may no longer match. While they seem to match for cases
where A ∪ B is a symmetric bipartition (N ¼ 2), we see that
SA ≠ SB for any other kind of bipartition (N ¼ 3). On
considering the evolution in (69) for N ¼ 3, we observe in
Fig. 15 that there is an increasing mismatch with an increasing
quench speed (Q). This is currently under investigation.

APPENDIX D: HAMILTONIAN OF SCALAR
FIELDS IN TIME-DEPENDENT SPACETIMES

In this appendix, we show that the Hamiltonian of
the massive scalar field propagating in a time-dependent
spherically symmetric space-time, when discretized,
reduces to the form (96) [11]. Consider the following
time-dependent spherically symmetric metric:

ds2 ¼ −Aðτ; ξÞdτ2 þ dξ2

Bðτ; ξÞ þ ρ2ðτ; ξÞdΩ2; ðD1Þ

where A, B, ρ are continuous, differentiable functions of
ðτ; ξÞ and dΩ2 ¼ dθ2 þ sin2 θdϕ2 is the metric on the unit
2-sphere. The action for the scalar field propagating in the
above background is given by
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where we have decomposed φ in terms of the real spherical
harmonics [Zlmðθ;ϕÞ],

φðxμÞ ¼
X
lm

φlmðτ; ξÞZlmðθ;ϕÞ: ðD3Þ

Following the standard rules, the canonical momenta and
Hamiltonian of the field are given by
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¼ ρ2ffiffiffiffiffiffiffi
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r
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#
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X
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The canonical variables ðφlm;ΠlmÞ satisfy the Poisson brackets

fφlmðτ; ξÞ;Πlmðτ; ξ0Þg ¼ δðξ − ξ0Þ
fφlmðτ; ξÞ;φlmðτ; ξ0Þg ¼ 0 ¼ fΠlmðτ; ξÞ;Πlmðτ; ξ0Þg: ðD6Þ

When discretized in the radial direction, the above Hamiltonian (D5) reduces to (96).

(a) (b)

(c) (d)

FIG. 15. (a) Evolution of rescaled mass ΛðtÞ for quench speeds Q ¼ 1, 5, 100, and (b)–(d) Entanglement dynamics (S1, S23) for
respective quench speeds. Here we employ Dirichlet BC, with P ¼ 1 and N ¼ 3.
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