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We discuss the problem of canonical quantization of a free real massive scalar field in the Schwarzschild
spacetime. It is shown that a consistent procedure of canonical quantization of the field can be carried out
without taking into account the black hole interior, so that in the resulting theory the canonical
commutation relations are satisfied exactly, and the Hamiltonian has the standard form. However, unlike
some papers, in which the expansion of the quantum field in spherical harmonics is used, here we use an
expansion in scatteringlike states for energies larger than the mass of the field. This reveals a strange
property of the resulting quantum field theory—doubling of the quantum states, which look as having the
same asymptotic momentum to an observer located far away from the black hole. This purely topological
effect cannot be eliminated by moving away from the black hole.
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I. INTRODUCTION

The problem of quantization of fields in the presence of
black holes is widely discussed in the scientific literature,
starting from the pioneering papers [1,2]. However, there still
exist some unsolved problems within the standard treatment
of quantum theory in the black hole background. For
example, it is well known that in the Kruskal-Szekeres
coordinates [3,4], which describe the maximal analytic
extension of the Schwarzschild spacetime, there exists a
second, so called “white hole”. The latter reveals some
problemswith a physical interpretation of the resulting theory,
in particular, there arises the well-known problem with
locality, which is connected with the location of the white
hole in our universe or even in a parallel world. The amount of
scientific literature on this topic is large, so we would like to
highlight the latest papers by G. ’t Hooft [5–7], in which
mathematically rigorous attempts to solve this problem for the
Schwarzschild solution were made. In papers [5,6] a geo-
metrical identification of some areas in the Kruskal-Szekeres
spacetime (which was called “antipodal identification”) was
proposed. Ideologically this identification is very similar to
orbifolding in models with extra dimensions (see, for exam-
ple, [8]). However, later it was shown [7] that such an
identification leads to contradictions (namely, problems with
CPT–invariance). Instead of the antipodal identification, the
idea of “quantum cloning” of the black and white holes
exteriors was proposed in [7]. An interesting property of the
approach is that the interior regions of both holes do not play
any role in the evolution and turn out to be mathematical
artifacts that do not have a direct physical interpretation.

However, the approach still has a drawback—there may
emerge closed timelike curves [7].
According to the reasoning presented above (especially

to the observation that at least some rigorous approaches to
obtaining a consistent quantum theory in the black hole
background lead to the needlessness of the black and
white hole interiors), there arises a question about a
possibility to build a consistent quantum field theory in
the Schwarzschild spacetime outside the horizon only. As
we will see below, it is indeed possible even within the
framework of canonical quantization, which is quite a
surprising result. At least in the simplest case of a real
massive scalar field, formally the resulting theory turns out
to be complete and self-consistent.
Unlike some recent papers [9–11], in which the quantum

scalar field is also considered only outside the event horizon
of the Schwarzschild black hole, we use the field expansion
in the scatteringlike states, which are close to slightly
modified plane waves, if we go far away from the black
hole. These states are very useful, because at large distances
from the black hole they are similar to the states that are used
in quantization of the scalar field in Minkowski spacetime.
This approach reveals an alarming feature of the resulting
quantum field theory—doubling of the quantum states,
which look as having the same asymptotic momentum to
a distant observer. It is a purely topological effect that
manifests itself even at such distances from the
Schwarzschild black hole at which one may naively expect
that the effects caused by the black hole can be neglected.
This paper is rather technical in the sense that it involves a

detailed examination of the spectrum of states outside the
Schwarzschild black hole, all canonical commutations
relations are checked to be exactly satisfied, and the resulting*smolyakov@theory.sinp.msu.ru
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Hamiltonian is obtained in the explicit form. All this is done
in order to make sure that the resulting theory is indeed self-
consistent and does not contain any contradictions.

II. SETUP

Let us take a real massive scalar field ϕðt; x⃗Þ in a curved
background described by the metric gμν. The action of the
theory is

S¼
Z

Ld4x¼
Z ffiffiffiffiffiffi

−g
p �

1

2
gμν∂μϕ∂νϕ−

M2

2
ϕ2

�
d4x: ð1Þ

Suppose that the metric gμν is static, i.e., it does not depend
on time. In such a case the equation of motion for the scalar
field takes the form

ffiffiffiffiffiffi
−g

p
g00ϕ̈þ ∂ið

ffiffiffiffiffiffi
−g

p
gij∂jϕÞ þM2 ffiffiffiffiffiffi

−g
p

ϕ ¼ 0; ð2Þ

where _ϕ ¼ ∂0ϕ. It is clear that the field ϕðt; x⃗Þ can be
expanded in solutions of the form

e�iEtFðE; x⃗Þ; ð3Þ

where, without loss of generality, we can set E ≥ 0. The
latter representation leads to the equation

−E2 ffiffiffiffiffiffi
−g

p
g00F þ ∂ið

ffiffiffiffiffiffi
−g

p
gij∂jFÞ þM2 ffiffiffiffiffiffi

−g
p

F ¼ 0; ð4Þ

which, together with corresponding boundary conditions,
defines an eigenvalue problem. In particular, Eq. (4)
implies the following orthogonality conditions for the
solutions with E ≠ E0

Z ffiffiffiffiffiffi
−g

p
g00F�ðE; x⃗ÞFðE0; x⃗Þd3x ¼ 0;

Z ffiffiffiffiffiffi
−g

p
g00FðE; x⃗ÞFðE0; x⃗Þd3x ¼ 0; ð5Þ

which can be easily obtained by multiplying the complex
conjugate of Eq. (4) [or Eq. (4) as it is] by FðE0; x⃗Þ,
integrating the result with respect to x⃗ and performing an
integration by parts.
The component T00 of the energy-momentum tensor of a

real massive scalar field has the standard form

T00 ¼
1

2
_ϕ2 −

1

2
g00gij∂iϕ∂jϕþM2

2
g00ϕ2: ð6Þ

It is well known that in General Relativity the covariant
conservation law is satisfied for any energy-momentum
tensor and can be rewritten as [12]

∇μT
μ
ν ¼ 1ffiffiffiffiffiffi−gp ∂ð ffiffiffiffiffiffi−gp

Tμ
νÞ

∂xμ
−
1

2

∂gμσ
∂xν

Tμσ ¼ 0: ð7Þ

Since we are interested in the cases, in which the metric is
static (the Schwarzschild metric is exactly of this sort), it
follows from (7) that for ν ¼ 0

∂

∂x0

Z ffiffiffiffiffiffi
−g

p
T0
0d

3x ¼ 0: ð8Þ

Thus, we can define the energy of the system, which is
conserved over time (i.e., the Hamiltonian of the system), as

H ¼
Z ffiffiffiffiffiffi

−g
p

g00T00d3x: ð9Þ

Substituting the explicit expression (6) into (9), performing
an integration by parts and using equation of motion (2), we
arrive at

H ¼ 1

2

Z ffiffiffiffiffiffi
−g

p
g00ð _ϕ2 − ϕ̈ϕÞd3x: ð10Þ

III. SOLUTIONS OF THE EQUATION
OF MOTION

A. Properties of the spectrum

Let us start with a detailed examination of the spectrum
of stationary states of Eq. (4). Let us consider the standard
Schwarzschild metric and restrict ourselves to the domain
r > r0, where r0 is the Schwarzschild radius. The field
FðE; x⃗Þ can be expanded in spherical harmonics as

FðE; x⃗Þ ¼
X∞
l¼0

Xl

m¼−l
ϕlmðE; r; θ;φÞ

¼
X∞
l¼0

Xl

m¼−l
Ylmðθ;φÞflðE; rÞ; ð11Þ

where (we use the convention of [13])

Ylmðθ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − jmjÞ!
ðlþ jmjÞ!

s
Pjmj
l ðcos θÞeimφ;

l ¼ 0; 1; 2;…; m ¼ 0;�1;�2;…; ð12Þ

leading to the radial equation

E2
r

r − r0
flðE; rÞ −M2flðE; rÞ

þ 1

r2
d
dr

�
rðr − r0Þ

dflðE; rÞ
dr

�

−
lðlþ 1Þ

r2
flðE; rÞ ¼ 0; ð13Þ

for the functions flðE; rÞ. Without loss of generality we can
take flðE; rÞ to be real. The orthogonality condition for
flðE; rÞ is suggested by the form of Eq. (13)
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Z
∞

r0

r3

r − r0
flðE; rÞflðE0; rÞdr ¼ 0 for E ≠ E0; ð14Þ

as well as the form of the norm

Z
∞

r0

r3

r − r0
f2l ðE; rÞdr: ð15Þ

Using Eq. (13), it is possible to show that there is no
solution with E ¼ 0. Indeed, for r → r0 a possible solution

takes the form flð0; rÞ ∼ 1þ ðr0M2 þ lðlþ1Þ
r0

Þðr − r0Þ,
whereas for r → ∞ it takes the form flð0; rÞ ∼ e−Mr

r . Let
us multiply Eq. (13) by r2flð0; rÞ, integrate the result with
respect to r from r0 to ∞, and perform an integration by
parts. We get

rðr− r0Þ
dflð0; rÞ

dr
flð0; rÞj∞r0 −

Z
∞

r0

�
rðr− r0Þ

�
dflð0; rÞ

dr

�
2

þ ðM2r2 þ lðlþ 1ÞÞf2l ð0; rÞ
�
dr¼ 0: ð16Þ

Since the surface terms in (16) are equal to zero, we get
Z

∞

r0

�
rðr − r0Þ

�
dflð0; rÞ

dr

�
2

þ ðM2r2 þ lðlþ 1ÞÞf2l ð0; rÞ
�
dr ¼ 0: ð17Þ

The integrand in (17) is non-negative for any r, which
means that the only solution satisfying (17) is flð0; rÞ≡ 0.
It should be noted that there is a controversy in the

scientific literature concerning the properties of the spec-
trum and the eigenfunctions of radial equation (13). For
example, in the well-known paper [14] it is stated that the
spectrum of states for E < M is discrete (though each state
has an infinite norm). In paper [15] it is shown that the
spectrum is continuous and the radial solutions can be
expressed in terms of the Heun functions.1 In paper [18] it is
stated that from a quantum mechanical point of view there
exists the “fall to the center” regime [19,20] on the event
horizon making the whole theory ill-behaved. To the best of
our knowledge, the only paper in which the properties of the
spectrum of the radial equation (13) are correctly described
from a physical point of viewwithout going into details (i.e.,
without obtaining explicit solutions like it was done in paper
[15]) is [21]. So, below in this section we will reproduce the
results of [21], though in more detail.
First, let us introduce the dimensionless variables

ρ¼ r
r0
; μ¼Mr0; ϵ¼Er0; ulðϵ;ρÞ¼ r0flðE;rÞ; ð18Þ

where ρ > 1. In these variables Eq. (13) takes the form

−
d
dρ

�
ρðρ − 1Þ dulðϵ; ρÞ

dρ

�
þ ðμ2ρ2 þ lðlþ 1ÞÞulðϵ; ρÞ

¼ ϵ2
ρ3

ρ − 1
ulðϵ; ρÞ: ð19Þ

Second, let us pass to the tortoise coordinate

z ¼ ρþ lnðρ − 1Þ: ð20Þ

Then Eq. (19) takes the form

−
d
dz

�
ρ2ðzÞ dulðϵ; zÞ

dz

�
þ ρðzÞ − 1

ρðzÞ ðμ2ρ2ðzÞ

þ lðlþ 1ÞÞulðϵ; zÞ ¼ ϵ2ρ2ðzÞulðϵ; zÞ; ð21Þ

where ρðzÞ is determined by (20). And third, using the
substitution

ulðϵ; zÞ ¼
ψ lðϵ; zÞ
ρðzÞ ; ð22Þ

Eq. (21) can be expressed in the form of a one-dimensional
Schrödinger equation

−
d2ψ lðϵ; zÞ

dz2
þ VlðzÞψ lðϵ; zÞ ¼ ϵ2ψ lðϵ; zÞ; ð23Þ

where the potential has the form [21]

VlðzÞ ¼
ρðzÞ − 1

ρðzÞ
�
μ2 þ lðlþ 1Þ

ρ2ðzÞ þ 1

ρ3ðzÞ
�
: ð24Þ

The potential VlðzÞ is such that VlðzÞ → 0 for z → −∞ and
VlðzÞ → μ2 for z → ∞. In Fig. 1 some examples ofVlðzÞ are
presented. Fig. 1 also supports the fact that flð0; rÞ≡ 0. One
can see that the asymptotic behavior ofVlðzÞ corresponds to
a step-like potential, though there can be rises and dips in the
vicinity of z ¼ 0 depending on the value of l.2 Such
potentials imply the continuity of the spectrum for ϵ > 0.
For the initial norm (15) we get the result which is

expected taking into account the form of Eq. (23),

Z
∞

1

ρ3

ρ − 1
u2l ðϵ; ρÞdρ ¼

Z
∞

−∞
ρ2ðzÞu2l ðϵ; zÞdz

¼
Z

∞

−∞
ψ2
l ðϵ; zÞdz: ð25Þ

Now let us turn to the discussion of the properties of the
radial solutions ψ lðϵ; zÞ. For ϵ < μ and z → ∞ formally

1See also [16] for the Heun functions in the case of Regge-
Wheeler equation [17].

2A detailed discussion of scattering by the square potential step
can be found, for example, in [22].
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there exist two asymptotics ∼e�
ffiffiffiffiffiffiffiffiffi
μ2−ϵ2

p
z leading to a

constant Wronskian. However, the only solution which
can be properly normalized is the one with the asymptotics

∼e−
ffiffiffiffiffiffiffiffiffi
μ2−ϵ2

p
z at z → ∞, for z → −∞ the asymptotics of this

solution is ∼ cos ðϵz − γlÞ, where γl is some phase. Thus,
for a fixed ϵ and l there exists only one physically relevant
solution. An important point is that the spectrum of radial
states for 0 < ϵ < μ is continuous, which is provided by the
phase γl [21].
For ϵ > μ the situation is different. Since the asymptotics

of solutions are finite at z → �∞, for fixed ϵ and l there
exist two linearly independent solutions. In principle, these
solutions can be connected with solutions corresponding to
the waves moving towards z → ∞ and towards z → −∞
(of course, one should take into account one-dimensional
scattering by the potential VlðzÞ in these solutions) [10].
However, without loss of generality these linearly inde-
pendent solutions can be chosen to be real, and we will
denote them by ψ lpðϵ; zÞ, where p ¼ 1; 2.
It is necessary to note that at z → −∞ (i.e., at r → r0) the

potential VlðzÞ vanishes, which means that the field
becomes effectively massless in this area.

B. Orthogonality conditions and completeness relation
for the eigenfunctions

It is clear that the functions ψ lðϵ; zÞ and ψ lpðϵ; zÞ can be
normalized in such a way that the orthogonality conditions

Z
∞

−∞
ψ lðϵ; zÞψ lðϵ0; zÞdz ¼ δðϵ − ϵ0Þ; ð26Þ

Z
∞

−∞
ψ lðϵ; zÞψ lpðϵ0; zÞdz ¼ 0; ð27Þ

Z
∞

−∞
ψ lpðϵ; zÞψ lp0 ðϵ0; zÞdz ¼ δpp0δðϵ − ϵ0Þ ð28Þ

hold. Then, using (18), (20), and (22), we get the ortho-
gonality conditions for the initial radial functions flðE; rÞ
and flpðE; rÞ

Z
∞

r0

flðE; rÞflðE0; rÞ r3

r − r0
dr ¼ δðE − E0Þ; ð29Þ

Z
∞

r0

flðE; rÞflpðE0; rÞ r3

r − r0
dr ¼ 0; ð30Þ

Z
∞

r0

flpðE; rÞflp0 ðE0; rÞ r3

r − r0
dr ¼ δpp0δðE − E0Þ: ð31Þ

With (11), we get the resulting orthogonality conditions

Z
2π

0

Z
π

0

Z
∞

r0

ϕ�
lmðE; r; θ;φÞϕl0m0 ðE0; r; θ;φÞ r3

r − r0
sin θ dr dθ dφ ¼ δll0δmm0δðE − E0Þ; ð32Þ

Z
2π

0

Z
π

0

Z
∞

r0

ϕ�
lmðE; r; θ;φÞϕl0m0pðE0; r; θ;φÞ r3

r − r0
sin θ dr dθ dφ ¼ 0; ð33Þ

Z
2π

0

Z
π

0

Z
∞

r0

ϕ�
lmpðE; r; θ;φÞϕl0m0p0 ðE0; r; θ;φÞ r3

r − r0
sin θ dr dθ dφ ¼ δpp0δll0δmm0δðE − E0Þ; ð34Þ
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FIG. 1. VlðzÞ for μ ¼ 1: l ¼ 0 (left plot) and l ¼ 2 (right plot). Dashed lines stand for μ2.
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where

ϕlmpðE; r; θ;φÞ ¼ Ylmðθ;φÞflpðE; rÞ: ð35Þ

Since in Eq. (23) we have a standard Hermitian operator,
the eigenfunctions of this equation form a complete set
(see, for example, [13]). Taking into account the fact that
the normalization on the “energy scale” (not the “energy
scale” squared) was chosen in (26)–(28), the completeness
relation for the radial functions ψ lðϵ; zÞ also has the
standard form and looks like

Z
μ

0

ψ lðϵ; zÞψ lðϵ; z0Þdϵ

þ
X2
p¼1

Z
∞

μ
ψ lpðϵ; zÞψ lpðϵ; z0Þdϵ ¼ δðz − z0Þ: ð36Þ

Consequently, the set of the corresponding solutions
in the initial coordinate r also forms a complete
set of eigenfunctions, the corresponding completeness
relation

Z
M

0

flðE; rÞflðE; r0ÞdEþ
X2
p¼1

Z
∞

M
flpðE; rÞflpðE; r0ÞdE

¼ r − r0
r3

δðr − r0Þ ð37Þ

can be easily obtained by substituting (18), (20), and (22)
into (36). Taking into account the angular parts of the
eigenfunctions Ylmðθ;φÞ, we can finally write

X∞
l¼0

Xl

m¼−l

�Z
M

0

ϕ�
lmðE; r; θ;φÞϕlmðE; r0; θ0;φ0ÞdEþ

X2
p¼1

Z
∞

M
ϕ�
lmpðE; r; θ;φÞϕlmpðE; r0; θ0;φ0ÞdE

�

¼ r − r0
r3

δðr − r0Þδðcos θ − cos θ0Þδðφ − φ0Þ: ð38Þ

C. Scatteringlike states

As we will see below, from a physical point of view, for
the energies larger than the mass of the field, it is more
convenient to use scatteringlike states instead of the states
ϕlmpðE; r; θ;φÞ described above. Let us start with Eq. (13).
At large r Eq. (13) can be rewritten as

ðE2 −M2ÞflpðE; rÞ þ
E2r0
r

flpðE; rÞ

þ 1

r2
d
dr

�
rðr − r0Þ

dflpðE; rÞ
dr

�
≈ 0; ð39Þ

where we have retained only the leading terms in r. The
term ∼ 1

r cannot be neglected due to the long-range
interaction provided by this term. For E > M, the leading
solution to Eq. (39) can be parametrized as

flpðE; rÞ ≈ Cþ
lpðkÞ

1

r
sin

�
krþ ð2k2 þM2Þr0

2k
lnðkrÞ

−
πl
2
þ δ̃lpðkÞ

�
; ð40Þ

where Cþ
lpðkÞ are normalization constants, k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

p

and δ̃lpðkÞ are phase shifts. Solution (40) is analogous to
the one for the standard Coulomb potential in quantum
mechanics [23].

For r → r0 Eq. (13) can be rewritten as

E2r20
r − r0

flðE; rÞ þ
d
dr

�
ðr − r0Þ

dflðE; rÞ
dr

�
≈ 0; ð41Þ

and its solution can be parametrized as

flpðE;rÞ≈C−
lpðkÞsinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
r0 lnðkðr−r0ÞÞþγlpðkÞÞ;

ð42Þ

where C−
lpðkÞ are normalization constants and γlpðkÞ are

phase shifts.
It is clear that the normalization constants Cþ

lpðkÞ and
C−
lpðkÞ are determined by the normalization integral at

r → ∞ and r → r0. The structure of approximate solutions
(40) and (42) suggests that the phases can be chosen so that
the normalization constants Cþ

lpðkÞ and C−
lpðkÞ do not

depend on l, so we can write Cþ
p ðkÞ and C−

pðkÞ for all l.
Now we turn to the scatteringlike states. Let us define

these states exactly as in the standard scattering theory [23],

ϕpðk⃗; x⃗Þ ¼
1

4πk

X∞
l¼0

ð2lþ 1Þeiðπl2þδ̃lpðkÞÞPl

�
k⃗ x⃗
kr

�

×

� ffiffiffi
k

p

ðk2 þM2Þ14 flpð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
; rÞ

�
; ð43Þ
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where Plð…Þ are the Legendre polynomials, δ̃lpðkÞ are phase shifts defined by representation (40), k ¼ jk⃗j, r ¼ jx⃗j, and
n⃗ ¼ x⃗

r. The extra factor
ffiffi
k

p
ðk2þM2Þ1=4 in (43) is introduced in order to have

Z
∞

r0

� ffiffiffi
k

p
flpð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
; rÞ

ðk2 þM2Þ14
�� ffiffiffiffi

k0
p

flp0 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 þM2

p
; rÞ

ðk02 þM2Þ14
�

r3

r − r0
dr ¼ δpp0δðk − k0Þ ð44Þ

and, consequently, to get a more physically reasonable normalization for the scatteringlike states. It is evident that ϕpðk⃗; x⃗Þ
defined by (43) is a solution of Eq. (4) with E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
. At large r

ϕpðk⃗; x⃗Þ ∼
1

kr

X∞
l¼0

ð2lþ 1Þeiðπl2þδ̃lpðkÞÞPl

�
k⃗ x⃗
kr

�
sin

�
krþ ð2k2 þM2Þr0

2k
lnðkrÞ − πl

2
þ δ̃lpðkÞ

�
; ð45Þ

where we have used approximate solution (40). Using the
fact that at large r (see, for example, [23])

eik⃗ x⃗ ≈
1

kr

X∞
l¼0

ð2lþ 1Þeiπl
2 Pl

�
k⃗ x⃗
kr

�
sin

�
kr −

πl
2

�
; ð46Þ

one can easily show that

ϕpðk⃗; x⃗Þ∼eiðk⃗ x⃗−
ð2k2þM2Þr0

2k lnðkrÞÞ þApðk⃗; n⃗;rÞ
eikr

r
; p¼1;2;

ð47Þ

where the functions Apðk⃗; n⃗; rÞ are defined as

Apðk⃗; n⃗; rÞ ¼
1

2ik

X∞
l¼0

ð2lþ 1ÞPl

�
k⃗ x⃗
kr

�

× ðeið2δ̃lpðkÞþð2k2þM2Þr0
2k lnðkrÞÞ − e−i

ð2k2þM2Þr0
2k lnðkrÞÞ:

ð48Þ
These functions look similar to the standard scattering
amplitudes, but they explicitly depend on r (through the
terms with lnðkrÞ) and thus can not be considered as actual
scattering amplitudes. The fact that we have the modified

plane wave eiðk⃗ x⃗−
ð2k2þM2Þr0

2k lnðkrÞÞ instead of a simple plane
wave in (47) reflects the influence of the long-range
potential ∼ 1

r in (39), which modifies the plane wave
even at large distances from the black hole similarly to
the case of the standard Coulomb potential in quantum
mechanics [23].3

We would like to stress that, since for fixed l and k
there exist two different solutions fl1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
; rÞ and

fl2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
; rÞ, for a fixed k⃗we can build two scattering-

like states of form (47) which differ in the func-
tions Apðk⃗; n⃗; rÞ.
It is clear that

Z
r>r0

ffiffiffiffiffiffi
−g

p
g00ϕ�

lmðE; x⃗Þϕpðk⃗; x⃗Þd3x ¼ 0; ð49Þ

because E in ϕlmðE; x⃗Þ and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
belong to different

energy ranges (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
> M and E < M). Thus, the

orthogonality condition (49) follows directly from (5). In
(49) the notation

Z
r>r0

ffiffiffiffiffiffi
−g

p
g00d3x ¼

Z
∞

r0

r3

r − r0
dr

Z
π

0

sin θdθ
Z

2π

0

dφ

ð50Þ

is used. The scatteringlike states (43) are also orthogonal,
the corresponding orthogonality condition takes the form

Z
r>r0

ffiffiffiffiffiffi
−g

p
g00ϕ�

pðk⃗; x⃗Þϕp0 ðk⃗0; x⃗Þd3x¼ δpp0δð3Þðk⃗− k⃗0Þ; ð51Þ

a detailed proof can be found in Appendix A. The
completeness relation involving the scatteringlike states
has the form

X∞
l¼0

Xl

m¼−l

Z
M

0

ϕ�
lmðE; x⃗ÞϕlmðE; y⃗ÞdEþ

X2
p¼1

Z
ϕ�
pðk⃗; x⃗Þϕpðk⃗; y⃗Þd3k ¼ δð3Þðx⃗ − y⃗Þffiffiffiffiffiffi−gp

g00
; ð52Þ

3This modified plane wave in the leading order is a solution of the initial equation of motion for the scalar field for r → ∞ (which is
just the Klein-Gordon equation). This also supports the assertion that the radial solutions can be chosen so that their normalization
constants do not depend on l.
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a detailed proof can be found in Appendix B. In (52) the
notation

Z
d3k ¼

Z
∞

−∞
dk1

Z
∞

−∞
dk2

Z
∞

−∞
dk3

¼
Z

∞

0

k2dk
Z

π

0

sin θkdθk

Z
2π

0

dφk; ð53Þ

where θk and φk are the angles in spherical coordinates in
the momentum space, is used. The completeness relation

(52) is necessary for performing a consistent procedure of
quantization.

IV. CANONICAL QUANTIZATION

A. Expansion of the quantum field

Usually, when a quantum theory outside the horizon of
the Schwarzschild black hole is considered, the quantum
scalar field ϕðt; x⃗Þ is expanded in spherical harmonics, i.e.,
an expansion of the form

ϕðt; r; θ;φÞ ¼
X∞
l¼0

Xl

m¼−l

Z
M

0

dEffiffiffiffiffiffi
2E

p ðe−iEtϕlmðE; r; θ;φÞalmðEÞ þ eiEtϕ�
lmðE; r; θ;φÞa†lmðEÞÞ

þ
X2
p¼1

X∞
l¼0

Xl

m¼−l

Z
∞

M

dEffiffiffiffiffiffi
2E

p ðe−iEtϕlmpðE; r; θ;φÞalmpðEÞ þ eiEtϕ�
lmpðE; r; θ;φÞa†lmpðEÞÞ; ð54Þ

is used, see Refs. [9–11].4 This expansion is quite natural for a spherically symmetric system like the one described by the
Schwarzschild background. However, this expansion is not useful for examining the theory far away from the black hole,
where we expect that the influence of the black hole can be neglected. Indeed, in Minkowski spacetime we prefer to use the
expansion in terms of plane waves, which provides a much more convenient description of quantum states. Of course,
because of the Schwarzschild background we cannot use exactly the plane waves, however, we can use the scatteringlike
states described in the previous section for the expansion. These states behave like slightly modified plane waves far away
from what is considered as a “central potential”, thus allowing one to describe particles in the usual manner in that area but
rigorously take into account the effect produced by the “potential”. Namely, let us take

ϕðt; x⃗Þ ¼
X∞
l¼0

Xl

m¼−l

Z
M

0

dEffiffiffiffiffiffi
2E

p ðe−iEtϕlmðE; x⃗ÞalmðEÞ þ eiEtϕ�
lmðE; x⃗Þa†lmðEÞÞ

þ
X2
p¼1

Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

pp ðe−i
ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
tϕpðk⃗; x⃗Þapðk⃗Þ þ ei

ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
tϕ�

pðk⃗; x⃗Þa†pðk⃗ÞÞ; ð55Þ

where ϕlmðE; x⃗Þ ¼ ϕlmðE; r; θ;φÞ is defined by (11) with
(12), ϕpðk⃗; x⃗Þ is defined by (43). We suppose that the
creation and annihilation operators satisfy the standard
commutation relations

½almðEÞ; a†l0m0 ðE0Þ� ¼ δll0δmm0δðE − E0Þ; ð56Þ

½apðk⃗Þ; a†p0 ðk⃗0Þ� ¼ δpp0δð3Þðk⃗ − k⃗0Þ; ð57Þ

all other commutators being equal to zero. As we will see
below, this expansion is indeed more useful from a physical
point of view.

B. Canonical commutation relations

A consistent procedure of canonical quantization demands
that the canonical commutation relations are exactly satisfied.

Let us check that it is indeed so for expansion (55). The
canonical coordinate in a scalar field theory is ϕðt; x⃗Þ,
whereas the canonically conjugate momentum is

πðt; x⃗Þ≡ ∂L

∂ _ϕðt; x⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðx⃗Þ

p
g00ðx⃗Þ _ϕðt; x⃗Þ: ð58Þ

The following canonical commutation relations should be
satisfied:

½ϕðt; x⃗Þ; πðt; y⃗Þ� ¼ iδð3Þðx⃗ − y⃗Þ; ½ϕðt; x⃗Þ;ϕðt; y⃗Þ� ¼ 0;

½πðt; x⃗Þ; πðt; y⃗Þ� ¼ 0: ð59Þ

Substituting (58) into (59), we get

½ϕðt; x⃗Þ; _ϕðt; y⃗Þ� ¼ i
δð3Þðx⃗ − y⃗Þffiffiffiffiffiffi−gp

g00
; ð60Þ

½ϕðt; x⃗Þ;ϕðt; y⃗Þ� ¼ 0; ð61Þ
4The same when the black hole interior is taken into account,

see, for example, [24].
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½ _ϕðt; x⃗Þ; _ϕðt; y⃗Þ� ¼ 0: ð62Þ

Let us check that commutation relations (60)–(62) are satisfied for (55). Substituting (55) into the lhs of (60) and using
(56) and (57), one gets

½ϕðt; x⃗Þ; _ϕðt; y⃗Þ� ¼ 1

2

�X∞
l¼0

Xl

m¼−l

Z
M

0

ðϕlmðE; x⃗Þϕ�
lmðE; y⃗Þ þ ϕlmðE; y⃗Þϕ�

lmðE; x⃗ÞÞdE

þ
X2
p¼1

Z
ðϕpðk⃗; x⃗Þϕ�

pðk⃗; y⃗Þ þ ϕpðk⃗; y⃗Þϕ�
pðk⃗; x⃗ÞÞd3k

�
: ð63Þ

With the completeness relation (52), for (63) we get exactly (60).
Substituting (55) into the lhs of (61) and (62), and using (56) and (57), one gets

½ϕðt; x⃗Þ;ϕðt; y⃗Þ� ¼ 1

2

X∞
l¼0

Xl

m¼−l

Z
M

0

ðϕlmðE; x⃗Þϕ�
lmðE; y⃗Þ − ϕlmðE; y⃗Þϕ�

lmðE; x⃗ÞÞ
dE
E

þ 1

2

X2
p¼1

Z
ðϕpðk⃗; x⃗Þϕ�

pðk⃗; y⃗Þ − ϕpðk⃗; y⃗Þϕ�
pðk⃗; x⃗ÞÞ

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p ; ð64Þ

½ _ϕðt; x⃗Þ; _ϕðt; y⃗Þ� ¼ 1

2

X∞
l¼0

Xl

m¼−l

Z
M

0

ðϕlmðE; x⃗Þϕ�
lmðE; y⃗Þ − ϕlmðE; y⃗Þϕ�

lmðE; x⃗ÞÞEdE

þ 1

2

X2
p¼1

Z
ðϕpðk⃗; x⃗Þϕ�

pðk⃗; y⃗Þ − ϕpðk⃗; y⃗Þϕ�
pðk⃗; x⃗ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
d3k: ð65Þ

Using formula (B10) from Appendix B [see also (B11)], the double sum in (64) can be represented as

X∞
l¼0

Xl

m¼−l

Z
M

0

ðϕlmðE; x⃗Þϕ�
lmðE; y⃗Þ − ϕlmðE; y⃗Þϕ�

lmðE; x⃗ÞÞ
dE
E

¼ 1

4π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
Z

M

0

ðflðE; rÞflðE; r0Þ − flðE; r0ÞflðE; rÞÞ
dE
E

¼ 0: ð66Þ

Analogously, the double sum in (65) can be represented as

X∞
l¼0

Xl

m¼−l

Z
M

0

ðϕlmðE; x⃗Þϕ�
lmðE; y⃗Þ − ϕlmðE; y⃗Þϕ�

lmðE; x⃗ÞÞEdE

¼ 1

4π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
Z

M

0

ðflðE; rÞflðE; r0Þ − flðE; r0ÞflðE; rÞÞEdE ¼ 0: ð67Þ

Next, using formulas (B3)–(B5) from Appendix B, the second line in (64) can be represented as

X2
p¼1

Z
ðϕpðk⃗; x⃗Þϕ�

pðk⃗; y⃗Þ − ϕpðk⃗; y⃗Þϕ�
pðk⃗; x⃗ÞÞ

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p

¼ 1

4π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
X2
p¼1

Z
∞

M
ðflpðE; rÞflpðE; r0Þ − flpðE; r0ÞflpðE; rÞÞ

dE
E

¼ 0; ð68Þ

whereas the second line in (65) can be represented as
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X2
p¼1

Z
ðϕpðk⃗; x⃗Þϕ�

pðk⃗; y⃗Þ − ϕpðk⃗; y⃗Þϕ�
pðk⃗; x⃗ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
d3k

¼ 1

4π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
X2
p¼1

Z
∞

M
ðflpðE; rÞflpðE; r0Þ − flpðE; r0ÞflpðE; rÞÞEdE ¼ 0: ð69Þ

Substituting (66)–(69) into (64) and (65), we get exactly (61) and (62). Thus, all three canonical commutation relations are
exactly satisfied for (55).

C. Hamiltonian

Nowwe turn to the calculation of the Hamiltonian of the system. Note that in addition to the orthogonality condition (49),
the orthogonality conditions

Z
r>r0

ffiffiffiffiffiffi
−g

p
g00ϕlmðE; x⃗Þϕpðk⃗; x⃗Þd3x ¼ 0;

Z
r>r0

ffiffiffiffiffiffi
−g

p
g00ϕ�

lmðE; x⃗Þϕ�
pðk⃗; x⃗Þd3x ¼ 0 ð70Þ

hold as well. They are also a consequence of the fact that E in ϕlmðE; x⃗Þ and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
belong to different energy ranges

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
> M and E < M) and follow directly from (5). Substituting (55) into (10) and using the orthogonality

conditions (32), (49), (51), and (70), after straightforward calculations one gets

H ¼ 1

2

X∞
l¼0

Xl

m¼−l

Z
M

0

Eða†lmðEÞalmðEÞ þ almðEÞa†lmðEÞÞdEþ 1

2

X2
p¼1

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
ða†pðk⃗Þapðk⃗Þ þ apðk⃗Þa†pðk⃗ÞÞd3k

þ 1

4

X∞
l¼0

Xl

m¼−l

X∞
l0¼0

Xl0
m0¼−l0

Z
M

0

dE
Z

M

0

dE0
�
E

ffiffiffiffi
E

p
ffiffiffiffiffi
E0p −

ffiffiffiffiffiffiffiffi
EE0p �

ðe−iðEþE0ÞtalmðEÞal0m0 ðE0Þ

×
Z
r>r0

ffiffiffiffiffiffi
−g

p
g00ϕlmðE; x⃗Þϕl0m0 ðE0; x⃗Þd3xþ H:c:Þ þ 1

4

X2
p¼1

X2
p0¼1

Z
d3k

Z
d3k0

�ðk2 þM2Þ34
ðk02 þM2Þ14 − ðk2 þM2Þ14ðk02 þM2Þ14

�

× ðe−ið
ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
k02þM2

p
Þtapðk⃗Þap0 ðk⃗0Þ

Z
r>r0

ffiffiffiffiffiffi
−g

p
g00ϕpðk⃗; x⃗Þϕp0 ðk⃗0; x⃗Þd3xþ H:c:Þ: ð71Þ

First, let us consider the term with ϕlmðE; x⃗Þ and ϕl0m0 ðE0; x⃗Þ. Using the explicit form of the functions ϕlmðE; x⃗Þ and
ϕl0m0 ðE0; x⃗Þ [see (11) and (12)], it is not difficult to show that

Z
r>r0

ffiffiffiffiffiffi
−g

p
g00ϕlmðE; x⃗Þϕl0m0 ðE0; x⃗Þd3x ¼ δll0δm;−m0δðE − E0Þ: ð72Þ

Due to the presence of δðE − E0Þ in the latter relation, we have

�
E

ffiffiffiffi
E

p
ffiffiffiffiffi
E0p −

ffiffiffiffiffiffiffiffi
EE0p �

δðE − E0Þ ¼ ðE − EÞδðE − E0Þ ¼ 0; ð73Þ

which means that the whole term with the coefficient E
ffiffiffi
E

pffiffiffiffi
E0p −

ffiffiffiffiffiffiffiffi
EE0p

in (71) vanishes.

Second, let us consider the term with ϕpðk⃗; x⃗Þ and ϕp0 ðk⃗0; x⃗Þ. It is not difficult to show that (see Appendix A for
analogous calculations)

Z
r>r0

ffiffiffiffiffiffi
−g

p
g00ϕpðk⃗; x⃗Þϕp0 ðk⃗0; x⃗Þd3x ¼ 1

4πk2
X∞
l¼0

ð2lþ 1Þeiðπlþ2δ̃lpðkÞÞPlðcos αÞδpp0δðk − k0Þ; ð74Þ

where α is the angle between the vectors k⃗ and k⃗0 (defined in spherical coordinates in the momentum space by k, θk, φk and
k0, θ0k, φ

0
k respectively), which looks like [13]
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cos α ¼ cos θk cos θ0k þ sin θk sin θ0k cosðφk − φ0
kÞ: ð75Þ

Due to the presence of δðk − k0Þ in (74), we have

�ðk2 þM2Þ34
ðk02 þM2Þ14 − ðk2 þM2Þ14ðk02 þM2Þ14

�
δðk − k0Þ

¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
Þδðk − k0Þ ¼ 0; ð76Þ

which means that the whole term with the coefficient
ðk2þM2Þ34
ðk02þM2Þ14

− ðk2 þM2Þ14ðk02 þM2Þ14 in (71) also vanishes.

Thus, for (71) we get

H ¼ 1

2

X∞
l¼0

Xl

m¼−l

Z
M

0

Eða†lmðEÞalmðEÞ þ almðEÞa†lmðEÞÞdE

þ 1

2

X2
p¼1

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
ða†pðk⃗Þapðk⃗Þ þ apðk⃗Þa†pðk⃗ÞÞd3k:

ð77Þ

Passing from almðEÞa†lmðEÞ to a†lmðEÞalmðEÞ and from

apðk⃗Þa†pðk⃗Þ to a†pðk⃗Þapðk⃗Þ in (77), and dropping the
irrelevant c-number terms, finally we obtain

H¼
X∞
l¼0

Xl

m¼−l

Z
M

0

Ea†lmðEÞalmðEÞdE

þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2þM2
p

ða†1ðk⃗Þa1ðk⃗Þþa†2ðk⃗Þa2ðk⃗ÞÞd3k: ð78Þ

We see that the resulting Hamiltonian has the standard
form. However, this Hamiltonian implies that there is a
degeneracy of states that are parameterized by the same k⃗.
Of course, these states differ in the functions A1ðk⃗; n⃗; rÞ and
A2ðk⃗; n⃗; rÞ in (47). Meanwhile, for an observer at large
distances from the black hole, where the terms with the
functions Apðk⃗; n⃗; rÞ can be neglected because of the factor
1
r, these different states look just as identical slightly
modified plane waves with the same asymptotic momen-
tum k⃗. The origin of this peculiarity will be briefly
discussed in the next section.

D. Brief comparison with the case
of Minkowski spacetime

Let us consider a free real massive scalar field in
Minkowski spacetime. Formally, we can start the analysis
from the solutions in spherical coordinates. In particular,
the properly normalized solutions of the corresponding
radial equation have the form [23]

Rlðk; rÞ ¼
ffiffiffi
2

π

r
ð−1Þl

�
r
k

�
l
�
1

r
d
dr

�
l sin kr

r
ð79Þ

such that

Z
∞

0

Rlðk; rÞRlðk0; rÞr2dr ¼ δðk − k0Þ: ð80Þ

Using these solutions, we can also build the “scattering
states” [23]

1

ð2πÞ32 e
ik⃗ x⃗ ¼ 1

4πk

X∞
l¼0

ð2lþ 1Þeiπl2Pl

�
k⃗ x⃗
kr

�
Rlðk; rÞ; ð81Þ

which are just the exact plane waves. However, because
there exits only one real radial solution for fixed k and l (in
particular, for l ≠ 0 this is the consequence of the existence
of the dominant term lðlþ1Þ

r2 at r → 0 in the corresponding

equation), for a fixed k⃗ it is possible to build only one state
that behaves as a plane wave for r → ∞ (of course, in this
particular case the state behaves as a plane wave every-
where in space). Thus, for the Hamiltonian we get the well-
known exact result

H ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2
p

a†ðk⃗Þaðk⃗Þd3k ð82Þ

without any degeneracy of states. Of course, the same
reasoning is valid in the cases of standard short-range
spherically symmetric potentials in Minkowski spacetime,
the only difference with the case of the free field being a
nonzero scattering amplitude. For the standard Coulomb
potential, we can also build one scatteringlike state of form
(47) (note that in the standard approach the solution
corresponding to the Coulomb potential is considered in
a different form [23]). In contrast to this, in the case of the
Schwarzschild metric there exist two real radial solution for
fixed k and l, leading to two scatteringlike states with the
same k⃗. It is a purely topological effect, which cannot be
eliminated by moving away from the black hole.

V. DISCUSSION AND CONCLUSION

In the present paper, we have performed the procedure of
canonical quantization of a real massive scalar field outside
the horizon of an ideal Schwarzschild black hole. We have
shown that the resulting theory turns out to be complete and
self-consistent, i.e., the canonical commutation relations
are satisfied exactly and the Hamiltonian has the standard
form without any peculiarities. Although the scalar field
theory we are working with is local in the sense that it is
supposed to contain only local interactions, it relies on the
existence of solutions of the corresponding equation of
motion in the whole space. The latter means that in this
sense the theory is “global”. On the other hand, though the
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time coordinate t can be considered as proper time only at
r → ∞, it does not lead to any contradiction in performing
the canonical quantization procedure. Moreover, since the
initial theory is invariant under the translations in time t, it
gives rise to Hamiltonian (10) that is conserved over time,
which is essential for obtaining correct quantum field
theory. Thus, time t can be considered as a global time
in the resulting quantum theory.
It is clear that the results presented in this paper can be

easily reduced to the massless case by setting M ¼ 0. In
this case, Eq. (23) with (24) takes the form of the Regge-
Wheeler equation [17]. Of course, if M ¼ 0, then the
“localized” states [the first term with the integral with
respect to E in (78)] are absent in the theory but all the other
conclusions concerning the properties of the spectrum
remain the same.
A feature of the resulting quantum theory is that the

Schwarzschild black hole interior is not necessary for
obtaining correct quantum field theory outside the
black hole and does not affect it. In this sense this
picture is similar to the one discussed in [7], the difference
being that we do not need the white hole exterior
as well.
Another feature is that in the vicinity of the horizon the

scalar particles become effectively massless, which is a
consequence of the fact that effective potential VlðzÞ (24) in
the radial equation (23) is such that VlðzÞ → 0 as z → −∞
(i.e., as r → r0). It means that, presumably, bound states
would decay as they approach the event horizon.
And one more feature, which is even more important, is

connected with the spectrum of quantum states. This
spectrum consists of two branches. The first branch is
the continuous spectrum of states with energies less than
the mass of the field, these states describe particles that are
bound in the vicinity of the horizon. The second branch
is the continuous spectrum of states with energies larger
than the mass of the field. At large distances from the
Schwarzschild black hole, the latter states look similar to
those of the usual particles with definite momenta.
However, it turns out that for a fixed vector k⃗ there
exist two different states corresponding to such particles.
Naively one would expect that if an observer is located
far away from the Schwarzschild black hole, the effects
caused by the black hole can be neglected. Nevertheless, it
is not so—as it has been demonstrated above, because of
the different topological structures of the Schwarzschild
spacetime and Minkowski spacetime (the former is topo-
logically R2 × S2, whereas the latter is R4), the structures of
the spectra in both spacetimes are completely different,
which manifests itself in the additional degeneracy in the
case of the Schwarzschild spacetime. This effect is a direct
consequence of the fact that, as was mentioned above, the
field theory is “global” in the sense that in order to have a
consistent classical or quantum effective theory, it is
necessary to have solutions of the corresponding equations

of motion in the whole space. Of course, this conclusion
was rigorously proven only for the simplest case of a real
massive scalar field but we expect that such a degeneracy of
states is inherent to fields of different types, i.e., to vector
and spinor fields too. Moreover, it is quite possible that the
existence of several black holes may lead to additional
degeneracy of quantum states. We expect that the cross
sections of various processes calculated in such a theory
would differ considerably from those in the Standard
Model, even in the case of a single black hole.
We would also like to note that, according to [25], a very

compact object differs from a collapsing star in the
existence of discrete energy levels in the former case.
The same situation with the Schwarzschild black hole—the
spectrum of “localized” states with energies less
than the scalar field mass is also continuous. However,
as was demonstrated above, there exists a more serious
difference—we do not expect a degeneracy of states in the
quantum theory for a very compact object (at least, for
standard compact objects consisting of ordinary matter)—
because such objects do not change the spacetime topology.
Meanwhile, black holes change the spacetime topology in
such a way that there emerge extra degrees of freedom of
the scalar field and, consequently, even in the simplest case
of the Schwarzschild black hole there emerges a degen-
eracy which leads to the consequences discussed above. In
principle, the existence of such a degeneracy poses a
question about the existence of black holes with horizons
leading to substantial changes in the effective theory even
far away from the black hole.
It should be noted that there may exist objects that have

no horizons but also change the spacetime topology in the
same manner, for example, traversable wormholes of the
Morris-Thorne type [26–28].5 In the first case, where the
wormhole connects two different universes (topologically
the corresponding spacetime is also R2 × S2), the degen-
eracy of states completely analogous to the one of the
Schwarzschild black hole case is expected, and the only
substantial difference with the latter case is the form of the
effective potential in the corresponding equation analogous
to Eq. (23). Namely, for such a wormhole the radial
coordinate can be chosen in such a way that
r ∈ ð−∞;∞Þ, the corresponding potential VlðrÞ is sym-
metric and has the properties that VlðrÞ → μ2 for r → �∞
and there is a well in the vicinity of r ¼ 0. Thus, the
doubling of physical states is expected for observers
located far away from the wormhole in both universes.
If the wormhole connects two regions of our universe,

then the situations turns out to be more involved. The
topology of such a spacetime is that of a noncompact
handlebody and clearly differs from the one of Minkowski

5We are very grateful to the anonymous referee for indicating
this point and suggesting the Morris-Thorne wormhole as an
example.
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spacetime. However, since the wormhole has a finite
volume, whereas different asymptotic regions of space
are not connected only through the wormhole, it is possible
that a degeneracy of states is absent in this case and the
wormhole just imposes additional restrictions on the wave
functions of states. In other words, the Schwarzschild black
hole and the wormhole that connects different universes
provide new asymptotic regions in comparison with those
in Minkowski spacetime (i.e., they change the global
topology of spacetime), whereas it is not so for the
wormhole that connects two regions of our universe
(i.e., it changes the spacetime topology only in a finite
region of space; this can be easily understood if one
imagines that two exits of the wormhole are located close
to each other). Thus, at the moment we have no definite
answer to the question, whether there is a degeneracy of
states for such a wormhole or not. This problem, as well as
the effects produced by the degeneracy and possible ways
to avoid it, call for a further analysis.
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APPENDIX A: ORTHOGONALITY CONDITION
FOR THE SCATTERINGLIKE STATES

Let us consider (51) with ϕpðk⃗; x⃗Þ defined by (43). To
prove this orthogonality condition, we will go along the
lines of the method used in [23] for a similar proof. Let β be
the angle between the vectors k⃗ and x⃗, β0 is the angle
between the vectors k⃗0 and x⃗, α is the angle between the
vectors k⃗ and k⃗0, and φ̃ is the angle between the planes
ðx⃗; k⃗Þ and ðk⃗; k⃗0Þ. One can check that in such a case the
relation

cos β0 ¼ cos β cos αþ sin β sin α cos φ̃ ðA1Þ

between the angles holds, as well as the addition theorem
for the Legendre polynomials [13]

Pl0 ðcosβ0Þ ¼Pl0 ðcosβÞPl0 ðcosαÞ

þ2
Xl0
m¼1

ðl0−mÞ!
ðl0 þmÞ!P

m
l0 ðcosβÞPm

l0 ðcosαÞcosðmφ̃Þ:

ðA2Þ

Using these angles, the integral in the lhs of (51) can be
rewritten as6

1

16π2kk0

ffiffiffi
k

p

ðk2 þM2Þ14

ffiffiffiffi
k0

p

ðk02 þM2Þ14
X∞
l¼0

X∞
l0¼0

ð2lþ 1Þð2l0 þ 1Þeiðπðl−l
0Þ

2
þδ̃lpðkÞ−δ̃l0p0 ðk0ÞÞ

×
Z

2π

0

dφ̃
Z

π

0

sin βdβ
Z

∞

r0

dr
r3

r − r0
Plðcos βÞPl0 ðcos β0Þflp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
; r
�
fl0p0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 þM2

p
; r
�
: ðA3Þ

Let us take only the angular part of the latter integral, which
reads Z

2π

0

dφ̃
Z

π

0

sin βdβPlðcos βÞPl0 ðcos β0Þ; ðA4Þ

and substitute (A2) into it. We get
Z

2π

0

dφ̃
Z

π

0

sin βdβPlðcos βÞPl0 ðcos β0Þ

¼ 2π

Z
π

0

sin βdβPlðcos βÞPl0 ðcos βÞPl0 ðcos αÞ

¼ 4π

2lþ 1
Plðcos αÞδll0 : ðA5Þ

Substituting (A5) into (A3), we get

X∞
l¼0

2lþ1

4πkk0

ffiffiffi
k

p

ðk2þM2Þ14

ffiffiffiffi
k0

p

ðk02þM2Þ14PlðcosαÞeiðδ̃lpðkÞ−δ̃lp0 ðk0ÞÞ

×
Z

∞

r0

dr
r3

r−r0
flp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
;r
�
flp0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02þM2

p
;r
�
:

ðA6Þ
With the orthogonality condition (31), formula (A6) takes
the form

δpp0
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2
p δð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 þM2

p
Þ

×
X∞
l¼0

2lþ 1

4πk2
Plðcos αÞ

¼ δpp0δðk − k0Þ
X∞
l¼0

2lþ 1

4πk2
Plðcos αÞ: ðA7Þ

Recall that [23]

6One can easily check that the integrations with respect to β
and φ̃ in (A3) go over the total solid angle of the vector x⃗.
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1

4

X∞
l¼0

ð2lþ 1ÞPlðcos αÞ ¼ δð1 − cos αÞ: ðA8Þ

With the latter relation, formula (A7) takes the form

δpp0
1

πk2
δðk − k0Þδð1 − cos αÞ: ðA9Þ

It is clear that the delta functions in (A9) select exactly
k⃗ ¼ k⃗0, i.e., 1

πk2 δðk − k0Þδð1 − cos αÞ should correspond

to δð3Þðk⃗ − k⃗0Þ in the initial variables. It is indeed so,
because [23]

Z
d3k

�
1

πk2
δðk − k0Þδð1 − cos αÞ

�

¼ 2π

Z
∞

0

k2dk
Z

π

0

sin αdα

�
1

πk2
δðk − k0Þδð1 − cos αÞ

�

¼ 2

Z
1

−1
δð1 − yÞdy ¼ 1; ðA10Þ

where the spherical coordinate system is chosen such that
its “z-axis” coincides with the vector k⃗0 and the prescription

R
1
−1 δð1 − yÞdy ¼ 1=2 is used. Relation (A10) finalizes the
proof of (51).

APPENDIX B: COMPLETENESS RELATION
INVOLVING THE SCATTERINGLIKE STATES

First, let us consider the second part in the lhs of (52)

X2
p¼1

Z
ϕ�
pðk⃗; x⃗Þϕpðk⃗; y⃗Þd3k: ðB1Þ

Let β be the angle between the vectors x⃗ and k⃗, β0 is the
angle between the vectors y⃗ and k⃗, γ is the angle between
the vectors x⃗ and y⃗, and φ̃ is the angle between the planes
ðk⃗; x⃗Þ and ðx⃗; y⃗Þ. One can check that in such a case the
relation

cos β0 ¼ cos β cos γ þ sin β sin γ cos φ̃ ðB2Þ

between the angles holds. Using these angles (contrary to
the case discussed in Appendix A, here the angles β, β0, and
φ̃ parameterize the momentum space), the integral (B1) can
be rewritten as

1

16π2
X2
p¼1

X∞
l¼0

X∞
l0¼0

ð2lþ 1Þð2l0 þ 1Þeiπðl−l
0Þ

2

Z
2π

0

dφ̃
Z

π

0

sin β dβPlðcos βÞPl0 ðcos β0Þ

×
Z

∞

0

dkeiðδ̃lpðkÞ−δ̃l0pðkÞÞ
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2
p flpð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
; rÞfl0pð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
; r0Þ; ðB3Þ

where r ¼ jx⃗j, r0 ¼ jy⃗j. Using the addition theorem for the Legendre polynomials [13]

Pl0 ðcos β0Þ ¼ Pl0 ðcos βÞPl0 ðcos γÞ þ 2
Xl0
m¼1

ðl0 −mÞ!
ðl0 þmÞ!P

m
l0 ðcos βÞPm

l0 ðcos γÞ cosðmφ̃Þ ðB4Þ

and (A5), formula (B3) can be brought to the form

1

4π

X2
p¼1

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
Z

∞

0

dk
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2
p flpð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
; rÞflpð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
; r0Þ

¼ 1

4π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
X2
p¼1

Z
∞

M
flpðE; rÞflpðE; r0ÞdE: ðB5Þ

Now let us consider the first part in the lhs of (52)

X∞
l¼0

Xl

m¼−l

Z
M

0

ϕ�
lmðE; x⃗ÞϕlmðE; y⃗ÞdE: ðB6Þ

Using the explicit form of spherical harmonics (12), we can get
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Xl

m¼−l
Y�
lmðθ;φÞYlmðθ0;φ0Þ¼2lþ1

4π

�
Pl ðcosθÞPl ðcosθ0Þþ2

Xl

m¼1

ðl−mÞ!
ðlþmÞ!P

m
l ðcosθÞPm

l ðcosθ0Þ cosðmðφ−φ0ÞÞ
�
: ðB7Þ

It is known that for the standard spherical coordinates the relation

cos γ ¼ cos θ cos θ0 þ sin θ sin θ0 cosðφ − φ0Þ ðB8Þ

holds, where γ is the angle between the vectors x⃗ and y⃗ defined by r, θ, φ, and r0, θ0, φ0, respectively [13]. So, according to
relation (B8), the addition theorem for the Legendre polynomials takes the form

Plðcos γÞ ¼ Plðcos θÞPl ðcos θ0Þ þ 2
Xl

m¼1

ðl −mÞ!
ðlþmÞ!P

m
l ðcos θÞPm

l ðcos θ0Þ cosðmðφ − φ0ÞÞ: ðB9Þ

With (B9), formula (B7) can be rewritten as

Xl

m¼−l
Y�
lmðθ;φÞYlmðθ0;φ0Þ ¼ 2lþ 1

4π
Plðcos γÞ: ðB10Þ

Thus, for (B6) we obtain

X∞
l¼0

Xl

m¼−l

Z
M

0

ϕ�
lmðE; x⃗ÞϕlmðE; y⃗ÞdE ¼ 1

4π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
Z

M

0

flðE; rÞflðE; r0ÞdE: ðB11Þ

Combining (B5) and (B11), for the lhs of (52) we get

1

4π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
�Z

M

0

flðE; rÞflðE; r0ÞdEþ
X2
p¼1

Z
∞

M
flpðE; rÞflpðE; r0ÞdE

�
: ðB12Þ

With the completeness relation (37) and with (A8), formula (B12) can be brought to the form

1

4π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
r − r0
r3

δðr − r0Þ ¼ 1

π
δð1 − cos γÞ r − r0

r3
δðr − r0Þ: ðB13Þ

Like in the case of (A9), the delta functions in (B13) select exactly x⃗ ¼ y⃗. The calculation [compare with (A10)]

Z
r>r0

d3x
ffiffiffiffiffiffi
−g

p
g00

�
1

π
δð1 − cos γÞ r − r0

r3
δðr − r0Þ

�
¼ 2π

Z
∞

r0

dr
r3

r − r0

Z
π

0

dγ sin γ

�
1

π
δð1 − cos γÞ r − r0

r3
δðr − r0Þ

�
¼ 1;

ðB14Þ

in which the spherical coordinate system is chosen such that its “z-axis” coincides with the vector y⃗ and again the
prescription

R
1
−1 δð1 − yÞdy ¼ 1=2 is used, finalizes the proof of (52).
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