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We consider the Brill metric, which is an electrovacuum solution to Einstein’s field equation. It depends
on three parameters, a mass parameter m, a NUT parameter l, and a charge parameter e. If the charge
parameter is small, the metric describes a black hole; if it is sufficiently big, it describes a wormhole. We
determine the relevant lensing features both in the black-hole and the wormhole case. In particular, we give
formulas for the photon spheres, for the angular radius of the shadow, and for the deflection angle. We
illustrate the lensing features with the help of an effective potential and in terms of embedding diagrams. To
that end we make use of the fact that each lightlike geodesic is contained in a (coordinate) cone and that it is
a geodesic of a Riemannian optical metric on this cone. By the Gauss-Bonnet theorem, the sign of the
Gaussian curvature of the optical metric determines the sign of the deflection angle. In the wormhole case
the deflection angle may be negative, which means that light rays are repelled from the center.
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I. INTRODUCTION

Gravitational lensing is one of the most important tools
for observing (ultra)compact objects such as black holes or
wormholes. In this case the weak-field small-angle approxi-
mation that is often employed in lensing is not applicable
because light rays can make arbitrarily many turns around
the central object. Then one has to use the full spacetime
formalism of general relativity, without approximation, for
determining the lensing features, see, e.g., the living review
by Perlick [1].
In this paper we want to apply this formalism to lensing

in the Brill spacetime, which is an exact solution to the
Einstein-Maxwell equations, found by Brill [2] in 1964.
The Brill metric depends on a mass parameter m, a NUT
parameter l, and a charge parameter e. For l ¼ 0 the metric
reduces to the Reissner-Nordström metric, which is static
and spherically symmetric. As the light rays in the
Reissner-Nordström metric have been extensively dis-
cussed (see, e.g., Chandrasekhar [3]), we will restrict our
investigation to the case l ≠ 0. Then the metric is still
stationary and it still admits an SOð3;RÞ symmetry;
however, it is no longer static and it is not spherically
symmetric in the usual sense because the orbits of the
SOð3;RÞ symmetry are three-dimensional timelike hyper-
surfaces rather than two-dimensional spacelike spheres.
For e ¼ 0 the Brill metric reduces to the Newman-Unti-
Tamburino (NUT) vacuum solution [4] which describes a
black hole. For nonzero e, the Brill metric still describes a
black hole (now with charge) as long as e2 is small, but for

sufficiently big e2 it describes a traversable wormhole, see
Clément et al. [5]. These Brill wormholes are the only
known traversable wormhole solutions to Einstein’s field
equation (in 4 spacetime dimensions) with an energy-
momentum tensor that satisfies all energy conditions. We
believe that for this reason it is worthwhile to study their
lensing features in detail.
The paper is organized as follows. In Sec. II we review

the basic features of Brill spacetimes. In Secs. III and IV
we derive, respectively, the relevant equations for general
geodesics and for lightlike geodesics. We discuss the
lensing features of Brill black holes in Sec. V and of
Brill wormholes in Sec. VI.

II. BRILL SPACETIMES

The Brill metric, also known as the Reissner-Nordström-
NUT metric, is an exact solution of the Einstein-Maxwell
equations that was found by Brill in 1964 [2] as a
generalization of the NUT metric [4]. It depends on three
parameters, m, l, and e. In Boyer-Lindquist-type coordi-
nates ðt; r; ϑ;φÞ the Brill metric reads

gμνdxμdxν ¼ −
ðr−mÞ2 þ b

r2 þ l2
ðdt− 2lðcosϑþCÞdφÞ2

þ ðr2 þ l2Þdr2
ðr−mÞ2 þ b

þ ðr2 þ l2Þðdϑ2 þ sin2ϑdφ2Þ;

ð1Þ

with

b ≔ e2 −m2 − l2: ð2Þ
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ϑ and φ are the standard coordinates on the two-sphere S2,
whereas the time coordinate t and the radial coordinate r
range over all ofR, unless in the case l ¼ 0where the radial
coordinate has to be restricted to r > 0, or r < 0, because
there is a curvature singularity at r ¼ 0.
The metric is stationary, but not static, on the domain

where gtt < 0. Moreover, it admits an SOð3;RÞ symmetry
that will be discussed below. However, as the orbits of
the SOð3;RÞ action are not two-dimensional spacelike
spheres, the metric is not spherically symmetric in the usual
sense of the word.
In (1) we have written the metric in a way that involves,

in addition to the three parametersm, l, and e, also another,
dimensionless, parameter C which was not included in the
original work of Brill. It was introduced only later by
Manko and Ruiz [6] for the NUT metric and it generalizes
naturally to the Brill metric. By a coordinate transformation

t0 ¼ t − 2lCφ; r0 ¼ r; φ0 ¼ φ; ϑ0 ¼ ϑ; ð3Þ

one can transform the Manko-Ruiz parameter C to zero
near any one point off the axis, so the local geometry off the
axis is unaffected by changing C. On the axis, there is a
conic singularity, if l ≠ 0, and this singularity is influenced
by C: For C ¼ 1 the singularity is on the upper half-axis
(ϑ ¼ 0), for C ¼ −1 it is on the lower half-axis (ϑ ¼ π),
and for any other value of C it is on both half-axes,
symmetrically distributed for C ¼ 0 and asymmetrically
for other values ofC. Each of the three parametersm, e, and
l has the dimension of a length. m is the mass parameter
which will be assumed non-negative throughout, m ≥ 0.
e2 ¼ q2 þ p2 is the combination of an electric charge
parameter q and a magnetic charge parameter p; obviously
e2 ≥ 0. l is the gravitomagnetic charge, also known as the
NUT parameter, which may take any value l ∈� −∞;þ∞½.
In the analogy between gravitation and electromagnetism,
m corresponds to the electric charge, while l corresponds to
a magnetic (monopole) charge.
For l ¼ 0, the metric reduces to the Reissner-Nordström

metric. Then there is a curvature singularity at r ¼ 0, so we
have to restrict to the region r > 0 (or to the region r < 0).
If m > 0, the spacetime region r > 0 describes a black
hole, with horizons at r� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − e2

p
, for e2 ≤ m2

and a naked singularity for e2 > m2; the first case includes
of course the Schwarzschild metric with e2 ¼ 0. If m ¼ 0,
we have a massless naked singularity for e2 > 0 and flat
Minkowski spacetime for e2 ¼ 0. As the Reissner-
Nordström metric has been extensively covered in the
literature, we exclude the case l ¼ 0 in the rest of this paper.
With l ≠ 0 the Brill metric describes a black hole for

b ≤ 0 and a traversable wormhole for b > 0, see Clément
et al. [5]. In the case of black holes, there are two horizons
at r� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − e2

p
. For b ¼ 0, i.e., q2 þ p2 ¼

m2 þ l2, it was shown by Clément et al. [5] that the metric
is a special case of the Israel-Wilson-Perjès metric; in this

case we have a black hole with a degenerate horizon. The
two special cases m ¼ 0 and e2 ¼ 0 are included: m ¼ 0

gives us a massless black hole for l2 ≥ e2 and a massless
wormhole for l2 < e2. e2 ¼ 0 gives us the NUT metric [4].
The NUT metric is a solution to Einstein’s vacuum field
equation that describes a black hole, with horizons at
r� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2

p
. The region between the two horizons

is isometric to a cosmological vacuum solution found by
Taub [7]; therefore, the analytic extension of the NUT
solution beyond the outer horizon is properly called the
Taub-NUT solution.
In the black-hole case, for gravitational lensing it is

reasonable to restrict r to the domain of outer communi-
cation, i.e., to the region outside of the outer horizon
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − e2

p
< r < ∞. Clearly, an observer in the

domain of outer communication can receive only light
signals that are completely contained in the domain of outer
communication, so as long as we do not consider observers
who are foolhardy enough to jump into the black hole,
the region beyond the outer horizon is of no relevance.
In the wormhole case, however, there are no horizons which
means that any observer can receive signals from the entire
domain −∞ < r < ∞.
We have said that we assume that t runs over all ofR and

that then for l ≠ 0 there is a conic singularity on the axis.
This singularity can actually be removed by making the
time coordinate periodic, with the period 4πjlCj, as was
suggested by Misner [8] (for the uncharged NUT metric
with C ¼ −1). This, however, leads to a closed timelike
curve through each event where ∂t is timelike, i.e., to a most
drastic kind of causality violation, so we will not follow this
suggestion. It is true that also without making the time
coordinate periodic there are closed timelike curves in the
Brill (or in particular NUT) spacetime, but if the NUT
parameter is sufficiently small they are restricted to an
arbitrarily small region near the axis, so one may argue that
this does not lead to any pathological behavior that is
actually observable.
In the rest of this paper, a Brill spacetime withm ≥ 0 and

l ≠ 0 will be assumed. For b ≤ 0, we limit ourselves to the
domain of outer communication of the black hole, whereas
in the wormhole case b > 0 we have to consider the entire
domain −∞ < r < ∞. It was emphasized already by
Clément et al. [5] that Brill wormholes are traversable,
i.e., that luminal and subluminal signals can travel from
r ¼ −∞ to r ¼ ∞ and vice versa. This distinguishes Brill
wormholes from the Einstein-Rosen bridge [9]. As the Brill
metric is a solution to the Einstein-Maxwell equations,
there is no exotic matter involved. This distinguishes the
Brill wormholes from the Teo wormholes [10] (which
include the Morris-Thorne wormholes [11]) and also from a
class of wormholes considered by Halla and Perlick [12]
that is closely related, but not identical to the class of
Teo wormholes. All these wormholes are traversable but
by Einstein’s field equation they have negative energy
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densities near the throat. The Brill wormholes do not
violate any of the energy conditions (weak, strong, or
dominant). The price we have to pay is in the weaker
asymptotic structure: Whereas Teo wormholes have two
ends which are asymptotically flat in the sense that the
metric approaches the Minkowski metric, the Brill worm-
hole metrics are asymptotically flat only in the sense that
the curvature goes to zero for r → �∞; however, the
spheres ðr ¼ const; t ¼ constÞ do not become spacelike
surfaces with area 4πr2 for big r. Also, there is the above-
mentioned conical singularity on the axis. Nonetheless,
some readers may find it attractive to have wormhole
solutions to Einstein’s field equation without exotic matter,
even if they have some other pathologies.

III. GEODESICS IN THE BRILL METRIC

First, we specify the Killing vector fields in order to
determine the symmetry and the geodesic equations of the
Brill metric. The metric (1) has the following four linearly
independent Killing vector fields:

ξ0 ¼ ∂t; ð4Þ

ξ1 ¼ − sin φ∂ϑ −
cos φ
sin ϑ

ðcosϑ∂φ þ 2lð1þ C cos ϑÞ∂tÞ;
ð5Þ

ξ2 ¼ cosφ ∂ϑ −
sin φ

sin ϑ
ðcos ϑ∂φ þ 2lð1þ C cos ϑÞ∂tÞ; ð6Þ

ξ3 ¼ ∂φ þ 2lC∂t: ð7Þ

The Killing vector fields satisfy the following Lie bracket
relations:

½ξ0; ξ1� ¼ ½ξ0; ξ2� ¼ ½ξ0; ξ3� ¼ 0; ð8Þ

½ξ1; ξ2� ¼ −ξ3; ½ξ2; ξ3� ¼ −ξ1; ½ξ3; ξ1� ¼ −ξ2: ð9Þ

Hence, ξ1, ξ2, and ξ3 generate a three-dimensional group of
isometries which is isomorphic to the rotation group
SOð3;RÞ, and ξ0 generates a one-dimensional group of
isometries that expresses stationarity. Note that for l ≠ 0 the
SOð3;RÞ orbits are not two-dimensional spacelike spheres
but rather three-dimensional submanifolds with topology
S2 ×R and signature ð−;þ;þÞ, so the metric is not
spherically symmetric in the usual sense.
For the NUT metric (e ¼ 0) with arbitrary Manko-Ruiz

parameter C, the Killing vector fields have already been
given by Halla and Perlick [13]. For the NUT metric with
C ¼ −1 they are known from the original NUT paper [4].
Note that the Killing vector fields and their Lie bracket
relations involve neither m nor e.
We will now use the Killing symmetries to solve the

geodesic equations of the metric (1), where the geodesics

xμðsÞ are parametrized by an affine parameter s. We
denote the derivative with respect to s by an overdot. If
we send l to 0 the following analysis gives the well-known
geodesics in the Reissner-Nordström metric, cf., e.g.,
Chandrasekhar [3]. For e ¼ 0 it gives the geodesics in
the NUT metric which have been discussed by Zimmerman
and Shahir [14] and in even greater mathematical detail by
Kagramanova et al. [15].
Since there are four Killing vector fields ξA (where

A ∈ f0; 1; 2; 3g), there are also four constants of motion
gμνξ

μ
A _x

ν,

E ¼ −gμνξ
μ
0 _x

ν ¼ r2 þ l2

r2 − 2mr − l2 þ e2
ð_t − 2lðcos ϑþ CÞ _φÞ;

ð10Þ

J1 ¼ gμνξ
μ
1 _x

ν ¼ − sin φðr2 þ l2Þ _ϑ
− cos φ cosϑ sin ϑðr2 þ l2Þ _φþ 2l E cos φ sin ϑ;

ð11Þ

J2 ¼ gμνξ
μ
2 _x

ν ¼ cosφðr2 þ l2Þ _ϑ
− sin φ cos ϑ sin ϑðr2 þ l2Þ _φþ 2 l E sin φ sin ϑ;

ð12Þ

J3 ¼ gμνξ
μ
3 _x

ν ¼ sin2ϑðr2 þ l2Þ _φþ 2 l E cos ϑ: ð13Þ

After a straightforward calculation, one finds that

J2 ≔ J21 þ J22 þ J23 ¼ ðr2 þ l2Þ2ð _ϑ2 þ sin2ϑ _φ2Þ þ 4l2E2

ð14Þ

and 0
B@

J1
J2
J3

1
CA·

0
B@

cos φ sin ϑ

sin φ sin ϑ

cos ϑ

1
CA ¼ 2lE; ð15Þ

where the dot denotes the usual scalar product in Euclidean
3-space. This equation says that every geodesic lies in a
(coordinate) cone whose symmetry axis is spanned by the
vector ðJ1; J2; J3Þ. In the Reissner-Nordström case l ¼ 0
this cone becomes a plane, for all geodesics. In Brill
spacetimes with l ≠ 0 it becomes a plane only for geodesics
with E ¼ 0. We will see below that geodesics with E ¼ 0
are necessarily spacelike.
The Lagrangian

L ¼ 1

2
gμν _xμ _xν ð16Þ

is an additional constant of motion. Using the constants of
motion E, J2, J3, and L, the geodesic equations can be
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written in first-order form. For that purpose, one has to
solve Eqs. (13), (11), (14), and (16) in this order for _φ, _t, _ϑ2,
and _r2. One gets

_φ ¼ J3 − 2 l E cos ϑ
ðr2 þ l2Þ sin2ϑ ; ð17Þ

_t ¼ ðr2 − 2mr − l2 þ e2ÞE
r2 þ l2

þ 2l ðcos ϑþ CÞ ðJ3 − 2l E cosϑÞ
ðr2 þ l2Þ sin2ϑ ; ð18Þ

_ϑ2 ¼ J2 − 4l2E2

ðr2 þ l2Þ2 −
ðJ3 − 2l E cosϑÞ2
ðr2 þ l2Þ2 sin2ϑ ; ð19Þ

_r2 ¼ E2 −
ðr2 − 2mr − l2 þ e2Þ

ðr2 þ l2Þ2 ðJ2 − 4l2E2Þ

þ 2Lðr2 − 2mr − l2 þ e2Þ
ðr2 þ l2Þ : ð20Þ

The same set of equations can be derived in the
Hamiltonian formalism. Then one sees that the
Hamilton-Jacobi equation separates and that J2 − 4l2E2

is the separation constant, commonly known as the Carter
constant.

IV. LIGHTLIKE GEODESICS CONTAINED
IN A CONE

We will now consider lightlike geodesics, i.e., geodesics
with L ¼ 0. We have already noticed that, by (15), any
geodesic lies in a cone and that this cone becomes a plane,
in a Brill spacetime with l ≠ 0, only if E ¼ 0. We will now
show that E ¼ 0 is impossible for lightlike, and also for
timelike, geodesics. To that end we observe that (20), with
L ≤ 0 and E ¼ 0, can hold only with _r ¼ 0 and J ¼ 0.
(Recall that in the case of a black-hole spacetime, b ≤ 0, we
restrict to the domain of outer communication, whereas in
the case of a wormhole spacetime, b > 0, we allow r to take
all real values.) As J ¼ 0 implies J3 ¼ 0, we can read
from (17)–(19) that then _φ ¼ 0, _t ¼ 0, and _ϑ ¼ 0, which
means that we do not get a (geodesic) curve as the solution
but just a point.
For calculating the lightlike geodesics it suffices to

consider geodesics with J1 ¼ J2 ¼ 0. By (15), they lie
in a cone of the form ϑ ¼ constant, i.e., in a cone that is
symmetric with respect to the vertical coordinate axis. All
other lightlike geodesics are then obtained by applying all
possible rotations by using the SOð3;RÞ action.
If ϑ ¼ constant and J1 ¼ J2 ¼ 0, Eqs. (11) and (12)

require

_φ ¼ 2 l E
ðr2 þ l2Þ cos ϑ ; ð21Þ

and Eq. (15) yields

J3
E

¼ 2l
cosϑ

: ð22Þ

Equation (22) demonstrates that in a Brill spacetime with
l ≠ 0 the opening angle ϑ of the cone is determined by the
constant of motion J3=E and vice versa. Such a relation
does not exist in the Reissner-Nordström spacetime, l ¼ 0,
where the opening angle is always π=2, for all values of
J3=E. Equation (22) also demonstrates that in a Brill
spacetime with l ≠ 0 the value ϑ ¼ π=2 is not allowed,
because J3=E must be finite. So in a Brill spacetime with
l ≠ 0 the only light rays that lie in a (coordinate) plane
through the origin are radial ones; such a light ray is
allowed because it lies at the same time in a certain cone
with opening angle < π=2.
If we insert Eq. (22), together with J1 ¼ J2 ¼ 0, into

Eq. (20) with L ¼ 0, we get

_r2 ¼ E2

�
1 −

4 l2ðr2 − 2mr − l2 þ e2Þ
ðr2 þ l2Þ2 tan2ϑ

�
: ð23Þ

After differentiation of this equation with respect to the
affine parameter s and dividing the resulting equation by 2_r,
one obtains

̈r ¼ 4 l2E2 tan2ϑ
ðr2 þ l2Þ3 ðr3 − 3mr2 − 3l2rþ 2e2 rþm l2Þ: ð24Þ

By continuity, this equation is valid also at points where
_r ¼ 0, although we divided by _r. The orbit equation that
determines the shape of a lightlike geodesic in the cone
ϑ ¼ constant can be found by dividing Eq. (23) by Eq. (21).
The result is

dr
dφ

¼ _r
_φ
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ l2Þ2

4l2
cos2ϑ − ððr −mÞ2 þ bÞ sin2ϑ

s
:

ð25Þ

It is often convenient to rewrite the orbit equation (25) in
the form

4l2

sin2ϑ

�
dr
dφ

�
2

þ VϑðrÞ ¼ −4l2b; ð26Þ

where

VϑðrÞ ¼ −
ðr2 þ l2Þ2
tan2ϑ

þ 4l2ðr −mÞ2 ð27Þ

is an effective potential that depends parametrically on ϑ.
Obviously, the condition VϑðrÞ ≤ −4l2b determines the
region in the r − ϑ plane where light rays can exist.
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We now determine the location of “photon circles,” i.e.,
circular lightlike geodesics, in the Brill spacetime, which
are of particular relevance for the lensing features. We first
consider photon circles about the vertical coordinate axis,
i.e., photon circles that occur at the intersection of a sphere
r ¼ rph with a cone ϑ ¼ ϑph. To determine rph and ϑph we
use Eqs. (23) and (24) for solving the equations _r ¼ 0 and
̈r ¼ 0 simultaneously, which results in

r3ph − 3mr2ph − 3l2rph þ 2e2rph þm l2 ¼ 0 ð28Þ

and

tan ϑph ¼
r2ph þ l2

2l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ph − 2mrph − l2 þ e2

q : ð29Þ

With these results at hand, we use Eq. (19) for solving
simultaneously the equations _ϑ ¼ 0 and ϑ̈ ¼ 0, which
yields

J3 ¼
2lE

cos ϑph
ð30Þ

and

J2 − 4l2E2 ¼ ðr2ph þ l2Þ2
r2ph − 2mrph − l2 þ e2

: ð31Þ

Because of the SOð3;RÞ symmetry of the spacetime every
such photon circle about the vertical coordinate axis gives
rise to a “photon sphere” at r ¼ rph. Through each point of
the photon sphere and for each spatial direction tangential
to the photon sphere there is a photon circle. Note that in
the case l ≠ 0 a photon circle does not divide the photon
sphere into equal halves, i.e., it is not a great circle. Also
note that all photon circles in a photon sphere have the same
Carter constant, given by Eq. (31).

By construction, a photon circle ðr ¼ const; ϑ ¼ constÞ
occurs at those ðr;ϑÞ values where VϑðrÞ ¼ −4l2b
and dVϑðrÞ=dr ¼ 0. The photon circle is stable if
d2VϑðrÞ=dr2 > 0 and it is unstable if d2VϑðrÞ=dr2 < 0.
Here, calling a photon circle “stable” means that a small
radial perturbation gives a light ray that oscillates about
the photon circle, while calling it “unstable” means that it
gives a light ray that goes away from the photon circle.
Clearly, because of the SOð3;RÞ symmetry we may give
the attribute of being stable or unstable to the entire
photon sphere. In the r − ϑ plane photon circles occur at
those points where the curve VϑðrÞ ¼ −4l2b has a hori-
zontal tangent. The corresponding photon sphere is stable if
near this point the allowed region Vϑ < −4l2b is convex
and it is unstable if the forbidden region Vϑ > −4l2b is
convex. Below we will use the effective potential Vϑ for
discussing the lensing features and in particular the
photon spheres for Brill black holes and Brill wormholes
separately.
As Brill metrics are contained in the class of Plebański

metrics, their photon spheres are special cases of photon
regions in Plebański spacetimes which were discussed by
Grenzebach et al. [16]. We will use their results below for
determining the shadow of a Brill black hole and of a Brill
wormhole. The relevance of photon spheres, and more
generally photon regions, for calculating the shadow of a
compact object is detailed in a review by Perlick and
Tsupko [17].
For the NUT metric (e ¼ 0), the fact that (lightlike)

geodesics are contained in a cone has been known for quite
some time, see Zimmerman and Shahir [14]. For this case
it was shown by Halla and Perlick [13] that the lightlike
geodesics in a cone ϑ ¼ constant are geodesics of a two-
dimensional Riemannian metric, called the “optical met-
ric.” The generalization of this construction to Brill metrics
with e ≠ 0 is quite straightforward, so we do not repeat the
details here but just give the result: In a general Brill
spacetime, the optical metric on a cone ϑ ¼ constant reads

ḡijdxidxj ¼
ðr2 þ l2Þ2

ðr2 − 2mr − l2 þ e2Þ2 dr
2 þ ðr2 þ l2Þ2

ðr2 − 2mr − l2 þ e2Þ sin
2ϑ dφ2: ð32Þ

Here and in the following the summation convention is used for latin indices that take the values 1 and 2, where x1 ¼ r and
x2 ¼ φ. Note that, whereas every lightlike geodesic in the cone ϑ ¼ constant is a geodesic of the optical metric, it is of
course not true that every geodesic of the optical metric is a lightlike geodesic.
The Gaussian curvature of the metric (32) is

KðrÞ ¼ −
ð2r − 3mÞmr4

ðl2 þ r2Þ4 −
l2r2ð14m2 − 20mrþ 7r2Þ þ l4ðm2 þ 10mr − 6r2Þ þ 3l6

ðl2 þ r2Þ4

−
e2ðr2 − 2mr − l2Þð5l2 − 3r2Þ − 2e4ðr2 − l2Þ

ðl2 þ r2Þ4 : ð33Þ
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This demonstrates that the “cone” ϑ ¼ constant is a (flat)
cone only in the coordinate representation. As KðrÞ ≠ 0,
the intrinsic geometry of this cone with the optical metric is
not flat. By Eq. (33), the Gaussian curvature KðrÞ is
independent of ϑ. This means that, on all cones with their
different opening angles, the Gaussian curvature is given by
the same function of r. The reason for this becomes obvious
if we change the coordinates from ðr;φÞ to ðr̃ ¼ r; φ̃ ¼
φ sin ϑÞ in Eq. (32). After this, the metric coefficients are
independent of ϑ. Accordingly, the optical metrics of any
two cones with different opening angles are locally iso-
metric. However, they are not globally isometric, as the
range of the coordinate φ̃ depends on ϑ.
The intrinsic geometry of the two-dimensional

Riemannianmanifold (32) can bevisualized by isometrically
embedding it into Euclidean 3-space as a surface of revo-
lution. In cylindrical polar coordinates (Z, R, φ), the
condition

ḡijdxidxi ¼ dZ2 þ dR2 þ R2dφ2; ð34Þ

where ZðrÞ and RðrÞ are embedding functions, has to be
satisfied. If one inserts Eq. (32) and compares the coefficients
of dφ2 and dr2, the results are

RðrÞ ¼ ðr2 þ l2Þ sin ϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mr − l2 þ e2

p ð35Þ

and�
dZðrÞ
dr

�
2

¼ ðr2 − 2mr − l2 þ e2Þðr2 þ l2Þ2
ðr2 − 2mr − l2 þ e2Þ3

−
sin2ϑðr3 − 3mr2 − 3l2rþ 2e2rþml2Þ2

ðr2 − 2mr − l2 þ e2Þ3
≕HðrÞ: ð36Þ

Note that the right-hand side ofEq. (35) is real andpositive on
the domain of outer communication in the black-hole case,
while it is real and positive everywhere in the wormhole
case. So the embedding is possible if and only if the function
HðrÞ defined in (36) is non-negative. Comparison with
Eq. (28) shows that this condition is always satisfied near
a photon circle.
To show how photon circles are represented in the

embedded surface, we differentiate (35) and express the
resulting equation with the help of the effective potential
from Eq. (27) as

dRðrÞ
dr

¼ ð4rðVϑðrÞ þ 4l2bÞ − ðr2 þ l2ÞdVϑðrÞ=drÞ sin ϑ

8l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mr − l2 þ e2

p
3

:

ð37Þ

At a photon circle we have VϑðrÞ ¼ −4l2b and dVϑðrÞ=
dr ¼ 0, hence

dRðrÞ
dr

¼ 0;
d2RðrÞ
dr2

¼ −ðr2 þ l2Þðd2VϑðrÞ=dr2Þ
8l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mr − l2 þ e2

p
3
: ð38Þ

These equations demonstrate that an unstable photon circle
corresponds to a “neck” and a stable photon circle to a
“belly” of the embedded surface. The same result can also
be expressed in terms of the Gaussian curvature which,
for any surface embedded into Euclidean 3-space, can be
written as the product of two principal curvatures,

KðrÞ ¼ K1ðrÞK2ðrÞ: ð39Þ

For a surface of revolution, K1ðrÞ is always positive; in the
case at hand, a straightforward calculation gives

K1ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mr − l2 þ e2

ðr2 þ l2Þ2sin2ϑ −
ðr3 − 3mr2 − 3l2rþ 2e2rþml2Þ2

ðr2 þ l2Þ4 ;

s
ð40Þ

which is indeed real and positive on the domain where
HðrÞ > 0. Therefore, the sign of KðrÞ is determined by the
sign of K2ðrÞ. As, by definition of the principal curvatures,
K2ðrÞ is positive near a “belly” and negative near a “throat,”
we see that the Gaussian curvature is negative near an
unstable photon circle and positive near a stable photon
surface. This observation, which is in agreement with
geometric intuition, was already made by Qiao and
Li [18,19] for the optical metric of a spherically symmetric
and static spacetime. Their argument was based on the
assumption that the optical metric is complete; the above
reasoning demonstrates that this assumption is actually
not necessary.

Far away from the center, we can approximate the
Gaussian curvature and the inverse of the slope of the
embedded surface by a Taylor expansion,

KðrÞ ¼ 1

r2

�
−
2m
r

þOð2Þ
�

ð41Þ

and �
dR
dZ

�
2

¼ tan2ϑ

�
1 −

4m
rcos2ϑ

þOð2Þ
�
; ð42Þ

where OðnÞ stands for terms of nth or higher order with
respect to m=r, l=r, and e=r. This demonstrates that the
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embedded surface asymptotically approaches a (flat) cone
of opening angle ϑ in the ambient Euclidean space. If
m ¼ 0, the expansion up to the next-to-leading term reads

KðrÞ ¼ 1

r2

�
−
7l2 − 3e2

r2
þOð3Þ

�
; ð43Þ

and �
dR
dZ

�
2

¼ tan2ϑ

�
1 −

7l2 − 3e2

r2cos2ϑ
þOð3Þ

�
: ð44Þ

If both m ¼ 0 and 7l2 ¼ 3e2, we have

KðrÞ ¼ 1

r2

�
−
16l4

9r4
þOð5Þ

�
ð45Þ

and �
dR
dZ

�
2

¼ tan2ϑ

�
1 −

8l4

9r4cos2ϑ
þOð5Þ

�
: ð46Þ

We see that in all three cases the asymptotic cone is
approached from the outside if the Gaussian curvature is
negative, whereas it is approached from the inside if the
Gaussian curvature is positive. This is of course in agree-
ment with geometric intuition. Also, the asymptotic for-
mulas confirm our earlier observation that the global
geometry of the surfaces ϑ ¼ constant depends on ϑ,
although the Gaussian curvature does not.
We will further discuss the geometry of the surfaces

ϑ ¼ constant and their embedding into Euclidean 3-space
for the black-hole case (b ≤ 0) in Sec. V and for the
wormhole case (b > 0) in Sec. VI.

V. GRAVITATIONAL LENSING
OF BRILL BLACK HOLES

Throughout this section we consider a Brill spacetime
with m ≥ 0, l ≠ 0, and b ≤ 0, and we restrict ourselves to
the domain of outer communication, r > mþ ffiffiffiffiffiffi

−b
p

. We
will see that the lensing features of a Brill black hole
are qualitatively more or less the same as those of a NUT
black hole, i.e., that the charge parameter e does not
change much.

A. Photon sphere and shadow

In the black-hole case b ≤ 0 considered here, the cubic
(28) has exactly one solution rph in the domain of outer
communication, which can be written with the help of the
standard trigonometric solution formula as

rph ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
ðm2 þ l2 − 2bÞ

r

× cos

�
1

3
arccos

�
−

ffiffiffiffiffi
27

p
mbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ l2 − 2b
p

3

��
: ð47Þ

The opening angle ϑph of the corresponding cones is given
by Eq. (29). Note that the expression under the square root
in Eq. (29) is strictly positive because rph is in the domain
of outer communication.
By differentiating the potential Vϑ defined in Eq. (27)

we find that the photon sphere is unstable. The region
allowed for light rays is determined by the condition
VϑðrÞ ≤ −4l2b. This region is shown, in an r − ϑ-diagram,
in green in Fig. 1. The forbidden region is shown in red. In
this diagram, every light ray moves along a horizontal line
in the green region. The black line is the horizontal line at
the ϑ value of the photon sphere ϑph.
We see that a light ray that comes in from infinity goes to

the horizon, without a turning point, if ϑ < ϑph. However, if
ϑ > ϑph it goes through a minimum radius rm when it
reaches the boundary of the green region and then goes
back to infinity. The borderline cases between these two
classes are light rays that asymptotically spiral toward a
photon circle at r ¼ rph in the cone ϑ ¼ ϑph. In the next
subsection we will calculate the deflection angle, which is
defined for those light rays that go through a minimum
radius.
Analogously, we read from Fig. 1 that a light ray that

starts just outside the horizon goes to infinity if ϑ < ϑph,
whereas it is reflected and returns to the horizon if ϑ > ϑph.
Again, the borderline cases are light rays that asymptoti-
cally spiral toward a photon circle in the photon sphere,
now from below.
With Eq. (47) at hand we can now determine the shadow

of a Brill black hole. If we consider a stationary observer,
i.e., an observer at fixed coordinates ðrO; ϑO;φOÞ, in the
domain of outer communication, we may divide all past-
oriented light rays issuing from the observer position into

3 4 5 6 7 8 9 10
0.0

0.5

1.0

1.5

FIG. 1. The allowed region VϑðrÞ ≤ −4l2b (green) for light
rays propagation in the case of the black hole, with l ¼ 1.81m
and e ¼ 0.7m. The r-axis starts at the horizon rþ ¼ 2.45m.
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two classes: those which go to infinity and those which go
to the horizon. Again, the borderline cases between these
two classes are light rays that spiral toward the photon
sphere. If we assume that there are no light sources in the
region bounded by past-oriented light rays that spiral from
the observer position toward the photon sphere, the
observer will see a black disk in the sky whose boundary
curve is determined by the initial directions of light rays
that spiral toward the photon sphere. In the case of a Brill
black hole, the shadow is circular and its angular radius θsh
is given by specializing Eq. (24) of Grenzebach et al. [16]
to the case at hand. With the Carter constant from Eq. (31),
this results in

sin θsh ¼
ðr2ph þ l2Þ
ðr2O þ l2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2O − 2mrO − l2 þ e2

r2ph − 2mrph − l2 þ e2

s
: ð48Þ

If rO varies from rþ to infinity, θsh decreases monotonically
from π to 0; i.e., if the observer position approaches the
horizon the entire sky becomes dark and if it approaches
infinity the entire sky becomes bright. At rO ¼ rph we have
θsh ¼ π=2, i.e., half of the sky is dark. The dependence of
the shadow radius on the parameters l and b is shown, for a
fixed radius coordinate of the observer, in Fig. 2. Keep in
mind that Eq. (48) is valid only for a stationary observer.
For a nonstationary observer we have to apply the aberra-
tion formula to Eq. (48). As the relative velocity of the
observer with respect to stationary observers will not in
general be constant, the shadow will depend on time. Note,
however, that it will always be circular because the
aberration formula maps circles in the sky onto circles
in the sky.

B. Deflection angle

In order to calculate the deflection angle, we consider a
light ray in the cone ϑ ¼ constant that comes in from
infinity, goes through a minimum radius value at r ¼ rm
and then escapes back to infinity. Notice that such a
lightlike geodesic can make any number of turns around
the center. From Eq. (23), where the right-hand side has to
be zero at r ¼ rm, one finds

r2m þ l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2m − 2mrm − l2 þ e2

p ¼ 2l tan ϑ: ð49Þ

For given ϑ, this is a fourth-order equation for rm. We
have to choose the largest solution rm > rþ. Note that the
right-hand side of Eq. (24) should be negative because our
light rays come in from infinity. Accordingly, light rays that
go through a minimal radius value rm exist for all rm

FIG. 2. Shadow radius of a Brill black hole, for an observer at rO ¼ 20m, with l and b given in units with m ¼ 1.

FIG. 3. The minimal radius rm as a function of l for various
values of ϑ and e ¼ 0.5, in units with m ¼ 1.
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outside of the photon sphere, rm > rph, and the correspond-
ing values of ϑ converge toward ϑph for rm → rph. Also note
that Eq. (49) can be rewritten with the effective potential
from Eq. (27) as VϑðrmÞ ¼ −4l2b. In Fig. 3, the minimal

radius rm as a function of l is shown for a fixed value of e2

and different opening angles ϑ.
By inserting Eq. (49) into Eq. (25), the orbit equation can

be rewritten as

dr
dφ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ l2Þ2ðr2m − 2mrm − l2 þ e2Þ − ðr2m þ l2Þ2ðr2 − 2mr − l2 þ e2Þ

ðr2m þ l2Þ2 þ 4l2ðr2m − 2mrm − l2 þ e2Þ

s
: ð50Þ

Integrating this equation over the light ray from the point of its closest approach to infinity gives

Δφ ¼
Z

∞

rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2m þ l2Þ2 þ 4l2ðr2m − 2mrm − l2 þ e2Þ

p
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2 þ l2Þ2ðr2m − 2mrm − l2 þ e2Þ − ðr2m þ l2Þ2ðr2 − 2mr − l2 þ e2Þ
p : ð51Þ

For determining the deflection angle of a light ray, it is helpful to introduce a new azimuthal coordinate

φ̃ ¼ φ sin ϑ ¼ ðr2m þ l2Þφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2m þ l2Þ2 þ 4l2ðr2m − 2mrm − l2 þ e2Þ

p : ð52Þ

This angle coordinate, which is determined around the surface of the cone, can be visualized by cutting the cone open and
flattening it. On each circle r ¼ constant on the cone, φ̃ runs from 0 to 2π sin ϑ, because φ runs from 0 to 2π, see Fig. 4. As
shown in this figure, the deflection angle δ is defined as the angle under which the asymptotes of the lightlike geodesic
intersect in the cut and flattened cone ϑ ¼ constant,

δ ¼ 2Δφ̃ − π; ð53Þ

where

Δφ̃ ¼ sin ϑΔφ

¼
Z

∞

rm

ðr2m þ l2Þ drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ l2Þ2ðr2m − 2mrm − l2 þ e2Þ − ðr2m þ l2Þ2ðr2 − 2mr − l2 þ e2Þ

p : ð54Þ

For rm → rph the deflection angle δ goes to infinity,
which means that the light ray runs around the center many
times. Bozza [20] has developed an approximation formal-
ism, now known as the “strong deflection limit,” that
characterizes the behavior of the deflection angle if rm
comes close to rph. In his work he assumed that the metric
under consideration is spherically symmetric, static, and
asymptotic Minkowskian. Although the Brill metric shares
none of these three properties, Bozza’s method can be
used for evaluating the deflection angle in this case as well,
as we will demonstrate now. To that end, we substitute the
integration variable r in (54) by a new variable z, defined by

z ¼ yðrÞ − yðrmÞ
1 − yðrmÞ

; yðrÞ ¼ r2 − 2mr − l2 þ q2

r2 þ l2
: ð55Þ

Then (54) becomes
FIG. 4. The definition of the deflection angle δ. This picture is
reproduced here from Halla and Perlick [13].
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Δφ̃ ¼
Z

1

0

Rðz; rmÞfðz; rmÞdz ð56Þ

with

Rðz; rmÞ ¼
ð1 − yðrmÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2m þ l2

p
ðr2 þ l2Þy0ðrÞ ; ð57Þ

fðz; rmÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yðrmÞ − yðrÞ ðr2mþl2Þ
ðr2þl2Þ

q : ð58Þ

In (57) and (58), r has to be expressed in terms of z and rm
with the help of (55). By Taylor expanding the expression
under the square root up to second order with respect to z,
fðz; rmÞ can be approximated, for small z, by

f0ðz; rmÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αðrmÞzþ βðrmÞz2
p ; ð59Þ

where

αðrmÞ ¼ 1 − yðrmÞ
�
1þ 2rmð1 − yðrmÞÞ

ðr2m þ l2Þy0ðrmÞ
�
; ð60Þ

βðrmÞ ¼
2rmðr2m þ l2Þð1 − yðrmÞÞ2

ðr2m þ l2Þ2y0ðrmÞ
−
ð1 − yðrmÞÞ2yðrmÞ

ðr2m þ l2Þ2
�
3r2m − l2

y0ðrmÞ2
þ rmðr2m þ l2Þy00ðrmÞ

y0ðrmÞ3
�
: ð61Þ

Following Bozza’s methodology, we now decompose the integral on the right-hand side of (56) into a part

IDðrmÞ ¼
Z

1

0

Rð0; rmÞf0ðz; rmÞdz; ð62Þ

which diverges for rm → rph and a part

IRðrmÞ ¼
Z

1

0

ðRðz; rmÞfðz; rmÞ − Rð0; rmÞf0ðz; rmÞÞdz; ð63Þ

which is regular for rm → rph. The integral IDðrmÞ can be explicitly calculated and then expandedwith respect to rm about rph,

IDðrmÞ ¼
2ð1 − yðrmÞÞ log

� ffiffiffiffiffiffiffiffi
βðrmÞ
αðrmÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βðrmÞ

αðrmÞ
q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2m þ l2

p
y0ðrmÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
βðrmÞ

p

¼ −
ð1 − yðrphÞÞ logð2Þ

�
logðrm − rphÞ − log

�
βðrphÞ
α0ðrphÞ

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ph þ l2

q
y0ðrphÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
βðrphÞ

p þOðrm − rphÞ; ð64Þ

where we have used that αðrphÞ ¼ 0. The regular integral is of the form

IRðrmÞ ¼ IRðrphÞ þOðrm − rphÞ; ð65Þ
where IRðrphÞ can be numerically determined for each choice of the parametersm, l, and e. [In the Schwarzschild case, l ¼ 0
and e ¼ 0, the integral IRðrphÞ can be calculated analytically; however, already in the Reissner-Nordström case, l ¼ 0
and e ≠ 0, this is not possible, see Bozza [20].] So we see that in the Brill spacetime the deflection angle diverges
logarithmically for rm → rph,

Δφ̃ ¼ IDðrmÞ þ IRðrmÞ ¼ −
ð1 − yðrphÞÞ logð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ph þ l2

q
y0ðrphÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
βðrphÞ

p logðrm − rphÞ þ BþOðrm − rphÞ; ð66Þ

with a constant B that has to be determined numerically.
As the Brill spacetime does not satisfy the assumptions
on which Bozza’s results were based, this logarithmic
behavior could not have been anticipated.
For large rm, on the other hand, δ is small and

may be well approximated by a low-order Taylor

expansion with respect to the dimensionless para-
meters m=rm, e=rm, and l=rm. As e and l enter quadra-
tically in the metric, one has to go at least up to
the second order to have a nonvanishing con-
tribution from them. To within this order, Eq. (54)
reduces to
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Δφ̃ ¼
Z

∞

rm

�
1þ ðr2 þ rmrþ r2mÞ

rðrþ rmÞ
m
rm

þ 3ðr2 þ rmrþ r2mÞ2
2r2ðrþ rmÞ2

m2

r2m
þ ð3r2 þ r2mÞ

2r2
l2

r2m
−
e2ðr2 þ r2mÞ

2r2r2m

�
rmdr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2m

p þOð3Þ

¼ π

2
þ 2m

rm
−
�
2 −

15π

8

�
m2

r2m
þ π

8

ð7l2 − 3e2Þ
r2m

þOð3Þ; ð67Þ

where Oð3Þ stands for terms of third or higher order in
m=rm, l=rm, and e=rm. Correspondingly, the deflection
angle becomes

δ ¼ 2Δφ̃ − π

¼ 4m
rm

−
�
4 −

15π

4

�
m2

r2m
þ π

4

ð7l2 − 3e2Þ
r2m

þOð3Þ: ð68Þ

For l ¼ 0, δ reduces of course to the well-known expression
for the Reissner-Nordström case.
We now discuss the intrinsic geometry of the (coordi-

nate) cone ϑ ¼ constant with the optical metric (32). An
isometric embedding into Euclidean 3-space is possible if
the function HðrÞ defined in (36) is non-negative. We find
that, in general, this is true only on an interval rb < r < ∞
with some cutoff radius rb > rþ, which is determined by
the equation HðrÞ ¼ 0. As the denominator of HðrÞ is
nonzero on the domain of outer communication, this gives
us a sixth-order equation for r which has to be solved
numerically. rb is the greatest zero with rþ < rb < ∞. An
example is shown in Fig. 5.
We know already from Eqs. (41)–(46) that the embedded

surface approaches a flat cone in the ambient Euclidean
space for r → ∞. With our assumptions l ≠ 0 and b ≤ 0
these equations imply that the Gaussian curvature is always
negative near r ¼ ∞ and that, correspondingly, the

asymptotic cone is approached from the outside. We also
know from Eq. (38) that an unstable photon circle corre-
sponds to a neck of the embedded surface. These features
are illustrated by Fig. 5.
As a matter of fact, from Eq. (33) we can deduce that the

Gaussian curvature KðrÞ of the optical metric is negative in
the entire domainmþ ffiffiffiffiffiffi

−b
p

< r < ∞, not only near r ¼ ∞
and not only on the embeddable part. To prove this, one
may substitute r ¼ mþ ffiffiffiffiffiffi

−b
p þ ξ. Then ðr2 þ l2Þ4KðrÞ

becomes a fifth-order polynomial in ξ. All coefficients of
this polynomial are manifestly negative, so KðrÞ is indeed
negative for ξ > 0, i.e., on the domain of outer communi-
cation. The negative sign of KðrÞ implies that the geodesics
of the optical metric locally diverge. Figure 6 shows plots of
the Gaussian curvature as a function of r.
The fact that the Gaussian curvature is negative has an

important consequence if we take the Gauss-Bonnet
theorem into account. It was shown in a pioneering paper
by Gibbons and Werner [21] that in spherically symmetric
and static spacetimes that are asymptotically flat the
deflection angle can be written as an area integral over
the negative of the Gaussian curvature of the optical metric
which, in this case, lives on a (coordinate) plane. Halla and
Perlick [13] have demonstrated that the same is true in the
NUT metric, where now the optical metric lives on a
(coordinate) cone. The construction carries over, without
any modification, to the case of Brill black holes (b ≤ 0)
with e ≠ 0. So also in this case the deflection angle is an
area integral over the negative of the Gaussian curvature of
the optical metric. Therefore, our result that the Gaussian
curvature is negative implies that the deflection angle is
positive, i.e., that a light ray is deflected toward the center,
as shown in Fig. 4. This is not obvious from the line-
integral formula for the deflection angle.

VI. GRAVITATIONAL LENSING OF BRILL
WORMHOLES

In this section we consider a Brill spacetime with m ≥ 0,
l ≠ 0, and b > 0. As there are no horizons and no
singularities, the radial coordinate ranges over all of R.
In the first part, we discuss the existence of photon spheres
and their relevance for the lensing features. In the second
part, we check if the cones ϑ ¼ constant with the optical
metric (32) can be isometrically embedded in Euclidean
3-space for the entire domain −∞ < r < þ∞ and whether
the Gaussian curvature of the optical metric is always
negative.

FIG. 5. The cone ϑ ¼ ϑph ¼ 1.328 of the optical metric of the
Brill metric (32), with l ¼ 0.7m and e ¼ 0.5m, embedded as a
surface of revolution into Euclidean 3-space. The photon circle
(red) is at rph ¼ 3.251m and the boundary of the embeddable part
is at rb ¼ 2.39m.
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A. Photon spheres, shadow, and deflection angle

Recall that the radius coordinate of a photon sphere is
determined by the cubic equation (28). In the wormhole
case b > 0 considered here, the number of real solutions
depends on the discriminant

Δ ¼ ðm2 þ l2 − 2bÞ3 − 27m2b2: ð69Þ

We distinguish four cases.
Case 1: Δ > 0. Then there are three distinct real

roots. With the help of the effective potential (27)
one sees that two of them are unstable and the one between
them is stable. If we label the three roots such that rph1 <
rph2 < rph3, one can deduce from (28) and (29) that the
corresponding opening angles satisfy ϑph1 < ϑph3 < ϑph2. In
Fig. 7, rph1 corresponds to the black (wide-dashed) curve,
rph2 corresponds to the red curve, and rph3 corresponds to the
green (dashed) curve.
Case 2: Δ ¼ 0 and m > 0. Then there are three real

roots, two of which coincide. The photon sphere at the
single root is unstable, whereas the one at the double root is
marginally stable. This case is the limit of case 1 where
rph2 ¼ rph3. The marginally stable photon sphere is where
the red curve and the green (dashed) curve come together
in Fig. 7.
Case 3: Δ < 0. Then there is one real root. The other two

roots are nonreal and complex conjugate to each other. In
this case there is only one photon sphere and it is unstable.
Its radius value is given by the black (wide-dashed) curve
in Fig. 7.
Case 4: Δ ¼ 0 and m ¼ 0. Then all three roots are real

and coincide. There is one photon sphere and it is unstable.

For this case a plot analogous to Fig. 7 would show only the
black (wide-dashed) curve.
Recall that lightlike geodesics exist in the region where

the effective potential (27) satisfies VϑðrÞ ≤ −4l2b. In
analogy to Fig. 1, this region in the r − ϑ plane is marked
in green in Figs. 8–11, which correspond to cases 1–4,
respectively. Each lightlike geodesic runs on a horizontal
straight line in the green region. The forbidden region is
marked in red. With the help of these figures, one can nicely
discuss the different types of lightlike geodesics.
Figure 8 corresponds to case 1. The boundary curve

between the green and the red regions has two minima and
one maximum. The minima correspond to unstable photon
spheres, the maximum corresponds to a stable photon
sphere. The horizontal black lines mark, from bottom to
top, the opening angles ϑph1, ϑph3, and ϑph2. From this

FIG. 6. The Gaussian curvature of the optical metric for different NUT parameters, plotted in each case for mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − e2

p
< r

and e ¼ 0.5, in units with m ¼ 1.

FIG. 7. Solutions of Eq. (28) with e ¼ ð2lþmÞ=2, plotted in
units of m.
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figure we read that, in addition to light rays completely
contained in a photon sphere, the following types of light
rays exist:
Case (a): There are light rays that run fromþ∞ to −∞ or

vice versa. They lie in cones with opening angles ϑ < ϑph1.
Case (b): There are light rays that come fromþ∞ or−∞,

are reflected at the boundary of the green area, and escape
back to þ∞ or −∞. They lie in cones with opening angles
ϑph1 < ϑ and ϑ ≠ ϑph3.
Case (c): There are light rays that oscillate back and

forth between a maximum and a minimum value of their
radius coordinate. They lie in cones with opening angles
ϑph3 < ϑ < ϑph2. These light rays oscillate around the
stable photon sphere at rph2.
Case (d): The limiting cases between (a) and (b) or

between (b) and (c) are light rays which asymptotically
spiral toward a photon circle in one of the two unstable
photon spheres. They lie in cones with opening angles
ϑ ¼ ϑph1 or ϑ ¼ ϑph3, i.e., they run along the lowest or the
middle black line in Fig. 8. Therefore, there are four
different situations possible:

(i) A light ray comes from −∞ and asymptotically
approaches an unstable photon circle at rph1, or
vice versa.

(ii) A light ray comes from þ∞ and asymptotically
approaches an unstable photon circle at rph1, or
vice versa.

(iii) A light ray comes from þ∞ and asymptotically
approaches an unstable photon circle at rph3, or
vice versa.

(iv) A light ray starts asymptotically at an unstable
photon circle at rph3, goes through a minimal r

value, and then asymptotically approaches the same
photon circle from which it started. Such orbits are
called “homoclinic.”

Analogously, the behavior of light rays in cases 2–4 can
be read from Figs. 9–11. In case 2 the unstable photon
sphere at ϑph3 merges with the stable photon sphere at ϑph2
which results in a marginally stable photon sphere.
Correspondingly, case (c) and the last subcase of case
(d) are no longer possible.
In cases 3 and 4 the photon spheres at ϑph3 and ϑph2 are

gone, so only case (a), case (b), and the first two subcases of
case (d) are possible.

FIG. 8. The allowed region VϑðrÞ ≤ −4l2b (green) for light
rays in case 1, with l ¼ 0.8m and e ¼ 1.3m. r is given in
units of m.

FIG. 9. The allowed region VϑðrÞ ≤ −4l2b (green) for light
rays in case 2, with l ¼ 0.46m and e ¼ 1.17m. r is given in units
of m.

FIG. 10. The allowed region VϑðrÞ ≤ −4l2b (green) for light
rays in case 3, with l ¼ 0.26m and e ¼ 1.26m. r is given in units
of m.
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Brill wormholes cast a shadow, similar to Brill black
holes. Its angular radius θsh is again given by Eq. (48)
where now rph1 has to be read for rph in case 1 and case 2.
rO is the radius coordinate of the observer who is assumed
to be stationary anywhere in the wormhole spacetime. The
shadow is again a circular black disk in the sky if we
assume that there are light sources anywhere, but not in the
region bounded by the past-oriented light rays that spiral
from the observer position to the photon sphere at rph1 in
cases 1 and 2 or to the unique photon sphere in cases 3
and 4. In the wormhole case considered here this region

extends to r ¼ −∞. Note that here our assumption on the
position of light sources is essential. As an alternative, we
could assume that we have light sources only at big positive
radius values. This would make a difference in those cases
where several photon spheres exist. In case 1, for an
observer position in the region where light rays exist that
oscillate around the stable photon sphere, we associate
brightness with these light rays. However, one would
associate darkness with them if light sources are only at
big positive radius values. So in the latter case the shadow
would consist not only of a dark disk but, in addition, a dark
ring around this disk. For an observer in case 1 at the
boundary of the region where oscillating light rays exist,
and for an observer at the marginally stable photon sphere
in case 2, this (two-dimensional) ring in the sky would
reduce to a (one-dimensional) circle. Figure 12 shows the
dependence on the parameters l and b of the angular radius
of the shadow of a wormhole, for an observer at fixed
radius coordinate.
The deflection angle is well defined only for light rays of

case (b). All formulas for the deflection angle can be
literally taken over from the black-hole case, see Sec. V,
both for light rays that come in from r ¼ þ∞ and go back
to r ¼ þ∞ and for light rays that come in from r ¼ −∞
and go back to r ¼ −∞. We just have to keep in mind that
now r may take negative values and that for a light ray
coming from r ¼ −∞ and going back to r ¼ −∞ there is
no minimum radius rm, but rather a maximum radius rm.
With these adjustments, all formulas from Sec. V remain
valid. In particular, the deflection angle is still given by an
integral over the negative of the Gaussian curvature of the
optical metric. We will see in the next subsection that in the
wormhole case this Gaussian curvature may be positive, so

FIG. 12. Shadow radius of a Brill wormhole, for an observer at rO ¼ 20m, with l and b given in units with m ¼ 1.

FIG. 11. The allowed region VϑðrÞ ≤ −4l2b (green) for light
rays in case 4, where m ¼ 0, l ¼ 0.435r0, and e ¼ 0.611r0. r0 is
a constant that has the dimension of a length and r is given in
units of r0.
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the deflection angle may be negative, which means that the
light ray is repelled from the center. In such a situation the
angle Δφ̃ in Fig. 4 is smaller than π=2. We will also discuss
the related embedding diagrams in the next subsection.

B. Embedding diagrams

In analogy to what we have done for the black-hole case
in Sec. V, we will now isometrically embed the coordinate
cone ϑ ¼ constant into Euclidean 3-space for the wormhole
case. From Eq. (36) we read that this is possible provided
that the function HðrÞ is non-negative. In Fig. 13, we plot
HðrÞ for different values of l, e, and ϑ. This exemplifies
that the condition of embeddability is not in general
satisfied on the entire domain −∞ < r < ∞.
In Figs. 14 and 15 we show two examples where the

embeddability condition is satisfied on this entire domain.

In both pictures we show a cone ϑ ¼ constant that contains
an unstable photon circle. As is exemplified in Fig. 14, in
contrast to black holes (see Fig. 5) for Brill wormholes, not
only local minima (necks) but also local maxima (bellies)
are possible. In the neighborhood of a local maximum the
Gaussian curvature is positive, which implies that on this
neighborhood light rays locally converge. This is in agree-
ment with our earlier observation that there may be stable
photon spheres in a Brill wormhole spacetime. As a matter
of fact, the wormhole spacetime of Fig. 14 is of case 1, so
there is a second unstable photon sphere and also a stable
photon sphere. However, their corresponding opening
angles are different from the one to which the shown
embedding diagram applies. In Fig. 14 the Gaussian
curvature is positive not only near the belly but also near
r ¼ −∞, which implies that the deflection angle is negative
for light rays that come in from r ¼ −∞ and go back to
r ¼ −∞, i.e., that such light rays are repelled from the
center. By contrast, in Fig. 15 we have chosen an example
where the Gaussian curvature is everywhere negative. As in
this example m ¼ 0, the spacetime geometry is symmetric
with respect to reflections r ↦ −r. There is only one
photon sphere, which is situated at the neck at r ¼ 0 and

FIG. 13. (a) H is positive. (b) The positivity of H is violated for
larger ϑ. The plot is in units with m ¼ 1.

FIG. 14. The cone ϑ ¼ ϑph1 ¼ 0.563 of the optical metric (32)
with l ¼ 2.3m and e ¼ 2.6m, embedded into Euclidean 3-space
as a surface of revolution and with a photon circle (red)
at r ¼ rph1 ¼ −1.396m.
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unstable. So this example is more similar to the usual
wormhole geometry than the one shown in Fig. 14.
We have already mentioned that the Gaussian curvature

KðrÞ, given by Eq. (33), is not necessarily negative
everywhere in the wormhole case. We know already from
Eqs. (41)–(46) that the geometry approaches that of a (flat)
cone for r → �∞ and that the asymptotic cone is
approached from the outside if KðrÞ is negative and from
the inside ifKðrÞ is positive near�∞. Ifm ≠ 0, by Eq. (41)
KðrÞ is negative near r ¼ þ∞ and positive near r ¼ −∞. If
m ¼ 0 and 3e2 ≠ 7l2 we read from Eq. (43) that KðrÞ is
positive near r ¼ þ∞ and r ¼ −∞ if 3e2 > 7l2 and
negative near r ¼ þ∞ and r ¼ −∞ if 3e2 < 7l2. Both
cases are compatible with the wormhole condition b > 0.

Finally, if m ¼ 0 and 3e2 ¼ 7l2, have to use Eq. (45),
which tells us that KðrÞ is negative near r ¼ þ∞ and also
near r ¼ −∞. Recall that, by the Gauss-Bonnet theorem,
KðrÞ being positive on a region near r ¼ �∞ means that
the deflection angle δ is negative for light rays that stay
within this region, i.e., that such a light ray is repelled from
the center.
In Fig. 16 we plot the Gaussian curvature represented by

Eq. (33). This figure exemplifies the observation that KðrÞ
can be positivewithin certain intervals of r. This can also be
noticed in the embedding diagram.

VII. CONCLUDING REMARKS

In this paper we have discussed the lensing features of
Brill spacetimes. In particular, we have worked out the
relevant formulas for the photon spheres, shadow, and
deflection angle. We have also shown that every light ray is
contained in a (coordinate) cone and that, on this cone, it is
a geodesic of a Riemannian optical metric. This allows one
to determine the sign of the deflection angle with the help
of the Gauss-Bonnet theorem and to visualize several
lensing features in terms of embedding diagrams.
Thereby one has to distinguish two types of Brill space-
times that are physically quite different: If the parameter we
called b is smaller than or equal to 0, the spacetime
describes a black hole; however, if this parameter is bigger
than 0 it describes a wormhole. We have seen that in the
black-hole case the lensing features are qualitatively quite
similar to those of a NUT black hole, which had been
treated earlier by Zimmerman and Shahir [14] and by Halla
and Perlick [13]; i.e., the charge parameter changes these
features only quantitatively. The wormhole case, however,
is more complicated, in particular because there may be
several photon spheres and the Gaussian curvature of the
optical metric need not be negative everywhere. It is true
that there is no observational evidence for the existence of
Brill wormholes (or Brill black holes with nonzero NUT or
charge parameter) in nature. However, their existence
cannot be ruled out and several people find them interesting

FIG. 15. The cone ϑ ¼ ϑph ¼ 0.467 of the optical metric (32)
withm ¼ 0, l ¼ 1.3r0, and e ¼ 1.83r0, embedded into Euclidean
3-space as a surface of revolution and with a photon circle (red)
at r ¼ rph ¼ 0. r0 is a positive constant with the dimension
of a length.

FIG. 16. Plot of the Gaussian curvature K from Eq. (33) as function of r on the entire domain −∞ < r < þ∞ with different values
of m, e, and l.
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because within Einstein’s general relativity theory they are
the only known traversable wormholes without exotic
matter. For this reason, we believe that it was worthwhile
to derive their lensing features in detail.
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