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All energy is gravitational energy. That is the consequence of the equivalence principle, according to
which gravity is the universal interaction. The physical charges of this interaction have remained
undisclosed, but the advent of the geometrical trinity opened a new approach to this foundational problem.
Here it is shown to provide a background-independent unification of the previous, noncovariant approaches
of Bergmann-Thomson, Cooperstock, Einstein, von Freud, Landau-Lifshitz, Papapetrou, and Weinberg.
First, the Noether currents are derived for a generic Palatini theory of gravity coupled with generic matter
fields, and then the canonical, i.e., the unique charges, are robustly derived and analyzed, particularly in the
metric teleparallel and the symmetric teleparallel versions of general Relativity. These results, and their
application to black holes and gravitational waves, are new.
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I. INTRODUCTION

As it is well-known, there are three different but
equivalent “pictures” of quantum mechanics. Each of these
formulations of quantum mechanics, à la Schrödinger,
à la Heisenberg, and à la Dirac, can provide the most
convenient toolbox depending on the problem. On the other
hand, at the foundational rather than the technical level,
contemplating the different interpretations of quantum
mechanics, such as the Copenhagen or the many world
interpretations, can give rise to new ideas about how to
approach the remaining fundamental problems of physics.
Indeed, some approaches have led to extensions of the
standard theory of quantum mechanics, in particular in
regard to its relation with gravity that is still an unresolved
issue. In the ideal case, such alternative extensions give rise
to distinct predictions that predispose them to experimental
falsification (e.g., [1–3]).
Analogously, there are three different but equivalent

pictures of general relativity (GR). The geometrical trinity
of gravity [4] is a framework that presents a variety of

alternatives at each of the three levels: technical formulation,
foundational interpretation, and potential physical extension
that could eventually describe gravity according to the
principles of quantum mechanics. Besides the standard
description of GR in terms of the metrical spacetime
curvature, it is possible to consider the equivalent dynamics
as the workings of a relativistic force field (torsion) or, in the
most minimal case, to understand gravity solely through its
equivalence with inertia, in terms of a gauge field (non-
metricity). The torsion picture and the nonmetricity picture,
called metric teleparallelism and symmetric teleparallelism,
respectively, can also be combined and interpolated in a
formulation of GR with a flat but otherwise generic affine
connection [5]. As far as the dynamics is concerned, these
alternatives are equivalent. However, physically relevant
differences may arise when considering the Noether cur-
rents in gravitating systems (nota bene: that is, in any
physical systems) because the currents are sensitive to the
boundary terms in the action. The action is a central tool in
computations of the Noether currents corresponding to the
symmetries of the theory, and in particular it is used to
compute conserved charges with direct physical relevance,
such as the energy and the entropy [6,7]. Also, the action
principle is of paramount importance for the quantum
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theory, both in canonical and in path integral approaches.
From this perspective, the geometrical trinity could be
considered to represent three distinct theories of gravity.
We recall that Einstein’s theory of gravity already was a

first order theory [8], though this subtlety is often neglected,
as the second order formulation due to Hilbert has been
adopted as the standard action principle for GR. The
problem with the Hilbert action is that it is not well-defined
in some situations, due to the second order derivatives of the
metric, and then one is forced to modify the theory by
adding different boundary terms for different purposes, such
as the Gibbons-Hawking-York term [9,10]. It is perhaps due
to this incompleteness of Hilbert’s action that it is a rather
common misconception that the superpotentials appearing
in the Noether second theorem are inherently ambiguous.
This is not the case, as was recently clarified also in
Ref. [11]. We maintain that in a well-defined theory, the
currents should be no more ambiguous than the field
equations in a sense that will become clear in the body
of this work.1 In his original articles, Einstein proposed a
definition of gravitational energy momentum [8] that was
met with criticism due to its lack of covariance [13].
However, Einstein’s so-called “pseudotensor” is, at least
according to some convention, a well-defined geometrical
object, to wit a section of the first jet bundle, and more
importantly, its behavior under coordinate transformations
properly describes the physical property of the gravitational
field. Because of the equivalence principle, the energy
momentum vanishes for an observer whose acceleration
exactly cancels gravitation, and, for example, a rotating
observer sees gravitational energy momentum where a
static observer does not. Yet, on the other hand, there is also
a point in requiring the coordinate independence of physical
quantities, and in this sense both Einstein and his critics
were right. Einstein’s action did have a problem, its
“pseudoinvariance,” i.e., invariance only up to a boundary
term. It is the consequence of this that the energy-momentum
pseudotensor, though its form is unique, turns out to give
coordinate-dependent results for the physical charges.
A canonical reconciliation exists, though it was intro-

duced only recently [14]. From a modern perspective, the
choice of coordinates, the importance of which Einstein
emphasized in his noncovariant formulation, translates into
the fixing of the gauge in the new version of GR. A
covariant definition of gravitational energy-momentum
requires the introduction of some “background structure,”
with respect to which the theory can be “covariantized,”
such as an auxiliary reference metric [15,16] or an auxiliary
reference connection [17,18], which for specific solutions
are of course asymptotically naturally provided by the
sufficiently symmetric boundary conditions for the dynami-
cal fields [19,20]. The new resolution is based instead on a

reformulation of gravity as a translation gauge theory [14].
The required extra field is provided by the translation gauge
potential that is a fundamental ingredient of the theory on
par with the metric. The resolution is canonical due to the
flatness of the connection2: the gauge field generated purely
by a coordinate transformation is obviously the minimal
structure required to restore coordinate invariance.3 The
resulting theory was called the coincident GR since in the
unitary gauge it coincides with Einstein’s original formu-
lation [14,23]. The principle of relativity posits inertial
frames, wherein the physical laws assume their standard,
coordinate-independent form. We proposed the criterion that
in an inertial frame, the divergence of the gravitational field
is the material current [24].4 Thus, the inertial frame might
be considered as the realization of the relativity principle that
perhaps addresses the long-standing criticisms of GR, first
emphatically voiced by Kretschmann [31].
This motivates us to study the Noether currents in the

three first order formulations of GR of the geometrical
trinity. While they are often investigated in the standard
(special orthogonal) geometrical setting [32–34] (see, in
particular, the analysis by Lompay and Petrov on covariant
differential identities and conservation laws in metric-
torsion theories of gravitation [35]), the task of this article
is to undertake the first robust computations of the Noether
currents focusing on the two quite unexplored, teleparallel
corners of the geometrical trinity. Therein we will indeed
find genuinely new insights to energy, momentum, and
entropy associated with matter and with spacetime itself.
For the same motivations as in Ref. [36], in this article we
will use exclusively the tensor language (Palatini formal-
ism, introduced in Sec. II). Noether charges in the geo-
metrical trinity have already been derived in the exterior
algebra parlance (metric-affine formalism) [37]. Also,
though we derive the generic form of the currents in
Sec. III, in this article we will restrict the focus on theories
(dynamically) equivalent to GR.5 Diffeomorphism Noether

1In fact, as we shall find, in canonical gauge theories these two
aspects of a theory are equivalent [12].

2It has later been proposed that the flatness a.k.a. teleparallel-
ism could be the macroscopic consequence of the Planck mass
mP being the mass of the gravitational connection [21]. In this
article we do not consider such a possible extension beyond
the Planck scale, but restrict to the regime where the theory is
dynamically equivalent to GR.

3In other words, it is the (minimal) Stückelbergization of the
coordinate invariance [22].

4This agrees with Cooperstock’s hypothesis [25] that physical
results are obtained (in the coordinate-dependent language)
by imposing the vanishing of the Einstein pseudotensor. That
the local energy momentum should be solely due to matter is
consistent with many alternative proposals to define gravitational
energy momentum, beginning with the most immediate responses
to Einstein from Levi-Civita, Klein, and Lorentz, etc. [26], and
continuing up to various current proposals, e.g., [27–30].

5Various aspects of modifications of these theories have been
considered in the recent literature [38–47], and the energy and the
entropy might be further interesting aspects to consider in the
future [48–52].
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charges of GR in its curved and in its teleparallel pictures
will be investigated in Secs. IV and V, respectively. The
interpretation, and relation to previous literature, is dis-
cussed in Sec. VI. The result is applied to black hole
spacetime in Sec. VII and to gravitational waves in
Sec. VIII. In Sec. IX we consider different prescriptions
of entropy, and their relation to Wald’s derivation.
Section X concludes the article.

II. FORMALISM

In this section, which can readily be skipped by experts,
we introduce notation for the tensor formalism, a.k.a. the
Palatini formalism of gravity. We intend to be as systematic
in the notation as possible (for example, since Tα

μν is the
torsion tensor, let Tα be its trace and tαμν be its conjugate
tensor, and thenTα

μν,Tα, and tαμν are the respective tensor
densities, instead of using a different letter for each of these
quantities). Signaturewise, we follow the mostly positive
convention.

A. Connection

The covariant derivative ∇μ acts on tensor indices as
follows:

∇μVα ¼ Vα
;μ þ Γα

μλVλ; ð1aÞ

∇μVα ¼ Vα;μ − Γλ
μαVλ: ð1bÞ

The action of the commutator then defines the two tensorial
properties of the connection,

½∇μ;∇ν�Vα ¼ Rα
βμνVβ − Tβ

μν∇βVα; ð2aÞ

½∇μ;∇ν�Vα ¼ −Rβ
αμνVβ − Tβ

μν∇βVα; ð2bÞ

the curvature, and the torsion,

Rα
βμν ¼ 2∂½μΓα

ν�β þ 2Γα½μjλjΓλ
ν�β; ð3aÞ

Tα
μν ¼ 2Γα½μν�: ð3bÞ

By construction, these tensors obey the Bianchi identities

Rα
βðμνÞ ¼ 0; ð4aÞ

Rμ½αβγ� −∇½αTμ
βγ� þ Tν½αβTμ

γ�ν ¼ 0; ð4bÞ

∇½αRμjνjβγ� − Tλ½αβRμjνjγ�λ ¼ 0 ð4cÞ

that follow from (2). We can further define the contractions
Rμν ¼ Rα

μαν ¼ −Rα
μαν called the curvature trace, Fμν ¼

Rα
αμν called the homothetic curvature, and Tμ ¼ Tα

μα ¼
−Tα

αμ called the torsion trace. All these quantities require
only the connection Γα

μν for their definition.

B. Metric

If the manifold is endowed also with a metric tensor gμν
(i.e., the manifold is Riemannian), we can introduce its
Christoffel symbols,

Γ
∘ α

μν ¼ −
1

2
gαβgμν;β þ gαβgβðμ;νÞ: ð5Þ

This is the unique connection ∇∘ α that has no torsion and

satisfies ∇∘ αgμν ¼ 0. Its curvature R
∘ α

μβν is called the

Riemann tensor, the trace R
∘
μν the Ricci tensor, and the

contraction R
∘ ¼ gμνR

∘
μν the Ricci scalar. The covariant

derivative Qαμν ¼ ∇αgμν ¼ −gμρgνσ∇αgρσ does not vanish
in general. This tensor has two independent traces that we
denote as Qα ¼ Qαμ

μ and Q̃μ ¼ Qα
μα. The connection

coefficients of ∇α can be decomposed with respect to
the metric gμν as

Γα
μν ¼ Γ

∘ α
μν þ Kα

μν þ Lα
μν; ð6Þ

where the two new tensors are derived from the torsion and
from the metric incompatibility, respectively, as

Kα
μν ¼

1

2
Tα

μν − TðμνÞα; ð7aÞ

Lα
μν ¼

1

2
Qα

μν −QðμνÞα: ð7bÞ

These have the traces

Kα
μα ¼ 0; ð8aÞ

Kα
αμ ¼ Kμ

α
α ¼ Tμ; ð8bÞ

Lα
μα ¼ Lα

αμ ¼ −
1

2
Qμ; ð8cÞ

Lμ
α
α ¼

1

2
Qμ − Q̃μ: ð8dÞ

The Bianchi identities (4) are then supplemented with the
identity for the nonmetric curvature,

∇½μQν�αβ ¼ RðαβÞ
μν þ

1

2
Tλ

μνQλ
αβ: ð9Þ

It follows that

∇½μQν� ¼ Fμν þ
1

2
Tλ

μνQλ; ð10aÞ

∇½μQ̃ν� ¼ Q½μν�αQ̃α þ 1

2
ðR½μν� − R̃½μν�Þ −

1

2
Tαβ½μQαβ

ν�;

ð10bÞ
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where R̃μ
ν ¼ gαβRμ

ανβ. This tensor, as well as the scalars
R ¼ gμνRμν and R̃ ¼ gμνR̃μν, can be defined only with
respect to a given metric. (We will see that in symmetric
teleparallelism, the Weyl 1-form Qμ is pure gauge and can
always be eliminated, even globally. In the curvature
formulation, the same is true due to the projective invari-
ance of the theory to be discussed in Sec. IVA.)

C. Lagrangian

The Lagrangian of the theory is assumed to depend only
upon the two fields and their first derivatives,

LG ¼ LGðgμν; gμν;λ;Γα
μν;Γα

μν;λÞ: ð11aÞ

If it is also assumed that the Lagrangian is a scalar, it
follows that it can always be written is terms of the tensors
defined above, as

LG ¼ LGðgμν; Qλ
μν; Tα

μν; Rα
μλνÞ: ð11bÞ

We may then define the conjugate tensors

qαμν ¼
∂LG

∂Qα
μν ; ð12aÞ

tαμν ¼
∂LG

∂Tα
μν
; ð12bÞ

rαβμν ¼
∂LG

∂Rα
βμν

: ð12cÞ

For our purposes, it is important to include matter fields in
the study. Thus, we also introduce arbitrary source fields ψ
described by the Lagrangian LM,

LM ¼ LMðgμν;ψ ;∇αψÞ: ð13Þ

The dependence of LM upon the gravitational variables
defines the energy-momentum tensor and the hypermo-
mentum tensor of matter as

Tμν ¼ LMgμν −
2∂LM

∂gμν
; ð14aÞ

Zα
μν ¼ −

∂LM

∂Γα
μν
; ð14bÞ

respectively. All physical fields contribute to energy
momentum. Lagrangian formulation of fluids with hyper-
momentum has been developed (see. e.g., [53]). To our
knowledge, there are two possible fundamental sources
of hypermomentum, spinor fields in Einstein-Cartan-
Kibble and related theories [54,55] and gauge fields in
the iso-Khronon first order formulation of Yang-Mills
theory [56]. The total Lagrangian is L ¼ LG þ LM, and

the action integral of the coupled gravity-matter system is
given as

I ¼
Z

dnx
ffiffiffiffiffiffi
−g

p
L ¼

Z
dnxL: ð15Þ

We have denoted the scalar density L ¼ ffiffiffiffiffiffi−gp
L, and to be

systematic, we will adopt this same notation for any tensor
density; thus in the following we might conveniently refer
to Tα

μν ¼ ffiffiffiffiffiffi−gp
Tα

μν, tαμν ¼ ffiffiffiffiffiffi−gp
tαμν, etc. For generality,

we can also work in n dimensions since relaxing n ¼ 4 is
mostly inconsequential.
The Euler-Lagrange variation of I with respect to the

metric and the connection imply the two sets of field
equations, respectively, Eμν ¼ 0 and Eα

μν ¼ 0, where the
two variations are

Eμν ¼ −
1

2
Tμν þ ð∇α þ TαÞqαμν þ

∂LG

∂gμν
; ð16aÞ

1

2
Eα

μν ¼ −
1

2
Zα

μν þ ð∇β þ TβÞrανμβ þ
1

2
Tμ

βγrανβγ

þ tαμν − qμνα; ð16bÞ

or, in terms of tensors instead of tensor densities,

Eμν ¼ −
1

2
Tμν þ ∇̂αqαμν þ

∂LG

∂gμν
−
1

2
LGgμν; ð17aÞ

1

2
Eα

μν ¼ −
1

2
Zα

μν þ ∇̂βrανμβ þ
1

2
Tμ

βγrανβγ þ tαμν − qμνα;

ð17bÞ

where we defined

∇̂μ ¼ ∇μ þ Tμ þ
1

2
Qα: ð18Þ

The usefulness of this covariant derivative symbol stems
from partial integrations, since we have, for an arbitrary
vector Xμ,

∂μXμ ¼ ffiffiffiffiffiffi
−g

p ∇∘ μXμ ¼ ffiffiffiffiffiffi
−g

p ∇̂μXμ: ð19aÞ

In case of an antisymmetric tensor X½μν�,

∂μX½μν� ¼ ffiffiffiffiffiffi
−g

p ∇∘ μX½μν�

¼ ffiffiffiffiffiffi
−g

p �
∇̂μX½μν� −

1

2
Tν

αβXαβ

�

¼ ∇μX½μν� −
1

2
Tν

αβX½αβ� þ TμX½μν�: ð19bÞ

The equations of motion EM ¼ 0 for the matter fields ψ are
given by the Euler-Lagrange variation
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EM ¼ ∂LM

∂ψ
− ∇̂μ

∂LM

∂∇μψ
: ð20Þ

In the case that ψ has any gauge charge, it is important to
note that we consider∇μ to be the total covariant derivative.
Only then is EM, as defined above, fully covariant. In the
following we will need to look at the Euler-Lagrange
variations more carefully and, in particular, keep track of
the total derivatives.

III. CURRENT

Now we are ready to take a step from notational to the
more physical aspects of the Palatini-formulated theories.
The transformation of interest is the most general coor-
dinate transformation or, equivalently, the active diffeo-
morphisms. We review it in Sec. III A for the gravitational
fields, i.e., the metric and the connection. We also discuss
the properly implemented diffeomorphism of the matter
fields, which is a nontrivial, and perhaps yet partly a
nonresolved issue when gauge symmetries are involved. In
Sec. III B we review the Bianchi identities, and finally in
Sec. III C the Noether currents from a generic symmetry
transformation. We emphasize the fundamentally quasilo-
cal definition of physical charges. The local formula is a
pointwise idealization that is not always applicable.

A. Diffeomorphism

The variation of the fields under an infinitesimal diffeo-
morphism

xα → xα þ vα ð21aÞ

is given by (minus) their Lie derivative along the vector vα.
The variation of the metric is therefore

δvgμν ¼ −gμν;αvα − 2gαðμvα;νÞ

¼ −2∇∘ ðμvνÞ
¼ −2gαðμ∇νÞvα þ ð2TðμνÞα −QαμνÞvα
¼ −2∇ðμvνÞ þ 2ðTðμνÞα − LαμνÞvα: ð21bÞ

In the first line we wrote the variation in terms of the partial
derivative ∂α, in the second line in terms of the metric

connection ∇∘ α, and in the third line in terms of the
independent connection ∇α. We will write the correspond-
ing three expressions for the variation of the connection in
the same order,

δvΓα
μν ¼ −vα;μν þ Γα

μνvλ;λ − Γα
μλvλ;ν − Γα

λνvλ;μ − Γα
μν;λvλ

¼ −∇∘ μ∇
∘
νvα − Tα

λν∇
∘
μvλ −Nα

μλ∇
∘
νvλ þNλ

μν∇
∘
λvα

− ð∇∘ μN̄α
νλ þNα

μβN̄β
νλ −Nβ

μνN̄α
βλÞvλ

¼ −∇μ∇νvα −∇μðTα
βνvβÞ−Rα

νβμvβ: ð21cÞ

In the second equality above we used the shorthand

Nα
μν ¼ Kα

μν þ Lα
μν; ð22aÞ

N̄α
μν ¼ Nα

μν − Tα
μν: ð22bÞ

We need the variation of the fields ψ ,

δvψ ¼ −vα∂αψ þ � � � : ð23Þ
Only in the case that the ψ is a scalar can the ellipses above
be neglected. However, we will need to take into account
generic matter and gauge fields, since our purpose is to
elucidate the universality of gravitation: all energy is
gravitational energy, in the sense that it should be computed
from the gravitational fields gμν, Γα

μν and not from the
source fields ψ . This will become clear in the course of the
proceedings.
Thus, in the following, the symbol ψ can represent

an arbitrary multiplet or whatever indexed collection
ψ ¼ fψAgA¼1;2;… of fields though we omit the indices to
ease notation. Then it is important to take into account the
gauge symmetries of the field theory under consideration,
be it for matter fields or for gauge fields or both. As it is
well-known, if one uses the so-called “canonical” trans-
lation, the resulting Noether current would not in general
coincide with the Hilbert energy-momentum tensor (14) but
instead one obtains a so-called “canonical Noether tensor.”
In our view, it would be more appropriate to call the
resulting current the pseudocanonical pseudotensor, since
neither is it obtained gauge covariantly with respect to the
internal symmetry nor is it a proper tensor with respect to
coordinate transformations.
Instead, let us illustrate the more gauge-theoretical

approach with the example of the electromagnetic field
Aμ. We then take vα to be electromagnetically charged, and
we also take ∇μ to be electromagnetically charged. To
begin, note that since Aμ is a one-form, its canonical
translation is given as

δ̃vAμ ¼ −ðLvAÞμ ¼ −vαAμ;α − vα;μAα: ð24Þ

In the case of the electromagnetic Lagrangian,
LM ¼ −AμνAμν=4, where Aμν ¼ 2A½ν;μ�, Eq. (24) leads to
the pseudocanonical pseudotensor,

T̃μ
ν ¼ AμαAα;ν −

1

4
δμνAαβAαβ; ð25Þ
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when restricting to constant translations, vα;μ ¼ 0. We
should rather restrict to covariantly constant translations
as follows. First, we consider the gauge-covariant diffeo-
morphism,

δvAμ ¼ −vα∇αAμ − ð∇μvαÞAα: ð26Þ

Yet, this transformation is ambiguous, since we assumed
that vα is electrically charged but have not specified the
charges. We can fix the charge of each of the four
components of vα by requiring that the spacetime scalar
vαAα is covariantly constant, i.e., ∇μðvαAαÞ ¼ 0. This
allows us to rewrite (26) as

δvAμ ¼ −2vα∇½αAμ� ¼ −vαAαμ; ð27Þ

and we obtain

Tμ
ν ¼ AμαAνα −

1

4
δμνAαβAαβ: ð28Þ

This is the Noether current that is equivalent to the Hilbert
energy-momentum tensor (14) computed from the electro-
magnetic Lagrangian LM. In our view, this should be called
the canonical (and thus, the unique) electromagnetic
energy-momentum current. The derivation can immedi-
ately be generalized to non-Abelian gauge fields.
The difference between the currents (25) and (28) is a

term that vanishes on-shell or, more generally, a super-
potential term. It has been argued, originally by Kijowski,
that both currents can correspond to a Hamiltonian for the
electromagnetic field, depending upon what boundary
conditions are appropriate to choose in a specific physical
situation [57]. However, taking into account gravity, it is
always the energy momentum (28) that sources the gravi-
tational field, and it is in this sense we argue for a uniquely
defined current. Boundary conditions applicable to a
specific physical situation may allow one to reduce the
gauge-invariant current into an expression such as (25).
As another caveat, strictly speaking the unified treatment

of all matter, gauge, and gravitational fields using the
universal covariant ∇μ works according to the minimal
coupling principle for the symmetric, but not for the metric
teleparallel geometry. The complete clarification of the
minimal coupling in generic metric-affine geometry has
been carried out [58], but the gauge-covariant and proper
canonical Noether currents of the matter sector would
deserve a separate study.6 In this article we shall keep
track of the possible difference between the proper canoni-
cal energy-momentum currents and the pseudocanonical

pseudotensors by writing down the symbol ΔTμ
ν for this

difference, though in our unified gauge theory framework
it should follow consistently from first principles
that ΔTμ

ν ¼ 0.

B. Bianchi identity

The variation of the gravitational action with respect to
the inverse metric, δgμν ¼ −gμαgναδgαβ, is

δgI ¼
Z

dnx½−∇αðqαμνδgμνÞ þ ðEμν − TαqαμνÞδgμν�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p h
−∇∘ αðqαμνδgμνÞ þ Eμνδgμν

i
: ð29aÞ

In the first equality the expression Eμν vanishes on-shell
according to (16a), and in the second equality we have
on-shell Eμν ¼ 0 according to (17a). In the same way, we
obtain for the variation with respect to the connection

δΓI ¼
Z

dnx
ffiffiffiffiffiffi
−g

p h
∇∘ βð2rανβμδΓα

μνÞ þ Eα
μνδΓα

μν

i
: ð29bÞ

Now consider the case of a diffeomorphism (21). Then
(29a) becomes

δgI ¼ 2

Z
dnx

ffiffiffiffiffiffi
−g

p h
∇∘ αð−qαμν∇

∘ μ
vν þEα

νvνÞ þ∇∘ μEμ
νvμ

i
:

ð30aÞ

The variation (29b) of the connection under the diffeo-
morphism (21c) results in

δΓI ¼
Z

dnx
ffiffiffiffiffiffi
−g

p h
∇∘ βð2rανβμδΓα

μν − Eα
βνTα

μνvμ

− Eα
βν∇νvα þ ∇̂μEα

μβvαÞ − ∇̂ν∇̂μEα
μνvα

þ Tβ
αν∇̂μEβ

μνvα þ Rβ
νμαEβ

μνvα
i
: ð30bÞ

Since we have included also matter sources ψ , we have to
yet take into account the variation due to the matter fields,

δψI ¼
Z

dnx
�
EMδvψ þ ∂μ

�
∂LM

∂∇μψ
δvψ

��
: ð30cÞ

Finally, we note that since we restrict to diffeomorphism
invariant theories and, thus, L must be a scalar, the total
variation of the action reduces to the simple expression

δvI ¼ −
Z

dnxLvð
ffiffiffiffiffiffi
−g

p
LÞ ¼ −

Z
dnx

ffiffiffiffiffiffi
−g

p ∇∘ μðLvμÞ:

ð30dÞ

Summing up the results (30), we arrive at the alternative
expression for the total variation of the action,

6For related discussions on Lie derivatives in gauge theories,
see, e.g., [59–63]. Concerning the gauge formulation of gravity,
we have checked that both the canonical and the covariant Lie
derivatives [60,64] [see Eq. (8) of Ref. [37] or Sec. 2.5.2 of
Ref. [65] ] consistently lead to (21) via the tetrad postulate.
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δvI ¼
Z

dnx
h
Eμvμ þ EMδvψ þ ∂μðJμ − LvμÞ

i
; ð31Þ

where

Eμ ¼ −2∇∘ νEν
μ − ∇̂β∇̂αEμ

αβ þ Tβ
μγ∇̂αEβ

αγ þ Rα
νβμEα

βν

ð32aÞ
and

Jμ ¼ −2qμαβ∇
∘ α
vβ þ 2Eμ

νvν

− 2rανμβ½∇β∇νvα þ∇βðTα
γνvγÞ þ Rα

νγβvγ�
− Eα

μν∇νvα þ ∇̂νEα
νμvα þ Tα

νβEα
μνvβ

þ Lvμ þ ∂LM

∂∇μψ
δvψ : ð32bÞ

Assuming the vanishing of the total derivative term at the
boundary ∂, i.e., ðJμ − LvμÞj

∂
¼ 0, we obtain the Noether

identity

Eμ ¼ EMδμψ : ð33Þ

In vacuum, or when the matter fields are on-shell, EM ¼ 0,
this reduces to what is known as the generalized Bianchi
identity, Eμ ¼ 0 [66,67]. This guarantees the conservation
of the current density Jμ,

∇∘ μJμ ¼ 0; i:e:; ∂μJμ ¼ 0: ð34Þ

This is the Noether current and its conservation is simply
the consequence of the diffeomorphism invariance of I.
The expression (32b) can be rewritten in the standard

form that makes it explicit that the Noether currents from
the second theorem (for gauge symmetries, such as the
diffeomorphism symmetry) vanish on-shell if the surface
terms are dropped away. The standard form of the diffeo-
morphism Noether current in metric-affine gravity has
been derived previously, both in the exterior calculus
formulation in the language of differential forms [37]
and in the Palatini formulation in the tensor language of
linear algebra [68]. The result is

Jμ ¼ −vνð2Eμ
ν −∇αEν

μα − Tβ
ναEβ

μαÞ

− ð∇αvνÞEν
μα −

∂LM

∂∇μψ
δvψ þ∇∘ νJνμ; ð35aÞ

where the surface term is

Jμν ¼ 2vαtαμν þ 2ð∇βvα þ Tα
λβvλÞrαβμν: ð35bÞ

The antisymmetry Jμν ¼ J½μν� renders manifest on-shell

conservation of the current,∇∘ μJμ≈∇∘ μ∇
∘
νJμν ¼ 2R

∘
μνJμν¼ 0.

C. Noether charges

Considering some arbitrary transformation δ, the canoni-
cal Noether procedure leads, in the case of the invariance
δI ¼ 0 of the action I ¼ IG þ IM, to the off-shell condition

0 ¼ Eμνδgμν þ Eα
μνδΓα

μν þ EMδψ

þ∇∘ α

�
−qαμνδgμν þ 2rβναμδΓβ

μν þ Lδxα þ ∂LM

∂∇αψ
δψ

�
:

ð36Þ

On-shell, the first line vanishes identically, and the expres-
sion in parentheses is the canonical conserved Noether
current. In the case of diffeomorphisms δ ¼ δv, we obtain
the on-shell conserved current from (32b) simply by
setting Eμ

ν ¼ Eα
μν ¼ 0.

There exists, at least locally,7 an antisymmetric second

rank tensor Jμν ¼ J½μν� such that Jμ ¼ ∇∘ νJμν, and then the
Noether charge C in a volume V can be expressed as

C ¼
Z
V
dn−1σμJμ ¼ 1

2

I
∂V

dn−2σμνJμν: ð37aÞ

Here dn−1σμ is understood as the infinitesimal element of
the (n − 1)-dimensional volume V (with the convention that
the normal is pointing to the future), and dn−1σμν as the
infinitesimal element of the (n − 2)-dimensional hypersur-
face ∂V that encloses the volume V. Another useful
expression is given by 1þ 3 decomposition, and consid-
ering the integration over a spatial volume V,

C ¼
Z
V
dn−1xJ0 ¼

I
∂V

dn−2xJ0ini; ð37bÞ

where ni is the (outward pointing) unit normal to the
surface ∂V. [We employ the somewhat clumsy notation for
the volume and the surface elements in (37), the reason
being that in this article we deliberately refrain from using
the language of differential forms.]
We should stress that it is the second form in both

Eqs. (37) that is the fundamental definition of the charge.
In particular, physical charges are fundamentally quasi-
local [69]. That term is misleading if one takes it to mean
that the charges would be defined only asymptotically,
or that the quasilocal charge otherwise would not describe
physics truly locally. It is simply a technical term meaning
that the expression is a surface integral rather than a volume
integral. For concreteness, let us consider the electromag-
netic field Aαβ, sourced by a current Jα in four dimensions
n ¼ 4. The electromagnetic charge is written in the
form (37b) as

7In the language of differential forms, this is because every
closed form is locally exact.
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q ¼
Z
V
d3xJ0: ð38aÞ

That the current Jα is conserved is dictated by gauge
invariance.8 However, the charge q need not be constant in
time if there is flux in or out of the volume V. This is all
well-known. The point we are stressing is that (38) may
often fail to give the correct answer [70]. Instead, using the
Maxwell equation and the Stokes theorem suggests that

q ¼ 1

2

I
∂V

d2σμν
ffiffiffiffiffiffi
−g

p
Aμν: ð38bÞ

This is the more fundamental definition of charge,9 and
because it is a surface integral, it is called quasilocal. It is
not meaningful to demand the density J0 to remain valid
pointwise, i.e., at infinitely small scales, mathematically
one can only consider infinitesimal surface elements.
Physically, of course, even that is too much. The atoms
of spacetime should presumably be considered to be closed
surfaces with dimensions of the Planck scale at most.
A long-standing problem was to define the charges of

the gravitational field, energy, and momentum. If we had
a gravitational analogy to the electromagnetic field, it
would have to be of the form hμνα, i.e., have a component
for each spacetime dimension labeled by an extra index.
Again, the charge should be a quasilocal surface integral
(now over four fluxes), rather than a volume integral over
a source current (now with four components). Depending
on the topology, fluxes may exist with nontrivial charges,
even when there are no sources. Thus, the fundamental
definition of the energy momentum would have to be of
the form

Cα ¼
1

2

I
∂V

d2σμνhμνα: ð39Þ

However, the Noether theorem does not yield a current of
this form in the standard (Hilbert) formulation of GR,
unlike in electromagnetism, of course. We will review the
calculation (using the equivalent Palatini formulation) in
the Sec. IV. Many different forms for hμνα have been
suggested, each with its own motivations, benefits, and
problems. A universal problem was perhaps the most
obvious one, that there was no unique definition. Also
highly elaborate mathematico-geometrical constructions
had been developed as alternatives, without necessarily
any connection with the Noether theorems [71]. We could
only very cursorily review some aspects of some of these
developments in the Introduction, but in Sec. VI we
will present several examples of the proposed gravita-
tional field excitations, also called superpotentials in this
context [72], found in the vast literature on the topic.

IV. PALATINI GRAVITY

The first order formulation of the Hilbert action is
sometimes called the Einstein-Palatini theory, and it is just
a guise of the well-known Einstein-Cartan-Kibble-Sciama
theory. When ignoring hypermomentum, the independent
connection becomes dynamically equivalent to the Levi-
Civita connection, up to projective invariance, which we
study in detail below. Plugging back the solution results in
the standard Hilbert’s second order purely metric formu-
lation. Thus it is not surprising that the Noether current in
the Einstein-Palatini theory is the same as in the Hilbert
theory and given by the Komar expression that does not
conform to (38b).

A. Projective invariance

The Einstein-Palatini Lagrangian is

LG ¼ m2
P

2
R: ð40Þ

Then

rαβμν ¼
m2

P

2
gβ½νδμ�α ; ð41Þ

and (17b) can be written as

2m−2
P Eα

μν ¼ Tμ
α
ν þQα

μν þ
�
Tν þ 1

2
Qν − Q̃ν

�
δμα

−
�
Tα þ

1

2
Qα

�
gμν − 2m−2

P Zα
μν: ð42Þ

On-shell, the three traces of this equation give

m−2
P Zα

μα ¼ 0; ð43aÞ

8A clarification might be in order here. Certainly, the gauge
symmetry, being an unphysical redundancy cannot strictly dictate
the (on-shell) conservation of the physical current, with the
understanding that physical charges can be used to classify
physically different configurations. However, if we have a gauge
field with a certain gauge symmetry, the so-called reducibility
parameters of the gauge symmetry (i.e., those transformations
that leave the gauge field invariant) provide the possible global
transformations in the matter sector to which the gauge field can
couple. These global symmetries are in fact responsible for the
existence of the conserved currents and it is in this sense that we
can say that the current conservation is dictated by gauge
symmetry. Obviously, we can have conserved currents without
associated gauge symmetries such as the axial current for
massless fermions.

9Thus, one can define charges as the sources of electric fields
to include also situations without matter where charges would
arise from topology. This more fundamental interpretation
applies also to the gravitational case where we could have empty
spacetimes with energy and momentum arising from nontrivial
topologies.
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m−2
P Zα

αν ¼ ðn − 2ÞTν þ ðn − 1Þ
�
1

2
Qν − Q̃ν

�
; ð43bÞ

m−2
P Zα

μ
μ ¼ −ðn − 2ÞTα −

1

2
ðn − 3ÞQα − Q̃α: ð43cÞ

These equations reflect the projective invariance of the
action (40). The projective transformation generated by the
one-form Aμ acts on the connection as

δAΓα
μν ¼ Aμδ

α
ν ; ð44aÞ

and, consequently, the three traces are transformed as

δATμ ¼ ðn − 1ÞAμ; ð44bÞ

δAQμ ¼ −2nAμ; ð44cÞ

δAQ̃μ ¼ −2Aμ: ð44dÞ

For traceless hypermomentum, the solution to the set of
three equations (43) is given by precisely such a projective
relation (44) between the three traces. For vanishing
hypermomentum, the general solution for Eα

μν ¼ 0 in (42)

is the connection Γα
μν ¼ Γ

∘ α
μν þ Aμδ

α
ν with an arbitrary Aμ.

This is a special type of vector distortion [73–75]. Thus,
first order GR is a projectively invariant theory. The metric
field equations (17a) can be expressed as

RðμνÞ −
1

2
Rgμν ¼ R

∘
μν −

1

2
R
∘
gμν ¼ m−2

P Tμν; ð45Þ

where in the second equality we used the connection field
equation. We see that (45) is unaffected by the projective
transformation because δARμν ¼ 2∇½μAν�. Clearly, requir-
ing either metricity or requiring vanishing torsion fixes the

gauge to Γα
μν ¼ Γ

∘ α
μν, but the dynamics are unaffected by

the choice of Aμ. The significance of the projective trans-
formation of the affine connection10 is that it leaves the
autoparallel paths invariant (path is the image of a curve,
independent of its parametrization). Consider the equation
for the autoparallel xðtÞ with respect to an arbitrary
connection

ẍα þ Γα
μν _xμ _xν ¼ 0: ð46Þ

The autoparallel is called a geodesic when Γα
μν ¼ Γ

∘ α
μν.

Under the reparametrization

xαðτÞ ¼ xαðτðtÞÞ; ð47aÞ

_xα ¼ dxα

dτ
_τ; ð47bÞ

ẍα ¼ d2xα

dτ2
_τ2 þ dxα

dτ
̈τ; ð47cÞ

we should also transform the connection,

Γα
μν ¼ Γα

μν þ δAΓα
μν; ð47dÞ

so that we can rewrite the autoparallel equation (46) as

d2xα

dτ2
þ Γα

μν
dxμ

dτ
dxν

dτ
þ
�
Aμ

dxμ

dτ
þ ̈τ

_τ2

�
dxα

dτ
¼ 0: ð48Þ

Unless ̈τ ¼ 0, to recover form invariance of the autoparallel
equation, we should set the projection Aμ in (47d) accord-
ing to the reparametrization as

1

_τ
¼ exp

�Z
dxμ

dτ
Aμdt

�
: ð49Þ

We have paid some attention to the δA invariance of
Einstein-Palatini gravity since it may be useful to clarify
that it plays a different role in the currents with respect to
the connection symmetries in teleparallelism which we will
consider in Sec. V.
In particular, the projective symmetry of the Einstein-

Palatini theory is a trivial symmetry. From the expression
(36), we see that the Noether current corresponding to the
symmetry (44) is just JαA ¼ 2rμμανAν, and for the case (40)
this expression vanishes. In such a case the symmetry is
called trivial. Now, the triviality of the projective invariance
reflects the geometrical fact that a particle’s trajectory in
four dimensions is the same physical object, a path,
regardless of whether it is parametrized by the proper time
of the particle, the fourth coordinate which may or may not
coincide with the former, or indeed parametrized by an
arbitrary τ.

B. Noether current

We now consider the generalized Noether current (32b)
due to a diffeomorphism generated by vμ. We obtain,
using (41) and tαμν ¼ qαμν ¼ 0,

Jμ ¼ m2
P

2

h
gμν∇α∇νvα − δμα□vα þ gμν∇αðTα

γνvγÞ

−∇νðTμ
γνvγÞ − Rμ

νvν − R̃μ
νvν − Rvμ

i

þ ∂LM

∂∇μψ
δvψ þ LMvμ: ð50aÞ

In the third line appears the canonical energy-momentum
pseudotensor of matter. By rearranging the terms we get

10The projective transformation of the general linear (GL)
connection is a Weyl rescaling of the affine conection [23,76].
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Jμ ¼ m2
P

2

h
2∇αð∇½μvα� þ T ½μα�

νvνÞ þQα
μνð∇νvα þ Tα

γνvγÞ

þ ΔRμ
νvν

i
þ ΔTμ

νvν; ð50bÞ

where we used the field equation (45) and the shorthand

ΔRμν ¼ 2R
∘
μν − Rμν − R̃μν, and

ΔTμ
νvν ¼

∂LM

∂∇μψ
δvψ − 2

∂LM

∂gμν
vν; ð51Þ

where, for scalar matter, ΔTμ
ν is the difference between the

matter energy-momentum tensor and the pseudocanonical
pseudotensor. (As discussed in Sec. III A, in the proper
canonical formulation δvψ should be such that ΔTμ

ν ¼ 0.)

If there is no hypermomentum, Rμν ¼ R
∘
μν þ 2∇∘ ½μAν� and

then ΔRμν ¼ 0. The current (50b) simplifies to

Jμ ¼ m2
P∇

∘
α

�
∇∘ ½μvα�

�
þ ΔTμ

νvν: ð52aÞ

The Noether potential can be identified as

JμνG ¼ m2
P∇

∘ ½μvν�: ð52bÞ

This is the standard result in GR, the Komar super-
potential [6].
It is also well-known that the use of the Komar super-

potential for the definition of energy does not always yield
the desired results. In particular, the black hole energy
appears to be only half of the Schwarzschild mass if
computed from (52) in the standard coordinates. One
cannot simply renormalize the expression, since then the
angular momentum of the Kerr solution, computed in the
Boyer-Linquist coordinates, becomes twice too large [77].
Another drawback of the expression is that it gives
an energy to the radiating asymptotic solution of Bondi
et al. [78] that does not coincide with the Bondi mass.
Rather than the standard energy-momentum current ∼Tμ

ν,
the Komar superpotential corresponds to the trace-
corrected ∼Tμ

ν − 1
2
Tδμν. In fact, we will show in Sec. VIII

that it reduces asymptotically to the Arnowitt-Deser-Misner
(ADM) [19,79] energy expression only under special cir-
cumstances (for a pedagogical discussion see Ref. [80],
and for the relation of the Komar superpotential and the
Hamiltonian see, e.g., [7,57]).
It is interesting to note it has been proposed already some

time ago that the problems with the Komar superpotential
could be dealt with by invoking an additional vector field,
which would enter the superpotential precisely as the
projective vector distortion Aμ if our final result (52b)
could be modified to

J̃μνG ¼ m2
P

�
∇∘ ½μvν� þ A½μvν�

�
: ð52cÞ

This would result if we could set ∇∘ μ → ∇μ in (52b).
In 1985, Katz suggested to consider a flat reference metric
as the suitable background structure that could be used
to fix the results in situations when they were not in
agreement with more successful superpotentials [81]. The
suggestion was inspired by Rosen’s original bimetric
construction [82], and the vector field Aμ in that case
was identified as 1 of the 10 Killing vectors of the flat
reference metric. The “formal tricks of an artificially
introduced flat background” [81] are rather nonminimal
and an admittedly rather ad hoc method of setting straight
the anomalous factors in Komar’s expressions. However,
the method produces the desired results. A main result
of this article will be that there is no need to postulate a
reference metric or resort to any other artificial device to
provide the required vector field extension (52c) of the
Komar superpotential (52b), but instead it is built into the
geometrical foundation of the theory of coincident GR.
In Sec. V, we show that the canonical resolution of the

energy problem emerges naturally in the teleparallel for-
mulations, wherein the field equations can be understood as
the statement that the current from Noether’s first theorem
equals the current from Noether’s second theorem; i.e., the
divergence of the superpotential equals the sum of the
metric and the matter energy-momentum tensors [12]. In
the present case this seems not to be possible. We could
formally arrive at the expression for a superpotential

hμνK α ¼ m2
P∇

∘ ½μδν�α̂ ; ð53Þ
where the hat upon the index signifies that the index is
hidden from the covariant derivative operator. The inertial
current becomes, again formally,

tμKν ¼
m2

P

2

h�
R
∘
−□

∘ �
δμν̂ þ

�
2∇∘ μ∇∘ α −∇∘ α∇

∘ μ�
δαν̂

i
: ð54Þ

In the teleparallel pictures of GR, the inertial current, i.e.,
the metric energy-momentum tensor, is instead first order in
the derivatives of the metric, and there is gauge freedom
that allows one to set the tensor to vanish, i.e., to choose an
inertial frame. This freedom is absent in the curvature
picture of GR, due to the triviality of the projective
invariance.

V. TELEPARALLELISM

Teleparallelism is defined by the flatness condition
Rα

μβν ¼ 0, in which case the connection takes the form of
a pure gauge transformation of the trivial connection [5,83]

Γα
μν ¼ ðΛ−1Þαβ∂μΛβ

ν; ð55Þ

with Λα
μ ∈ GLð4;RÞ. We may then consider the invertible

matrix Λα
β as the dynamical variable associated with the

connection. Therefore, we need to reconsider the variations
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with respect to the connections, since now they are
restricted to be of the form

δΓα
μν ¼ ∇μ½ðΛ−1ÞαβδΛβ

ν�: ð56Þ

The consequence is that the connection field equation
changes to

∇̂μEα
μν ¼ 0: ð57Þ

Thus, the vanishing of Eα
μν given in (17b) is no longer

guaranteed on-shell. However, since the derivation of the
Noether identity (33) in Sec. III B did not assume the field
equations to hold, but only that the connection transforms
under diffeomorphisms as in (21c) as it does regardless of
having curvature or not, the generalized Bianchi identity
Eμ ¼ 0 remains valid for the Eμ given in (32a), and the
conservation ∂μJμ ¼ 0 still holds for the generalized
Noether current Jμ given in (32b). Therefore, in tele-
parallelism the first and the third terms on the third line
of (32b) have to be taken into account even on-shell. This is
consistent with the result from the canonical Noether
procedure, when we note that11

δvΛμ
ν ¼ −ðLvΛÞμν ¼ −vλ∂λΛμ

ν − ∂νvλΛμ
λ

¼ −Λμ
α

�
∇νvα þ Tα

βνvβ
�
; ð58Þ

and take one further step from (36) to rewrite the off-shell
identity

0 ¼ Eμνδgμν − ðΛ−1Þαβ∇̂μEα
μνδΛβ

ν þ EMδψ

þ∇∘ μ

�
∇̂νEα

νμvα − 2qμαβ∇
∘ α
vβ − Eα

μν∇νvα

þ Tα
νβEα

μνvβ þ Lvμ þ ∂LM

∂∇μψ
δvψ

�
; ð59aÞ

where the expression in square brackets is the Noether
current in teleparallelism. It is conserved on-shell, wherein
only the first term vanishes identically. Indeed, we note that
this is almost identical to the off-shell conserved current
appearing in (36),

Jμ ¼ 2Eμ
νvν þ ∇̂νEα

νμvα − 2qμαβ∇
∘ α
vβ − Eα

μν∇νvα

þ Tα
νβEα

μνvβ þ Lvμ þ ∂LM

∂∇μψ
δvψ ; ð59bÞ

apart from just the first term.

A. Metric teleparallelism

At this point, we restrict to the metric teleparallel
framework. By writing explicitly the second term above,
we obtain the current in the form

Jμ ¼
�
∇̂νð2tανμ − Zα

νμÞ þ 2gνα
∂L
∂gμν

�
vα

− Eα
μν∇νvα þ Tα

νβEα
μνvβ: ð59cÞ

The variations then reduce to

Eμν ¼ −
1

2
Tμν þ

∂LG

∂gμν
; ð60aÞ

Eα
μν ¼ −Zα

μν þ 2tαμν: ð60bÞ

For further simplicity we specify that the action has a
quadratic form

LG ¼ 1

2
tαμνTα

μν; ð61aÞ

such that

∂LG

∂gμν
¼ −

1

2
tðμαβTνÞαβ þ tαβðμTαβ

νÞ: ð61bÞ

Then it is not difficult to see that (59c) simplifies to

Jμ ¼ ∇∘ ν

h
ð2tανμ − Zα

νμÞvα
i
−
1

2
ZðμαβTνÞαβ

þ ZαβðμTαβ
νÞ þ ΔTμ

νvν: ð62Þ

The second line takes into account the hypermomentum
and the part defined in (51). The gravitational super-
potential

JμνG ¼ −2tαμνvα ð63Þ

is the one expected from many previous studies of metric
teleparallelism12 [85–89]. In particular, this expression
is known to reduce (at the leading order in Riemann
normal coordinates, with a judicious choice of frame) to the
Bel-Robinson expression for the gravitational energy [90]
which has physically desirable properties.

11It might be convenient to stress that Λα
μ transforms under

diffeomorphisms as a set of four one-forms (contravariant
vectors) so that the Γα

μν transforms as a connection.

12The currents derived in the Lagrangian (or Hamiltonian)
approach are sometimes contrasted with the expression deduced
directly from the field equations [84]. The latter perspective is
discussed in Sec. VI, and we shall conclude that both ways lead to
the same result. We could remark that if it is argued that the
Lagrangian-based approach is ambiguous since one may add
total derivatives to the action (ambiguity 2) as in Sec. VI C, so are
the equations of motion-based approach ambiguous since one
may as well add superpotentials with vanishing divergence to the
equations of motion (ambiguity 1) as in VI C.
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Metric teleparallel theory is conventionally formulated in
terms of tetrads [91] rather than using the Palatini formal-
ism [36].13 The idea that the tetrad formulation could help
with the pseudotensorial ambiguity of the superpotentials
goes back at least to Møller’s work in the 1960s [93].
However, the coordinate ambiguity is only translated to the
Lorentz frame ambiguity in the tetrad formulation, and the
same problem is, of course, seen in the Palatini form of
the result (63), which depends upon the chosen solution for
the two fields Λμ

ν and gμν, even though the superpotential
is covariant with respect to simultaneous transformations
of the field. Here we need the definition of the general-
relativistic inertial frame [24] that fixes, given one of the
two fields, the other one. We shall now review some
previous calculations in the literature and see that they
will not give the correct energy charge for the black hole
(except asymptotically). Then we will redo the calculation
in an inertial frame. To our knowledge, that is the first
exact derivation of the black hole energy in metric
teleparallelism.
Let us consider the following spherically symmetric

metric:

ds2 ¼ −A2dt2 þ B−2dr2 þ r2 sin2 θdϕ2 þ r2dθ2: ð64Þ

In the gauge corresponding to a diagonal tetrad, the
nonvanishing components of tαμν ¼ tα½μν� are

t00r ¼ −m2
P
2B2

r
; ð65aÞ

t00θ ¼ trrθ ¼ −m2
P
cot θ
r2

; ð65bÞ

tθrθ ¼ tϕrϕ ¼ m2
PB

2

�
1

r
þ A0

A

�
: ð65cÞ

Computing the Noether charge with respect to the timelike
Killing vector vμ ¼ δμ0 gives Cv ¼ 8πm2

PrB
2. This result

diverges as r → ∞. This is interpreted, in the standard
context of metric teleparallelism [91], to be due to inertial
forces. To eliminate such forces, the gauge freedom is used
to Lorentz rotate the connection. The finiteness of the
action has been considered as a criterion that distinguishes
the absence of inertial forces [94–98]. A solution with finite
action was reported by Krššák et al. [98] to be associated
with the superpotential (again we write only the non-
vanishing components and recall the antisymmetry)

t00r ¼ −
2m2

P

r
ðB − B2Þ; ð66aÞ

tθrθ ¼ tϕrϕ ¼ m2
PB

2

�
1

r
þ A0

A

�
−m2

P
B
r
: ð66bÞ

Now the charge is finite and equal to the mass of the black
hole when the integration limit is extrapolated to the
asymptotic infinity r → ∞.
Brown and York introduced regularizations in the con-

text of the energy problem in GR, in their derivation of a
famous quasilocal energy expression [99]. Before Krššák
et al., e.g., Maluf et al. had used regularizations in the
context of metric teleparallel energy expression [100,101].
In fact, one of the prescriptions adopted in metric tele-
parallelism is claimed to yield the same energy as the
Brown-York expression [102]. For the Schwarzschild black
hole with mass mS, the expression implies that the energy
contained inside the horizon is 2mS, and outside the
horizon, the whole spacetime is filled with negative energy
density such that asymptotically the total energy converges
to mS. This probably could be interpreted to describe
something that could be related to some effective energy
concept, but it is not the canonical energy charge we are
concerned with in this article. (Perhaps, it indeed can be
understood in terms of a Newtonian potential energy in the
force interpretation of gravity compatible with metric
teleparallelism [103,104]).
More recently, Emtsova and Toporensky also introduced

a different regularization scheme, using the metric con-
nection (5) to normalize the spin connection [89,105]. They
considered the Schwarzschild black hole

A ¼ B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

mS

4πm2
Pr

r
ð67Þ

and reported the regularized spin connection

t00r ¼ −
2m2

P

r
ð1 − AÞ − mS

4πr2
; ð68aÞ

tθrθ ¼ tϕrϕ ¼ −
m2

P

r
ð1 − AÞ þ mS

4πr2
: ð68bÞ

This gives the correct value C0 ¼ mS, but again only
when integrating the current over the whole spacetime.
The scheme based on the comparison metric connection
and the scheme based on the finiteness of the action
(the scheme that could also be called holographic renorm-
alization14 [97,98]) are both regularizations of only the
total value of the energy, i.e., the global mass within the
spacetime manifold.

13Both formulations are, however, equivalent when working
with the inertial connection Λα

μ that plays the role of the tetrad
once the metric-compatibility constraint is solved, see, e.g., [5,92].

14Topological terms are locally equivalent to boundary terms
that depend on the extrinsic curvature [106], and such regula-
rizations can be described within a holographic picture [107], as
they are related to the prescription given within the context of
AdS=CFT correspondence.
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The novel proposition is that the energy measured locally
by a physical observer can be determined in an inertial
frame [24]. The inertial frame is characterized by the
vanishing of the energy-momentum associated with the
metric field (or equivalently, the tetrad). This has not been
investigated in metric teleparallelism (see, however,
Ref. [90], where the Riemann normal coordinates are
considered). Even though we argued in Ref. [37] that the
results should agree with computations in symmetric tele-
parallelism, it is quite interesting to check explicitly the
inertial frame hypothesis for the case of metric teleparallel-
ism. A freely falling frame can be obtained by switching (64)
to the Lemaître coordinates:

A ¼ 1; B2 ¼ mS

4πm2
Pr

: ð69Þ

The Lemaître frame has been considered previously in
metric teleparallelism [108], and the components of the
superpotential have been computed for the regularized spin
connection [109],

t00r ¼ −
mS

4πr2
¼ 4tϕrϕ ¼ 4tθrθ; ð70aÞ

tr0r ¼
m2

P

r
B ¼ 4tϕ0ϕ ¼ 4tθ0θ: ð70bÞ

According to Ref. [109], the gravitational energy-
momentum charges are vanishing in the freely falling
frame. Our interpretation is quite different as we maintain
that the gravitational energy momentum current should
always vanish in an inertial frame and it is only in such a
frame that we may compute the physically meaningful
result for the gravitational charges. [Recall that we insist
that not the local integral of the form (38a) but the so-called
quasilocal integral of the form (38b) should be regarded as
the fundamental definition of the charge—in the case at
hand this makes all the difference.] Indeed, now C0 ¼ mS
in the Lemaître frame, as we readily compute from (70).
The crucial point here is that we obtain C0 ¼ mS regardless
of which surface we choose to compute the flux (as long
as it contains the singularity), in contrast to the previous
prescriptions such as (66) and (68) which, more or less
accidentally, happen to give the correct result when r is
taken to infinity.15 Of course, it is intuitively clear that
energy is well-defined in Minkowski space, and when such
is available as the asymptotic limit of an otherwise arbitrary
spacetime, the limiting expression is unambiguous and its
expression is known as the ADM energy. However, at any

finite r all previous calculations in metric teleparallelism
we are aware of fail to give the correct answer.
In conclusion, we have proposed the definition of energy

in metric teleparallel gravity and, at least for the
Schwarzschild geometry, confirmed the validity of the
definition. This vindicates the idea originally put forward
by Møller in 1961 [110].

B. Symmetric teleparallelism

We shall consider the quadratic action

LG ¼ 1

2
qαμνQα

μν þ lαμνTα
μν; ð71Þ

where the symmetricity constraint is imposed by the
Lagrange multiplier lαμν ¼ lα½μν�. The field equations for
the Lagrange multiplier, the metric, and the connection are,
respectively, given by

δLG

δlαμν
¼ Tα

μν; ð72aÞ

2Eμ
ν ¼ −Tμ

ν þ 2∇αqαμν þ 2qαβνQαβ
μ

þ 2
ffiffiffiffiffiffi
−g

p ∂LG

∂gμν
− LGδ

μ
ν ; ð72bÞ

Eα
μν ¼ 2lαμν − 2qμνα þ Zα

μν: ð72cÞ

We have massaged the metric field equation (16a) in a form
(72b) that will be helpful in the following. Our aim is again
to derive the Noether potential. To that aim, we begin by
setting the teleparallel current (59b) on-shell,

Jμ ¼ Lvμ þ ∂LM

∂∇μψ
δvψ − 2qμαβ∇

∘ α
vα − Eα

μν∇νvα: ð73Þ

Consider the connection field equation ∇μEα
μν ¼ 0, where

Eα
μν is given by (72c). At this point, we just assume that

there is a solution lαμν ¼ 1
2
hμνα s.t.

∇μhμνα ¼ ∇μð2qμνα − Zα
μνÞ: ð74Þ

We shall return to discuss this solution in detail later. Now,
plugging the connection variation (72c) and the assumed
solution (74) into the current (73) it becomes

Jμ ¼ Lvμ þ ∂LM

∂∇μψ
δvψ − qμαβQν

αβvν − ðhμνα þ Zα
μνÞ∇νvα:

ð75aÞ

Now we just use the (assumed) solution (74) to replace the
derivative of the nonmetricity conjugate in the metric field
equation (72b) and plug it into the above,

15The many regularization schemes used in the literature
could be said to belong to the locality class N according to
the respective corrections behaving as r−N at large r. The inertial
frame regularization would then have N ¼ ∞.
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Jμ ¼ ∇αðhαμνvνÞ þ ð∇αZν
αμÞvν − Zν

μα∇αvν þ ΔTμ
ν:

ð75bÞ

Apart from the hypermomentum, the current is precisely16

the one derived in the metric-affine gauge formulation [37]
and is deduced earlier from the premetric axioms [21].
This completes the derivations of the Noether currents in

the Palatini formulation of the geometrical trinity.

C. Alternative formulations

It may be worthwhile to clarify the formulation depend-
ence of the Noether currents. Therefore we shall derive some
noncanonical currents that result in some alternative for-
mulations of symmetric teleparallel gravity. The ambiguity
of the currents in different formulations can be regarded as a
strength rather than a weakness of the Noether formalism. It
allows one to distinguish between different formulations
of the action principle giving rise to equivalent dynamics.
That we do not find exactly the right current in the tensor
formulation (with two Lagrange multipliers in Sec. V C 1 or
with zero Lagrange multipliers in V C 2, indicates that the
gauge formulation used in Ref. [37] is a more fundamental
representation of the theory (whose proper translation to
tensor language is the formulation in VB. Defects that can
be detected already at the classical level hint that the
formulation may encounter serious obstacles in the quantum
theory. It is well-known that the path integral can depend
upon the choice of fundamental variables.
(In a gauge theory formulation of gravity, neither the

metric nor the tetrad is considered a fundamental but
composite field. In the standard case this is achieved by
exploiting a symmetry-breaking field in the fundamental
representation, the Cartan radius field. Conservation laws
and Noether charges have been considered also in this
context [111,112]. We note that a novel approach to gauging
translations has been put forward more recently, wherein
the composite structure of the gravitational fields can be
expected to be nontrivially reflected in the conservation laws
and Noether charges [56]. This would, however, lead us
beyond GR and outside the scope of this article.)

1. Lagrange multiplier formalism

To drop some inessential baggage from the derivation, in
this subsection we (1) set hypermomentum to zero Zα

μν ¼ 0

and (2) consider on-shell relations, i.e., set Eμν ¼ Eα
μν ¼ 0,

without explicitly reminding about it. In the Lagrange
multiplier formulation [14], we vary

LG ¼ 1

2
qαμνQα

μν þ lαμνTα
μν þ lαβμνRα

βμν; ð76Þ

with respect to a general connection. The multipliers have
the antisymmetry with respect to their two last indices,

lαðμνÞ ¼ 0; ð77aÞ

lαβðμνÞ ¼ 0: ð77bÞ

We then obtain the equations of motion

Tα
μν ¼ 0; ð78aÞ

Rα
βμν ¼ 0; ð78bÞ

Tμν ¼ 2∇αqαμν þ 2
∂LG

∂gμν
; ð78cÞ

∇βlανμβ ¼ qμνα − lαμν; ð78dÞ

where the first and the second equations are, of course, the
two new equations of motion resulting from the variation
with respect to the Lagrange multipliers. Now, instead of the
teleparallel current (59c) we should go back to the general
current (32b), which now reduces to

Jμ ¼ −2qμαβ∇
∘ α
vβ þ 2lανβμ∇β∇νvα þ Lvμ þ ∂LM

∂∇μψ
δvψ :

ð79Þ
Let us consider the second term

lανβμ∇β∇νvα ¼ ∇βðlανβμ∇νvαÞ þ ð∇βlανμβÞ∇νvα

¼ ∇βðlανβμ∇νvαÞ þ ðqμνα − lαμνÞ∇νvα: ð80Þ

In the first equality we used (77b) and in the second we used
(78d). Plugging this into (79) gives

Jμ ¼ 2qμνα
�
∇αvβ −∇∘ αvβ

�
− 2lαμν∇νvα

þ 2∇βðlανβμ∇νvαÞ þ Lvμ þ ∂LM

∂∇μ
δvψ

¼ 2qμαβLβα
λvλ − 2∇νðlαμνvαÞ þ 2ð∇νlαμνÞvα

þ 2∇βðlανβμ∇νvαÞ þ Lvμ þ ∂LM

∂∇μ
δvψ : ð81Þ

Taking the divergence of (78d) yields, due to the combina-
tion of symmetry (91a) and the antisymmetry (77b) which
cancels the right-hand side (RHS),

16As in the metric teleparallel case (62), there are additional
hypermomentum terms that do not appear in the canonical form.
Because the hypothetical hypermomentum is introduced as just
a parametrization of a possible connection dependence of the
Lagrangian LM, we do not have the required fundamental
equations to determine the structure of the Zα

μν terms. For
example, if the equations implied that ∇αZν

αμ ¼ −∇αZν
μα, the

current could be put to the canonical form. A conjecture is that a
consistent realization of hypermomentum should decouple from
the canonical current.
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∇μlαμν ¼ ∇μqμνα: ð82Þ

This can be recognized as the “remarkable relation” Eq. (16)
of Ref. [21]. We shall encounter this relation in a different
guise in Sec. VI, and we will see that it allows us to identify
the Lagrange multiplier field

lαμν ¼
1

2
hμνα; ð83Þ

as what is called the gravitational excitation hμνα. From (78c)
we get that, using also (99),

2∇νlαμν ¼ −ðTμ
α þ δμαLG þ 2qμνβLνβ

αÞ: ð84Þ

Using this in (81) it assumes the form

Jμ ¼ 2∇νðlαβνμ∇βvα − lαμνvαÞ þ ΔTμ
νvν: ð85Þ

The Lagrange multiplier lαβνμ cannot be fully determined by
the field equations, since it possesses gauge symmetries, as
detailed in Sec. IV. B.1 of Ref. [36]. However, the essentially
unique solution has the same form (41) as in the derivation of
the Komar superpotential, as it will again be shown in detail
in Sec. VI. Putting all these results together, the final result
for the on-shell current reads

Jμ ¼ ∇νðm2
P

ffiffiffiffiffiffi
−g

p ∇½μvν� − hμναvαÞ þ ΔTμ
νvν: ð86aÞ

We may separate the two contributions to the charge tensor,

Jμ ¼ ∇νðJμνcan þ JμνnonÞ þ ΔTμ
νvν; ð86bÞ

where

Jμνcan ¼ −hμναvα; ð87aÞ

Jμνnon ¼ m2
P∇½μvν� ¼ JμνK −m2

PQ
½μν�

αvα: ð87bÞ

The canonical piece Jμνcan is given by the excitation tensor.
The second piece Jμνnon we could regard noncanonical: as the
standard Komar superpotential, it features a derivative of the
parameter vα. Regarding the Komar superpotential, we shall
write yet one more equivalent expression,

Jμν ¼ m2
Pð∇

∘ ½μ
vν� −Q½μvν� þ Q̃½μvν�Þ; ð88Þ

which was also used in Ref. [113]. Notably, this has the form
(52c), where now Aμ ¼ −Qμ þ Q̃μ.
The noncanonical piece Jμνnon is absent in the Noether

current obtained in the metric-affine gauge formulation of
the theory [37]. Our current view is that this piece is an
unphysical artifact of translating to theory into the tensor
(Palatini) formalism. In all known fundamental theories, the
charges are linear in the parameter and do not depend upon

the derivatives of the parameter. In the context of the
premetric program [21,114], incorporating such a deriva-
tive dependence would require some new axiom, the
physical motivation of which seems unclear. (Perhaps,
an inhomogeneous response to the transformation param-
eter could be interpreted in terms of an excitation gauge
potential instead of the usual excitation tensor.)

2. Inertial connection formalism

It can be illustrative to demonstrate the formulation-
dependent property of the Noether currents with another
example. In the derivation above (and in the derivation in
Ref. [37]) the action principle was formulated in terms of
Lagrange multipliers. The suggested interpretation is the
origin of GR in its symmetric teleparallel guise in a
symmetry-broken massive gauge theory. This effective
theory is teleparallel; i.e., the connection is flat at observ-
able scales because the Planck mass is the mass of the
connection. A less fundamental formulation is obtained by
solving the constraint equations (78a) and (78b) and
plugging the solution back into the action. This way one
obtains Golovnev’s “inertial connection” formulation of a
teleparallel theory [115,116]. Even though the (classical)
dynamics in the inertial connection formulation are com-
pletely equivalent [23] (for the detailed and comprehensive
study, see [117]), the Noether currents are sensitive to the
action principle since they are affected by the boundary
terms in the action.
According to (78a) and (78b), in symmetric teleparallel-

ism both the curvature Rα
μβν ¼ 0 and the torsion Tα

μν ¼ 0

vanish. Because of the former, the connection has to be given
by the matrix Λα

β in (55), and because of the latter, the
matrix can always be given by the more special form [14,83]

Λα
β ¼ ∂βξ

α: ð89Þ
The functions ξα may thus be regarded as the dynamical
variables. As a consequence, not even ∇̂μEα

μν can be
guaranteed to vanish on-shell, but instead the equation of
motion for the connection assumes the form

∇̂ν∇̂μEα
μν ¼ −∇̂ν∇̂μð2qμνα þ Zα

μνÞ ¼ 0: ð90Þ
It is often more convenient to deal with tensor densities
than tensors in symmetric teleparallelism, since, as we see
from (2), the covariant derivative ∇μ is commutative, but

the ∇̂μ defined in (18) is not:

½∇μ;∇ν� ¼ 0; ð91aÞ

½∇̂μ; ∇̂ν� ¼ 2Q½μ∇ν�: ð91bÞ

To arrive at the second identity we recalled (10b). Taking
into account the symmetrization inherited from the com-
mutativity (91a), the current (32b) is
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Jμ ¼ 2qðμνÞα∇νvα − 2qμνα∇
∘
νvα − 2∇νqðμνÞαvα

þ LGvμ þ 2

�
Eμ

ν þ
1

2
Tμ

ν

�
vν þJμ

M; ð92aÞ

where the piece due to matter sources is

Jμ
M ¼ ∇νZα

ðμνÞvα − Zα
ðμνÞ∇νvα þ ΔTμ

νvν ð92bÞ

conserved. The off-shell current can be written as

Jμ ¼ −2q½μν�α ∇νvα þ 2w̃μ
νvν þJμ

M; ð93Þ

where we abbreviate w̃ ¼ w −∇αq½αμ�ν,

w̃μ
ν ¼ qμαβLβ

αν −∇αqðμαÞν þ Eμ
ν þ

1

2
ðTμ

ν þ LGδ
μ
νÞ

¼ qμαβLβ
αν þ qαβνQα

βμ −∇αq½μα�ν þ gμλ
∂LG

∂gλν
:

For the second form we used the identity

Eμ
ν þ

1

2
Tμ

ν ¼ ∇αqαμν þ qαβνQα
βμ þ gμλ

∂LG

∂gλν
: ð94Þ

Finally, we obtain the off-shell conserved current in the
desired form,

Jμ ¼ −2∇ν

�
q½μν�α vα

�
þ 2wμ

νvν þJμ
M; ð95Þ

where we again abbreviate

wμ
ν ¼ qμαβLβ

αν þ qαβνQα
βμ þ gμλ

∂LG

∂gλν
: ð96Þ

From (19b), for any antisymmetric tensor density

aμν ¼ a½μν� we have ∇μaμν ¼ ∇∘ μaμν ¼ ∂μaμν. Let us con-
sider a quadratic theory

LG ¼ 1

2
qαμνQα

μν; ð97Þ

to verify explicitly that wμ
ν ¼ 0. The field equations (17a)

are

Eμ
ν ¼ ∇αqαμν −

1

2
δμνLG þ 1

2
qμαβQν

αβ −
1

2
Tμ

ν: ð98Þ

We need not suppose the field equations, but only to
calculate from (97) the variation

gμλ
∂LG

∂gλν
¼ −qαβνQα

βμ þ 1

2
qμαβQν

αβ

¼ −qαβνQα
βμ − qμαβLαβ

ν; ð99Þ

which plugged into (96) gives

wμ
ν ¼ 0; ð100Þ

simplifying the result (95) to

Jμ ¼ −2∇ν

�
q½μν�α vα

�
þJμ

M: ð101Þ

As expected, Eq. (101) does not match with what was found
earlier. In the inertial connection formulation, the action
would have to be adjusted with boundary terms in order to
obtain Noether currents representing the physical energy-
momentum currents. In fact, the inertial connection implied
by (89), when plugged into the action (97), makes it a second
order action. We are thus faced with the same issue as with
Hilbert’s formulation of GR, and would be forced to modify
the formulation with boundary terms, , in order to render the
variational problem mathematically well defined.17

We summarize the formulation dependence of the Noether
currents in Table I. For completeness, we have mentioned
also the possibility of hybrid formulation, wherein one
a priori restricts to symmetric connections and varies the
action

LG ¼ 1

2
qαμνQα

μν þ lαβμνRα
βμν: ð102Þ

However, this does not lead to dynamical equivalence with
GR. The field equations

Rα
βμν ¼ 0; ð103aÞ

Tμν ¼ 2∇αqαμν þ 2
∂LG

∂gμν
; ð103bÞ

TABLE I. The formulation dependence of the Noether current
in symmetric teleparallelism. The canonical form of the current is
obtained only when varying a flat connection and imposing its
symmetricity with a Lagrange multiplier.

Space of connections Noether potential Jμν

All ∇½μvν� − hμναvα

Flat −hμναvα
Symmetric Inequivalent to GR
Flat & symmetric −2q½μν�αvα

17The singular property of the GR equivalent is that these
higher derivatives only enter as total derivatives, so this technical-
ity represents a less fatal obstruction. In the generic case,
however, the presence of higher derivatives of ξα is undesirable
as it is prone to introduce Ostrogradski instabilities. This is, of
course, associated with the common problem of breaking diffeo-
morphisms for a massless spin-2 particle. In metric teleparallel-
ism, there may not be explicit higher derivatives, but the
analogous pathologies appear associated with the breaking of
Lorentz invariance. For some discussions on these problems of
modified teleparallel gravity, see, e.g., [47,92,118–120].
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∇βlανμβ ¼ qμνα; ð103cÞ

imply now that the sum of material and inertial currents must
vanish since (103c) forces ∇μqμνα ¼ 0 imply now that the
sum of material and inertial currents must vanish since
(103c) forces ∇μqμνα ¼ 0.

VI. POTENTIALS

In this section we shall discuss the interpretation of the
results, and in particular we shall put the canonical Noether
potential hμνα in the context of previous discussions in the
literature. In Sec. VI A we will recall how the inertial
energy-momentum current appears in the field equations.
In Sec. VI B the explicit form of the tensor density hμνα is
finally uncovered. In the terminology of the premetric
program [121], it is called the (kinetic) excitation (tensor
density). We naively anticipated this object already at (39),
and it is also the bottom line of the premetric reasoning. In
Sec. VI C we review previous derivations of gravitational
energy momentum and conclude that they are consistent
with hμνα, though fundamentally more ambiguous. In
particular, we list a handful of the most serious suggestions
of superpotentials in the literature and show that each of
them generalizes to precisely hμνα (when promoted by a
certain minimal coupling principle into a proper tensor).

A. Inertial current

Consider the special theory of relativity in a manifestly
diffeomorphism invariant form by using the symmetric
teleparallel covariant derivative ∇μ. In particular, the
energy-momentum conservation is given in terms of the
symmetric energy-momentum tensor Tμ

ν as ∇μTμ
ν ¼ 0,

which reduces in the coincident gauge [22] to ∂μTμ
ν ¼ 0.

However, in GR (and its modifications [67]) the conserva-

tion equation is ∇∘ μTμ
ν ¼ 0, which can be written as

∇μTμ
ν ¼

1

2
QναβTαβ: ð104Þ

Einstein formulated the conservation law as a divergence
that includes the energy momentumGμ

ν of the gravitational
field [8]. In the symmetric teleparallel formulation,Gμ

ν can
be written as a tensor, and Einstein’s conservation law can
be made manifestly covariant,

∇μðTμ
ν þGμ

νÞ ¼ 0: ð105Þ

(Note that Gμ
ν does not denote the Einstein tensor

R
∘ μ

ν − 1
2
δμνR

∘
, but, so to speak, the covariantized form of

the pseudotensor that depends only upon the first deriva-
tives of the metric.) Now, let us use the field equations (16a)
in (104) to obtain

∇μTμ
ν ¼ Qν

αβ

�
∇μqμαβ þ

∂LG

∂gαβ

�

¼ ∇μðQν
αβqμαβ − δμνLG þ 2∇αqμανÞ; ð106Þ

where in the second equality we have used the identity (9).
We can now identify the gravitational energy momentum
tensor in (105) as

Gμ
ν ¼ δμνLG −Qν

αβqμαβ; ð107Þ

since

∇μðTμ
ν þGμ

νÞ ¼ 2∇μ∇αqμαν: ð108Þ

The expression (107) reduces to the canonical Noether
current of the metric field with respect to the symmetry
under global translations. In other words, it reduces to the
pseudocanonical energy-momentum pseudotensor in the
coincident gauge. The RHS of (108) represents the energy-
momentum conservation equation of the connection.
In the theory of coincident GR, the remarkable fact is

that the RHS of (108) vanishes identically. The field
equations (98) state that we always have on-shell

2∇α qαμν ¼ Tμ
ν þGμ

ν: ð109Þ

Nevertheless, the divergences of the LHS and RHS vanish
identically only in the coincident GR. In that case 2qαμν
reduces to Tolman’s energy-momentum complex [122] in
the coincident gauge. Our version of the theory is covariant
and the Eq. (109) holds for arbitrary LG. The tensor 2qαμν,
the nonmetricity conjugate, could thus also be called the
generalized Tolman tensor. We will see later that neither
the generalized Tolman tensor nor its antisymmetrization
in (101) that we obtained as the Noether potential in the
inertial connection formulation provides a viable super-
potential to describe the quasilocal energy charges.
At this point, we may state the definition of an inertial

frame as that for which Gμ
ν ¼ 0. The local metric current

induced by the diffeomorphism δv is Gμ
νvν, and the claim

is quite simply that any local energy or momentum
associated with the metric field (equivalently in the tetrad
formulation, associated with the tetrad field) is not physical
in the sense of being detectable by an inertial observer. It is
often quoted from page 422 of Ref. [123] that “Anybody
who looks for a magic formula for ‘local gravitational
energy-momentum’ is looking for the right answer to
the wrong question.” Our approach is in agreement, as it
excludes local gravitational energy momentum, and we do
not have to regard the coordinate-invariant expression of
this fact, Gμ

ν ¼ 0, as a “magic formula.” However, we
maintain that energy can be and should be defined
precisely, and that this is not prevented by gravitation
being equivalent to inertia—contrary to what is perhaps the
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most common view on energy (for philosophical discus-
sions see, e.g., [124,125]).

B. Kinetic excitation

The premetric formalism is a framework wherein the
form of the theory is derived from conserved charges [121].
One does not assume a priori a metric, nor a Lagrangian for
the theory, but begins with more primitive concepts whose
generic relations are deduced from elementary geometric
identities [114]. This way, one ends up with two funda-
mental equations, one of them corresponding to the
dynamical equation of motion (the inhomogeneous field
equation), and the other to a Bianchi identity (the homo-
geneous field equation). It should be understood that the
premetric formalism is not any particular theory, but it
provides a language to discuss, construct, and analyze
generic theories of physics with conserved charges as the
fundamental starting point.
In the case that one begins with the conservation of

energy-momentum charges, the first fundamental equation
takes the form [21]

∇α h̃
αμ

ν ¼ T̃μ
ν þ G̃μ

ν; ð110Þ

where h̃αμν ¼ h̃½αμ�ν is the kinetic excitation tensor density,
T̃μ

ν is the source current, and G̃μ
ν is determined by

the mass excitation tensor density that we denote q̃μαβ.
The second fundamental equation is now understood as the
expression of the equivalence principle: there is no force of
gravity; therefore the affine geometry is symmetric and
teleparallel.
The dynamics of the theory remain undetermined before

one specifies the form of the two tensor densities, the
kinetic and the mass excitation tensor densities, by stating
what is called the constitutive law of the premetric theory. If
a local and linear constitutive law is postulated, it has 5632
independent components. If it is assumed that the con-
stitutive law is reversible (which is a necessary condition
for the existence of an action principle for the theory), there
are 3712 independent components. If, on the other hand,
the constitutive law is assumed to be metric, but not
necessarily have a Lagrangian formulation, there are only
14 distinct possibilities. However, requiring the metrical,
the Lagrangian, and the parity-invariant properties of the
constitutive law fixes it uniquely (up to an overall nor-
malization) [21].
Thus, a result of the general premetric analysis is that

there exists the unique pair of tensor densities q̃μαβ ¼ q̃μðαβÞ
and h̃μνα ¼ h̃½μν�α such that

∇αhαμν ¼ 2∇αqαμν: ð111Þ

(The factor of 2 is just a convention.) The unique theory has
the mass excitation q̃μαβ ¼ qμαβ given by the so-called

nonmetricity conjugate (i.e., the generazsed Tolman tensor)
of the coincident GR [14],

4

m2
P
qμνα ¼ −Qμν

α þQνμ
α þQα

μν −
1

2
gμνQα

−
1

2
δμαQν þ ðQμ − Q̃μÞδνα; ð112aÞ

and the kinetic excitation given by h̃μνα ¼ h½μν�α where

1

m2
P
hμνα ¼ −Q½μν�

α − δ½μα Qν� þ δ½μα Q̃ν�: ð112bÞ

The kinetic excitation tensor (112b) turns out to be the
covariant version of the “Einstein energy-momentum
complex.” In Sec. VI C we will explain its precise relation
to various pseudotensor superpotentials that have been
considered in the literature. Then, it will be useful to note
that we can write (112b) also as

hμνα ¼ m2
P

gαβffiffiffiffiffiffi−gp ∇λ

�
gλ½μgν�β

�
: ð112cÞ

Since the relations (111) and (112) are of paramount
importance to our discussions, let us show explicitly that

1

m2
P
ðTμ

ν þ Gμ
νÞ

¼ 2

m2
P

ffiffiffiffiffiffi−gp ∇αðqαμνÞ ¼
2

m2
P
∇̂αqαμν

¼ −∇̂αLαμ
νþ

1

2
∇̂α

�
Qα − Q̃α

�
δμν −

1

4

h
∇̂νQμþ ∇̂αðgαμQνÞ

i

¼ ∇̂αQ½μα�
ν þ

1

2
∇̂α

�
Qα − Q̃α

�
δμν þ 1

2
∇̂ν

�
Qμ − Q̃μ

�

¼ ∇̂α

h
Q½μα�

ν þ
�
Q½α − Q̃½α

�
δμ�ν

i

¼ 1ffiffiffiffiffiffi−gp ∇α

h ffiffiffiffiffiffi
−g

p
gνβ

�
Qλ

β½αgμ�λ þQλ
λ½μgα�β −Qλgβ½αgμ�λ

�i

¼ 1ffiffiffiffiffiffi−gp ∇α

�
gνβffiffiffiffiffiffi−gp ∇λ

�
−ggβ½αgμ�λ

��

¼ 1

m2
P

ffiffiffiffiffiffi−gp ∇αhαμν: ð113Þ

The curvature Lagrange multiplier is now easily solved
from (78d) which now reads, using (83) and then (112),

1ffiffiffiffiffiffi−gp ∇βlανμβ ¼ qμνα − lαμν ¼ qμνα −
1

2
hμνα

¼ m2
P

4

�
Qα

μν −
1

2
gμνQα þ

1

2
δμαQν − δμαQ̃ν

�
:

ð114Þ
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We find the solution

lανμβ ¼
m2

P

2
gν½βδμ�α ; ð115Þ

which could have been guessed since it is (up to a constant
prefactor) the only available nonderivative tensor compatible
with the symmetry of lανμβ. Note, in particular, that since
2∇αq½αβ�α ≠ ∇αhαβα, the kinetic excitation cannot be given
by the Noether potential in (101). For the antisymmetrized
tensor in the Noether potential we obtain from (112)

4

m2
P
q½μν�α ¼ −2Q½μν�

α −
3

2
δ½μα Qν� þ δ½μα Q̃ν�: ð116Þ

Now, we can put the field equation (98) into the fundamental
premetric form (110) as

∇α hαμν ¼ Tμ
ν þGμ

ν; ð117Þ

where Gμ
ν is given by (107) with the specific form (112a).

We may now reconsider the current (75b). Neglecting the
hypothetical hypermomentum contribution and using the
premetric form of the field equation (117), we have

Jμ ¼ ðTμ
ν þGμ

νÞvν þ hαμν∇αvν: ð118Þ

Thus, we see that the Noether current indeed reduces, in its
local form, to the expected energy-momentum current, plus
possible effects due to a covariantly nonconstant trans-
formation parameter vμ.
Alternative superpotentials have also been introduced.

For example, Møller proposed the energy-momentum
complex

hμνM α ¼ 2m2
PQ

½μν�
α; ð119Þ

due to its improved covariance properties [126]. However,
as we have emphasized, the premetric axioms are only
compatible with (112b) together with (112a) [21]. In
Sec. VII we will show that the correct form of the
Noether potential can be decided also “empirically,” since
the different prescriptions yield (contrary to some previous
wisdom in the literature) inequivalent results, already in the
case of a black hole. Before that, we will review various
alternative superpotentials and clarify their relation to the
canonical excitation tensor hμνα.

C. Superpotentials

The inertial energy-momentum tensor (107) is the covar-
iant version of the pseudocanonical Noether current of the
metric field. We will now show that the excitation tensor
(112b) is the covariant version of many superpotential
pseudotensors that have been previously introduced in the
literature. The uniqueness of these results should not be

taken to be compromised by the formulation dependence of
the Noether currents, as summarized in Table I.
Rather, it reflects the well-known ambiguity in the choice

of superpotentials. (1) One can add an arbitrary hαβγμ ¼
h½αβγ�μ antisymmetric in the first three indices to hαμν such
that hαμν þ∇βhβαμν still satisfies (111). Such a term exists,
but this would not be consistent with the parity invariance
of the constitutive law. (2) One may add a boundary term
determined by some Bμ to the Lagrangian L such that one

considers instead Lþ∇∘ αBα. This would change the current
Jμ and consequently the superpotential Jμν. However, in
the present case the only available vectors Bμ would be
(at least) of the first derivative order, and therefore the
boundary term would make the L a higher derivative
theory. At a more fundamental level, we consider the
action principle as (a part of) the definition of the theory.
Adding a boundary term to the action would change the
theory according to our criterion that the action is funda-
mental on its own and not just through its capability of
producing field equations. (3) The so-called Y-ambiguity
enters when performing partial integrations in the deriva-
tion of the symplectic potential. Sort of “integration
constants” may in principle be added to the total derivative
terms. Though we shall not attempt to make this argument
robustly in the present study, in practice it is rather obvious
that there is, at least in the cases studied in this article, a
canonical definition of the “definite” partial integration.
In conclusion, the formulation dependence of the cur-

rents provides a criterion to distinguish the more funda-
mental formulation of the action principle. In terms of the
metric-affine gauge fields (frame, connectio, and metric),
we should vary the generic connection (and set it symmetric
teleparallel with Lagrange multipliers). In terms of the
Palatini fields (spacetime metric and affine connection), we
should vary the teleparallel connection (and set it sym-
metric with a Lagrange multiplier).
As Wald had explained, an integral (37) of the potential

Jμν can be used for the computation of the entropy
associated with a horizon as a charge [7,127]. Crucial
to this derivation is to take into account the possible
difference between the canonical energy and the integral
of the Noether potential Jμν at infinity. In general, a
Hamiltonian for the dynamics generated by δv does exist
iff one can find a suitable (not necessarily diffeomorphism
covariant) boundary term, which can be computed from
the symplectic potential. An algorithm, involving many
subtleties, exists for this procedure. The Hamiltonian
corresponding to asymptotic time translations may be
generated by the current Jμ only if its integral yields the
correct ADM energy. A purpose of the discussions of this
section was to clarify that, in our formalism, the potential
h̃αμν can correspond to the canonical energy-momentum
current only if the equation of motion relates the divergence
of the potential to the canonical gravitational energy
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momentum according to (110). For example, neither (116)
nor (119) has this property, which is unique to the canonical
excitation (112c). On the other hand, as seen from (109),
Eq. (112a) has the property but it does not have the index
symmetry deduced from the premetric axioms, or equiv-
alently, in Wald’s formalism, qαμνvν would not be the
components of a charge two-form. Thus, the conjecture is
that in an inertial frame the hαμνvν is both the unique
Hamiltonian that plays the role of the generator of time
translations and the unique Noether charge that plays the
role of the conserved energy. Therefore, it should directly
yield the physical energy and the entropy according to
Wald’s derivation.
More generally, a given superpotential h̃αμν corresponds

to a given inertial (metric) energy-momentum tensor. One
can check that each divergence is nonvanishing,

∇μQ½μν�
α ¼

ffiffiffiffiffiffi
−g

p �
∇μQ½μν�

α −
1

2
QμQ½μν�

α

�
; ð120aÞ

∇μδ
½μ
α Qν� ¼ 1

4
ðδναQμQμ þQαQνÞ − 1

2

ffiffiffiffiffiffi
−g

p
δνα∇μQμ;

ð120bÞ

∇μδ
½μ
α Q̃ν� ¼ 1

4
ðδναQμQ̃

μ þQαQ̃
νÞ − 1

2

ffiffiffiffiffiffi
−g

p
δνα∇μQ̃

μ;

ð120cÞ

and therefore the correspondence is unique. Explicitly, we
see that for a chosen superpotential h̃αμν, the corresponding
effective inertial energy-momentum current G̃μ

ν is given as

G̃μ
ν ¼ Gμ

ν þ∇αðh̃αμν − hαμνÞ: ð121Þ

One reason justifying calling the hαμν in (112b) the
canonical excitation tensor for gravity is that it corresponds
to the canonical energy-momentum tensor Gμ

ν which is the
unique Noether current for the metric tensor. For example,
the Møller superpotential (119) does not share this
property.
We shall now review a variety of other alternative

superpotentials proposed in the course of the previous
century and see that they can all be understood as particular
limits of the canonical excitation tensor (112b). All these
superpotentials are pseudotensors and can be understood
to be defined with respect to a reference (Minkowski or
otherwise) metric. The von Freud superpotential was
probably the first proposal, and it was constructed to
replace the Tolman pseudotensor with an object that
has the antisymmetry property of a proper excitation
(pseudo)tensor [128]. The von Freud superpotential can
be written as

hμν
vF α ¼ −

1

2

ffiffiffiffiffiffi
−g

p
δμνγλσαg

βλ
�
Γ
∘ λ

βσ − Γ
∘
λ
βγ

�

¼ −
1

2

ffiffiffiffiffiffi
−g

p
δμνγλσαg

βσgλδ∇∘ βgδγ: ð122aÞ

The underlined quantities are evaluated with respect to the
reference metric. In the original form, ∇β ¼ ∂β, corre-
sponding to some flat reference metric.
An influential treatment of gravitational energy momen-

tum was due to Landau and Lifshitz [129], who constructed
a symmetric Gμν

LL ¼ Gνμ
LL, which corresponds to the super-

potential

hμνα
LL

¼ 1

2
ð−gÞ−1

2δμνγρ∇
∘
βð−ggραgγβÞ

¼ 1

2

ffiffiffiffiffiffiffiffi
g=g

q
δμνγρδ

αβ
σδg

ρσ∇∘ βð
ffiffiffiffiffiffi
−g

p
gγδÞ: ð122bÞ

Considering the reference metric in the Gμν
LL as an asymp-

totically Minkowski spacetime leads almost directly to the
ADM expression, and this has been further generalized by
Abbott and Deser [130] to apply in spacetimes with more
arbitrary asymptotic behavior, such that the conserved
charges can be associated with isometries of the asymptotic
geometry (see Ref. [70], Secs. 6.1.1 and 6.1.2, respec-
tively). In their study of spin and angular momentum in
GR, for whose conservation the property Gμν

LL ¼ Gνμ
LL is

crucial, Bergmann and Thomson [131] employed the
Landau-Lifshitz prescription up a normalization of the
reference volume element,

hμνα
BT

¼
ffiffiffiffiffiffiffi
g=g

q
hμνα
LL

: ð122cÞ

Another well-known superpotential was introduced by
Papapetrou [16]

hμνα
P

¼ δμνγλδ
αρ
βσg

λβ ffiffiffiffiffiffi
−g

p �
1

4
gγσgτδ −

1

2
gγτgσδ

�
∇∘ ρgτδ

¼ 1

2
δμνγλδ

αρ
βσg

λβ∇∘ ρ

� ffiffiffiffiffiffi
−g

p
gγσ

�
: ð122dÞ

Finally, we quote the form of the Weinberg superpotential
[132]

hμνα
W

¼ δμνγλδ
αρ
βσg

λβ ffiffiffiffiffiffi
−g

p �
1

4
gγσgτδ −

1

2
gγτgσδ

�
∇∘ ρgτδ: ð122eÞ

We have written these superpotentials in alternative forms
from which it is transparent that they are quite closely
related, differing only in the way they incorporate the
dependence upon the reference metric. It has been shown
that the quasilocal energy expressions obtained from these
five in principle distinct expressions, all yield the equiv-
alent values of energy when a certain matching algorithm is
exploited to fix the reference metric [133] (using a so-called
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four-dimensional isometric matching or an energy optimi-
zation as the criteria for the best match of the reference on
the region’s boundary [134,135]).
Our approach does not require a reference metric or other

background structures. We can generalize the above five
pseudotensors that rely upon a reference metric for their
definition, into proper covariant tensors, by (1) replacing
the reference metric in the expressions by the dynamical
metric g

μν
→ gμν and (2) replacing the reference metric-

covariant derivative with the dynamical, independent

covariant derivative ∇∘ α → ∇μ. This procedure closely
resembles a minimal coupling of matter to gravity, and
now we are indeed minimally coupling various alternatives
of energy momentum as if the metric was as any other field.
We obtain the expressions

hμνvF α ¼ −
1

2
δμνγλσαg

βσgλδQβδγ; ð123aÞ

hμναLL ¼ 1

2
g−1δμνγρ∇βðggραgγβÞ; ð123bÞ

hμναBT ¼ hμναLL ; ð123cÞ

hμναP ¼ 1

2
ð−gÞ−1

2δμνγλδ
αρ
βσg

λβ∇ρð
ffiffiffiffiffiffi
−g

p
gγσÞ; ð123dÞ

hμναW ¼ δμνγλδ
αρ
βσg

λβ

�
1

4
gγσgτδ −

1

2
gγτgσδ

�
Qρτδ: ð123eÞ

With some algebra, we can confirm that all these expres-
sions are equivalent and identical with the canonical
excitation tensor. More precisely, we find the satisfactory
coincidences

hμνvFα ¼ hμνLLα ¼ hμνBTα ¼ hμνP α ¼ hμνW α ¼ hμνα: ð124Þ

The canonical resolution of the energy-momentum problem
in GR is thus the background-independent unification of
many previous prescriptions.
On the other hand, not all previous proposals can be

straightforwardly fitted into this unification. We will give
three examples. The (generalized) Tolman superpotential
(109) does not have the right symmetry. The Komar
superpotential (52a), as discussed earlier, is noncanonical
due to its dependence upon the derivative of the trans-
formation parameter. The Møller prescription does not
share this noncanonical property, but the superpotential
(119) does not coincide with (123). Though obtained in a
direct fashion in the tetrad formulation of GR, the Møller
superpotential corresponds to the Neumann and not the
Dirichlet boundary conditions for the metric [136]. Also,
according to (121), the Møller superpotential corresponds
to a noncanonical inertial energy-momentum current.

VII. ENERGY

In this section, we will illustrate the workings of the
canonical resolution by computing the energy of a black hole.
We will consider the Schwarzschild-Reissner-Nordström–de
Sitter case which is general enough to capture various
different features, including those of nonvacuum spacetime.
Let us remark in passing that the canonical resolution of

energy might clarify the properties of black holes beginning
from the definition of what a black hole is. A physical
definition (in contrast to alternative mathematical definitions
that refer to global properties of spacetime that cannot be
detected by any observer) [137] is based on the existence
of a future trapped horizon. This property is determined
from the expansion scalars, which, however, are foliation
dependent [138]. The ambiguity may now be eliminated
since the preferred foliation is uniquely given in an inertial
frame. This is, in fact, relevant to currently ongoing
discussions in the literature, concerning, e.g., the possible
physical application of the Thakurta solution [139] (in the
context of primordial holes and their possible contribution to
the dark matter density [140–143]). A formal definition
seems to show that the Thakurta solution does not describe a
black hole at all, since the solution does not possess a future
trapped horizon [144]. However, if one uses the Kodama
time [145] instead of the conformally Schwarzschild time
(as in Ref. [144]) to foliate the spacetime, the conclusion can
change [146]. The resolution might be that in an inertial
frame, the Misner-Sharp mass [147] turns out to be the
physical energy, and it is not the Noether charge of time
translations with respect to the conformally Schwarzschild
time, but rather with respect to the Kodama time.18

A. Geometry

The relevant class of Kerr-Schild metrics are given
by [148]

gμν ¼ ημν þ VðrÞlμlν; ð125Þ

where V is a scalar function of r with r2 ¼ δijxixj and lμ is
the null geodesic vector,

lμdxμ ¼ dtþ δij
xi

r
dxj; ð126Þ

thus satisfying the properties

gμνlμlν ¼ 0; ð127aÞ

ημνlμlν ¼ 0; ð127bÞ

18The explicit and general proof of this is outside the scope of
the present article, since it requires the generic Schwarzschild-
Friedmann-Lemaître(-Robertson-Walker) solution in an inertial
frame. However, the following computations already confirm the
argument in the limit of the Schwarzschild–de Sitter solution.
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lμ∇∘ μlα ¼ 0; ð127cÞ

lμ
∂μlα ¼ 0: ð127dÞ

Wework in the coincident gauge which is the unitary gauge
Γα

μν ¼ 0. The coincident gauge for the connection and the
coordinates (125) for the metric are a solution in the inertial
frame Gμ

ν ¼ 0. To avoid any confusion that seems to exist
in the literature, the coincident gauge is always a legitimate
choice, but then making an Ansatz for the metric intends to
find certain solutions that may or may not exist. In our case,
the metric (125) is a solution in the coincident gauge. If we
transformed this solution to a different coordinate system,
we would generate a nonvanishing connection.19

It is then a simple calculation to obtain

Q0μν ¼ 0; ð128aÞ

Qi00 ¼ V 0li; ð128bÞ

Qi0j ¼ Qij0 ¼
V
r
δij þ

�
V 0 −

V
r

�
lilj; ð128cÞ

Qijk ¼
2V
r
δiðjlkÞ þ

�
V 0 −

2V
r

�
liljlk: ð128dÞ

Using gμν ¼ ημν − Vlμlν we get further

Q0
μν ¼ VV 0lμlν; ð129aÞ

Qi
00 ¼ ð1 − VÞV 0li; ð129bÞ

Qi
0j ¼ Qi

j0 ¼
V
r
ðδij − liljÞ þ ð1 − VÞV 0lilj; ð129cÞ

Qi
jk ¼

2V
r
ðδiðjlkÞ − liljlkÞ þ ð1 − VÞV 0liljlk; ð129dÞ

and raising yet one more index,

Q0μ
ν ¼ VV 0lμlν; ð130aÞ

Qi0
0 ¼ −ð1 − VÞV 0li; ð130bÞ

Qi0
j ¼ −

V
r
ðδij − liljÞ − ð1 − VÞV 0lilj; ð130cÞ

Qij
0 ¼

V
r
ðδij − liljÞ þ ð1 − VÞV 0lilj; ð130dÞ

Qij
k ¼

2V
r
ðδiðjlkÞ − liljlkÞ þ ð1 − VÞV 0liljlk: ð130eÞ

The traces are

Qμ ¼ 0; ð131aÞ

Q̃μ ¼
�
2V
r

þ V 0
�
lμ: ð131bÞ

Thus, we can see from (130) that

Q½0i�
0 ¼

1

2
V 0li; ð132aÞ

Q½0i�
j ¼

1

2

�
V
r
ðδij − liljÞ þ V 0lilj

�
; ð132bÞ

Q½ij�
0 ¼ 0; ð132cÞ

Q½ij�
k ¼

V
r
δ½ikl

j�; ð132dÞ

and from (131) that

δ½μα Qν� ¼ 0; ð133aÞ

δ½μα Q̃ν� ¼
�
2V
r

þ V 0
�
δ½μα lν�: ð133bÞ

We can compute from (132) that

1

2

Z
Q½0i�

μlidS ¼ πr2V 0lμ ð134aÞ

and from (133) that

1

2

Z
δ½0μ Qi�lidS ¼ πr2

�
2V
r

þ V 0
�
lμ: ð134bÞ

Interestingly, the charges Cμ ∼ lμ will be proportional to
the null vector lμ. This suggests that a photon on a radial
trajectory sees no gravitational energy in the black hole,
what might in turn be telling us about its masslessness.

B. Charges

Let us now compare the energy charges of a black hole
obtained by using the different potentials. For this, it is
convenient to parametrize the superpotentials with three
constants a, b, c as follows:

hμνν ¼ aQ½μν�
α þ bδ½μα Qν� þ cδ½μα Q̃ν�: ð135Þ

Considering a black hole with massmS and charge q due to
a possible nonvanishing electric field, in the presence of a
cosmological constant Λ, we have

19Nonvanishing connections have been taken into account
in several recent studies of modified symmetric teleparallel
gravity [149–154]. See also [22] for a clarification on the use
of the coincident gauge.
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VðrÞ ¼ mS

4πm2
Pr

−
q2

8πm2
Pr

2
þ Λ

3
r2: ð136Þ

Using (134) we then obtain the general expression for the
energy enclosed within a radius r according to a static
observer,

C0ða; b; cÞ ¼
mS

2
ðc − aÞ þ q2

2r
aþ 4πm2

PΛr3

3
ðaþ 2cÞ:

ð137Þ

The electric charge due to the field configuration Aμν is
computed from (38b), and the result is q. [In the con-
ventions implicit in (136) the charge q is dimensionless and
Λ has the dimension energy squared.] We note that the
Reissner-Nordström black hole is an example where the
formula (38a) is not valid but only the formula (38b) yields
the correct answer. Similarly, for the energy charge the
quasilocal formula yields (137) but the first term there
would not be seen in the local formula.

1. The canonical prescription

Consider first the canonical excitation (112c) explicitly
given by (112b), for which a ¼ −c ¼ −1. We obtain
Cμ ¼ 4πm2

PVrlμ, and thus

C0 ¼ mS −
q2

2r
þ 4

3
πr3ρΛ; ð138Þ

where ρΛ ¼ m2
PΛ is the energy density due to the cosmo-

logical constant. Interpreting CE
0 as the gravitational energy

makes perfect sense for each of the contributions:
(i) The mass energy. In the pure Schwarzschild case,

the energy is simply mS, regardless of the radius at
which the flux is computed. This is the canonical
energy of a gravitational monopole. Analogously,
the canonical charge of an electron is q ¼ e, though
one can consider an infinite number of alternative
definitions q ¼ qðrÞ.

(ii) The electric energy. The electric charge contributes a
Coulombian potential energy term. It is precisely the
electrostatic energy of a thin spherical shell of radius
r and total charge q, which is, of course, equal to the
energy of a condenser with the same radius and total
charge (recall Sec. 8.2 of Ref. [155]).

(iii) The vacuum energy. The cosmological constant
contributes energy with a constant density ρΛ, the
expression that is familiar from the current standard
model of cosmology.

The first result was already obtained in an inertial frame in
metric teleparallel gravity (and is considerably neater than
the results in the different frames suggested by various
alternative regularization schemes), as we recall from
Sec. VA. It, of course, follows from the result (124) that
several well-known superpotentials, when “covariantized”

by the minimal coupling and evaluated in an inertial frame,
all unambiguously agree that CvF

0 ¼ CLL
0 ¼ CBT

0 ¼ CP
0 ¼

CW
0 ¼ C0.

2. Møller prescription

The Møller potential (119), for which a ¼ −2 and
b ¼ c ¼ 0, yields a slightly different result, CM

μ ¼
−4πm2

PV
0r2lμ, which for (136) gives

CM
0 ¼ mS −

q2

r
−
8

3
πr3ρΛ; ð139Þ

The pure Schwarzschild contribution is again the correct
one, but the numerical factors in the two other pieces
suggest that the superpotential does not directly correspond
to any standard concept energy. The vacuum energy even
has the wrong sign. Our computation agrees with the
previous results in the literature; see, e.g., the summary
presented in [156]. It has been found that the von Freud
and the Møller prescriptions agree for the Schwarzschild,
Vaidya, and Janis-Newman-Winicour spacetimes, but there
is a factor of 2 difference in the electric energy term in the
Reissner-Nordström spacetimes [157], as shown in (139).

3. Komar prescription

The same discrepancy, due to which the result (139) does
not agree with the weak field limit, has been arrived at also
from Komar’s definition of energy [158] (again, one needs
to renormalize JμνK by a factor of 2). It had been pointed
out by Tod [159] who, using Penrose’s definition of the
quasilocal energy [160], obtained the result which for the
Reissner-Nordström agrees with the result from our canoni-
cal prescription (105) but disagrees with the result from the
Komar and the Möller prescriptions (139) that the latter is
not consistent with the linear theory.
However, there is a special property of the Komar energy

that seems to suggest some possible physical interpretation.
The black hole horizon is computed from VðrÞ ¼ 1 and has
the more tractable expression when we set Λ ¼ 0,

8πm2
Pr� ¼ mS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

S − 8πm2
Pq

2

q
: ð140Þ

The black hole is called extremal when the two horizons are
degenerate and thus q2 ¼ m2

S=ð8πm2
PÞ. It follows that the

Komar (and thus also the Møller) energy enclosed within
the horizon neatly disappears for the extremal Reissner-
Nordström black hole [161], whereas the canonical energy
is C0 ¼ mS=2. In either case, according to the standard
definition of temperature we obtain

T ¼ −
V 0ðrþÞ
4π

¼ 1

16π2

�
mS −

q2

rþ

�
; ð141Þ

and thus, the extremal black hole is at zero temperature.
(Perhaps, the vanishing of the Möller and the Komar
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charges at the horizon in the extremal limit hints that they
could be related to some different thermodynamical energy.
As mentioned earlier, both the Möller and the Komar
prescriptions can be seen to imply different boundary
conditions for the Hamiltonian than the canonical pre-
scription, and these different boundary conditions might
reflect different control versus response parameters pre-
scription in a thermodynamical interpretation.)

4. Tolman prescription

Now we check the result from using the symmetric
potential of Tolman [122], whose covariant version is given
by (112a). Since in the coordinates (125),

qμνα ¼ −
m2

P

2
Lμν

α −
m2

P

4
Q̃μδνα; ð142Þ

to calculate the conserved energy-momentum current we
only need the components

L0i
0 ¼

1

2
V 0li; ð143aÞ

L0i
j ¼

V
r
ðδij − liljÞ þ V 0lilj: ð143bÞ

We then obtain the relevant parts

q0i0 ¼ −
m2

P

2
V 0li; ð144aÞ

q0ij ¼ m2
P
V
r
ðδij − liljÞ þm2

PV
0lilj: ð144bÞ

From this we obtain that CT
μ ¼ CM

μ ; the Tolman super-
potential gives the same Noether energy charge (139) as the
Møller superpotential.

5. Gürses-Gürsey prescription

We should review some previous calculations in the
literature. We find a slight disagreement with the rather
often-cited results of Ref. [162]. Most importantly though,
our result (105) for the time translation charge C0 com-
pletely agrees with theirs in the Reissner-Nordström case.
However, our conclusion that the charges can be used to
distinguish between the different prescriptions, does not
agree with their claim that the various different prescrip-
tions they studied, which included the Tolman and the so-
called Einstein energy-momentum complex,20 would yield

identical charges. The different conclusion might be due to
assuming that when 2 superpotentials yield the same
energy momentum (pseudo)tensor, they would yield also
the same charges. Assuming this, the same superpotential
might have been used in all of the cases, which would
explain the different conclusion from ours. The super-
potential adopted in Ref. [162] was first presented by
Gürses and Gürsey [164], who considered the Landau-
Lifshitz and the so-called Einstein energy-momentum
complex. From our discussion in Sec. VI C we see that
the conclusion of Gürses and Gürsey generalizes from the
class of Kerr-Schild metrics to arbitrary geometries, and
that it applies further to the Papapetrou, Weinberg, and
Bergmann-Thomson superpotentials. The unification (124)
of these superpotentials was thus anticipated by the result
of Gürses and Gürsey, extended by the “empirical” inves-
tigation of Aguirregabiria et al. [162] and further gener-
alized by the formal arguments of Chen et al. [133] (recall
discussion in Sec. VI C).

6. Alternative prescriptions

Finally, we shall briefly comment on the Noether
currents obtained from alternative formulations of the
symmetric teleparallel equivalent of GR in Sec. V C.
The Lagrange multiplier formulation leads to the
“improved” Komar superpotential (88) that was also found
in Ref. [113]. As it differs from the canonical result only by
a covariant derivative of the velocity, there is no difference
for a static observer since our solution is in the coincident
gauge. Thus, one should consider a more general setup to
distinguish the effect of the noncanonical term.
The superpotential (101) derived in the inertial connec-

tion approach, however, does not yield a viable result. Since
in the parametrization (135) now a ¼ −1, b ¼ −3=4, and
c ¼ 1=2, we now obtain from (137) the energy of the
Reissner-Nordström–de Sitter black hole (136) as

CA
μ ¼

�
3

4
mS −

q2

8r

�
lμ: ð145Þ

That the cosmological constant contribution drops away
would suggest the interpretation that the charge is (propor-
tional to) the enthalpyH ¼ Eþ pV rather than the internal
energy E. It does make sense to interpret the mass mS
as enthalpy [165]. However, we would have to invoke
the radiation equation of state mS ¼ H ¼ 4

3
E in order

to recover the energy charge CA
0 ¼ E, and that seems

too contrived.

VIII. GRAVITATIONAL WAVES

Gravitational waves have been a subject of great con-
troversies since their conception [13]. Nowadays, due to
recent fantastic progress, we even have observational
evidence for their existence. Nevertheless, the energy

20This is actually von Freud’s superpotential [128,163], though
often attributed to Einstein’s original paper [8] (this error was
repeated in, e.g., [21]). Only the qαμ

ν
, later known as the Tolman

pseudotensor, featured in Ref. [8], and its quasilocal integral, was
not taken into consideration.
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carried by gravitational waves remains a theoretical conun-
drum [25,166–169]. There are many false common wis-
doms about the energy momentum of gravitational waves;
for a recent critical assessment of four such arguments, see
Ref. [170]. The canonical resolution of energy-momentum
reveals that the energy momentum of gravitational waves in
an absolute vacuum (i.e., in the strict absence of any
nongravitational fields, including a detector of any kind) is
null. This does not imply that gravitational waves would be
unphysical, but that an absolute vacuum is an unphysical
idealization.
The property of the gravitational waves might again be

considered in analogy with electromagnetism (a recurring
theme of this article). Electromagnetic waves can very
well propagate without “carrying” electromagnetic charge,
yet these waves also can be detected through their inter-
action with charged matter. Similarly, gravitational waves
can propagate without inherent gravitational charge
(¼ energy), but these waves are detectable via their
gravitational (¼ energetic) interaction with matter. This
follows consistently from our identification of energy as the
canonical Noether charge, and, of course, the energy
according to this definition is conserved, by construction.
To clarify the detectability of gravitational wave energy,

we recall the local energy-momentum current, obtained
from the divergence of the canonical excitation as

Jμ ¼ ∇αJαν ¼ ðTμ
ν þ tμνÞvν þ

1

2
hαμν∇αvν: ð146Þ

We can recognize five cases wherein gravitational waves
may in principle result in nontrivial energy charge:

(i) In the presence of matter. Since Tμ
ν ¼ ffiffiffiffiffiffi−gp

Tμ
ν,

fluctuations in the metric influence the material
current.

(ii) In the presence of a background gravitational field.
In a physical (as opposed to an absolute) vacuum,
the charge C0 can quantify the nonzero energy
of gravitational waves.21

(iii) In a noninertial frame. With respect to a noninertial
frame, wherein tμν ≠ 0, there obviously can appear
energies even into an absolute vacuum.

(iv) With respect to a (covariantly) nonstatic clock. An
accelerated observer, for whom∇αvμ ≠ 0, can probe
the hαμν generated by gravitational waves.

(v) In nontrivial topology. Gravitational waves with
nontrivial topology could generate energy charges
without any local current (Jμ ¼ 0).

It could be interesting to investigate some of these cases
(we do not claim that all of them would be realistic or
relevant). As the first exploration, in the following we will
only confirm that, as expected, in the case that none of
the above five conditions holds, the energy momentum of
gravitational waves consistently vanishes.

A. Linear perturbations

Consider the perturbation δgμν of the flat metric ημν,

gμν ¼ ημν þ δgμν: ð147Þ

Using the 1þ 3 decomposition familiar from cosmological
perturbation theory, we decompose the perturbation δgμν
into scalars ϕ, ψ , β, σ, transverse vectors Bi, Ei, and
transverse and traceless tensors hij as follows:

δg00 ¼ −2ϕ; ð148aÞ

δg0i ¼ −β;i þ Bi; ð148bÞ

δgij ¼ −2ψδij þ σ;ij −
1

3
∇2σδij þ 2Eði;jÞ þ 2hij: ð148cÞ

Then we find that at the linear order in perturbations, the
inertial energy-momentum tensor vanishes identically,

Gμ
ν ¼ 0; ð149Þ

and the field equations become

T0
0 ¼ −2∇2φ; ð150aÞ

T0
i ¼ −2 _φ;i þ

1

2
∇2Vi; ð150bÞ

Ti
j ¼ ½3ψ̈ − φ̈þ∇2ðϕ − φ − _βÞ�δij − ðϕ − φ − _βÞ ;i;j

− _Vði
;jÞ −

1

2
_Bi

;j þ ḧij −∇2hij; ð150cÞ

where we have defined φ ¼ ψ þ 1
6
∇2σ and Vi ¼ Bi − _Ei.

One can check that consistently ∇μTμ
ν ¼ 0. We have

m−2
P qi00 ¼ φ;i þ 1

4
_β;i þ 1

4
_Bi þ 1

4
∇2Ei; ð151aÞ

m−2
P qi0j ¼

1

4

�
− _ϕþ _φ −

1

6
∇2 _σ

�
δij þ

1

4
_σ;i;j

þ 1

2
B½i

;j� þ
1

2
_Eði

;jÞ þ _hij: ð151bÞ

21The gravitational field of, e.g., a binary system extends to
infinity. It is associated with some total mass, which decreases as
the binary emits a pulse of gravitational waves. The change in the
mass before and after the pulse is reflected in the charge C0, as
should be obvious from the derivations of Sec. VII (even though,
of course, for a binary one should in principle take into account a
more complicated configuration exhibiting a quadrupole moment
at the emission, etc.).
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We are most interested in the components of the tensor
density22 hμνα. For these components we obtain the
expressions

m−2
P hi00 ¼ −2φ;i −

1

2
∇2Ei; ð152aÞ

m−2
P hij0 ¼ B½i;j�; ð152bÞ

m−2
P h0ij ¼

�
3 _ψ − _φ −

1

2
∇2β

�
δij þ

1

2
ðβ þ _σÞ ;i;j

− Vði
;jÞ þ _hij; ð152cÞ

m−2
P hijk ¼ −ð2φ − 2ϕþ _βÞ ½;iδj�k þ E½i;j�

;k

− ð∇2E − _BÞ ½iδj�k þ 2hk½i;j�: ð152dÞ

Again we can make a consistency check by checking that
∇μHμν

α ¼ m2
PT

ν
α. The component (152) determines the

energy as

C0 ¼ m2
P

I
d2x

�
−2ψ ;i −

1

3
∇2σ;i −

1

2
Ei

�
ni

¼ m2
P

I
d2xgjk∂½igj�kni ¼ EADM: ð153Þ

We have recognized the energy integral as precisely the
ADM energy expression. Note that the flux of the possible
vector modes Ei can contribute energy, and this part one
could not have deduced from the local energy density
(150a). It is thus nontrivial that we recover precisely the
canonical ADM energy at the linear order in perturbations,
which could be regarded as the minimal requirement
for a successful definition of gravitational energy. For
example, the Komar integral does not agree with the
ADM expression,

CKomar ¼
Z

d2x
�
ϕ;i −

1

2
_β;i þ

1

2
Bi

�
ni: ð154Þ

With some assumptions, however, an agreement can be
established [80]. In the present setup, we see that we need
to assume (0) renormalization by the factor of 2, (1) the
absence of shift and vector perturbations, and (3) vanishing
effective anisotropic stress, ϕ ¼ −ψ . Only scalars and
vectors contribute to either (153) or (154), and there is
no energy due to tensor modes.
We will have a closer look at the transverse-traceless

components hij, which are the only components that may
propagate in vacuum. Taking this into account, the relevant
components of the tensor density hμνα are simplified to

hi00 ¼ 0; ð155aÞ

hi0j ¼ −m2
P
_hij: ð155bÞ

We can also check that the field equations, which now
reduce to ∇αhαμν ¼ 0 since Gμ

ν ¼ 0, are given by

∇μhμ00 ¼ ∇μhμ0i ¼ 0; ð156aÞ

∇μhμij ¼ m2
P□hij; ð156bÞ

and thus imply the wave equation □hij ¼ 0 as expected.
From (155) we can determine the conserved charges

C0 ¼ 0; ð157aÞ

Ci ¼ m2
P

I
d2x _hijnj: ð157bÞ

This confirms that the gravitational waves do not have
energy associated with them in the linearized approxima-
tion. It is easy to see that despite the nonzero integrand
(157b), also the momentum charge vanishes. Without loss
of generality, we may consider the standard parametrization
of gravitational wave polarizations hþ and h× traveling, for
concreteness, in the z-direction,

hij ¼

0
B@

hþ h× 0

h× −hþ 0

0 0 0

1
CA: ð158Þ

The surface integral can then be performed over a spherical
surface at a radius r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
using the standard

spherical coordinates

nx ¼ cosϕ sin θ; ð159aÞ

ny ¼ sinϕ sin θ; ð159bÞ

nz ¼ cos θ: ð159cÞ

We obtain

Cx ¼ −
m2

P

2

I
r2 sin θðhþnx þ h×nyÞdθdϕ

¼ −
πm2

Pr
2

4

Z
ðhþ cosϕþ h× sinϕÞdϕ

¼ 0; ð160aÞ
22These were reported in Ref. [21] for the generic 13-parameter

theory with a local and linear constitutive law, though unfortu-
nately with some typos.
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Cy ¼ m2
P

2

I
r2 sin θðhþny − h×nxÞdθdϕ

¼ πm2
Pr

2

4

Z
ðhþ sinϕ − h× cosϕÞdϕ

¼ 0; ð160bÞ
Cz ¼ 0: ð160cÞ

For the transverse momenta, the averages over the azimu-
thal angles cancel, and therefore the net charges vanish. The
vanishing of the charges is in agreement with our remark
below (134b) since gravitational waves correspond to
massless particles very much like photons.
This result supports the intuition that in an absolute

vacuum, gravitational waves cannot be associated with
physical energy momentum (according to the static observer
in an inertial frame). However, it is reasonable to suspect that
energy-momentum should be quadratic order in perturba-
tions, but in this article we shall not proceed to the study of
higher order perturbation theory. Instead, we can find further
support to the conclusion by studying a class of exact,
nonperturbative gravitational wave solutions.

B. Exact solutions

A spacetime filled with plane-fronted waves with parallel
propagation, i.e., a plane-fronted waves with parallel propa-
gation (PP)-wave spacetime describing gravitational waves,
can be parametrized by the line element

ds2 ¼ Hðu; x; yÞdu2 þ 2dudvþ dx2 þ dy2: ð161Þ

It turns out that in the coincident gauge this solution is in the
inertial frame, tμν ¼ 0. The same result was found in [164]
(see also [171,172]) and in metric teleparallelism in [173].
There is only one nontrivial component of

∇αqαμν ¼ −
m2

P

2
δμvδvνðH;xx þH;yyÞ; ð162Þ

which also vanishes on-shell. If we restrict to quadratic
solutions of the Einstein equation, we obtain the well-
known plane gravitational waves H ¼ AðuÞðx2 − y2Þ þ
2BðuÞxy described by the two functions AðuÞ and BðuÞ.
There are nonzero components of

qμαν ¼ −
m2

P

4
δμv½δαvðδuνH;u þ δxνH;x þ δyνH;yÞ

þ δuνðδαxH;x þ δαyH;yÞ� þ
1

4
δαvδ

u
νðδαxH;x þ δαyH;yÞ:

ð163Þ

However, for the calculation of energy and entropy we need
the superpotential hμαν instead. Also, it is more convenient
to employ the Cartesian coordinates

u ¼ z − t; ð164aÞ

2v ¼ zþ t: ð164bÞ

It is easy to see that this linear change in coordinates does
not take us away from the inertial frame but retains tμν ¼ 0
in the coincident gauge. The line element (161) reads

ds2 ¼ ðH − 1Þdt2 − 2Hdtdzþ ð1þHÞdz2 þ dx2 þ dy2;

ð165Þ

where H ¼ Hðz − t; x; yÞ. The conserved currents are
determined from the components

h0μν ¼
m2

P

2
δμzðδxνH;x þ δyνH;yÞ: ð166Þ

Again, we see immediately that the energy is zero,

C0 ¼ 0; ð167aÞ

Ci ¼
m2

P

4

I
ðδxi H;x þ δyi H;yÞnz: ð167bÞ

Inserting the quadratic solution for Hðu; x; yÞ and using
x ¼ rnx, y ¼ rny, gives

Cx ¼
m2

P

2

I
½AðuÞxþ BðuÞy�nzdθdϕ

¼ m2
P

2

I
r3 sin2 θ½AðuÞ cosϕþ BðuÞ sinϕ� cos θdθdϕ

¼ 0; ð168aÞ

Cy ¼ −
m2

P

2

I
½AðuÞy − BðuÞx�nzdθdϕ

¼ −
m2

P

2

I
r3 sin2 θ½AðuÞ sinϕ − BðuÞ cosϕ� cos θdθdϕ

¼ 0; ð168bÞ

Cz ¼ 0: ð168cÞ

Again, it is the integration over the azimuthal angle that
averages to zero (since u depends upon z and thus the polar
angle, the integral over θ would not necessarily cancel, as it
did not in the case of Sec. VIII A). Thus, the nonperturba-
tive calculation confirms the conclusions about plane
gravitational waves in absolute vacuum suggested by the
calculation of linear perturbations.

IX. ENTROPY

In Sec. VII we discussed physical definitions of a black
hole. In purely formal terms, a black hole B can be defined
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as a region of a manifold M where the future null infinity
Iþ has no chronological past I−, B ¼ M − I−ðIþÞ. The
horizon H of B is then the boundary H ¼ ∂I−ðIþÞ, which
is a null surface. B is stationary if there exists a Killing field

∇∘ ðμtνÞ ¼ 0 which at infinity tμtμ ¼ −1. In such a (rigid)
case, H is a Killing horizon; i.e., its null generators
coincide with the orbits of a one-parameter group of
isometries, and so there is a Killing vector normal to
H. B is called static if tμ is a hypersurface orthogonal,
and then it follows that tμ ∈ H⊥. Under more general
circumstances in whichH could also have angular velocity
Ω, there exists a Killing field ξμ ¼ tμ þΩϕμ. Then there is

always defined a function κ such that ∇∘ μðξνξνÞ ¼ −2κξμ. It
must be a constant along the null geodesic generator of a
Killing horizon and therefore is constant over theH: that is
the zeroth law of black hole thermodynamics.
A bifurcate Killing horizon is a pair of Killing horizons,

with respect to the same Killing field ξμ, and intersecting
on a spacelike hypersurface C. Then ξμðxÞ ¼ 0when x ∈ C.
A consequence of the zeroth law is that unless the B is
extremal, i.e., κ ¼ 0, then H comprises a branch of
bifurcate Killing horizon. The first law of black hole
thermodynamics is δM ¼ m2

PκδAþ ΩδJ, where A is the
area of H and J the angular momentum. The area-entropy
law then results in

δM ¼ m2
Pκ

4
Sþ ΩδJ: ð169Þ

Wald has found a well-known expression for the entropy S
that can be interpreted as a Noether charge [7,127]. It was
derived using the integral of the form (37) with the Noether
potential Jμνξ generated by a Killing vector ξμ which
asymptotically corresponds to time translations and thus
yields the correct (equal to the ADM) energy charge and
can be directly related to the Hamiltonian in the symplectic
formalism. We will not review the whole derivation here,
which has also recently been translated to the symmetric
teleparallel geometry [113].
The essential point is that the energy charge (diffeo-

morphism charge with respect to time translations) can be
recast into an expression for entropy by using the first
law that relates energy change to entropy change. What
required some ingeniosity and elaborate differential-
geometric constructions was the fact that the energy charge
was not known, or rather it was known only under certain
assumptions at infinity. However, we have claimed the
possible resolution of the energy problem. As we know the
energy charge, we can almost trivially express the entropy S
in terms of this energy charge, using the first law (169). The
surface gravity κ appears in this formula,

S ¼ 2π

κ

I
H
dn−2σμνhμναvα: ð170Þ

This expression is valid for any gravity theory formulated
in any geometric setting, if one replaces hμναvα ¼ Jμν

v

correspondingly. To check the formula, we recall that the
temperature of a Schwarzschild black hole is m2

P=mS, and
thus the surface gravity κ ¼ 2πm2

P=mS, adapting these
quantities to our mass-based units. Then, as we compute
the surface integral (170), we recognise that it is propor-
tional to the energy integral we have already computed,

S ¼ mS

2m2
P
C0 ¼

1

2

�
mS

mP

�
2

: ð171Þ

Since the area of the black hole is A ¼ m2
S=4πm

4
P, Eq. (171)

is precisely the usual entropy-area law.
Let us now consider another approach, based on the “first

new insight” of Ref. [37]. There we noticed that the black
hole entropy is the Noether charge, corresponding to the
symmetry of radially boosting the horizon. Since Lorentz
transformations operate in the frame bundle, we do not
repeat the (very simple) derivation here, but state the result

S ¼ −2π
Z
C
d2xrαβμνnαβnμν; ð172Þ

where nαβ is the binormal to the C normalized such that
nαβnαβ ¼ −2. One of these terms stems from just writing
differently d2σμν ∼ d2xnμν, and the other stems from the
choice of the Lorentz boost. The conserved charge is called
the center of mass momentum. In nonrelativistic physics,
the conservation of this charge is the consequence of the
energy-momentum conservation, but in special relativity it
is an independent quantity. It is very intriguing that its
physical interpretation (which in comparison to the energy
momentum and the angular momentum is quite obscure)
turns out to be related to entropy, at least for black holes.
(In the context of black holes, fluctuations of the center of
mass momentum have been considered potentially relevant
for the unitary of the evaporation, e.g., [174].)
It is not difficult to see that the center of mass momentum

charge (172) is a viable generalization of the Wald entropy.
In the special case of coincident GR, we obtain from the
solution (115)

S ¼ πm2
P

Z
H
dx2gβ½μδν�α nαβnμν: ð173Þ

This could easily be evaluated, e.g., using the geometry of
Sec. VII and the binormal nαβ ¼ 2l0lrη0½αηβ�r. Instead, we
recall the original expression for Wald entropy [7]

S
∘ ¼ −2π

Z
C
d2x

∂L

∂R
∘
αβμν

nαβnμν; ð174Þ

where the hats remind one that the derivation was based
on considering the metric as the only gravitational variable.
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In the case of GR, we obtain from (41) precisely the same
expression as (173). In our first order framework, the

Riemann curvature R
∘ α

βμν cannot enter into the action I
explicitly, but from (3a) one can see

Rα
βμν ¼ R

∘ α
βμν þ 2∇∘ ½μNα

ν�β þ 2Nα
½μjλjN

λ
ν�β; ð175Þ

and thus (172) is the straightforward generalization
of (174).
An entropy formula for metric teleparallelism had been

derived earlier by Hammad et al. [175] and is the correct
limit (170) when adapted to the metric teleparallel geom-
etry. Hammad et al. noted that the result can be rewritten as
a volume integral

S ¼
Z
B
d3x∇∘ iðh0iαvαÞ; ð176Þ

and thus it clarifies a possible conformal problem with the
standard area-entropy law in GR, though we do not know
what forbids one from using the Stokes law in GR exactly
the same way. Also, we note technical issues with the
computations in [175], as their energy formula would give a
divergent result (the regularizations discussed in Sec. VA
were not used explicitly), and their entropy formula would
not give the correct result (since an inertial frame was not
identified), but the result was forced by implementing
additional constraints on the Killing vectors which we will
briefly discuss below. Despite these details, the entropy
formula in Ref. [175] agrees with the expression (170), and
they also noted the benefit of teleparallel formulation and
other first order formulations [32,33] that one does not have
to invoke a bifurcation surface and resort to a Killing vector
that vanishes on that surface.
The Killing vectors of the metric are parallel transported

by the metric Levi-Civita connection. One could also
consider the different transport of the vector along itself,
ξμ∇μξ

ν ¼ κ̃ξν, but in general κ̃ ≠ κ. If the vector is
autoparallel, κ̃ ¼ 0. From (21b) we see that for a Killing
vector ξμ,

∇ðμξνÞ ¼ −ðTðμνÞα − LαμνÞξα; ð177aÞ

implying that

∂μξ
2 þ κ̃ξμ ¼ −ðTαμν − 2Q½αμ�νÞξαξν: ð177bÞ

In general there is no reason to expect the RHS of these
equations to vanish. (However, this condition was imposed
in Ref. [175], adapted from Ref. [176].) The surface gravity
in black hole thermodynamics is a purely metrical concept,
and requiring κ̃ ¼ κ would entail somehow a totally differ-
ent interpretation of temperature and thermodynamics
in general.

A generalization of a Killing vector, which has a physical
interpretation, could rather be defined by the requirement of
the ξμ being also a symmetry of the independent connection
[153,177,178] δξΓα

μν ¼ 0. Then ξμ can be called an affine
Killing vector. From (21c) we then get that this condition is
a second order differential equation for ξμ,

gαβ∇μ∇νξβ − 2Qðμαβ∇νÞξβ −∇μQν
αβξβ

¼ ∇μðTα
βνξ

βÞ þ Rα
νβμξ

β: ð178Þ

If we restrict to symmetric teleparallelism, this is simply
∇μ∇νξ

α ¼ 0, and the generalized Killing condition leads
to the identity Qαλðμ∇νÞξλ ¼ ∇αðQλμνξ

λÞ ¼ −∇ξQλμνþ
Qλμν∇αξ

λ, where in the second equality we recalled from
(9) that now ∇½αQβ�μν ¼ 0, and one sees that the equation
boils down to, consistently, nothing but the condition that
δξQα

μν ¼ 0. Note though that in general we have no reason
to impose this constraint for the Killing vectors of black
hole spacetimes. In fact, the formulas we have derived for
energy and entropy do not require considering Killing
vectors at all (see also [179]).

X. CONCLUSIONS

We studied the diffeomorphism Noether currents in the
context of general Palatini theories of gravity. The results
were adapted to the geometrical trinity, in particular the
metric teleparallel and the symmetric teleparallel versions
of GR. The first study of black holes and of gravitational
waves in terms of the canonical Noether currents of
teleparallel theories were carried out. Results to highlight
were C0 given by (138) for the black hole and Cμ ¼ 0 for
gravitational waves. Several previous calculations in the
literature were reviewed, corrected, and completed.
As far as we know, all previous considerations of

Noether currents in either metric or symmetric teleparallel-
ism have been compromised by gauge dependence. In
metric teleparallelism the results are sensitive to the choice
of the Lorentz frame, and in symmetric teleparallelism
the results are sensitive to the choice of the translational
gauge. The latter is a direct reflection of the coordinate
ambiguity in the conventional pseudotensor superpotential
approaches. Reasonable results can, of course, be obtained,
but in principle one can also always obtain a vanishing
charge, or indeed anything between �∞. We reviewed
many different prescriptions that have been proposed to fix
at least part of the ambiguities. With such prescriptions,
the results have been made to converge at the asymptotic
infinity to the correct charges, s.t., e.g., the energy con-
verges to the ADM energy. The physical criterion we have
advocated, fixing the gauge freedom by evaluating the
results in an inertial frame, seems to be (we might say, an
infinite) improvement to this.
We arrived at unique expressions for the currents. In the

standard curvature formulation of GR, the current is given
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by the famous Komar expression, which is gauge invariant
even though the connection has the projective gauge
freedom. If the Komar charges always matched the physical
energy of a given gravitational system, this study would not
have been needed. It had been noticed that by a (rather
ad hoc) modification (52c), one could fix the problems of
the Komar superpotential. Gratifyingly, the current of this
form (88) can emerge as a Noether current in the symmetric
teleparallel equivalent of GR. Even better, the canonical
current (75b) in coincident GR is the simplification of the
improved Komar obtained by erasing the nonstandard and
undesired derivative term. The expression for the canonical
current was shown to be the background-independent
unification of the Bergmann-Thomson, von Freud,
Landau-Lifshitz, Papapetrou, andWeinberg superpotentials
that result from the unique minimal coupling prescription
applied to each of those distinct superpotentials.
In metric teleparallelism, the form of the current (62) was

also expected from previous, in the metric sector vastly
more numerous, studies. The metric and the symmetric
teleparallel formulations have analogous structures that
differ from the Einstein-Palatini case. The Noether currents
turn out to be encoded into the field equations, s.t. the
divergence of the superpotential equals the local energy-
momentum current. The gauge dependence of the currents
now rather saves than compromises the theories, since it
can be exploited to set the solution into an inertial frame,
wherein the local current is solely due to the matter fields.
We summarize the expressions for the canonical currents
and the inertial energy-momentum tensors in the geomet-
rical trinity in Table II.
We have several expressions for entropy, derived from

different considerations. The values of these integral expres-
sions, for a given gravitational system, are uniquely fixed in
an inertial frame. Thus, the fact that these completely
different kinds of expressions yielded the correct area-
entropy law for a black hole provided a very nontrivial
consistency check of our formulations. To summarize, one
can consider the following entropy expressions:

(i) Two-dimensional surface integrals. The formula (170)
is the generalized Wald entropy that is equivalent to
the center of mass momentum of the black hole.

(ii) Three-dimensional volume integral. The expression
(176) is a rewriting of (172), which was deduced
from the first law as a Noether charge with respect to
time translation.

(iii) Four-dimensional spacetime integral. In Euclidean
quantum gravity, the on-shell action can be related to
the entropy. We had only a preliminary look at this
Ref. [24], and further investigation is called for.

We emphasize that both the energy charge (172) and the
center of mass momentum charge (170) were deduced
without any assumption about the theory or its geometrical
setting. In particular, the center of mass momentum of a
black hole is nonzero in standard GR and it equals the
entropy of the black hole in standard GR. If one regards the
latter fact as a geometrical coincidence, one then needs to
explain what the former fact means.
The energy charge turned out to be gauge dependent;

the center of mass momentum charge did not. Whether
the former, fixed to an inertial frame, is equivalent to the
latter remains to be strictly proven. Also, we had pre-
viously argued that the metric and the symmetric for-
mulations should give equivalent results in the respective
inertial frames, and this is supported by the case study of a
black hole in this article, but the relation of the formu-
lations would be interesting to consider in more depth.
Also, the tetrad formulation offers a more direct handle on
the observer frame, and the interpretation of the inertial
frame will be interesting to elaborate on in the tetrad
language.
Another issue to be clarified could be the precise origin

of the noncanonical piece Jμνnon that is found in the
(Lagrange multiplier version of the) tensor realization of
the diffeomorphism transformation. This seems a more
formal issue, but it could reveal some insight into the
possible physical interpretation of noncanonical charges
such as the Komar or the Møller charge. Also, it is a
gravitational aspect of the long-standing problem of defin-
ing the proper canonical Noether currents (as opposed to
pseudocanonical pseudotensors which require ad hoc
improvements) for matter fields. The apparent ambiguities,
of course, stem from the fact that the theory is invariant
under arbitrary diffeomorphisms. However, establishing the
proper canonical transformation would not only beautify
the formalism but provide a tool to construct the proper
canonical theory itself.
We believe that the clarification of energy, which was

only possible at the edge between the metric and the
symmetric teleparallel vertices of the geometrical trinity,
could turn out to be a milestone on the road toward
quantum gravity. The epitome of challenges on this road,

TABLE II. Summary of the superpotentials and the inertial energy-momentum currents in the Geometrical Trinity.

Formulation Constraints Superpotential Canonical frame

Symm. telek Rα
βμν ¼ Tα

μν ¼ 0 m−2
P hμνα ¼ δ½μα Q̃ν� − δ½μα Qν� −Q½μν�

α tμν ¼ qμαβQν
αβ − 1

2
δμνqαβγQα

βγ ¼ 0

Metric telek Rα
βμν ¼ Qα

μν ¼ 0 m−2
P tαμν ¼ 1

2
Tμ

α
ν þ T ½μν�

α þ 2δ½μα Tν� tμν ¼ 2tαβμTα
νβ − 1

2
δμνtαβγTα

βγ ¼ 0

Palatini � � � m−2
P hμνK α ¼ ∇∘ ½μ

δν�α̂ tμKν¼? m2
P
2

h�
R
∘
−□

∘ �
δμν̂ þ

�
2∇∘ μ∇∘ α −∇∘ α∇

∘ μ�
δαν̂

i
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the problem of time, the conjugate of energy, accentuates
the conceptual conflicts between GR and quantummechan-
ics. According to the premetric program (recall Sec. VI B),
based on the developments by Kottler, Cartan, van Dantzig,
etc., it is the conserved charges that are the fundamental
primitives—electric charges rather than complex phases,
energy-momentum rather than spacetime. The emergent
nature of the latter seems to be suggested already by the
fundamental quasilocality of the charges in gauge theories,
including gravity. A promising, recently proposed theory,
based on quantum energetic causal sets [180], postulates
that energy is fundamental [181]. Indeed, energy and

momentum are not emergent from spacetime, but rather
the opposite is the case.
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[22] J. Beltrán Jiménez and T. S. Koivisto, Lost in translation:
The Abelian affine connection (in the coincident gauge),
Int. J. Geom. Methods Mod. Phys. 19, 2250108 (2022).

[23] T.Koivisto, An integrable geometrical foundation of gravity,
Int. J. Geom. Methods Mod. Phys. 15, 1840006 (2018).
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