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We consider Einstein-Maxwell-dilaton theory in (2þ 1) dimensions where the coupling between the
scalar field and the Maxwell invariant is the dilatonic coupling fðϕÞ ¼ expð−2αϕÞ, and we obtain novel,
exact, rotating black hole solutions. The dilatonic parameter α impacts the metric function, affecting the
rotating properties of the black hole, its mass, and also its thermodynamics. Calculating the entropy we find
that it is always positive, and the dilatonic black holes may have higher entropy than the BTZ black hole.
Depending on the parameters, the dilatonic BTZ-like black hole may be thermodynamically preferred over
the BTZ black hole which is recovered when α ¼ 0.
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I. INTRODUCTION

In (2þ 1) dimensions one of the first exact black holes
with a negative cosmological constant was discussed by
Bañados, Teitelboim, and Zanelli (BTZ) [1,2]. This space-
time is a solution of a theory that consists of the Ricci
scalar, a negative cosmological constant, and the electro-
magnetic invariant which can be linear [1–3] or nonlinearly
coupled to gravity [4], which are regular solutions having a
nonsingular center. Regular solutions were found recently
in [5] involving a scalar field. In [6,7] (2þ 1)-dimensional
black holes with a conformally coupled scalar field, being
regular everywhere, were discussed. After these first results
other hairy black holes in (2þ 1) dimensions were dis-
cussed [8–13]. In [14] (2þ 1)-dimensional gravity with a
negative cosmological constant in the presence of a scalar
field and an Abelian gauge field was considered. Both
fields are conformally coupled to gravity, the scalar field
through a nonminimal coupling to the curvature and the
gauge field given by a power of the Maxwell field. A sixth-
power self-interacting potential, which does not spoil
conformal invariance, is also included in the action,
introducing a relation between the scalar curvature and
the cosmological constant. In [15,16] (2þ 1)-dimensional
charged black holes with scalar hairs were derived, where

the scalar potential is not fixed ad hoc but derived from
Einstein’s equations. In [17] exact three-dimensional black
holes with nonminimal coupling scalar fields were dis-
cussed, while (2þ 1)-dimensional fðRÞ gravity black holes
coupled to scalar fields were also obtained [18,19].
In (3þ 1) dimensions there is also a large amount

of literature in black holes coupled to scalar fields. The
first attempts were carried out by Bekenstein, Bocharova,
Bronnikov, and Melnikov, called the BBMB black
hole [20]. The resulting spacetime resembles the extremal
Reissner-Nordström one, but the scalar field diverges at the
horizon. It was also shown in [21] that this solution is
unstable under scalar perturbations. It was shown that the
resultant temperature is zero and the entropy diverges,
allowing one to argue that the BBMB solution does not
describe a black hole spacetime or that the thermodynamics
of this solution is not well understood [22]. To make the
scalar field regular at the horizon, a gravitational scale was
introduced via a cosmological constant [23], resulting in an
asymptotically de Sitter spacetime which is also found to be
unstable [24]. The thermodynamics of this solution was
also found to have an odd behavior [25,26]. Recently,
another gravitational scale was introduced via the modifi-
cation of the curvature part of the action by adding a
nonlinear function of the Ricci scalar [fðRÞ gravity] [27],
making the scalar field regular at the horizon. The thermo-
dynamics of both the general relativity and fðRÞ gravity
cases also suffer from the same problems (negative
entropy), and in both cases an electric charge has to be
introduced to cure this problem [25–27]. Black holes with
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scalar fields, minimally or nonminimally coupled to gravity
and other matter fields, have been extensively discussed in
the literature [28–41].
A dilatonic field appears naturally in the low energy

limit of various string theories [42], in (3þ 1) dimensions.
As a result black hole solutions were obtained in these
theories [43]. These pioneering results showed that the
produced compact object is determined by the black hole
mass, the electric charge, and the asymptotic value of the
dilatonic scalar field. The scalar field dresses the black hole
with a secondary scalar hair, and there is no independent
scalar charge that can be detected asymptotically by an
observer since the scalar charge is given in terms of the
conserved quantities of the black hole, i.e., the mass and the
electric charge. Black holes in (3þ 1) dimensions with a
dilatonic coupling have been a very active field of research,
and different scenarios with self-interacting scalar poten-
tials, different types of electrodynamics and Yang-Mills
fields, and spacetimes with different types of topology have
been studied through the years [44–51].
Dilatonic black hole solutions were also found in (2þ 1)

dimensions. Modification of the BTZ black hole by a
dilaton scalar field has been considered in [52], where it
was found that a second degree of freedom has to be added
in the metric ansatz to obtain nontrivial solutions, which is
expected since a simple self-interacting scalar field theory
does not satisfy ρ ¼ −pr [53]. This work was further
extended in [54] in which a dilaton field ϕ ¼ lnðrβÞ
coupled to an electromagnetic field was introduced and
in the presence of a potential VðϕÞ ¼ expðbϕÞΛ the causal
structures were investigated, and the thermodynamical
temperature and entropy were computed. In [55] using
the same forms of the dilaton field and the potential term,
spinning black hole solutions were obtained, where the
coupling term does not account since the solutions are
uncharged.
Black holes were also investigated in [56] where a self-

interacting potential that is a linear combination of two
Liouville-type potentials was considered. One can also
consider different types of electrodynamics to find black
hole solutions as in [57], where black holes with Born-Infeld
electrodynamics were obtained. In [58] Born-Infeld-dilaton
black holes were also found, and the conserved charges and
the thermodynamics were also discussed, as were dilaton
black holes with power-Maxwell electrodynamics [59].
In this work we present novel rotating BTZ-like sol-

utions in the Einstein-Maxwell-dilaton theory. This work
can be considered as a generalization of [52,54,55]. In our
work we do not fix the form of the scalar field, but it is
determined by the field equations. The scalar potential is
also determined by the field equations. We follow this
approach because the choice of different reasonable poten-
tials leads to a system of equations which turn out to be
untractable. As a result we follow a bottom-up approach
and find a theory in which the field equations can be solved

analytically, determining the scalar potential also. Solutions
for given potentials may still be found, but a numerical
approach should be followed.
The spacetime is parametrized by six constants,

M;Q; l; α; b; J, which are the black hole mass, electric
charge, AdS scale, coupling constant between the Maxwell
field and the dilaton, scalar length scale, and angular
momentum, respectively. The solutions have the interesting
feature of reducing to some versions of the BTZ black hole
[1,2] spacetime by setting the parameters appropriately. For
J ¼ 0 the solutions reduce to the ones obtained in [60]. To
derive these types of solutions we made two assumptions:

(i) The coupling between the dilatonic scalar field and
the Maxwell invariant is the dilatonic coupling
fðϕÞ ¼ expð−2αϕÞ.

(ii) The coupling function fðϕÞ modifies the circum-
ference of the black hole according to fðϕÞRðϕÞ ¼ r
where R is the circumference metric function.

Under these two assumptions, we solve the field equations
and derive spinning solutions. We compare both geometric
and thermodynamical aspects of the new solutions with the
rotating BTZ case, and we discuss the effects of the dilaton
scalar field with the new ingredient, the angular momentum
added in this work with respect to the existing literature.
The work is organized as follows: In Sec. II we set up the

theory and derive the field equations. In Sec. III we solve
the field equations to find new rotating dilatonic solutions,
while in Sec. IV we discuss thermodynamics and compare
the thermodynamical properties of the new solutions with
the rotating BTZ case [1,2,60]. In Sec. V we discuss
the particular scenario of α ¼ 1. Finally, in Sec. VI we
conclude and point out possible extensions of this work that
can be investigated in future works.

II. BASIC FIELD EQUATIONS

We consider Einstein-Maxwell-scalar (dilaton) (EMD)
theory in (2þ 1) dimensions,

S¼ 1

2

Z
d3x

ffiffiffiffiffiffi
−g

p ½κ−1R−2∇μϕ∇μϕ−VðϕÞ−fðϕÞFμνFμν�;

ð1Þ

where VðϕÞ is the self-interacting potential of the scalar
field while fðϕÞ ¼ expð−2αϕÞ is the dilatonic coupling
function of the Maxwell field, and we set κ ¼ 8πG ¼ 1.
The scalar potential is left arbitrary, and we determine its
form from the field equations. Varying the action, we can
obtain the Einstein equation, the Klein-Gordon equation,
and the electromagnetic field equation,

Gμν ≡ Rμν −
1

2
Rgμν ¼ Tϕ

μν þ TA
μν; ð2Þ

4□ϕ ¼ V 0ðϕÞ þ f0ðϕÞF; ð3Þ
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∂μð
ffiffiffiffiffiffi
−g

p
fðϕÞFμνÞ ¼ 0; ð4Þ

where F≡ FμνFμν, Fμν ¼ ∂μAν − ∂νAμ, Aμ ¼ δ0μqðrÞ, and

Tϕ
μν ¼ 2∇μϕ∇νϕ − gμν∇αϕ∇αϕ −

1

2
gμνVðϕÞ; ð5Þ

TA
μν ¼ 2fðϕÞ

�
FμσFν

σ −
1

4
gμνF

�
ð6Þ

are stress-energy tensors for the scalar field and the
electromagnetic field, respectively.

III. BLACK HOLE SOLUTIONS

Assuming the rotationally symmetric metric ansatz

ds2 ¼ −BðrÞdt2 þ dr2

BðrÞ þ RðrÞ2ðdθ þ uðrÞdtÞ2; ð7Þ

and inserting (7) into the field equations, we obtain five
independent equations with six unknown functions
BðrÞ; qðrÞ; uðrÞ; RðrÞ;ϕðrÞ; VðrÞ; therefore, one of the
unknowns has to be fixed by hand. By looking at the
electromagnetic equation, we can see that it yields a first
integral

fðrÞ ¼ Q0

RðrÞq0ðrÞ ; ð8Þ

where Q0 is the charge parameter. It is clear that the above
equation relates the dilatonic coupling with the electric
potential and the area of the black hole. To solve the field
equations, as discussed in the Introduction, we assume that
the functions RðrÞ and fðrÞ satisfy fðrÞRðrÞ=r ¼ 1. This
particular assumption is also needed in order to make our
results comparable with the nonrotating case [60].
Moreover, the condition fðrÞRðrÞ=r ¼ 1 can be solved
as a result by considering the electric potential
qðrÞ ¼ Q0 ln r, which is reasonable for a (2þ 1)-
dimensional theory. Then, from (8) we can obtain the
electric potential and the RðrÞ function,

qðrÞ ¼ Q0 ln

�
r
l

�
; ð9Þ

RðrÞ ¼ r expð2αϕðrÞÞ; ð10Þ

where l is the cosmological scale. We find that it is more
convenient to express the solution in terms of a parameter x
which is related to the dilatonic parameter α via

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2ð1 − xÞ

r
; ð11Þ

where x is restricted to take values in the range 0 ≤ x < 1.
Given the above configurations, we can obtain the angular
shift function uðrÞ and the scalar field ϕðrÞ,

uðrÞ ¼ J0r3x−2

3x − 2
þ cu; ð12Þ

ϕðrÞ ¼ ð1 − xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x
2 − 2x

r
ln

�
b
r

�
; ð13Þ

where J0 is the parameter for the angular momentum of the
black hole, cu is an integration constant (which in order to
remove global rotations of the coordinate system, we set to
zero), and b is the scalar charge. In addition, finiteness of
the angular velocity at large distances constrains the
coupling constant x as 0 ≤ x < 2=3. We can calculate
the lapse function BðrÞ as

BðrÞ ¼ J20
b2xr4x−2

ð2 − 3xÞ2 þ
2r2

l2ð3x2 − 5xþ 2Þ
�
b
r

�
2x

þ 4Q2
0

3x − 2

�
b
r

�
−x

ln

�
r
l

�
−M0rx; ð14Þ

which breaks down for x ¼ 2=3 [corresponding to α ¼ 1
(low energy strings)],M0 is the mass parameter of the black
hole (corresponding to the BTZ black hole mass), and the
potential supporting this solution is found to be

VðrÞ ¼ −
2b2xr−2x

l2
þ J20

xb2xr4x−4

4 − 6x
þQ2

0

2xb−xrx−2

2 − 3x
; ð15Þ

which vanishes at spatial infinity and is independent of the
mass M0, while as a function of ϕ it reads

VðϕÞ ¼ −
2

l2
exp

�
2

ffiffiffi
2

p
xϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − xÞxp

�
− J20

xb6x−4

2ð3x − 2Þ

× exp

�
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2x

p
ϕffiffiffi

x
p

�
þQ2

0

2x
b2ð2 − 3xÞ

× exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2x

p ðx − 2Þϕ
ðx − 1Þ ffiffiffi

x
p

�
: ð16Þ

We can see that the resultant potential is VðϕÞ∼P
3
i¼1 aie

λiϕ, i.e., a linear combination of Liouville-type
potentials, where λi are the coefficients of the exponents
and ai are the coupling constants. For α → 0 (i.e., x → 0),
the solution yields the BTZ black hole [1]

BðrÞ ¼ J2

4r2
þ r2

l2
− 2Q2 ln

�
r
l

�
−M0; ð17Þ

uðrÞ ¼ −
J
2r2

; ð18Þ

VðrÞ ¼ −
2

l2
; ð19Þ
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and the electric potential is given by (9), while all other
functions vanish due to their dependence on α. The
obtained scalar field has the standard (2þ 1)-dimensional
dilaton form [60] and diverges at both the origin and spatial
infinity. Despite the fact that the scalar field diverges at
large distances, the action remains finite since

lim
r→∞

ð∇σϕ∇σϕÞ → 0; ð20Þ

while all the other quantities of the action (1) also remain
finite for large r.
In Fig. 1 we plot the metric function BðrÞ, the potential

VðrÞ, the angular shift function uðrÞ, and the Kretschmann
scalar RαβγδRαβγδ along with the x ¼ 0 case, which

corresponds to the charged and rotating BTZ black hole
and also the geometric massM0 with respect to the horizon.
From these figures, we can see that the metric function
develops a smaller radius for the event horizon of the black
hole, and the potential VðrÞ for the dilaton case x ≠ 0 goes
to zero at large distances, indicating that spacetime is not
asymptotically AdS, as in the BTZ case. It also develops a
potential well between the inner and event horizon of the
black hole. The Kretschmann scalar diverges at the origin
r ¼ 0, indicating a physical singularity (the singularity in
the BTZ case comes from the electric chargeQ0; ifQ0 ¼ 0,
the BTZ spacetime is completely regular everywhere),
and asymptotically goes to zero for large r, while it is
related to the AdS radius for the BTZ case. The black hole
mass has a minima and grows with the increase of the

FIG. 1. Functions BðrÞ, VðrÞ, uðrÞ, and the Kretschmann scalar versus r, with the model parameter α changing through x, having set
l ¼ 1; b ¼ M0 ¼ 5; J0 ¼ 0.1; Q0 ¼ 2. We also plot M0ðrhÞ as a function of rh.
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horizon; however, the BTZ case possesses a higher mass for
large values of rh.
In Fig. 2 we plot BðrÞ and VðrÞ for the static and rotating

dilatonic black holes, respectively, in order to see the effect
of the angular momentum on the resulting physics. We can
see that the rotating solution possesses a smaller event
horizon, while the potential develops a deeper potential
well inside the event horizon of the black hole.

IV. THERMODYNAMICS
AND CONSERVED CHARGES

In this section we discuss the thermodynamics of the
obtained black hole solution. We first discuss the Hawking

temperature. To compute temperature we need to go to
Euclidean space, which further specifies the periodicity of
coordinates τ, θ as τ → τ þ β; θ → θ −Ωβ, where Ω is
the angular velocity of the horizon (see the discussion
below) and β is related to the inverse temperature, which is
given by

TðrhÞ ¼
1

β
¼ B0ðrhÞ

4π
; ð21Þ

where rh represents the position of the outer horizon, while
its explicit expression yields

TðrhÞ ¼
b−xr−2x−3h ðb3xðJ20l2ðx − 1Þr6xh þ ð4 − 6xÞr4hÞ þ 4l2Q2

0ðx − 1Þr3xþ2
h Þ

4πl2ðx − 1Þð3x − 2Þ ; ð22Þ

where we have already substituted M0 from the BðrhÞ ¼ 0
condition of the black hole horizon. Its expansion for a
large coupling constant α ≫ 1; x → 1 yields

TðrhÞ ¼ −
b2

2ðx − 1Þðπl2rhÞ
þOððx − 1Þ0Þ: ð23Þ

For x → 0, we obtain

TðrhÞ ¼ −
J20
8πr3h

þ rh
2πl2

−
Q2

0

2πrh
; ð24Þ

which is the BTZ black hole temperature. The zero
point of the temperature corresponds to B0ðrhÞ ¼ 0,
i.e., extremal black holes, and can be obtained analyti-
cally as

rextremal¼ð12x−8Þ 1
3x−2b

3x
3x−2

�
4l2Q2

0ðx−1Þ−2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðx−1ÞðJ20ð3x−2Þb6xþ2l2Q4

0ðx−1ÞÞ
q � 1

2−3x
; ð25Þ

while the extremal horizon of the BTZ case is given by

rextremal ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J20 þ l2Q4
0

q
þ lQ2

0

�r
: ð26Þ

The entropy will be given by the Bekenstein-Hawking area
law since the theory (1) is minimally coupled to gravity

theory and higher order invariants are absent; thus, the only
term that will contribute to Wald entropy [61] is the pure
Ricci scalar term, which yields the entropy as

S ¼ A
4G

¼ 2πA ¼ 4π2bxr1−xh ; ð27Þ

FIG. 2. Metric function BðrÞ and potential VðrÞ for J0 ¼ 0 and J0 ¼ 0.1, setting x ¼ 0.1; l ¼ 1; Q0 ¼ 2;M0 ¼ b ¼ 5.
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whereA ¼ 2πbxr1−xh is the area of the black hole. It can be
expanded near the no-coupling case x ¼ 0 (α ¼ 0),

S ¼ 4π2rh
κ

þ 4π2rh
κ

ln

�
b
rh

�
xþOðx2Þ; ð28Þ

while for a large coupling constant α ≫ 1; x → 1, we have

S ¼ πb
2

þ 1

2
πbðx − 1Þ ln

�
b
rh

�
þOððx − 1Þ2Þ: ð29Þ

The Hawking temperature of the black hole can also be
expanded near the x ¼ 0 case,

T ¼ 4π2r2hðr2h − 4Þ − 1

8π3r3h
þ xð8π2ðr2h − 6Þr2h − 8ð2π2ðr2h þ 2Þr2h þ 1Þ lnðrhÞ − 3Þ

16π3r3h
þOðx2Þ: ð30Þ

We can see that for a large coupling constant, the entropy
takes a constant value and does not depend on the horizon
radius at zeroth order as should be expected. This is another
clue that large values of the coupling constant should be
excluded, besides the one coming from the finiteness of
the angular velocity function as we already discussed. For
x → 0 we recover the BTZ black hole entropy and temper-
ature (24), while we can see that the scalar length scale b
affects the entropy. We present plots of the temperature and
the entropy for some values of x alongside x ¼ 0, which
corresponds to the BTZ case, in order to make comparisons
in Fig. 3.
From Fig. 3 we can see that the temperature and the

entropy of the rotating dilatonic black holes do not differ
qualitatively from the corresponding quantities of the BTZ
black hole spacetime. The entropy is always positive, and
the dilatonic black holes may have higher entropy than the
BTZ black hole, depending on the value of the scalar length
scale b. The expression (28) and Fig. 3 both show that for
rh < b, the dilatonic black holes are thermodynamically
preferred; otherwise the BTZ case is preferred.
To compute the physical electric charge we use [60]

Q ¼ 1

4π

Z ffiffiffiffiffiffi
−g

p ∂LEM

∂F
FμνnμvνdΩ ¼ 1

4π

Z
dSμfðϕÞ∇μqðrÞ

¼ −
Q0

2
; ð31Þ

where LEM denotes the electromagnetic part of the
Lagrangian of our theory (1) and nμ, vν are the unit
spacelike and timelike normal vectors to the hypersurface
of radius r [60]. We can see that the dilatonic coupling does
not affect the conserved electric charge, which is expected
since we assume that fðrÞRðrÞ ¼ r, so the effect of
the dilatonic coupling has the exact countereffect on the
circumference of the black hole. It also coincides with the
nonrotating case [60] as expected.
To compute the mass of the black hole, we use the

quasilocal method [62,63]. The metric (7) can be trans-
formed to a more general form,

ds2 ¼ −N2ðRÞdt2 þ dR2

H2ðRÞ þ R2½dθ þ VθðRÞdt�2; ð32Þ

with

N2ðRÞ ¼ Bðb x
x−1R

1
1−xÞ; ð33Þ

H2ðRÞ ¼ Bðb x
x−1R

1
1−xÞð1 − xÞ2b 2x

1−xR− 2x
1−x; ð34Þ

VθðRÞ ¼ uðb x
x−1R

1
1−xÞ: ð35Þ

For a D-dimensional spacetime manifold M, which is
topologically the product of a spacelike hypersurface and
a real line interval Σ × I, the total quasilocal energy is
defined as [62,63]

FIG. 3. Temperature and entropy versus rh, for different values of x, setting l ¼ 1; J0 ¼ 0.1; Q0 ¼ 2;M0 ¼ b ¼ 5.
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E ¼
Z
B
dD−2x

ffiffiffi
σ

p
ε; ð36Þ

where B≡ ∂Σ is the (D − 2)-dimensional boundary, σ is
the determinant of the induced metric σab on B, and ε is the
energy density.
The boundary ∂M consists of initial and final spacelike

hypersurfaces t0 and t00, respectively, and a timelike hyper-
surface T ¼ B × I joining them. The (D − 1)-metric γij on
T can be written according to the Arnowitt, Deser, Misner
(ADM) decomposition as

γijdxidxj¼−N2dt2þσabðdxaþVadtÞðdxbþVbdtÞ: ð37Þ

The conserved charge associated with a Killing vector field
ξi is defined as

Qξ ¼
Z
B
dD−2x

ffiffiffi
σ

p ðεui þ jiÞξi; ð38Þ

where ui is the unit normal to spacelike hypersurfaces t0 or
t00, and ji is the momentum density.
If the system contains a rotational symmetry given by a

Killing vector field ζi ¼ ð∂=∂θÞi on T , and the (D − 2)-
surface B is chosen to contain the orbits of ζi, then the
angular momentum can be expressed as

J ¼ Qζ ¼
Z
B
dD−2x

ffiffiffi
σ

p
jiζi: ð39Þ

In addition, a conserved mass can be given by

M ¼ −Qξ ¼ −
Z
B
dD−2x

ffiffiffi
σ

p ðεui þ jiÞξi; ð40Þ

where ξi ¼ Nui þ Vað∂=∂xaÞi is the associated timelike
Killing vector field.
The energy density ε and quasilocal energy E can be

calculated in metric form (32),

εðRÞ ¼ kðRÞ − ε0ðRÞ; ð41Þ

EðRÞ ¼ 2πRεðRÞ ¼ 2πRkðRÞ − 2πRε0ðRÞ; ð42Þ

where kðRÞ ¼ −HðRÞ=R is the trace of the extrinsic
curvature of B. To make the total quasilocal energy finite,
the condition 0 ≤ x < 2=3 is required, and ε0 is chosen
to be

ε0ðRÞ ¼ −
1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − xÞ
2 − 3x

r �
b
R

� x
1−x
: ð43Þ

The only nonzero components of the momentum Pij and
the momentum density ji are

Prθ ¼ Pθr ¼ −
RHðRÞ
4NðRÞ

dVθðRÞ
dR

¼ −
b3xJ0
4R2

; ð44Þ

jθ ¼
b3xJ0
2R

: ð45Þ

Then we can calculate the total angular momentum
associated with the Killing vector field ζi ¼ ð∂=∂θÞi as

J ¼ 2πRjθ ¼ πb3xJ0: ð46Þ

Finally, the conserved mass can be obtained by taking
the limit at spatial infinity,

M ¼ lim
R→∞

ðNðRÞEðRÞ − 2πRjθξθÞ ¼ πð1 − xÞbxM0; ð47Þ

which can reduce to the ADM mass M0 of the BTZ case
when x ¼ 0. We can see that the scalar length scale b enters
in both the conserved mass and the conserved angular
momentum; therefore, the scalar hair of the solution is of
the secondary type, which is not given by a unique Gauss
law but is related to the black hole conserved quantities.
Using the relations (46) and (47) we get

J
M

¼ b2xJ0
ð1 − xÞM0

: ð48Þ

Substituting the conserved mass M, conserved angular
momentum J, and conserved charge Q ¼ −Q0=2 into the
metric and taking BðrhÞ ¼ 0, we obtain

Mðrh;Q; JÞ ¼ πðx − 1Þbxr−xh
κ

�
−
κ2J2b−4xr4x−2h

π2ð2 − 3xÞ2

−
2b2xr2−2xh

l2ð3x2 − 5xþ 2Þ þ
16Q2b−xrxh
2 − 3x

ln
�
rh
l

��
:

ð49Þ

In Fig. 4 we plot the figure of conserved mass M as a
function of the event horizon rh with various values of x.
We can see that the conserved mass M always grows with
the increase of rh, and its tendency decreases as the
coupling constant x (or α) rises, which means that in 3D
EMD theory, black holes of the same size contain less
energy.
The partial derivative of the conserved mass M with

respect to entropy S,

∂M
∂S

¼ ∂M=∂rh
∂S=∂rh

¼ B0ðrhÞ
4π

¼ T; ð50Þ

is exactly the Hawking temperature at the event horizon.
The electric potential Φ at the event horizon can be
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calculated using the null generator of the horizon
χ ¼ C0∂

t þ Ωh∂
θ as

Φ ¼ Aμχ
μj∞ − Aμχ

μjrh ¼ C0Q0 ln
rh
l
; ð51Þ

while the derivative of the conserved mass M with respect
to Q leads to

∂M
∂Q

¼ 32πQðx − 1Þ
ð2 − 3xÞ ln

�
rh
l

�
¼ Φ; ð52Þ

where we have set C0 ¼ 32πðx−1Þ
ð2−3xÞ . However, the derivative of

the conserved massM with respect to angular momentum J
is proportional to the angular velocity Ωh ¼ −uðrhÞ at the
event horizon, with a coefficient depending on the coupling
constant

∂M
∂J

¼−
2Jðx−1Þb−3xr3x−2h

πð2−3xÞ2 ¼ 2ð1−xÞ
2−3x

Ω¼ 1

1−α2
Ω; ð53Þ

which indicates that the first law is modified in EMD theory
in (2þ 1) dimensions,

dM ¼ TdSþΦdQþ 1

1 − α2
ΩdJ: ð54Þ

We should note here that the conserved charge Q and
conserved angular momentum J are parts of the theory
under consideration since they appear in the potential
VðϕÞ. Consequently, these are not pure integration con-
stants that are allowed to vary but constants of the theory, so
varying Q, J is like varying the whole theory. The mass M
does not appear in the potential; thus, the first law should
(at least) satisfy M0ðrhÞ ¼ TðrhÞS0ðrhÞ, and indeed this
holds. In conclusion, the anomalous angular momentum
term is a consequence of the fact that our theory can only
yield solutions with a particular angular momentum.

Nevertheless, it is worth noting that in [55], the uncharged
rotating solution in (2þ 1)-dimensional EMD theory does
not satisfy the dJ term of the first law either, i.e.,
∂M=∂J ≠ Ω, where J is not a parameter of the theory.

V. SOLUTION WITH α= 1

In this section we discuss the case of α ¼ 1. The
motivation for this consideration is that in the case of
α ¼ 1 the action (1) is resulting from a string theory with a
dilatonic field to couple to a gauge field. So it would be
interesting to see if there are rotating black hole solutions
coming from this string theory setup. We have seen that the
general case breaks down for α ¼ 1; x ¼ 2=3, and for this
reason we set α ¼ 1 first and then solve the field equations.
The solution is written as

ϕðrÞ ¼ 1

3
ln

�
b
r

�
; ð55Þ

RðrÞ ¼ fðrÞ−1 ¼ b2=3r1=3; ð56Þ

uðrÞ ¼ J0 ln

�
r
b

�
; ð57Þ

BðrÞ ¼ b2J20 ln
2

�
r
b

��
b
r

�
−2=3

− 6

�
r
b

�
2=3

ln

�
r
l

�

×

�
Q2

�
1

3
ln

�
b2

lr

�
þ 1

�
−
b2

l2

�
−M0r2=3; ð58Þ

VðrÞ ¼ J20ð4b2 lnðbrÞ − 3b2Þ
6b2=3r4=3

−
2b4=3

l2r4=3
þ 4Q2

3b2=3r4=3
ln

�
b
r

�
;

ð59Þ

VðϕÞ ¼ J20e
4ϕð4b2ðlnð lbÞ þ 3ϕÞ− 3b2Þ

6b2
þ 4Q2e4ϕϕ

b2
−
2e4ϕ

l2
:

ð60Þ
In the above equations M0 and J0 are constants of

integration. In Fig. 5 we plot the metric function BðrÞ and
the potential VðrÞ for different values of J0, including the
J0 ¼ 0 case, in order to compare our solution with the
nonrotating solution [60]. We can see that the nonrotating
black hole possesses a larger event horizon radius in
comparison to the rotating case, while in the rotating case
the potential forms a deeper potential well between the
inner and outer event horizons.
We now discuss the thermodynamics of this black hole.

The Hawking temperature is found to be

TðrhÞ ¼
B0ðrhÞ
4π

¼ 3ðb − lQÞðbþ lQÞ − l2ðb2J20 þ 2Q2Þðlnðb=rhÞÞ
2πb2=3l2

ffiffiffi
3

p
rh

;

ð61Þ

FIG. 4. Conserved mass M plotted as a function of the
event horizon rh with various values of x, where we have set
Q ¼ J ¼ b ¼ l ¼ 1.
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while the extremal black hole with zero temperature has an
extremal horizon at

rextremal ¼ b exp

�
3ðlQ − bÞðbþ lQÞ
l2ðb2J20 þ 2Q2Þ

�
: ð62Þ

In the case with b ¼ Ql, the radius will be rextremal ¼ b,
purely determined by the scalar length scale b, while the
entropy and the conserved angular momentum will become

SðrhÞ ¼ 4π2b2=3r1=3h ; ð63Þ

J ¼ πb2J0: ð64Þ

Using the same method as before, we find that the
conserved mass of the black hole cannot be finite. In
particular, we can have a finite energy density; however,
there is a contribution in the conserved mass being related
to the angular velocity,

2πRjθξ
θ → 3πb2J20 ln

R
b
; ð65Þ

which is divergent for the observer at large distances
(R → ∞). This strange behavior is caused by the logarithmic
term of the angular velocity, which is also divergent at large
distances, indicating that the black hole rotates faster for
larger r. Nevertheless, this pathology can be cured by a more
general solution with a scalar fieldϕðrÞ ¼ 1

3
ln ðbr þ 1Þ that is

regular at spatial infinity, and the corresponding angular
velocity uðrÞ ¼ u0 þ u1ðln ðbr þ 1Þ − b

bþrÞ also becomes
finite at large distances. In this case, the metric function
and the potential can be solved explicitly but are very
complicated; therefore, we do not show them here.
Similar behaviors are also present in higher-dimensional,
slowly rotating black holes [64] where the solution is ill
defined for α ¼ 1. Additionally, in [65] it was found that for
α ¼ 1, the resultant spacetime is asymptotically flat in the
absence of potential, while for the particular Liouville

potential the authors used, the solution breaks down for
α ¼ ffiffiffi

3
p

, which corresponds to Kaluza-Klein theory.

VI. CONCLUSIONS

In this work we considered Einstein-Maxwell-dilaton
theory in (2þ 1) dimensions, in which the dilatonic matter
is coupled to the electromagnetic field, and obtained exact
rotating BTZ-like solutions. There are two important
parameters that control the properties of the found black
hole solutions. The dilatonic parameter α, which appears in
the dilatonic function coupled to the electromagnetic field,
has an important impact on the metric function, also
affecting the rotating properties of the black hole and its
thermodynamics. As expected, as α increases, the horizon
of the black hole increases, as does its mass. We found that
the dilatonic parameter α does not affect the conserved
electric charge, while, with the increase of α, the angular
momentum J becomes larger.
The other crucial parameter that influences the properties

of the black hole solution is the scalar length scale b of the
dilatonic matter ϕ. Since the scalar length scale b is of the
secondary type, it enters in both the conserved mass and
conserved angularmomentum.With increasingα the angular
momentum can be enlarged for b > 1, or it can be shrunk for
b < 1, indicating that the dilatonic matter makes the black
hole rotate more slowly. Calculating the entropy we found
that it is always positive, and the dilatonic black holes may
have higher entropy than the BTZ black hole, depending on
the value of the scalar length scale b. For b < rh, where rh is
the black hole horizon, the dilatonic BTZ-like black hole is
thermodynamically preferred; for b > rh theBTZ black hole
is preferred.
We also discussed the particular case that arises as the

low energy limit of string theory, the case of α ¼ 1. In this
case the solution of the field equations is ill defined because
the angular velocity is divergent at large distances, and this
results in the nonfiniteness of the conserved mass.
However, the black hole horizon still exists, and this led
the authors in [3], who studied the BTZ black hole and

FIG. 5. Metric function BðrÞ and potential VðrÞ versus r, for α ¼ 1, setting l ¼ b ¼ Q ¼ 1;M0 ¼ 5, while changing J0.
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found a logarithmic divergence of the electric potential, to
compute the mass of the black hole in a finite radius r0 that
encloses the black hole. In our rotating case, the low energy
limit of string theory cannot be realized unless we relax
some of the assumptions we considered in order to
derive the field equations. For example, we can introduce

another degree of freedom in the metric function, so that
gttgrr ≠ 1, or consider another form for the potential V and
the circumference function R. We can also introduce
the three-form Hμνρ term in the action, which arises
from the string theory. We leave these possibilities for a
future work.
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