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We investigate the asymptotia of decelerating and spatially flat Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetimes at future null infinity. We find that the asymptotic algebra of diffeomorphisms can be
enlarged to the recently discovered Weyl–Bondi-van der Burg-Metzner-Sachs (BMS) algebra for
asymptotically flat spacetimes by relaxing the boundary conditions. This algebra remains undeformed
in the cosmological setting contrary to previous extensions of the BMS algebra. We then study the
equations of motion for asymptotically FLRW spacetimes with finite fluxes and show that the dynamics is
fully constrained by the energy-momentum tensor of the source. Finally, we propose an expression for the
charges that are associated with the cosmological supertranslations and whose evolution equation features a
novel contribution arising from the Hubble-Lemaître flow.

DOI: 10.1103/PhysRevD.107.024039

I. INTRODUCTION

The study of the asymptotic region of an isolated self-
gravitating source dates back to the pioneering work of
Bondi, van der Burg, Metzner, and Sachs (BMS) [1–3].
These works initiated a rigorous research program to study
gravitational waves in asymptotically flat spacetimes; see,
e.g., [4–6] for a review.
Over the past years, there has risen some interest in the

asymptotia of a cosmological setting, with a special focus
on decelerating and spatially flat Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetimes. These geometries
are endowed with a future null infinity and, in addition, are
employed to describe the radiation- and matter-dominated
epochs in the evolution of the universe [7]. The geomet-
rical foundations of decelerating and spatially flat
FLRW spacetimes at future null infinity have been initiated
in [8–10].
There are several reasons to perform and deepen into

these studies. From a phenomenological point of view, it
is essential for the transition from asymptotically flat
toward cosmological spacetimes, and FLRW is the most
natural candidate to begin with. It also proves rewarding to
investigate whether the increasingly refined technical
tools and relations, introduced in the context of

asymptotically flat spacetimes, hold in more realistic
scenarios. A prominent example is to discern whether
the infrared triangle [5,11] connecting asymptotic sym-
metries, soft theorems, and memory effects in asymptoti-
cally flat spacetimes survives in cosmological spacetimes
and, either way, which are the possible modifications and
interpretation.
Rather astoundingly, the literature regarding the infrared

structure of cosmological spacetimes is very limited. The
first attempt belongs to Hawking who proposed that the
asymptotic symmetry group of asymptotically FLRW
spacetimes reduces to its global symmetry group [12].
Nevertheless, only very specific dust-filled universes with
negative spatial curvature were considered, while the most
recent studies [8–10] treat spatially flat universes allowing
for general matter content. In the past years, several related
studies have been performed in various directions: from
the study of FLRW at timelike infinity [13] to the
asymptotic symmetries with nonvanishing cosmological
constant [14–17]; and from the relation between adiabatic
modes and soft theorems [18–21] to memory effects in de
Sitter and ΛCDM cosmologies [22–28].
In this work, we push forward the most recent

studies [8–10] on asymptotically decelerating and spatially
flat FLRW spacetimes at future null infinity in two
principal directions.
On the one hand, from a purely geometrical perspective

—and motivated by the recent extension of the asymptotic
algebra of diffeomorphisms in asymptotically flat
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spacetimes [29] denoted Weyl-BMS algebra—we relax the
strong Bondi gauge and allow the diffeomorphisms to
change the determinant of the metric on the celestial sphere.
The asymptotic algebra turns out to be isomorphic to the
Weyl-BMS algebra, in contrast to the one-parameter
deformations of the BMS and generalized BMS algebras
introduced in [10]. This shows that the Weyl-BMS algebra
is more rigid to deformations than the other extensions.
On the other hand, we focus on the dynamics and

develop the first on-shell analysis for these cosmological
asymptotic metrics in general relativity by investigating the
asymptotic Einstein equations. In particular, we explicitly
solve the equations of motion for a subclass of metrics
compatible with the supertranslationlike diffeomorphisms.
The resultant analysis shows that the dynamics at future
null infinity is completely determined in terms of the
energy-momentum tensor, contrary to asymptotically flat
spacetimes, where the Bondi news is unconstrained and the
tensor degrees of freedom propagate.
Finally, as a third result and benefiting from the

previous analysis, we propose suitable candidates for
supertranslationlike charges in certain simplified settings
whose evolution involves a novel Hubble term compared
to asymptotically flat spacetimes. The structure of this
paper is as follows. In Sec. II, we briefly review asymp-
totically FLRW spacetimes from the perspective of [9,10].
In Sec. III, we allow for Weyl transformations and obtain
the asymptotic algebra of diffeomorphisms. Adopting
general relativity as our gravity theory, in Sec. IV, we
develop an on-shell analysis of our cosmological space-
times, with a special emphasis on the subset of metrics
consistent with the absence of Weyl diffeomorphisms.
This subset of metrics is used in Sec. V, where we
introduce charges for the supertranslationlike asymptotic
diffeomorphisms. We conclude with a summary of results
and future research in Sec. VI. Finally, we relegate the
asymptotic Lie derivatives and a complementary analysis
of the Weyl scalars for our metrics to Appendixes A and B,
respectively.
Notation: We generally use “mathfrak” font for the

algebras, e.g., bms for the BMS algebra. Indices on the
sphere are denoted by capital latin letters A;B;C;…. These
indices are raised and lowered with the leading term qAB of
the expansion of the metric on the sphere. DA denotes the
covariant derivative with respect to qAB. The Ricci scalar on
the two-sphere is denoted by R, while Rflat and RFLRW

denote the Ricci scalar on the four-manifold of asymptoti-
cally flat and exact FLRW spacetime. △Gμν ≡Gμν −
GFLRW

μν stands for the difference between the Einstein
tensor of asymptotically FLRW and exact FLRW. We
use δ for the variations along the phase space; e.g., δf
denotes the action on the phase space of a vector field
generated by f. The Hubble scale is given by H ¼ ∂ua,
where a is the conformal expansion scale factor of FLRW.

II. REVIEW OF ASYMPTOTICALLY FLRW
SPACETIMES

We briefly review the asymptotia of spatially flat FLRW
and the treatment of asymptotically decelerating spatially
flat FLRW universes at future null infinity Iþ. We refer the
reader to [9,10] for more details.

A. FLRW spacetimes and their asymptotia

The metric of spatially flat FLRW spacetimes is given by

ds̄2 ¼ −dt2 þ a2ðtÞðdr2 þ r2dΩS2Þ;

aðtÞ ¼
�
t
t0

� 2
3ðwþ1Þ

; ð2:1Þ

and is sourced by a perfect fluid

T̄μν ¼ ðeþ pÞūμūν þ pḡμν; ð2:2Þ

where ūμ ¼ f1; 0; 0; 0g is the fluid four-velocity in the
comoving frame, e ∝ a−3ðwþ1Þ is the energy density, p is
the pressure, and they are related by the equation of state
p ¼ we with w being a real constant.
These metrics are related to the Minkowski metric by a

Weyl transformation. Indeed, using the conformal time
dη ¼ dt=aðtÞ and Bondi coordinates

u ¼ η −
ffiffiffiffiffiffiffiffi
xixi

q
; r ¼

ffiffiffiffiffiffiffiffi
xixi

q
;

z ¼ x1 þ ix2

x3 þ
ffiffiffiffiffiffiffiffi
xixi

p ; z̄ ¼ x1 − ix2

x3 þ
ffiffiffiffiffiffiffiffi
xixi

p ; ð2:3Þ

the spatially flat FLRW metric reads as

ds2 ¼ a2ðu; rÞ
�
−du2 − 2dudrþ 4r2

ð1þ zz̄Þ2 dzdz̄
�
;

aðu; rÞ ¼
�
rþ u
L

�
k
; ð2:4Þ

where L is a length scale and k ¼ 2=ð3wþ 1Þ.
These spacetimes can be divided into decelerating

(k > 0) and accelerating (k < 0). The corresponding
Penrose diagrams (see, e.g., [7,30]) are shown in Fig. 1.
Comparing the asymptotic regions of a lightlike geo-

desic, it is clear that only decelerating FLRW spacetimes
have a future null infinity Iþ. For this reason, we will
restrict ourselves to decelerating universes in this paper,
leaving the investigation of accelerating FLRW spacetimes
for future work.
Finally, the nonvanishing components of the Einstein

tensor of the exact FLRW background (2.4) are given by
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GFLRW
uu ¼ 3k2

ðuþ rÞ2 ¼
3k2

r2
þOðr−3Þ;

GFLRW
ur ¼ 3k2

ðuþ rÞ2 ¼
3k2

r2
þOðr−3Þ;

GFLRW
rr ¼ 2kð1þ kÞ

ðuþ rÞ2 ¼ 2kðkþ 1Þ
r2

þOðr−3Þ;

GFLRW
zz̄ ¼ −

r2kðk − 2Þγzz̄
ðuþ rÞ2 ¼ −γzz̄kðk − 2Þ þOðrÞ: ð2:5Þ

The energy-momentum tensor in Bondi coordinates for a
perfect fluid is easily obtained from (2.2) and is given by

Tμν ¼ a2

0
BBB@

e e 0 0

e eþ p 0 0

0 0 0 pr2γzz̄
0 0 pr2γzz̄ 0

1
CCCA: ð2:6Þ

Since the energy density scales like e ∝ a−3ðwþ1Þ and the
evolution of the scale factor in terms of conformal time is
given by a ∝ η

2
3wþ1, the energy-momentum tensor overall

behaves as

Tμν ¼
a20e0

ðuþ rÞ2

0
BBBB@

1 1 0 0

1
2ðkþ1Þ

3k 0 0

0 0 0 2−k
3k r2γzz̄

0 0 2−k
3k r2γzz̄ 0

1
CCCCA; ð2:7Þ

which is consistent with the Einstein tensor (2.6).

B. Asymptotically decelerating and spatially
flat FLRW spacetimes

In this section, we briefly recapitulate the ansatz and
results for asymptotically decelerating spatially flat FLRW
spacetimes obtained in our previous works [9,10].

1. Working ansatz

To define which class of spacetimes asymptotes to
decelerating and spatially flat FLRW at Iþ, the following
conditions have been imposed in [9,10]:

(i) The background metric that is the metric in which all
the asymptotic expansion coefficients vanish is the
exact FLRW in Eq. (2.4).

(ii) The strong Bondi gauge and frame are satisfied,
meaning that

grr ¼ 0; grA ¼ 0;

∂r det

�
gAB
a2r2

�
¼ 0; δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgABÞ

p
¼ 0; ð2:8Þ

where the indices A;B ∈ fz; z̄g label the angular
coordinates. These conditions will be preserved by
the action of the asymptotic symmetries; see Ap-
pendix A for details. To be precise, the first three
equations are gauge conditions, while the fourth one
is a boundary condition on the celestial sphere. The
latter can be relaxed as we shall see in Sec. III.

(iii) Allowance of cosmological perturbations preserves
(to leading order) homogeneity, isotropy, and spatial
flatness, and leaves the equation of state of the
background fluid invariant in the limit r → ∞.

(iv) The boundary conditions are preserved, meaning
that no overleading terms are generated in the r
expansion upon application of asymptotic diffeo-
morphisms.

FIG. 1. Penrose diagram of spatially flat decelerating FLRW (left) and accelerating FLRW (right).
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(v) Trace and components of the Einstein tensor cannot
diverge in the limit r → ∞, when integrated over the
comoving sphere. Assuming general relativity, these
conditions translate directly into certain require-
ments for the energy-momentum tensor. In particu-
lar, we assume the following falloff conditions of the
energy-momentum tensor

Tuu ¼Oðr−2Þ; Tur ¼Oðr−2Þ; TuA ¼Oðr−1Þ;
Trr ¼Oðr−2Þ; TrA ¼Oðr−1Þ;
TAB ¼Oð1Þ: ð2:9Þ

These considerations led to the following class of
metrics [10]1:

ds2 ¼
�
rþ u
L

�
2k
�
−
�
1 −Φ −

2m
r

�
du2 − 2

�
1 −

K
r

�
dudr − 2

�
rΘA þUA þ 1

r
NA

�
dudxA

þ
�
r2qAB þ rCAB þDAB þ 1

2
CACCC

B

�
dxAdxB þ � � �

�
: ð2:10Þ

It represents an expansion in powers of 1=r for r → ∞,
where all the expansion coefficients are functions of u, z,
and z̄, except for qAB which only depends on the angular
coordinates z and z̄.
Before continuing, let us point out that the ansatz (2.10),

as well as the asymptotic diffeomorphisms preserving it,
has been proven to give the correct flat limit when k → 0
in [10]. Furthermore, Φ, m, and K transform as scalars
under spatial rotations while ΘA, UA, and NA transform as
vectors, and qAB, CAB, andDAB as tensors. The determinant
condition in Eq. (2.8) implies CAB and DAB to be traceless.
By comparing the expansion (2.10) to the asymptotically
flat expansion, we expect the parameter m to be related to
the mass of a central inhomogeneity, CAB to the gravita-
tional radiation, andNA to the angular momentum aspect of
the spacetime. However, it is important to stress that the
treatment so far has mostly been off-shell and that different
coefficients do not yet have a sharp physical interpretation.
In [10] it is also shown that the ansatz (2.10) naturally

includes white holes but, to include simple cosmological
black hole metrics like Sultana-Dyer, Thakurta, and
Vaidya, the expansion in 1=r has to be extended with
logarithmic terms. As expected, the logarithmic ansatz does
not generally satisfy the peeling property but preserves the
asymptotic algebra.2 In addition, we comment that a u-
dependent metric on the sphere qAB would imply a−2guu ∝
OðrÞ because of the closure of the metric under the action
of the asymptotic diffeomorphisms. However, this term is
not compatible with the third condition leading to our
ansatz.
These observations play an important role in the forth-

coming on-shell analysis of Sec. IV.

2. Asymptotic algebra of diffeomorphisms

The asymptotic diffeomorphisms and their action on the
asymptotic data for the class of metrics in Eq. (2.10) have
been computed in the case of local conformal Killing
vectors (CKV)–superrotations [9] and in the case of
DiffðS2Þ diffeomorphisms [10]. In Sec. III, we will allow
for local Weyl transformations.
For the time being, it is instructive to review the structure

of the asymptotic algebra at future null infinity Iþ. In
such a limit, and using the new parameter ð1þ sÞ≡
ð1þ 2kÞ=ð1þ kÞ, the asymptotic diffeomorphisms become

ξ½fðz; z̄Þ; VAðz; z̄Þ� ¼
�
f þ u

2
ð1þ sÞDAVA

�
∂u þ VA

∂A;

ð2:11Þ

where fðz; z̄Þ and VAðz; z̄Þ denote, respectively, super-
translation- and superrotationlike transformations. Their
Lie bracket gives

ξ½f̂; V̂A� ¼ ½ξ½f; VA�; ξ½f0; V 0A��; ð2:12Þ

where the hatted gauge parameters read as

f̂ ¼ VADAf0 − V 0ADAf þ ð1þ sÞ
2

ðfDAV 0A − f0DAVAÞ;
ð2:13Þ

V̂A ¼ VBDBV 0A − V 0BDBVA: ð2:14Þ

1Note that the sign of the coefficients in the dudxA part of the metric follows the convention of [9,10] and is the opposite to the sign
convention in asymptotically flat spacetimes.

2We remark that the logarithmic terms enter at subleading order and, therefore, should be included in our on-shell analysis of Sec. IV
and adequately treated. Such an analysis is beyond the scope of this paper, but we expect that it will not distort the essence of the results
contained herein.
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We obtain a one-parameter deformation of the extended
BMS algebra [31,32] denoted as bmss ≃ ðwitt ⊕
wittÞ ⋉s ss, where the vectors VA are local CKV on S2,
and a deformation of the generalized BMS algebra [33,34]
denoted as gbmss ≃ vectðS2Þ ⋉s ss, where the vectors VA

are smooth diffeomorphisms on the sphere.3 Both reduce
to a one-parameter deformation of the original BMS
algebra bs ≃ soð1; 3Þ ⋉ ss, found in [8], when restricting
to the six VA that are global CKV on S2.4

These algebras are clearly one-parameter deformations
of the original, extended, and generalized BMS algebras,
where the deformation parameter s is directly related to the
equation of state of the background fluid and unveils a
cosmological holographic flow deformation at the level of
the asymptotic algebras. In Sec. III B, we will notice that
the deformation of the Weyl-BMS algebra becomes trivial
when we allow for Weyl transformations.
As a final comment, we briefly note that in [10] it was

pointed out that the deformed extended BMS algebra bmss
corresponds to the elementWð− 1þs

2
;− 1þs

2
;− 1þs

2
;− 1þs

2
Þ of

the four-parametric family of deformations of bms,
denoted by Wða; b; ā; b̄Þ [35,36]. Furthermore, it was
shown in [37] that, after a change of topology from S2

to the doubly punctured planeC�, the deformed generalized
BMS algebra gbmss can be viewed as the member
gWð− 1þs

2
;− 1þs

2
;− 1þs

2
Þ of the three-parametric family of

deformations of gbms, called gWða; b; āÞ [37].

III. BMSW-LIKE DIFFEOMORPHISMS IN FLRW

In this section, we allow for Weyl-BMS transformations
in asymptotically decelerating and spatially flat FLRW
spacetimes, following the corresponding treatment in
asymptotically flat spacetimes [29]. In the rest of the paper,
we will assume that the leading asymptotic coefficients Φ,
ΘA, and qAB are u-independent. This choice implies finite
fluxes through the boundary and will be motivated by our
on-shell treatment in Sec. IVA.

A. Residual transformation in Bondi gauge

We analyze the residual diffeomorphisms for the on-shell
metrics (2.10) starting from

ξ ¼ ξuðu; z; z̄Þ∂u þ
�
rξrðVÞðz; z̄Þ þ ξrð0Þ þ 1

r
ξrð1Þ þ � � �

�
∂r

þ
�
VBðz; z̄Þ þ 1

r
ξBð1Þ þ 1

r2
ξBð2Þ þ � � �

�
∂B; ð3:1Þ

where dots stand for subleading terms in 1=r that enter the
Oðr−2Þ in a−2Lξgμν in Appendix A. We emphasize that,
contrary to previous works [9,10], we do not require the
determinant of the metric on the sphere to be fixed. Instead
of the strong Bondi gauge, we follow [29] and use the
Bondi gauge

grr ¼ 0; grA ¼ 0; ∂r det

�
gAB
a2r2

�
¼ 0: ð3:2Þ

The condition on Lξgrr is already verified by the ansatz.
The vanishing of LξgrA leads to the following restrictions:

ξð1ÞA ¼ −DAξ
u; ð3:3Þ

ξð2ÞA ¼ 1

2

�
KDAξ

u − CABξ
Bð1Þ

�
: ð3:4Þ

To satisfy the determinant condition, we have to demand that
qABCAB ¼ 0, qABSAB ¼ CABFAB and that qABKAB¼
CABSAB−CA

CC
CBFABþðDABþ 1

2
CA
CC

CBÞFAB, where KAB,
SAB, and FAB are defined in (A6). This leaves the leading
order contribution to the spherical metric arbitrary, which
means that the coefficient ξrðVÞ in the expansion (3.1) joins
f and VA as a free parameter. Besides, we obtain

ξrð0Þ ¼ 1

1þ k

�
−
1

2
DAξ

Að1Þ −
1

2
ΘADAξ

u þ kuξrðVÞ − kξu
�
;

ð3:5Þ

ξrð1Þ ¼ 1

2ð1þ kÞ ½C
A
BΘADBξu − 2kðu2ξrðVÞ − uξrð0Þ − uξuÞ

−DAξ
Að2Þ þUADAξ

u�: ð3:6Þ

The remaining requirements come from LξguA ¼ OðrÞ,
Lξguu ¼ Oð1Þ, and Lξgur ¼ Oðr−1Þ. Altogether they trans-
late into

∂uVA ¼ ∂uξ
rðVÞ ¼ 0; ð3:7Þ

∂uξ
u ¼ −ð1þ 2kÞξrðVÞ ð3:8Þ

⇒ ξu ¼ fðz; z̄Þ − uð1þ 2kÞξrðVÞðz; z̄Þ: ð3:9Þ

B. Asymptotic algebra

At r → ∞, r ¼ const, our diffeomorphisms become

ξ½fðz; z̄Þ; ξrðVÞðz; z̄Þ; VAðz; z̄Þ�
¼ ½f − uð1þ 2kÞξrðVÞ�∂u þ VA

∂A; ð3:10Þ

leading to the asymptotic algebra

3vectðS2Þ denotes the algebra of globally defined vector fields
on the sphere.

4For a comparison between our results and those of [8], we
refer the reader to [9,10].
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V12 ≔ ½V1; V2�Lie; ð3:11Þ

ξrðVÞ12 ¼ V1½ξrðVÞ2 � − V2½ξrðVÞ1 �; ð3:12Þ

f12¼V1½f2�−V2½f1�−ð1þ2kÞðf1ξrðVÞ2 −f2ξ
rðVÞ
1 Þ: ð3:13Þ

We see that f and ξrðVÞ transform as scalars under DiffðS2Þ,
while f also transforms as a weight-ð1þ 2kÞ section of the
scale bundle. An alternative way to visualize the algebra is
to compute

ξ½f̂; ξ̂rðVÞ; V̂A� ¼ ½ξ½f; ξrðVÞ; VA�; ξ½f0; ξrðVÞ0 ; V 0A��; ð3:14Þ
where

f̂ ¼ VADAf0 − V 0ADAf − ð1þ 2kÞ½fξrðVÞ0 − f0ξrðVÞ�;
V̂A ¼ VBDBV 0A − V 0BDBVA;

ξ̂rðVÞ ¼ VADAξ
rðVÞ0 − V 0ADAξ

rðVÞ: ð3:15Þ

Thus, we obtained the algebra bmswk ≃ ðvectðS2Þ ⋉
wÞ ⋉k s, which one would naively regard as a deformation
of bmsw obtained in [29]. Nevertheless, the fact that the
Weyl generators ξrðVÞ are independent of VA allows us to
rescale the former such that the algebra bmswk is iso-
morphic to the Weyl-BMS algebra bmsw. This differs
from the bmss and gbmss algebras, where the one-
parameter deformation is nontrivial and cannot be removed
by a simple rescaling of the generators. As a consequence,
we observe that the bmsw algebra is more universal
because it is more rigid toward deformations than bms
and gbms.
Let us explore the algebra (3.15) in a different basis by

embedding vectðS2Þ into vectðC⋆Þ, changing the topology
to admit two punctures at the poles. In this case, the vector
field in (3.10) can be expressed as

ξðfpq; 0; 0Þ ≔ Tp;q ¼ zpz̄q∂u; ð3:16Þ

ξð0; ξrðVÞpq ; 0Þ ≔ Wp;q ¼ −ð1þ 2kÞzpz̄qu∂u; ð3:17Þ

ξð0; 0; Vz
mnÞ ≔ Lm;n ¼ −zmþ1z̄n∂z; ð3:18Þ

ξð0; 0; Vz̄
mnÞ ≔ L̂m;n ¼ −zmz̄nþ1

∂z̄: ð3:19Þ

In terms of this basis, we obtain the following nonvanishing
commutators:

½Lm;n;Lr;s� ¼ ðm − rÞLmþr;nþs; ð3:20aÞ

½L̂m;n; L̂r;s� ¼ ðn − sÞL̂mþr;nþs; ð3:20bÞ

½Lm;n; L̂r;s� ¼ −rL̂mþr;nþs þ nLmþr;nþs; ð3:20cÞ

½Lm;n;Wp;q� ¼ −pWpþm;qþn; ð3:20dÞ

½L̂m;n;Wp;q� ¼ −qWpþm;qþn; ð3:20eÞ

½Lm;n; Tp;q� ¼ −pTpþm;qþn; ð3:20fÞ

½L̂m;n; Tp;q� ¼ −qTpþm;qþn; ð3:20gÞ

½Wm;n; Tp;q� ¼ ð1þ 2kÞTpþm;qþn: ð3:20hÞ

It is now evident that the factor ð1þ 2kÞ in the last
commutator can easily be removed by a rescaling of
Wm;n, leading to the isomorphism bmswk ≃ bmsw.5

As a final comment, let us note that a very similar algebra
to (3.20) with witt-superrotations instead of vectðC⋆Þ has
been uncovered in Eq. (2.31) of [38]. There, the authors
performed a near-horizon analysis where the surface
gravity κ plays exactly the same role as the factor ð1þ
2kÞ in Eq. (3.20h). A major difference is that in their case κ
cannot be reabsorbed due to the fact that the value κ ¼ 0 is
included, whereas in our case ð1þ 2kÞ ≠ 0. We also note
that our parameter k can be identified6 with the level of the
conformal Carroll algebra [39]. In particular, by explicit
comparison of our BMSW-like vector field (3.10) and the
conformal Carroll vector field of level kC [see Eq. (IV.8)
in [39] with d ¼ 2], we get ∇AVAkC ¼ −ð1þ 2kÞξrðVÞ.

C. Action of the asymptotic diffeomorphisms

For completion and posterior use, we give the explicit
variations of the asymptotic coefficients under the asymp-
totic diffeomorphisms (3.1):

δΦ ¼ VADAΦ − 2∂uξ
rð0Þ − 2kð1 −ΦÞξrðVÞ − 2ð1 −ΦÞ∂uξu þ 2ΘA∂uξ

Að1Þ; ð3:21Þ

δm ¼ ξu∂umþ VADAm − kð1 −ΦÞξu − ½ð1 − 2kÞm − kuð1 −ΦÞ�ξrðVÞ − kð1 −ΦÞξrð0Þ

þ K∂uξ
rð0Þ − ∂uξ

rð1Þ þm∂uξ
u þUA∂uξ

Að1Þ þ 1

2
ξAð1ÞDAΦþ ΘA∂uξ

Að2Þ; ð3:22Þ

5It would be very interesting to explore the family of linear deformations of bmsw, similar to Wða; b; ā; b̄Þ for bms [35,36] and
gWða; b; ā; b̄Þ for gbms [37].

6We thank the anonymous referee for suggesting this relationship.
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δK ¼ ξu∂uK þ VADAK þ K∂uξu − ΘAξ
Að1Þ þ 2kðuξrðVÞ − ξu − ξrð0ÞÞ þ 2kKξrðVÞ; ð3:23Þ

δqAB ¼ 2ð1þ kÞξrðVÞqAB þ LVqAB; ð3:24Þ

δCAB ¼ ξu∂uCAB þ LVCAB þ ð1þ 2kÞCABξ
rðVÞ þ LξAð1ÞqAB þ ΘADBξ

u þ ΘBDAξ
u

þ 2qAB½ð1þ kÞξrð0Þ − kuξrðVÞ þ kξu�; ð3:25Þ

δΘA ¼ LVΘA þ ð1þ 2kÞΘAξ
rðVÞ − ∂Aξ

rðVÞ þ ΘA∂uξ
u þ qAB∂uξBð1Þ; ð3:26Þ

δUA ¼ ξu∂uUA þ LVUA þ LξCð1ÞΘA þ 2kΘAðξu þ ξrð0Þ − uξrðVÞÞ −DAξ
rð0Þ þ KDAξ

rðVÞ

− ð1 −ΦÞDAξ
u þUA∂uξ

u þ CAB∂uξ
Bð1Þ þ 2kUAξ

rðVÞ þ ΘAξ
rð0Þ þ qAB∂uξ

ð2Þ
B ; ð3:27Þ

δNA ¼ ξu∂uNA þ LVNA − ð1 − 2kÞNAξ
rðVÞ þ NA∂uξ

u þ LξCð1ÞUA þ LξCð2ÞΘA

þ KDAξ
rð0Þ −DAξ

rð1Þ þ 2mDAξ
u þ 2kUAðξrð0Þ þ ξu − uξrðVÞÞ

þ 2kΘA½u2ξrðVÞ − uðξrð0Þ þ ξuÞ þ ξrð1Þ� þ ΘAξ
rð1Þ þ

�
DAB þ 1

2
CACCC

B

�
∂uξ

Bð1Þ

þ CAB∂uξ
Bð2Þ: ð3:28Þ

IV. EQUATIONS OF MOTION

So far, we have reviewed the geometrical analysis
performed in [9,10] and extended it to allow for Weyl
transformations. Nevertheless, this treatment is off-shell,
in the sense that we did not make explicit use of the
equations of motion. In this section, we adopt general
relativity as our gravity theory and perform an on-shell
analysis. This means that we analyze the Einstein tensor as
an expansion in r−1, such that the expansion coefficients

GðiÞ
μν are defined by

Gμν ¼ Rμν −
1

2
gμνR ¼

X
i

GðiÞ
μν

ri
; ð4:1Þ

and the Ricci scalar is expanded as

R ¼
�
rþ u
L

�
−2k X∞

i¼0

RðiÞ

ri
: ð4:2Þ

In the following, we compute the Einstein tensor and
impose the falloff behavior of the asymptotic FLRW
energy-momentum tensor (2.9) to find conditions on the
metric functions and thus on the space of solutions.

A. Metrics with finite fluxes

We begin by introducing the leading uu and uA
components of the Einstein tensor obtained from the
ansatz (2.10):

Gð1Þ
uu ¼ −ð1þ kÞ∂uΦ − qABðDB

∂uΘA þ ð1þ 2kÞΘA
∂uΘBÞ;
ð4:3Þ

Gð0Þ
uA ¼ −

1

2
∂uΘA: ð4:4Þ

It can easily be observed that these components lead to
linearly divergent fluxes at large r.7

As a consequence, we restrict ourselves to the solutions
in which these components vanish, which is equivalent to
imposing ∂uΦ ¼ ∂uΘA ¼ 0. This choice is consistent
because the variations δΦ and δΘA generated by means
of asymptotic transformations are u-independent if we start
withΦ andΘA which do not depend on u, as can be quickly
noticed from (A1) and (A4).
The resulting metrics satisfy a series of properties that

make them suited for a Bondi analysis. First, it is easy to
notice that all the leading terms are u-independent, such
that only the subleading terms can be dynamical. This is
equivalent to taking as a boundary the equivalence class of
unperturbed FLRW metrics allowed by bmsw transforma-
tions, while the potential dynamics is restricted to the
subleading terms m, K, UA, and CAB. The latter transform,
respectively, as scalars, vector, and tensor encoding (up to
combinations) a maximum of 6 degrees of freedom, which
can be reduced after imposing the remaining equations of
motion. Second, one can check that the resulting Gμν

7The presence of u-dependent leading terms, such as ΦðuÞ,
ΘAðuÞ and qABðuÞ, would be necessary if one wants to describe
dynamical perturbations of the FLRW boundary among our
boundary metrics.
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components are of the same order in r as the perfect fluid
background, which is a reminiscence of the analysis
performed in [8]. This guarantees that not only the Gμν

components but also their fluxes through future null infinity
Iþ are finite.

B. Asymptotic Einstein equations
and degrees of freedom

Following the analysis of the previous subsection,
we analyze the equations of motion and corresponding

degrees of freedom for the on-shell ansatz (2.10)
with ∂uΦ ¼ ∂uΘA ¼ ∂uqAB ¼ 0.

1. General case

In this section, we will present the leading Einstein
equations and classify them in scalar, vector, and tensor
equations.

a.Scalar equations.—We start with the leading expression
of Guu,

Gð2Þ
uu ¼ 1

4
∂uCAB∂uCAB þDA∂uUA þ 2ð1þ kÞ∂uðmþΦKÞ þ 1

2
ðqACqBD − qADqBCÞDBΘADDΘC

þ ∂uKð2þ 2kΘAΘA þDAΘAÞ þ 1

2
ð1 − 2kÞΘADAΦ −

1

2
ΔΦþ ΘAðDA∂uK þ 2k∂uUAÞ

þ ðΦ − 1Þ
�
−
1

2
Rþ 1

4
ð1þ 8kþ 4k2ÞΘAΘA þ 2ðkþ 1ÞDAΘA

�

− ðΦ − 1Þ½ð2kþ 1ÞðΦ − 1Þ þ k2ðΦþ 1Þ� þ 2kðkþ 1Þ: ð4:5Þ

This equation corresponds to the Bondi mass-loss
equation in the asymptotically flat limit.
The constraint equation for the parameter K reads as

Gð3Þ
rr ¼ −2ð1þ kÞð2ku − KÞ: ð4:6Þ

Note that K is completely fixed by the corresponding term
in the expansion of the energy-momentum tensor.
Besides, we also have

Gð2Þ
ur ¼ 1

2
ðR − 2Þ þ 3k2 þ ð1þ kÞ2Φ

−
1

4
ð1þ 2kÞ2ΘAΘA þ 1

2
ð3þ 4kÞDAΘA; ð4:7Þ

which does not generally impose any extra condition on the
parameters.

b.Vector equations.—At leading order a novel constraint
for the parameter ΘA appears. It is given by

Gð1Þ
rA ¼ ð1þ kÞΘA: ð4:8Þ

The function ΘA, just as K, is now completely determined
by the corresponding expansion coefficient of the energy-
momentum tensor.
At subleading orders, we obtain the generalized version

of the well-known constraint for UA in flat spacetimes:

Gð2Þ
rA ¼ 1

2
½2kuΘA − ð3þ 2kÞDAK −DBCB

A

þð1þ 2kÞðCABΘB − 2UA − KΘAÞ� ð4:9Þ

and

Gð1Þ
uA ¼ ΘA

�
1

2
R− 1þΦ− kð2−ΦÞ þ k2ð1þΦÞ

�

þΘA

4
½−ð1þ 2kÞ2ΘBΘB þ 2ð3þ 4kÞDBΘB þ 6∂uK�

þ 1

2
½−2kDAΦþ ∂uDBCAB −DBDAΘB þDADAΘA

−ΘBð−2kðDAΘB −DBΘAÞ þ ð1þ 2kÞ∂uCABÞ
þ 2∂uUA þ ∂uDAK�; ð4:10Þ

which do not generally impose any new condition on the
parameters.

c.Tensor equations.—The leading order tensor components
are given by

Gð0Þ
AB ¼ −

1

2
½ΘAΘB − ð1þ 2kÞðDAΘB þDBΘAÞ

− 2k∂uCAB� þ
1

4
qAB½ð4k2 − 1ÞΘCΘC − 4∂uK

− 4ðkðkð1þΦÞ − 2Þ þ ð1þ 2kÞDCΘCÞ�; ð4:11Þ

which constitutes a novel constraint for the time evolution
of CAB that is absent in asymptotically flat spacetimes.
Interestingly, this condition, only present for k ≠ 0, is
associated with the presence of a Hubble scale in expanding
universes from which all the modes stop being oscillating
and are frozen [7].
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d.Ricci scalar.—Finally, let us analyze the value of the
leading order Ricci scalar for our

Rð2Þ ¼ R −
3

2
ð1þ 2kÞ2ΘAΘA þ 2ð−ð1þ 3kÞð1 −ΦÞ

þ3k2ð1þΦÞ þ ð2þ 3kÞDAΘA þ ∂uKÞ

¼ Rð2Þ
FLRW þ

�
R − 2 −

3

2
ð1þ 2kÞ2ΘAΘA þ 2∂uK

þ 2ðð1þ 3kþ 3k2ÞΦþ ð2þ 3kÞDAΘAÞ
�
: ð4:12Þ

We recall that in the flat limit, i.e., k → 0, ΘA → 0, and
K → 0, this equation becomes

Rð2Þ
flat ¼ 2ΦþR − 2: ð4:13Þ

In fact, the condition Rð2Þ
flat ¼! 0 is imposed as a flatness

condition, leading to a constraint on Φ; see [29]. Following

the same logic, we can impose Rð2Þ ¼! Rð2Þ
FLRW, which again

constrains Φ in terms of R, Tð1Þ
rA , and Tð3Þ

rr , determining a
balance equation which ensures that the spacetimes under
analysis still have an FLRW profile.
Before continuing, it is instructive to have a closer look

at the values of the variations (3.21), (3.23), and (3.26)
in our setting. In fact, we observe that they can be
expressed as

δΘA ¼ LVΘA þ 2k∂AξrðVÞ;

δΦ ¼ VADAΦþ
�
2ð1 −ΦÞð1þ kÞ − 4k

þ 1þ 2k
1þ k

ðDADA þ ð1þ 2kÞΘADAÞ
�
ξrðVÞ;

δK ¼ ξu∂uK þ VADAK − KξrðVÞ þ ð1þ 3kÞ
ð1þ kÞ ΘADAξ

u

þ 2k
ð1þ kÞ ½uξ

rðVÞ −DADAξu − ξu�:

These Lie derivatives confirm explicitly our previous
statement that the choice ∂uΦ ¼ ∂uΘA ¼ 0 is consistent
because the variations δΦ and δΘA generated by means of
asymptotic transformations are u-independent if we start
with Φ and ΘA not depending on u. Moreover, we observe
that ΘA is unavoidably generated by Weyl transformations,
while in the presence of only supertranslations this com-
ponent is not necessarily present. The same statement holds
true forΦ, whereasK is generated in any case. Remarkably,
in the absence of Weyl transformations, K does not need to
be u-dependent.

2. Absence of Weyl transformations

In the last subsection, we have noticed how complicated
the analytical treatment becomes in general settings.
Nevertheless, the physical picture and the role of the
different coefficients, as well as the nature of the different
degrees of freedom, are exactly the same as in simpler
backgrounds.8 Therefore, we will now restrict ourselves to
a simple setting, which is consistent with supertranslations
and the absence of Weyl diffeomorphisms (i.e., ξrðVÞ ¼ 0),
with ΘA ¼ Φ ¼ 0 and analyze it in more detail, solving the
Einstein equations explicitly.
Let us start by writing down the relevant Einstein

equations (4.5)–(4.12) in our simplified setting:

Gð2Þ
uu ¼ 1

2
ðR − 2Þ þ 3k2 þ 2∂uK − ∂uðDAUAÞ

þ 1

4
∂uCAB∂uCAB − 2ð1þ kÞ∂um; ð4:14Þ

Gð3Þ
rr ¼ −2ð1þ kÞð2ku − KÞ; ð4:15Þ

Gð2Þ
ur ¼ 1

2
ðR − 2Þ þ 3k2; ð4:16Þ

Gð1Þ
uA ¼ 1

2
ð∂uDBCAB þ 2∂uUA þ ∂uDAKÞ; ð4:17Þ

Gð2Þ
rA ¼ 1

2
½−2ð1þ 2kÞUA −DBCB

A−ð3þ 2kÞDAK�; ð4:18Þ

Gð0Þ
AB ¼ k∂uCAB − qAB½kðk − 2Þ þ ∂uK�; ð4:19Þ

together with

Rð2Þ ¼ Rð2Þ
FLRW þ ½R − 2þ 2∂uK� ¼! Rð2Þ

FLRW: ð4:20Þ

From these equations we find the constraints

K ¼ 8πG
2ð1þ kÞT

ð3Þ
rr þ 2ku

¼ 8πG
2ð1þ kÞ ðT

ð3Þ
rr − Tð3Þ

rr FLRWÞ

¼ 8πG
2ð1þ kÞ△Tð3Þ

rr ; ð4:21Þ

∂uK ¼ 1

2
ð2 −RÞ ¼ 8πG

2ð1þ kÞ ∂uð△Tð3Þ
rr Þ; ð4:22Þ

8Note that the backgrounds are encoded in the coefficients
ΘA and Φ.
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UA ¼ −
8πG

ð1þ kÞT
ð2Þ
rA −

qBM

2ð1þ kÞ ðDMCABÞ

−
3þ 2k
2ð1þ kÞDAK; ð4:23Þ

which indicate that K and UA do not propagate and are
completely determined in terms of the sources and other
fields.
Next, we examine in detail (4.14) and (4.19). Let us

begin by decomposing (4.19) into trace and traceless
components

qABGð0Þ
AB ¼ −2½kðk − 2Þ þ ∂uK�; ð4:24Þ

Gð0Þ
AB −

1

2
qABqCDG

ð0Þ
CD ¼ k∂uCAB: ð4:25Þ

The former equation does not convey special information
but the latter tells us that, for k ≠ 0, the time evolution of
CAB is constrained by the sources, and it is not anymore a
field carrying dynamical degrees of freedom at future null
infinity Iþ. This is a crucial difference with respect to
asymptotically flat spacetimes, where CAB only enters the
Bondi mass-loss formula (4.14) and is unconstrained.
Finally, looking in detail at Eq. (4.14), we observe that
m enters the mass loss equation with only one time
derivative, which would define its evolution as Cauchy
data in terms of energy-momentum components.
Furthermore, after a lengthy computation, it can be

shown that NA also enters the equations of motion for

Gð2Þ
uA with only one time derivative and is constrained by the

energy-momentum tensor. The subleading coefficient E in

gur ≃Oðr−2Þ enters as qAB∂uE inGð1Þ
AB, but inG

ð4Þ
rr it appears

linearly without derivative and is fully constrained as can be
seen from

Gð4Þ
rr ¼ −

1

4
CABCAB þ 2½3k2u2 þ 2E þ K2

þkð3u2 þ 2E − uK þ K2Þ�: ð4:26Þ

a.Short summary.—We observe that for asymptotically
decelerating FLRW spacetimes, the dynamics at future
null infinity Iþ is completely constrained. This could have
been expected taking into account that, in an expanding
universe, there is a Hubble scale from which all the modes
stop to be oscillating and simply become frozen.
Gravitational waves in the IR limit will, therefore, always
be beyond the Hubble scale and do not appear as dynamical
from the point of view of Iþ. Note, however, that this result
depends on the choice of boundary conditions and, in

particular, of the falloff behavior of the energy-momentum
tensor.
Let us close this section with two brief comments. In the

background ΘA ¼ Φ ¼ 0, the coefficients K, E, UA are
fully constrained, whilem,NA,CAB are nonpropagating and
their evolution equations are determined by the sources.
These coefficients represent frozen scalar, vector, and tensor
modes that stop being dynamical at the Hubble scale due to
the appearance of well-known friction terms [7]. In the
most general case with u-dependent Φ, Ψ, ΘA, and qAB,
we point out that these four coefficients and/or their
time evolution are also completely constrained in terms
of the energy-momentum tensor, such that they are again
nonpropagating.
The results derived in this section raise the question

whether a nontrivial infrared structure can be expected in
more realistic cosmological settings where expansion and
the Hubble scale are present.

V. ASYMPTOTIC CHARGES
FOR SUPERTRANSLATIONS

In this section, we will propose asymptotic charges for
supertranslations in the absence of Weyl transformations.
In fact, this is the setting we explored in detail in the
Sec. IV B 2, for which ΘA ¼ Φ ¼ 0.
We conjecture the expression of supertranslation charges

by introducing a physically motivated ansatz and requiring
that the charges reproduce the flat limit and obey an
Abelian algebra, meaning that they are in a faithful
representation of the supertranslation algebra.
We start with a simple ansatz given by the standard

supertranslation charges in asymptotically flat space (see,
e.g., [40]) integrated over the comoving sphere

Q̃f ¼
Z
S2

ffiffiffi
q

p
fðxAÞða2mÞ: ð5:1Þ

We compute the algebra of charges using the definition for
integrable charges in [41]

fQ̃f1 ; Q̃f2g ¼ −δf2Q̃f1 ¼ −
Z
S2

ffiffiffi
q

p ½f1δf2ða2mÞ�: ð5:2Þ

The required variation reads as

δf2ða2mÞ ¼ a2
�
f2∂um −

kðkþ 2Þ
2ð1þ kÞ2 ðDADA þ 2Þf2

−
1

4ð1þ kÞ ½2ð∂uU
AÞðDAf2Þ

−DAð∂uCABDBf2 − ∂uKDAf2Þ�
�
; ð5:3Þ

and, plugging in the equations of motion, it leads to
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δf2ða2mÞ ¼ a2
�
−
f2△Gð2Þ

uu þDAð△Gð1Þ
uAf2Þ − ½ðR − 2Þ þ 2∂uK�
2ð1þ kÞ −

kðkþ 2Þ
2ð1þ kÞ2 ðDADA þ 2Þf2

−
∂uCAB

∂uCAB

8ð1þ kÞ f2 þ
1

4ð1þ kÞ ½DADBðf2∂uCABÞ þDADAðf2∂uKÞ�
�
: ð5:4Þ

Let us now recall that we only consider supertranslations, which means R ¼ 2. As a consequence, Eq. (4.20) tells us that
∂uK ¼ 0. This reduces the previous expression to

δf2ða2mÞ ¼ a2
�
−
f2△Gð2Þ

uu þDAð△Gð1Þ
uAf2Þ

2ð1þ kÞ −
kðkþ 2Þ
2ð1þ kÞ2 ðDADA þ 2Þf2 −

∂uCAB
∂uCAB

8ð1þ kÞ f2

þ 1

4ð1þ kÞDADBðf2∂uCABÞ
�
: ð5:5Þ

The second term in the first line can be reabsorbed by a redefinition of the charge as

Qf ≔ Q̃f −
ðkþ 2Þ
2ð1þ kÞ

Z
S2

ffiffiffi
q

p
a2fðxAÞK ¼

Z
S2

ffiffiffi
q

p
a2fðxAÞ

�
m −

ðkþ 2Þ
2ð1þ kÞK

�
: ð5:6Þ

In this way, we obtain

fQf1 ; Qf2g ¼ −δf2Qf1

¼
Z
S2
a2

ffiffiffiffiffiffi
gS2

p 1

ð1þ kÞ
�
1

8
f1f2∂uCAB

∂uCAB −
1

4
f2∂uCABDADBf1 þ

f1f2△Gð2Þ
uu −△Gð1Þ

uAf2D
Af1

2

�
: ð5:7Þ

The terms in the first line can be absorbed by a modification of the bracket derived in [41] for asymptotically flat spacetimes,
as follows:

fQf1 ; Qf2g ¼ −δf2Qf1 þ
Z
S2

ffiffiffi
q

p a2

8ð1þ kÞ ∂uC
BCf2ð−δf1CBCÞ: ð5:8Þ

The remaining terms are fluxes and nonintegrable terms that can either be added to the definition of the charge, making it

nonintegrable, or cured by redefinition of the bracket. In the case in which △Gð2Þ
uu ¼ △Gð1Þ

uA ¼ 0, we have a well-defined
charge given by Eq. (5.6) and the charge bracket in Eq. (5.8). The algebra is Abelian and the charges are nonintegrable only
when ∂uCAB ≠ 0.
To study the nonconservation of the charges, we use the evolution equation [41]

d
du

Qf ¼ ∂

∂u
Qf þ δ1Qf: ð5:9Þ

Contrary to the analysis in flat spacetimes, ∂Qf=∂u includes a contribution coming from the u-dependent scale factor. As a

result, for the setting with △Gð2Þ
uu ¼ △Gð1Þ

uA ¼ 0, we obtain

d
du

Qf ¼ 2
H
a
Qf −

1

ð1þ kÞ
Z
S2

ffiffiffi
q

p
a2
�
1

8
f∂uCAB

∂uCAB −
1

4
∂uCABDADBf

�
; ð5:10Þ

where H ¼ ∂ua denotes the Hubble parameter.
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The first term is new with respect to flat spacetimes and
can be interpreted as a Hubble flow of the evolution of the
charge. For the concrete case of f ¼ 1, the first term is
positive and the second is negative. As a consequence, the
charge Qf¼1 is not guaranteed to be monotonically
decreasing in time. In fact, the term ðH=aÞQf¼1 couples
the expansion rate of the FLRW universe with the charge
Qf¼1 and contributes to the time evolution counterbalanc-
ing the loss of energy from the gravitational waves. In other
words, the quantity Qf¼1 cannot be strictly interpreted as
the FLRW equivalent of the Bondi mass.
Let us finish this section with some relevant comments:
(i) Using the charge (5.6) and the bracket (5.8), we

have obtained fQf1 ; Qf2g ¼ Q½f1;f2�¼0 ¼ 0 for a
subset of metrics compatible with supertranslations,

in which Φ ¼ ΘA ¼ ∂uK ¼ △Gð2Þ
uu ¼ △Gð1Þ

uA ¼ 0.
(ii) It is of utmost importance to emphasize that, con-

trary to asymptotically flat spacetimes, ∂uCAB can be
expressed in terms of the energy-momentum tensor

components Tð0Þ
AB following Eq. (4.25). This means

that the notion of Bondi news associated with
propagating degrees of freedom is absent. Instead,
a matter flux through the boundary takes the place of
the Bondi news. When it is vanishing, it renders the
charges integrable.

(iii) In general, due to the fact that the evolution of all the
metric coefficients is determined by the energy-
momentum tensor components, we point out that the
interpretation of these charges might be very differ-
ent from that in asymptotically flat spacetimes.

(iv) Although the charges we presented are well moti-
vated, we remark that it should be possible to derive
them from first principles, e.g., using the Barnich-
Brandt method [42] upon linearizing over the FLRW
background. We leave this for future studies.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we further delved into asymptotically
decelerating spatially flat FLRW spacetimes at future null
infinity Iþ, originally initiated in [8,9], refined in [10], and
briefly reviewed in our Sec. II. Herein, we extended the
latter by allowing for asymptotic local Weyl diffeomor-
phisms, which do not preserve the determinant of the metric
on the sphere, and we went a step further by studying for
the first time the dynamics of these cosmological space-
times in general relativity.
Let us summarize the main results of our analysis:
(i) After relaxing the strong Bondi gauge or, equiva-

lently, enabling the change of the determinant of the
metric on the sphere, we have shown that asymp-
totically decelerating spatially flat FLRW spacetimes
at future null infinity Iþ admit an asymptotic algebra

isomorphic to the Weyl-BMS algebra bmsw in
asymptotically flat spacetimes [29]. This result dif-
fers from the case considered in [8,10], where bs,
bmss, and gbmss are one-parameter deformations of
their asymptotically flat counterparts and unveil a
cosmological holographic flow at the level of asymp-
totic algebras. We, thus, find that this flow is trivial if
we allow for local Weyl diffeomorphisms, pointing
to the fact that bmsw is more rigid to deformations
than the other extensions of the BMS algebra.

(ii) We performed an on-shell analysis of asymptotically
decelerating spatially flat FLRW spacetimes at
future null infinity Iþ by computing and analyzing
the asymptotic Einstein equations. The general
pattern and constraints on the metric coefficients
are clear. Nonetheless, for the sake of technical
simplicity, we explicitly solved the equations for a
subclass of metrics compatible with the supertrans-
lationlike sector. Strikingly, we observed that the
boundary dynamics is completely constrained by the
sources, such that not even the tensor degrees of
freedom propagate in contrast to asymptotically flat
spacetimes. From a cosmological perspective, this
result is consistent with the presence of a Hubble
scale in the expanding universes beyond which all
dynamics is frozen.

(iii) Making use of the on-shell treatment, we obtained
well-defined candidates for supertranslationlike
charges in some concrete settings. Interestingly, their
evolution equation involves a new Hubble term.

Finally, we comment on open questions and point out
future research directions:

(i) When we started this project, we expected to benefit
from the richer structure of FLRW spacetimes and,
therefore, to explore not only tensor modes (as in
asymptotically flat spacetimes) but also scalar and
vector modes and their corresponding memories.
Nevertheless, our investigation of the Einstein equa-
tions revealed the opposite conclusion: all the modes
at future null infinity Iþ are constrained by the
sources. There are, nonetheless, two caveats worth-
while to be explored. First, we have used general
relativity as gravity theory, while alternative gravity
theories might permit richer dynamics for these
cosmological spacetimes at Iþ. Second, as pointed
out in [10], we should have allowed for logarithmic
terms in r in the metrics (2.10) to include more
realistic solutions, such as cosmological black holes.
The reason for not including such terms is purely
technical, based on the high difficulty of performing
their on-shell analysis. However, it might be that
including those terms would lead to less restrictive
equations of motion.
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(ii) A very intuitive guideline to follow is extending our
machinery to other types of FLRW universes, with a
special emphasis on accelerating spatially flat
ones, and comparing to the results obtained in this
paper.

(iii) It would be very interesting to explore if the Weyl-
BMS algebra bmsw belongs to a wider multipara-
metric family of deformations. The BMS algebra
bms and the corresponding deformation bmss are
members of the familyWða; b; ā; b̄Þ [10,35,36], and
the generalized BMS algebra gbms and its defor-
mation gbmss lie within the three-parametric family
gWða; b; āÞ [37]. It would be very appealing to
obtain such a family for bmsw and explore its
representatives. For a discussion on the physical
relevance of exploring families of deformations that
interpolate between symmetry algebras obtained
from various boundary conditions at various loci
(e.g., near horizon or asymptotic) and concrete
three-dimensional examples, we refer to [43].

(iv) We followed an intuitive procedure to obtain super-
translationlike charges. Nevertheless, we expect that
it should be possible to derive them explicitly from
the Barnich-Brandt method [42] by linearizing over
an FLRW background. This technical step is worth
pursuing in future studies.

(v) Besides, it would be desirable to obtain charges for
the superrotationlike and local Weyl sectors. It is a
challenging task, even for the global Killing vectors

in S2, because it would involve the next order in the
1=r expansion of the Einstein equations, which
determines the evolution of the angular momentum
aspect. We expect that a refinement of the techniques
of holographic renormalization developed for
asymptotically flat spacetimes [29,44] will be very
useful in such an endeavor.
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APPENDIX A: ASYMPTOTIC LIE DERIVATIVES

In this appendix, we calculate the Lie derivatives of the
off-shell metric (2.10) with respect to the asymptotic
diffeomorphisms (3.1). These are given by

a−2Lξguu ¼ 2rðΘA
∂uVA − ∂uξ

rðVÞÞ þ ½VADAΦþ ξu∂uΦþ 2UA∂uVA − 2∂uξ
rð0Þ − 2kð1 −ΦÞξrðVÞ þ 2K∂uξ

rðVÞ

− 2ð1 −ΦÞ∂uξu þ 2ΘA∂uξ
Að1Þ� þ 2

r

�
ξu∂um − kð1 −ΦÞξu − ðð1 − 2kÞm − kuð1 −ΦÞÞξrðVÞ

− kð1 −ΦÞξrð0Þ þ VADAmþ 1

2
ξAð1ÞDAΦþ K∂uξ

rð0Þ − ∂uξ
rð1Þ þm∂uξ

u þ UA∂uξ
Að1Þ

þ ΘA∂uξ
Að2Þ þ NA∂uVA

�
þOðr−2Þ; ðA1Þ

a−2Lξgur ¼ −½ð1þ 2kÞξrðVÞ þ ∂uξ
u� þ 1

r
½ξu∂uK þ VADAK þ K∂uξ

u − ΘAξ
Að1Þ

þ2kðuξrðVÞ − ξu − ξrð0ÞÞ þ 2kKξrðVÞ� þOðr−2Þ; ðA2Þ

a−2LξgrA ¼ −qABξBð1Þ −DAξ
u þ 1

r
ðKDAξ

u − CABξ
Bð1Þ − 2qABξBð2ÞÞ þOðr−2Þ; ðA3Þ

a−2LξguA ¼ qAB∂uVBr2 þ r½ð1þ 2kÞΘAξ
rðVÞ þ LVΘA − ∂Aξ

rðVÞ þ CAB∂uVBþξu∂uΘA þ ΘA∂uξ
u þ qAB∂uξBð1Þ�

þ
�
ð2kΘA þ ∂uUAÞξu þ ð1þ 2kÞΘAξ

rð0Þ þ 2kξrðVÞðUA − uΘAÞ þ LVUA þ LξCð1ÞΘA −DAξ
rð0Þ

þ KDAξ
rðVÞ − ð1 −ΦÞDAξ

u þ
�
DAB þ 1

2
CACCC

B

�
∂uVB þ UA∂uξ

u þ CAB∂uξ
Bð1Þ þ qAB∂uξBð2Þ

�
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þ 1

r

�
ξu∂uNA þ NA∂uξ

u þ LVNA − ð1 − 2kÞNAξ
rðVÞ þ KDAξ

rð0Þ −DAξ
rð1Þ þ 2mDAξ

u

þ 2kUAðξrð0Þ þ ξu − uξrðVÞÞ þ 2kΘAðu2ξrðVÞ − uðξrð0Þ þ ξuÞ þ ξrð1ÞÞ þ ΘAξ
rð1Þ þ CAB∂uξ

Bð2Þ

þ
�
DAB þ 1

2
CACCC

B

�
∂uξ

Bð1Þ þ LξBð1ÞUA þ LξBð2ÞΘA

�
þOðr−2Þ; ðA4Þ

a−2LξgAB ¼ r2FAB þ rSAB þ KAB; ðA5Þ

with

FAB ¼ 2ð1þ kÞξrðVÞqAB þ ξu∂uqAB þ LVqAB;

SAB ¼ 2qABðð1þ kÞξrð0Þ − kuξrðVÞ þ kξuÞ þ LξAð1ÞqAB þ ΘADBξ
u þ ΘBDAξ

u þ ð1þ 2kÞCABξ
rðVÞ þ LVCAB þ ξu∂uCAB;

KAB ¼ 2kqABðu2ξrðVÞ − uξrð0Þ − uξuÞ þ 2ð1þ kÞqABξrð1Þ þ LξAð2ÞqAB þ UADBξ
u þ UBDAξ

u þ LξAð1ÞCAB

þ 2k

�
DAB þ 1

2
CACCC

B

�
ξrðVÞ þ ξu∂u

�
DAB þ 1

2
CACCC

B

�
þ LV

�
DAB þ 1

2
CACCC

B

�
: ðA6Þ

APPENDIX B: WEYL SCALARS

The Bondi gauge suggests a frame where one can compute the Weyl scalars. This computation has been useful to identify
covariant quantities in asymptotically flat spacetimes [29], and we expect that it will also be useful for asymptotically
FLRW. For completion, we compute in this appendix the Weyl scalars associated with the on-shell metric (2.10).
Our starting point is the historical Bondi-Sachs form of the metric

ds2 ¼ −2e2βa2duðdrþ FduÞ þ gABðdxA − ŨAduÞðdxB − ŨBduÞ: ðB1Þ

The null tetrads are defined by ηabea ⊗ eb ¼ gμνdxμ ⊗ dxν with

ηab ¼

0
BBBB@

0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

1
CCCCA: ðB2Þ

For the metric in Eq. (B1) they are given by

e0 ¼ ae2βdu; e1 ¼ aðdrþ FduÞ; ei ¼ arEi
AðdxA − UAÞ; ðB3Þ

with ηijEi
AE

j
B ¼ 1

a2r2 gAB for i; j ∈ f2; 3g. The corresponding vectors are given by

ê0 ¼
1

a
e−2βð∂u − F∂r þ UA

∂AÞ; ê1 ¼
1

a
∂r; êi ¼

1

a
1

r
ÊA
i ∂A: ðB4Þ

It can be checked easily that the vectors êa are null. To obtain the metric in the previous form (2.10), we have to expand the
parameters in (B1) in the following way:
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β ¼ −
K
2r

−
E þ 1

2
K2

2r2
þOðr−3Þ;

F ¼ F0 þ
F1

r
þ F2

r2
þOðr−3Þ;

F0 ¼
1

2
ð1 −Φþ ΘAΘAÞ;

F1 ¼ ðKð1 −ΦÞ − 2mþ ΘAðKΘA − CABΘB þ 2UAÞÞ;

F2 ¼
1

2
ðEð1 −ΦÞ − F þ KðKð1 −ΦÞ − 2mÞ þ 2NAΘA þ ðE þ K2ÞΘAΘA

þ 1

2
ðCM

A CBM − 2DABÞΘAΘB þUAð2KΘA þUAÞ − CABΘAðKΘB þ 2UBÞÞ;
gAB
a2

¼ r2
�
qAB þ 1

r
CAB þ 1

r2

�
DAB þ 1

2
CACCC

B

�
þ 1

r3
EAB þþOðr−4Þ

�
;

gABŨB

a2
¼ rΘA þ UA þ 1

r
NA þOðr−2Þ; ðB5Þ

with CA
A ¼ DA

A ¼ 0 to satisfy the determinant condition of the Bondi gauge. The tetrads on the sphere are expanded as

Ei
A ¼ Ēi

Aþ
1

2r
Ēi
BC

B
A þ

1

2r2
Ēi
B

�
DB

A þ
1

4
CACCBC

�
þ 1

2r3
ˆ̄Ei
B

�
EB
A −

1

4
ðDC

AC
B
CþCACDCBÞ− 1

8
CACCB

DC
CD

�
þOðr−4Þ; ðB6Þ

ÊA
i ¼ ˆ̄EA

i −
1

2r
ˆ̄EB
i CA

B −
1

2r2
ˆ̄EB
i

�
DA

B −
1

4
CACCBC

�
þ 1

2r3
ˆ̄EB
i

�
−EA

B þ 1

8
CD
BCCDCAC þ 3

4
ðDA

CC
C
B þDBCCCAÞ

�
þOðr−4Þ;

ðB7Þ

where ˆ̄EA
i are the tetrads of the leading term of the metric on the sphere, defined as qAB ¼ ˆ̄EA

i
ˆ̄EB
j η

ij and ϵAB ¼ ˆ̄EA
i
ˆ̄EB
j ϵ

ij.
With these tetrads, the Weyl scalars are given by

Ψ4 ¼ Cμνγδê
μ
0ê

ν
3ê

γ
0ê

δ
3 ¼ C0̂ 3̂ 0̂ 3̂ ¼ a−2 ˆ̄EA

3
ˆ̄EB
3

�
1

r
ψ4
AB þOðr−2Þ

�
; ðB8Þ

Ψ3 ¼ C0̂ 3̂ 0̂ 1̂ ¼ a−2 ˆ̄EA
3

�
1

r2
ðψ3

AÞ þOðr−3Þ
�
; ðB9Þ

ReðΨ2Þ ¼ C1̂ 0̂ 1̂ 0̂ ¼ a−2
�
1

r2
ψ2;1 þ 1

r3
ψ2;2 þOðr−4Þ

�
; ðB10Þ

ImðΨ2Þ ¼ C1̂ 0̂ 2̂ 3̂ ¼ a−2
�
1

r2
ψ̃2;1 þ 1

r3
ψ̃2;2 þOðr−4Þ

�
; ðB11Þ

Ψ1 ¼ C1̂ 0̂ 1̂ 2̂ ¼ a−2 ˆ̄EA
2

�
1

r3
ψ1;1
A þ 1

r4
ψ1;2
A þOðr−5Þ

�
; ðB12Þ

Ψ0 ¼ C1̂ 2̂ 1̂ 2̂ ¼ a−2 ˆ̄EA
2
ˆ̄EB
2

�
1

r4
ψ0;1
AB þ 1

r5
ψ0;2
AB þOðr−6Þ

�
; ðB13Þ

with

ψ4
AB ¼ −

1

2
∂
2
uCAB; ðB14Þ
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ψ3
A ¼ 1

4
ð2DAΦþ 2∂uUA − ∂uDBCB

A þ ΘARþ 2ΘBðDBΘA −DAΘBÞ
þ∂uDAK þ ΘA∂uK − ΘADBΘB þDBDAΘB −DBDBΘAÞ; ðB15Þ

ψ2;1 ¼ −
1

6
ð2ΦþR − 2þDAΘA þ 2∂uKÞ; ðB16Þ

ψ2;2 ¼ −2m −
1

6
CAB

∂uCAB −
2

3
∂uE −

1

6
DAð2UA þDBCABÞ þ 1

3
ΘAð2UA þDBCB

AÞ

þ K

�
1 −Φþ 1

3
ΘAΘA −

1

6
DAΘA − ∂uK

�
−
1

2
ΘADAK þ 1

6
ΔK; ðB17Þ

ψ̃2;1 ¼ 1

4
ϵABDAΘB; ðB18Þ

ψ̃2;2 ¼ 1

2
ϵAB

�
DAUB −

1

4
CC
A∂uCCB −

1

2
CACDCΘB þ 1

2
CACDBΘC þ 1

2
KDAΘB −

1

2
ΘADBK −

1

2
ΘCDACBC

�
; ðB19Þ

ψ1;1
A ¼ 1

4
ð2UA þDBCB

A þ KΘA −DAKÞ; ðB20Þ

ψ1;2
A ¼ 1

2

�
3NA −

1

4
CB
Að2UB þDCCC

BÞ þDBDB
A −

1

4
CBCDACBC − ΘB

�
DAB þ 1

2
CBCCC

A

�

þ 3

4
CABðDBK − KΘBÞ þ ΘAðK2 þ EÞ þ 2K

�
UA −

1

2
DAK

�
−
1

2
DAE

�
; ðB21Þ

ψ0;1
AB ¼ −DAB −

1

4
CC
ACCB −

1

2
CABK; ðB22Þ

ψ0;2
AB ¼ −3EAB þ 1

2
CC
AC

D
BCCD þ 2DCACC

B − CABE −DABK −
1

2
CABK2: ðB23Þ

Therefore, we observe that the peeling property is not preserved by this metric ansatz, since the terms ψ2;1, ψ̃2;1, ψ1;1
A , and

ψ0;1
AB spoil it. Remarkably, the components K and ΘA, which are directly determined in terms of the fluid energy-momentum

tensor components (4.6) and (4.8), are the causant. However, we consistently recover the peeling property in the flat limit,
where these four components vanish.
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