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Black hole (BH) evaporation is caused by creation of entangled particle-antiparticle pairs near the event
horizon, with one carrying positive energy to infinity and the other carrying negative energy into the BH.
Since under the event horizon, particles always move toward the BH center, they can only be absorbed but
not emitted at the center. This breaks absorption-emission symmetry and, as a result, annihilation of the
particle at the BH center is described by a non-Hermitian Hamiltonian. We show that due to entanglement
between photons moving inside and outside the event horizon, nonunitary absorption of the negative
energy photons near the BH center, alters the outgoing radiation. As a result, radiation of the evaporating
BH is not thermal; it carries information about BH interior, and entropy is preserved during evaporation.
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I. INTRODUCTION

According to principles of quantum mechanics, the state
of an isolated system remains pure during evolution. This is
the case for both types of quantum mechanical evolution—
a unitary evolution governed by the Schrödinger equation
and a nonunitary state vector collapse brought about by a
measurement. If the system remains in a pure state, the von
Neumann entropy is preserved.
Computations of Hawking radiation, which is believed to

be produced by an evaporating black hole (BH), indicated
that it is completely thermal [1–4]. Therefore, an evapo-
rating BHwould eventually leave behind a cloud of thermal
radiation, independently of the initial state from which it
was formed. However, one could imagine forming a BH
from a pure state that seems to evolve to a mixed thermal
state, which amounts to a loss of information, and thus, is
incompatible with quantum mechanical evolution. This is
known as the BH information paradox [5]. For proposals to
resolve the BH information problem, see, e.g., [6,7] and
references therein.
According to the holographic principle, the bulk infor-

mation in models of gravity in d-dimensions might be
available on the d − 1 dimensional boundary of space-
time [8,9]. Holography of information implies that the
internal quantum state of a BH must be encoded in the
asymptotic quantum state of its graviton field, since
otherwise the information would not be recoverable at
the boundary [10,11]. In [12,13], it has been shown
explicitly that information about the BH internal state is
available in the quantum state of its gravity field (quantum
hair). Moreover, it has been argued that long wavelength
gravitons can give rise to an infinite number of conserved
charges that preserve an infinite amount of information
outside BHs [14], which could give a new perspective on
the information problem [15,16].

Holography was given an explicit realization in the
AdS=CFT correspondence of Maldacena [17], which
suggests that BH evaporation can be unitary. Recently,
there has been considerable progress in directly computing
the entanglement entropy of evaporation using anti–
de Sitter (AdS) methods, and these results suggest that
the process is unitary [18]. While both holography of
information and AdS=CFT duality suggest that the BH
information paradox is somehow resolved in favor of
unitarity, neither yield a specific description of the physical
process by which BH information is encoded in Hawking
radiation.
Here, we show that entanglement of particle pairs

generated during BH evaporation, combined with nonuni-
tary absorption of particles near the BH center, leads to
nonthermal outgoing radiation that carries information
about the BH interior.
BHs possess an event horizon—the boundary under

which no particles, at least if they are treated classically
and moving forward in time, can escape. This leads to a
belief that an observer outside the BH has no access to the
interior part of the total quantum system, and information
about the internal degrees of freedom is lost during BH
evaporation leaving the system in a mixed state.
However, BH spacetime has another inherent feature,

namely, under the event horizon, particles always move
toward the BH center. The latter probably has a Planck
scale and is described by yet not well-understood physics.
What matters for the present discussion is that, since
particles can move only towards the center, photons with
a wavelength much greater than the Plank length can only
be absorbed, but not emitted at the BH center.
Emitted particles move away from the source and, since

particles cannot move away from the BH center, they
cannot be emitted in this region. This breaks the symmetry
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between absorption and emission. As a result, annihilation
of the particle at the BH center is described by a non-
Hermitian Hamiltonian.
Here, we show that if the emission-absorption symmetry

is broken, quantum mechanics predicts that radiation of an
evaporating BH is nonthermal, and it carries information
about the state of matter in the BH interior. Next, we briefly
discuss the physics of Hawking radiation from a negative
frequency perspective [19].

II. HAWKING RADIATION FROM A NEGATIVE
FREQUENCY PERSPECTIVE

According to general relativity, a static BH of massM in
3þ 1 dimension in Schwarzschild coordinates is described
by a metric,

ds2 ¼
�
1 −

rg
r

�
c2 dt2 −

1

1 − rg
r

dr2 − r2ðdθ2 þ sin2θdφ2Þ;

ð1Þ

where rg ¼ 2GM=c2 is the gravitational radius. For sim-
plicity, we truncate the spacetime to 1þ 1 dimension (t and
r, where r ≥ 0) and use Kruskal-Szekeres coordinates T
and X that are defined in terms of the Schwarzschild
coordinates t and r as

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=rg − 1

q
e

r
2rg sinh

�
ct
2rg

�
; ð2Þ

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=rg − 1

q
e

r
2rg cosh

�
ct
2rg

�
; ð3Þ

for r > rg, and

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r=rg

q
e

r
2rg cosh

�
ct
2rg

�
; ð4Þ

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r=rg

q
e

r
2rg sinh

�
ct
2rg

�
; ð5Þ

for 0 < r < rg. In these coordinates, the BH center

(r ¼ 0) is a spacelike line T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
. This line sets a

boundary of the Schwarzschild spacetime in the Kruskal-
Szekeres coordinates (see Fig. 1). The boundary appears
because coordinate transformation (2)–(5) maps the region
−∞ < t < ∞, r ≥ 0 into T ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
, T ≥ −X. In the

Kruskal-Szekeres coordinates, in 1þ 1 dimension, the
Schwarzschild metric,

ds2 ¼ 4r3g
r

e−r=rgðdT2 − dX2Þ; ð6Þ

is conformally invariant to the Minkowski metric and, thus,
a massless scalar field ϕ obeys the same wave equation as
in the Minkowski spacetime,

�
∂
2

∂T2
−

∂
2

∂X2

�
ϕ ¼ 0: ð7Þ

For the present problem, only the right-moving field in
Fig. 1 is important. It is convenient to describe such a field
using Rindler modes [20],

ϕ1ΩðT; XÞ ¼ ðX − TÞiΩθðX − TÞ; ð8Þ

ϕ2ΩðT; XÞ ¼ ðT − XÞ−iΩθðT − XÞ; ð9Þ

where Ω > 0 is a parameter and θ is the Heaviside step
function. Rindler modes ϕ1Ω and ϕ2Ω are solutions of the
wave equation (7) and for Ω > 0, have positive norm
(defined as the Klein-Gordon inner product). The mode
functions (8) and (9) are nonzero outside and inside the BH
event horizon (line T ¼ X), respectively (see Fig. 1). These
two regions are causally disconnected for the right-moving
field. Annihilation operators of the Rindler photons we
denote as b̂1Ω and b̂2Ω.

FIG. 1. Schwarzschild spacetime in the Kruskal-Szekeres
coordinates. A spacelike line T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
sets the spacetime

boundary. Unruh vacuum is filled with entangled right-moving
Rindler photons ϕ1 and ϕ2, which are localized outside and inside
the BH event horizon (line T ¼ X), respectively. Absorption of
Rindler photons ϕ2 at the boundary reduces BH mass and leads to
BH evaporation. We model the boundary as a set of harmonic
oscillators that absorb all ingoing photons but do not emit. Due to
vacuum entanglement, the process looks like as if there is a mirror
“image” of the oscillators located along the line T ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
,

which emit (but do not absorb) light outside the BH event
horizon.
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It is believed that, to a good approximation, Unruh
vacuum j0Ui describes state of the field produced by a
gravitational collapse of a star into a BH. In this state, there
are no left-moving Rindler photons and no right-moving
Minkowski photons [3]. That is, Unruh vacuum is Rindler
vacuum for the left-moving photons and Minkowski vac-
uum for the right-moving photons. In terms of the right-
moving Rindler photons, which are relevant for the present
discussion, the Unruh vacuum is a squeezed state [21],

j0Ui ¼
Y
Ω>0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
eγb̂

†
1Ωb̂

†
2Ω j0Ri; ð10Þ

where

γ ¼ e−πΩ; ð11Þ
j0Ri refers to the Rindler vacuum, b̂†1Ω, and b̂

†
2Ω are creation

operators of the right-moving Rindler photons. That is,
Unruh vacuum is filled with the right-moving Rindler
photons, but it looks empty if the right-moving field is
described by means of the Minkowski photons.
If a hypothetical observer is located at the BH center

(r ¼ 0), then Schwarzschild coordinate t is the proper time
for such observer. Recall that proper time of an object is the
coordinate that changes in the object’s frame. If the object is
held fixed at r ¼ const then t is the proper time. In the
region 0 < r < rg, it is physically impossible to hold
particles fixed at r ¼ const, that is why we use the word
“hypothetical”. Equations (4), (5), and (9) yield that at the
BH center the nonzero Rindler mode ϕ2Ω oscillates as a
function of t as ϕ2Ω ∝ eiΩct=2rg . That is, from the observer’s
perspective, the Rindler photons behave as if they have
negative frequency −Ωc=2rg [19]. Hence, in the Unruh
vacuum, there is a flux of the negative frequency (energy)
Rindler photons into the BH center. Absorption of such
photons near the BH center decreases energy (mass) of the
BH, leading to BH evaporation.
If an observer is held fixed outside the event horizon at a

constant Schwarzschild coordinate r, then at the observer’s
location, the nonzero Rindler modes ϕ1Ω oscillate as
ϕ1Ω ∝ e−iΩct=2rg , where t is the observer’s proper time.
That is, from the external observer perspective the Rindler
photons behave as if they have positive frequency,

ν ¼ Ωc
2rg

; ð12Þ

and, thus, they can excite a detector. Photons ϕ1Ω propagate
away from the BH.
For simplicity, we will assume that the field has only

modes with one “frequency” Ω. We denote such Rindler
modes as ϕ1 and ϕ2. Then Unruh vacuum can be written as

j0Ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
eγb̂

†
1
b̂†
2 j0Ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q X∞
n¼0

γnjnni; ð13Þ

where jnni is a state with n Rindler photons in the modes
ϕ1 and ϕ2.
If modes ϕ1 and ϕ2 are considered separately, then

tracing over or absorbing one of the modes leaves the
remaining mode in a thermal state. Namely, if we trace over
the Rindler modes under the event horizon ϕ2, which are
not accessible to the external observer, the reduced density
operator for the field ϕ1 is thermal,

ρ̂1 ¼ Tr2ðj0Uih0UjÞ ¼ ð1 − γ2Þ
X∞
n¼0

γ2njnihnj; ð14Þ

with the average number of photons,

n̄1 ¼
γ2

1 − γ2
: ð15Þ

Thus, an observer held fixed outside the BH horizon feels
thermal radiation coming out from the BH, which is known
as Hawking radiation. Using Eqs. (11), (12), and (15), one
can write n̄1 as a Planck factor,

n̄1 ¼
1

e
4πrgν

c − 1
¼ 1

e
ℏν

kBTH − 1
; ð16Þ

with the Hawking temperature TH ¼ ℏc=4πkBrg.
Figure 2 shows light rays of Rindler photons (8) and (9)

in the Schwarzschild coordinates. It looks like the negative
(ϕ2) and positive (ϕ1) frequency Rindler photons are
generated at the event horizon. This is consistent with
the interpretation of the Hawking radiation as a continuous
creation of particle-antiparticle pairs near the event horizon,
with one carrying positive energy to infinity and the other
carrying negative energy into the BH [22]. Calculations of
the energy-momentum tensor for the field near an evapo-
rating BH directly show that there is a negative-energy flux

FIG. 2. Light rays of Rindler photons ϕ1 and ϕ2 in Schwarzs-
child coordinates.
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into the BH center and a positive-energy flux far away from
the BH [23].

III. MODEL OF AN EVAPORATING BLACK HOLE
TAKING INTO ACCOUNT NON-UNITARY
PHOTON ABSORPTION AT THE CENTER

According to Eq. (7), in the Kruskal-Szekeres coordi-
nates the field evolves following the same wave equation as
in Minkowski spacetime. For the latter, absorption or
emission of photons in the region T > X cannot affect
the state of the field in the region T < X. However, the BH
spacetime has a spacelike boundary at T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
. We

will show below that absorption of photons at the boundary
changes the state of the field outside the event horizon, and
radiation of the evaporating BH is not thermal. We will
assume that Unruh vacuum is the state of the field only at
the onset of evaporation and calculate how the field
evolves.
According to general relativity, spacetime disappears at

the BH center (spacetime boundary). It is assumed that
matter disappears together with the spacetime, but state of
matter (mass, angular momentum, etc.) is recorded in the
gravitational field near the BH center. This process trans-
fers characteristics of the accreting matter into the BH
internal gravitational field.
The worldlines of the Rindler photons b̂2 terminate at the

spacetime boundary (see Fig. 1). But we can not just say
that photons disappear. One should describe this process
quantum mechanically using a Hamiltonian. Spacelike
boundary breaks the symmetry between emission and
absorption of Rindler photons b̂2. Namely, if backward
in time propagation is not allowed, Rindler photons b̂2
cannot be emitted at the boundary because such a process
means emission of particles outside the spacetime.
Next, we consider a simple toy model of BH evaporation

modeling the boundary as a set of harmonic oscillators that
totally absorb the ingoing field. The oscillators follow the
worldline of the boundary, which is not geodesic. We do
not associate the oscillators with ordinary particles. Rather,
the oscillators provide a physical model of the gravitational
field near the BH center that carries information about the
state of the BH interior. In our model, the oscillator’s
energy is the origin of the BH mass. As we showed above,
from the oscillator’s perspective, Rindler photons have
negative energy. Thus, absorption of Rindler photons
reduces the energy of the oscillators (BH mass decreases).
Since oscillators are under the BH horizon, they can

interact only with photons b̂2. In the toy model, the
interaction Hamiltonian describing BH evaporation reads

V̂2ðtÞ ¼ gσ̂e−iωtϕ2ðtÞb̂2; ð17Þ

where σ̂ is the lowering operator for the oscillator of
frequency ω, g is the coupling constant and the field mode

function ϕ2ðT; XÞ is taken at the location of the oscillator

ϕ2ðtÞ ¼ ϕ2ðTðt; 0Þ; Xðt; 0ÞÞ ¼ ei
cΩt
2rg . In Eq. (17), t is the

proper time of the oscillator which coincides with the
Schwarzschild coordinate t because oscillators are located
at fix r ¼ 0. Since oscillators cannot emit Rindler photons,
the Hamiltonian (17) is not Hermitian.
We will consider evolution of the system as a function of

the oscillator proper time t. Schrödinger equation for the
system’s state vector,

iℏ
∂

∂t
jψðtÞi ¼ V̂2ðtÞjψðtÞi;

yields

jψðtÞi ¼ eβðtÞσ̂b̂2 j0UijAi; ð18Þ

where j0Ui and jAi are the initial state vectors of the field
and the oscillator, and

βðtÞ ¼ −
ig
ℏ

Z
t

0

dt0e−iωt0ϕ2ðt0Þ ¼ −
ig
ℏ

Z
t

0

dt0eið
cΩ
2rg

−ωÞt0 :

Plug j0Ui in Eq. (18) gives

jψðtÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
eβðtÞσ̂b̂2eγb̂

†
1
b̂†
2 j0RijAi: ð19Þ

Using the Baker-Hausdorff formula eÂeB̂ ¼ e½Â;B̂�eB̂eÂ, we
obtain

jψðtÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
eγβðtÞσ̂b̂

†
1eγb̂

†
1
b̂†
2eβðtÞσ̂b̂2 j0RijAi;

or

jψðtÞi ¼ eγβðtÞσ̂b̂
†
1 j0UijAi: ð20Þ

Equation (20) shows that nonunitary field absorption at the
spacetime boundary yields generation of photons outside
the BH event horizon (into the Rindler mode 1). Taking
time derivative of Eq. (20) leads to the Schrödinger
equation with the interaction Hamiltonian,

V̂1ðtÞ ¼ γgσ̂e−iωtϕ�
1ðtÞb̂†1;

where we used ϕ2ðtÞ ¼ ϕ�
1ðtÞ ¼ ϕ�

1ð−Tðt; 0Þ; Xðt; 0ÞÞ.
That is, the process looks like as if there is a mirror

“image” of the oscillator located along the line T ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
(see Fig. 1), which is coupled with the external

mode ϕ1 with a reduced coupling constant γg. The
oscillator’s image produces a field outside the event
horizon, which propagates away from the BH. Such field
is not thermal. For example, if the oscillator is in a coherent
state, the generated field is coherent. The information
stored in the oscillators is recorded in the outgoing field.
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BH radiation is not thermal because evolution of the field
under the horizon is described by the non-Hermitian
Hamiltonian (17). Indeed, if the Hamiltonian would be
Hermitian and depends only on b̂2 and b̂†2, the Heisenberg
equation of motion for the operator b̂1ðtÞ,

db̂1ðtÞ
dt

¼ i
ℏ
ðĤ†b̂1ðtÞ − b̂1ðtÞĤÞ

¼ i
ℏ
ðĤ†ðtÞ − ĤðtÞÞb̂1; ð21Þ

would yield b̂1ðtÞ ¼ const. That is field outside the BH
event horizon would not change. However, if Ĥ† ≠ Ĥ, the
right-hand side of Eq. (21) is no longer zero, and the
external field can be altered.
In the present model of BH evaporation, the von

Neumann entropy is preserved. Namely, since evolution
of the system is described by a Hamiltonian, the system
remains in a pure state and, thus, the net entropy remains
equal to zero. This is true even if the Hamiltonian is not
Hermitian. For the latter, the system’s state vector should be
normalized such that hψ jψi ¼ 1.
The toy model Hamiltonian (17) explains why nonuni-

tary absorption of photons at the BH center alters radiation
outside the BH. However, it does not describe the system’s
dynamics correctly. The point is that, non-Hermitian
Hamiltonians do not preserve the expectation value of an
operator Q̂ with which they commute. This is the reason
why the norm of the state vector is not conserved (in this
case, Q̂ ¼ 1). To incorporate a conservation law hQ̂i ¼
const into the model, we must replace the non-Hermitian
Hamiltonian Ĥ with a constrained Hamiltonian [24,25],

Ĥ − λðtÞQ̂; ð22Þ

where λðtÞ is a Lagrange multiplier, whose value is to be
chosen so as to honor the constraint condition hQ̂i ¼ const.
We will impose a constraint that during BH evaporation,

the average energy is conserved. Operators describing
conserved quantities must commute with the Hamiltonian.
Such “energy” operators commuting with the Hamiltonian
(17) are

σ̂†σ̂ − b̂†2b̂2; and b̂†1b̂1;

and the constraints read

hσ̂†σ̂ − b̂†2b̂2i ¼ const and hb̂†1b̂1i ¼ const: ð23Þ

The constrained interaction Hamiltonian is

V̂ðtÞ ¼ gσ̂e−iωtϕ2ðtÞb̂2 þ iℏĈðtÞ; ð24Þ

where

ĈðtÞ ¼ _μ1ðtÞb̂†1b̂1 þ _μ2ðtÞðσ̂†σ̂ − b̂†2b̂2Þ þ _μ3ðtÞ;

and the dot denotes derivative over t. The latter is introduced
for convenience. We assume that the resonance condition
ω ¼ cΩ=2rg is satisfied, which yields

V̂ðtÞ ¼ gσ̂b̂2 þ iℏĈðtÞ: ð25Þ

The Lagrange multiplier _μ3ðtÞ takes into account the nor-
malization condition hψ jψi ¼ 1. For the present problem,
Lagrange multipliers _μ1;2;3ðtÞ are real functions.
We assume that initially the oscillator is in a coherent

state jAi and the field is in the Unruh vacuum j0Ui. The
Schrödinger equation with the constrained Hamiltonian
(25) yields (see Appendixes A and B),

jψðtÞi ¼ NðtÞe− i
ℏγgAe

μ1ðtÞtb̂†
1ee

μ1ðtÞ−μ2ðtÞγb̂†
1
b̂†
2 j0Rijeμ2ðtÞAi; ð26Þ

where NðtÞ is a normalization factor and the Lagrange
multipliers are obtained from the constraint equations,

e2μ2A2 −
γ̃2

1 − γ̃2
−
e2μ1 γ̃2ðγΛtÞ2
ð1 − γ̃2Þ2 ¼ A2 −

γ2

1 − γ2
; ð27Þ

γ̃2

1 − γ̃2
þ e2μ1ðγΛtÞ2

ð1 − γ̃2Þ2 ¼ γ2

1 − γ2
; ð28Þ

where γ̃ ¼ eμ1−μ2γ and Λ ¼ gA=ℏ is the Rabi frequency.
For t → ∞, Eqs. (26)–(28) give

jψð∞Þi ¼ Ne
− iγffiffiffiffiffiffi

1−γ2
p b̂†

1 j0RijA∞i; ð29Þ

where

A2
∞ ¼ A2 −

γ2

1 − γ2
; ð30Þ

is the mean number of oscillator excitations in the final
state. The present model of the spacetime boundary is self-
consistent if the oscillators absorb all ingoing photons,
which implies A2

∞ > 0. Otherwise, photon flux through the
boundary would be nonzero.
Equation (29) shows that the final state of the field is the

Rindler vacuum for photons b̂2 and a coherent state for
photons b̂1 with the average photon number γ2=ð1 − γ2Þ.
The oscillator remains in the coherent state, but the
oscillator’s mean excitation number is reduced by an
amount γ2=ð1 − γ2Þ due to absorption of all b̂2 photons.
For in our model hb̂†1b̂1i ¼ const, the radiation power of

an evaporating BH is given by the Hawking’s formula, but
photon statistics is not thermal and the outgoing radiation
carries information about the BH interior. In particular,
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coherent oscillations of the BH interior lead to a coherent
outgoing radiation.
In the limit γ ≪ 1, Eqs. (27) and (28) can be solved

analytically yielding the following expression for the
system’s state vector as a function of t:

jψðtÞi ¼ NðtÞe−
iγΛtb̂†

1ffiffiffiffiffiffiffiffiffi
1þΛ2t2

p
e

γb̂†
1
b̂†
2ffiffiffiffiffiffiffiffiffi

1þΛ2t2
p j0RijAðtÞi; ð31Þ

where

A2ðtÞ ¼ A2 −
Λ2t2

1þ Λ2t2
γ2:

According to Eq. (31), initial thermal Hawking radiation

evolves into the coherent state e−iγb̂
†
1 j0Ri on a timescale

1=Λ, while the oscillator’s energy (BH mass) decreases
as ℏωA2ðtÞ.

IV. INSIGHTS FROM QUANTUM
GRAVITY MODELS

Here, we show that present mechanism of nonthermal
emission of evaporating BHs holds for an effective metric
obtained in quantum gravity models. Most of such models
suggest that the classical singularity at r ¼ 0 should be
replaced by a regular timelike boundary. To be specific, we
consider an effective BH metric obtained from scale-
dependent effective average action which takes into
account the effect of all loops [26–28]. As a function of
this scale, the effective average action satisfies a renorm-
alization group equation yielding the effective metric [29],

ds2 ¼ fðrÞc2dt2 − 1

fðrÞ dr
2 − r2ðdθ2 þ sin2 θdφ2Þ; ð32Þ

where

fðrÞ ¼ 1 −
rg
r

1

1þ ω̄r2g
r2

; ð33Þ

and ω̄ > 0 is a constant that involves the quantum gravity
correction to the BH geometry coming from the renorm-
alization group approach.
The metric (32) is regular at r ¼ 0 and has two horizons,

which can be found by setting fðrÞ ¼ 0 in Eq. (33). The
position of the outer and inner horizons is

r� ¼ rg
2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ω̄

p
Þ:

In terms of r�, one can write

1

fðrÞ ¼ 1þ rgr

ðr − r−Þðr − rþÞ
:

A massless scalar field ϕ obeys the covariant wave
equation,

1ffiffiffiffiffiffi−gp ∂

∂xμ

� ffiffiffiffiffiffi
−g

p
gμν

∂ϕ

∂xν

�
¼ 0; ð34Þ

where gμν is the spacetime metric given by the interval (32),
namely,

gtt ¼ 1

fðrÞ ; grr ¼ −fðrÞ:

For the truncated 1þ 1 dimensional spacetime
ffiffiffiffiffiffi−gp ¼ 1,

and the wave equation (34) reduces to

1

c2
∂
2ϕ

∂t2
− fðrÞ ∂

∂r

�
fðrÞ ∂ϕ

∂r

�
¼ 0: ð35Þ

Solutions of Eq. (35) read

ϕνðt; rÞ ¼ e−iν½t�r
c∓χðrÞ�; ð36Þ

where

χðrÞ ¼ r− ln jr − r−j − rþ ln jr − rþj
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ω̄

p :

Using Eq. (36), one can construct mode functions
analogous to the Rindler modes (8) and (9) in the
Schwarzschild coordinates, namely,

ϕ1νðt; rÞ ¼ e−iν½t−r
cþχðrÞ�θðr − rþÞ; ð37Þ

ϕ2νðt; rÞ ¼ eiν½t−r
cþχðrÞ�θðrþ − rÞθðr − r−Þ; ð38Þ

where ν > 0. For r− ¼ 0, the mode functions (37) and (38)
reduce to Eqs. (8) and (9) with Ω ¼ 2rgν=c.
Equations (37) and (38) show that if an observer is held

fixed outside the outer event horizon at a constant r > rþ,
then at the observer’s location, the nonzero Rindler modes
ϕ1ν oscillate as ϕ1ν ∝ e−iνt, where t is the observer’s proper
time. That is, from the observer’s perspective, the Rindler
photons ϕ1ν behave as if they have positive frequency ν.
However, if a hypothetical observer is located at fixed
r− < r < rþ, the nonzero Rindler mode ϕ2ν oscillates as a
function of the proper time t as ϕ2ν ∝ eiνt. That is, from the
observer’s perspective, the Rindler photons ϕ2ν behave as if
they have negative frequency −ν. Absorption of photons
ϕ2ν decreases energy (mass) of the BH, leading to BH
evaporation.
Photons falling into the BH from BH exterior are

described by the mode functions,
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ϕ3νðt; rÞ ¼ e−iν½tþr
c−χðrÞ� − eiφ0e−iν½t−r

cþχðrÞ�θðr− − rÞ; ð39Þ

where the last term describes a wave reflected from the
timelike spacetime boundary r ¼ 0, and φ0 is a phase shift
introduced to satisfy the reflective boundary condition,
e.g., ∂ϕ3ν=∂rjr¼0 ¼ 0. From the perspective of an observer
held fixed at r ¼ const, the mode functions ϕ3ν have
positive frequency. Thus, absorption of such photons
increases the BH mass.
In Fig. 3, we plot light rays of photons (37), (38), and

(39) in the Schwarzschild coordinates. The figure shows
that the negative (ϕ2ν) and positive (ϕ1ν) frequency Rindler
photons are generated at the outer horizon. These photons
are produced in pairs and are entangled. Photons ϕ1ν carry
energy away from BH, while the negative energy photons
ϕ2ν propagate toward the BH center and are absorbed at the
inner horizon. The positive energy photons ϕ3ν carry
energy into the BH from the BH exterior. They cross both
outer and inner horizons and after reflection from the BH
center, are absorbed at the inner horizon. In the region
r− < r < rþ, the coordinate r plays the role of time for
particles, which move unidirectionally along the r coor-
dinate in this region. For r < r− and r > rþ, the particles
move unidirectionally along the t coordinate.
Spacetime described by the metric (32) is nonsingular

and matter does not disappear. Figure 3 shows that matter
and energy (infalling photons ϕ3ν) are concentrated in the
vicinity of the inner horizon. Since Rindler photons ϕ2ν can
only be annihilated and not created at the inner horizon, the
nonunitary absorption of the Rindler photons ϕ2ν at the
inner horizon, combined with the entanglement of photon
pairs ϕ1ν and ϕ2ν generated at the outer horizon, leads to
nonthermal outgoing radiation that carries information
about the BH interior. One can model this process by
the same Hamiltonian (24) of the previous section but now
the oscillators absorbing the ingoing photons ϕ2ν follow the

worldline of the inner horizon and can be a model of matter
rather than gravitational field.
The picture becomes more intuitive if we describe BH

evaporation in terms of particles and antiparticles that can
annihilate with each other. In this picture, particle (ϕ1ν) and
antiparticle (ϕ2ν) are generated as entangled pairs at the
outer horizon. The particles ϕ1ν carry energy away from
BH. The antiparticles move towards BH center and at the
inner horizon, annihilate with particles ϕ3ν, which have
been accumulated at the inner horizon during BH forma-
tion. Due to entanglement between ϕ1ν and ϕ2ν, the
information about state of particles ϕ3ν is recorded into
the outgoing flux of particles ϕ1ν.

V. SUMMARY AND DISCUSSION

Evaporation of a classical Schwarzschild BH is caused
by creation of entangled particle-antiparticle pairs (Rindler
photons in the present discussion) near the event horizon,
with one carrying positive energy to infinity and the other
carrying negative energy into the BH. This is the mecha-
nism of Hawking radiation. Absorption of the negative
energy photons at the center of the classical BH reduces the
BH mass.
Here, we argue that previous models of Hawking

radiation are lacking an important ingredient. Namely,
the process of photon absorption at the BH center must
be properly described quantum mechanically by construct-
ing a Hamiltonian. Since under the BH event horizon, light
can propagate only towards the BH center, the symmetry
between absorption and emission is broken. Namely,
BH center can only absorb photons but do not emit. As
a result, the Hamiltonian describing BH evaporation is not
Hermitian.
To describe absorption of photons at the BH center, we

assume that the latter consists of harmonic oscillators
which absorb the ingoing radiation but do not emit. In
our model, the oscillators follow the worldline of the BH
center, rather than geodesics, and carry information about
the BH interior.
We show that due to entanglement between photons

moving inside and outside the BH event horizon, the
nonunitary absorption of the radiation under the horizon
alters the state of the field outside the BH. As a conse-
quence, radiation produced by the evaporating BH is not
thermal and carries information about the BH interior. After
the BH has evaporated, the information is recorded in the
remaining nonthermal field. Since evolution is governed by
a Hamiltonian, the state of the system remains pure and
during BH evaporation the von Neumann entropy is
preserved. In our model, we impose a constraint that
energy is conserved during BH evaporation. As a conse-
quence, our model yields that luminosity of an evaporating
BH coincides with that for Hawking radiation.
Erasing information at the BH center produced by

photon absorption is a nonunitary process that leads to a

FIG. 3. Light rays of photons ϕ1ν, ϕ2ν (solid line) and ϕ3ν (dash
line) in the metric (32) for r− ¼ 0.2rg and rþ ¼ 0.8rg.
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change of the field outside the horizon. This is somewhat
analogous to the quantum eraser experiments in which the
interference pattern can be destroyed or restored by
manipulating entangled photon partners [30–32]. In these
experiments, after two entangled photons are created, each
is directed into different section of the apparatus and an
interference pattern for one of them is examined. A
measurement done on the entangled partner to learn about
the photon path influences the interference pattern.
Similarly to BH evaporation, nonunitarity of the meas-

urement process alters the state of the entangled partner.
However, the state vector collapse brought about by a
measurement is a probabilistic and discontinuous change,
while BH evaporation is a deterministic, continuous time
evolution of an isolated system that obeys the Schrödinger
equation.
Our findings show that quantum mechanical evolution,

governed by the Schrödinger equation, allows information
to leak out from the BH. This is the case because BH center
breaks the emission-absorption symmetry and photons
external to the horizon are entangled with those inside
it. Such entanglement is an inherent property of the field for
evaporating BHs.
We also show that present mechanism of nonthermal

emission of evaporating BHs holds for spacetimes obtained
in quantum gravity models in which the classical singu-
larity at r ¼ 0 is replaced by a regular timelike boundary.
For such spacetimes, the metric has an inner and outer
horizons, and matter does not disappear. Instead, particles
are accumulated in the vicinity of the inner horizon. For this
spacetime, the entangled particle-antiparticle pairs are
generated at the outer horizon. The generated particles
carry energy away from BH, while antiparticles move
towards the BH center and annihilate at the inner horizon
with particles that form the BH interior. Due to entangle-
ment of the particle-antiparticle pairs produced at the outer
horizon, the information about the BH interior is recorded
in the outgoing particle flux.
One should mention that if our findings are correct,

and radiation of evaporating BHs is nonthermal, the
Bekenstein-Hawking formula [33,34] does not describe
the BH entropy. Recall that the latter formula assumes
thermal BH emission with the Hawking temperature.
Our results demonstrate that quantum mechanics works

in an exotic spacetime geometry of a BH. However, BHs
might have only a mathematical significance. The point is
that there is an evidence that general relativity is ruled out
by gravitational waves detection experiments in favor of the
vector theory of gravity [35]. The latter theory [36,37]
agrees with all available tests of gravity, including detection
of gravitational waves and observations of supermassive
objects at galactic centers [35,38]. In addition, vector
gravity predicts no BHs and yields the measured value
of the cosmological constant [39] with no free para-
meters [36,37].
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APPENDIX A: OPERATOR IDENTITIES
AND EXPECTATION VALUES

Operators of Rindler photons b̂1 and b̂2 obey bosonic
commutation relations,

½b̂1; b̂†1� ¼ 1; ½b̂2; b̂†2� ¼ 1;

and all other commutators are equal to zero. First, we prove
an operator identity,

b̂2eγb̂
†
1
b̂†
2 ¼ eγb̂

†
1
b̂†
2 b̂2 þ γb̂†1e

γb̂†
1
b̂†
2 ; ðA1Þ

where γ is a complex number. Introducing the operator,

F̂ðγÞ ¼ b̂2eγb̂
†
1
b̂†
2 − eγb̂

†
1
b̂†
2 b̂2;

we have

dF̂ðγÞ
dγ

¼ b̂2b̂
†
1b̂

†
2e

γb̂†
1
b̂†
2 − b̂†1b̂

†
2e

γb̂†
1
b̂†
2 b̂2

¼ b̂†1b̂
†
2F̂ðγÞ þ b̂†1e

γb̂†
1
b̂†
2 :

Solution of this differential equation, subject to the con-
dition F̂ð0Þ ¼ 0, is

F̂ðγÞ ¼ γb̂†1e
γb̂†

1
b̂†
2 ;

which proves the identity (A1).
Next, we prove an identity,

eλb̂
†
2
b̂2 b̂†2 ¼ eλb̂†2e

λb̂†
2
b̂2 ; ðA2Þ

where λ is a complex number. Introducing operator,

F̂ðλÞ ¼ eλb̂
†
2
b̂2 b̂†2 − b̂†2e

λb̂†
2
b̂2 ;

we have

dF̂ðλÞ
dλ

¼ b̂†2b̂2e
λb̂†

2
b̂2 b̂†2 − b̂†2b̂

†
2b̂2e

λb̂†
2
b̂2

¼ b̂†2b̂2F̂ðλÞ þ b̂†2e
λb̂†

2
b̂2 :

Solution of this differential equation, subject to the con-
dition F̂ð0Þ ¼ 0, is
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F̂ðλÞ ¼ ðeλ − 1Þb̂†2eλb̂
†
2
b̂2 ;

which proves the identity (A2).
Next, we prove an identity,

eλb̂
†
2
b̂2eγb̂

†
1
b̂†
2 ¼ ee

λγb̂†
1
b̂†
2eλb̂

†
2
b̂2 : ðA3Þ

Introducing the operator,

F̂ðλÞ ¼ eλb̂
†
2
b̂2eγb̂

†
1
b̂†
2e−λb̂

†
2
b̂2 ;

and taking the derivative over λ, we have

dF̂ðλÞ
dλ

¼ eλb̂
†
2
b̂2 b̂†2b̂2e

γb̂†
1
b̂†
2e−λb̂

†
2
b̂2 − eλb̂

†
2
b̂2eγb̂

†
1
b̂†
2 b̂†2b̂2e

−λb̂†
2
b̂2 :

Taking into account identities (A1) and (A2), we obtain

dF̂ðλÞ
dλ

¼ γb̂†1e
λb̂†

2
b̂2 b̂†2e

γb̂†
1
b̂†
2e−λb̂

†
2
b̂2 ¼ γeλb̂†1b̂

†
2F̂ðλÞ:

The solution of this differential equation, subject to the

condition F̂ð0Þ ¼ eγb̂
†
1
b̂†
2 , is

F̂ðλÞ ¼ ee
λγb̂†

1
b̂†
2 ;

which proves the identity (A3).
Next, we calculate a matrix element hψ jψi, where the

state vector jψi is

jψi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
eβb̂

†
1eγb̂

†
1
b̂†
2 j0Ri; ðA4Þ

j0Ri stands for the Rindler vacuum, β is a complex number
and γ is a real number. The state vector (A4) can be
written as

jψi ¼ eβb̂
†
1 j0Mi;

where

j0Mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
eγb̂

†
1
b̂†
2 j0Ri; ðA5Þ

is the Minkowski vacuum. Using a relation between
operators of the Rindler photons b̂1;2 and the Unruh-
Minkowski photons â1;2 [40]

b̂†1 ¼
â†1 þ γâ2ffiffiffiffiffiffiffiffiffiffiffiffi

1 − γ2
p ;

and the property â1;2j0Mi ¼ 0, we obtain

jψi ¼ e
βâ†

1ffiffiffiffiffiffi
1−γ2

p j0Mi:

Taking into account that

eαâ
†
1 j0Mi ¼ e

jαj2
2 jα0i;

where jα0i stands for a coherent state jαi for the
Unruh-Minkowski photons â1 and the vacuum state for
the Unruh-Minkowski photons â2, we find

jψi ¼ e
jβj2

2ð1−γ2Þjα0i; ðA6Þ

where α ¼ β=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
. Therefore,

hψ jψi ¼ e
jβj2
1−γ2 : ðA7Þ

Next, we calculate the average number of Rindler photons
b̂1 in the state jψi, that is hb̂†1b̂1i≡ hψ jb̂†1b̂1jψi=hψ jψi.
Taking derivative of Eq. (A7) with respect to β and β�, and
using Eq. (A4), we have

hψ jb̂1b̂†1jψi ¼
∂
2

∂β∂β�
e

jβj2
1−γ2 ¼ 1 − γ2 þ jβj2

ð1 − γ2Þ2 e
jβj2
1−γ2 :

Therefore,

hb̂†1b̂1i ¼
hψ jb̂1b̂†1jψi

hψ jψi − 1 ¼ γ2

1 − γ2
þ jβj2
ð1 − γ2Þ2 : ðA8Þ

To find hb̂†2b̂2i, we use the relations between operators of
the Rindler photons b̂1;2 and the Unruh-Minkowski pho-
tons â1;2 [40],

b̂2 ¼
â2 þ γâ†1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − γ2
p ; b̂†2 ¼

â†2 þ γâ1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p ;

which yield

b̂†2b̂2 ¼
1

1 − γ2
ðâ†2â2 þ γ2â1â

†
1 þ γâ1â2 þ γâ†2â

†
1Þ:

Using Eq. (A6), we obtain

hψ jb̂†2b̂2jψi ¼
γ2ð1þ jαj2Þ

1 − γ2
e

jβj2
1−γ2 ;

where we took into account that hα0jâ1â†1jα0i ¼ 1þ jαj2.
As a result,

hb̂†2b̂2i ¼
hψ jb̂†2b̂2jψi

hψ jψi ¼ γ2

1 − γ2
þ γ2jβj2
ð1 − γ2Þ2 : ðA9Þ
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APPENDIX B: STATE VECTOR EVOLUTION
DURING BLACK HOLE EVAPORATION

For our model of black hole evaporation, the constrained
interaction Hamiltonian is

V̂ðtÞ ¼ gσ̂b̂2 þ iℏ _μ1ðtÞb̂†1b̂1 þ iℏ _μ2ðtÞðσ̂†σ̂ − b̂†2b̂2Þ
þ iℏ _μ3ðtÞ;

where functions μ1;2;3ðtÞ are real, and the oscillator’s
lowering and raising operators σ̂ and σ̂† obey the same
bosonic commutation relations as the operators of Rindler
photons. The Schrodinger equation for the evolution of the
field state vector,

iℏ
∂

∂t
jψðtÞi ¼ V̂ðtÞjψðtÞi;

yields

jψðtÞi ¼ eμ3eμ1b̂
†
1
b̂1þμ2ðσ̂†σ̂−b̂†2b̂2Þ− i

ℏgtσ̂b̂2 j0MijAi; ðB1Þ

where j0Mi and jAi are the initial state vectors of the field
and the oscillator, respectively. We assume that the latter is
a coherent state jAi, where A is real, and the former is the
Minkowski vacuum j0Mi. Recall that Unruh vacuum
coincides with the Minkowski vacuum for the right-moving
photons.
Taking into account that σ̂b̂2 commutes with b̂†1b̂1 and

σ̂†σ̂ − b̂†2b̂2, and plugging j0Mi from Eq. (A5) in Eq. (B1),
we obtain

jψðtÞi¼
ffiffiffiffiffiffiffiffiffiffiffi
1− γ2

q
eμ3e−

i
ℏgtσ̂b̂2eμ1b̂

†
1
b̂1þμ2ðσ̂†σ̂−b̂†2b̂2Þeγb̂

†
1
b̂†
2 j0RijAi:

Using identity (A3), we have

jψðtÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
eμ3e−

i
ℏgtσ̂b̂2ee

μ1−μ2 γb̂†
1
b̂†
2eμ2σ̂

†σ̂j0RijAi:
Taking into account that

eμ2σ̂
†σ̂jAi ¼ e

jAj2
2
ðe2μ2−1Þjeμ2Ai;

we find

jψðtÞi¼
ffiffiffiffiffiffiffiffiffiffiffi
1− γ2

q
eμ3þ

jAj2
2
ðe2μ2−1Þe− i

ℏgtσ̂b̂2ee
μ1−μ2 γb̂†

1
b̂†
2 j0Rijeμ2Ai:

Since the initial state of the oscillator is the coherent state
jAi, and σ̂jAi ¼ AjAi, one can write

jψðtÞi

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
eμ3þ

jAj2
2
ðe2μ2−1Þe− i

ℏge
μ2Atb̂2ee

μ1−μ2 γb̂†
1
b̂†
2 j0Rijeμ2Ai:

Using the Baker–Hausdorff formula eÂeB̂ ¼ e½Â;B̂�eB̂eÂ, we
finally obtain

jψðtÞi

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1− γ2

q
eμ3þ

jAj2
2
ðe2μ2−1Þe−

i
ℏγgAe

μ1 tb̂†
1ee

μ1−μ2 γb̂†
1
b̂†
2 j0Rijeμ2Ai:

ðB2Þ
Using Eqs. (A8) and (A9), we find that the average

number of Rindler photons in the state (B2) is

hb̂†1b̂1i ¼
γ̃2

1 − γ̃2
þ ðγgAtÞ2

ℏ2

e2μ1

ð1 − γ̃2Þ2 ;

hb̂†2b̂2i ¼
γ̃2

1 − γ̃2
þ ðγgAtÞ2

ℏ2

e2μ1 γ̃2

ð1 − γ̃2Þ2 ;

where

γ̃ ¼ eμ1−μ2γ:

The average number of oscillator excitations in the state
(B2) is

hσ̂†σ̂i ¼ e2μ2A2:

Constraints hσ̂†σ̂ − b̂†2b̂2i ¼ const and hb̂†1b̂1i ¼ const
give equations

e2μ2A2 −
γ̃2

1 − γ̃2
−
ðγgAtÞ2

ℏ2

e2μ1 γ̃2

ð1 − γ̃2Þ2 ¼ A2 −
γ2

1 − γ2
;

γ̃2

1 − γ̃2
þ ðγgAtÞ2

ℏ2

e2μ1

ð1 − γ̃2Þ2 ¼
γ2

1 − γ2
;

which for t → ∞ yield

γ̃→ 0;
1

ℏ
γgAeμ1 ≈

γffiffiffiffiffiffiffiffiffiffiffi
1− γ2

p
t
; e2μ2A2 →A2−

γ2

1− γ2
:

Therefore, for t → ∞,

hb̂†1b̂1i ¼
γ2

1 − γ2
;

hb̂†2b̂2i ¼ 0;

hσ̂†σ̂i ¼ A2 −
γ2

1 − γ2
;

and the normalized state vector of the system is

jψð∞Þi ¼ e
− γ2

2ð1−γ2Þe
−i γffiffiffiffiffiffi

1−γ2
p b̂†

1 j0Ri
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 −

γ2

1 − γ2

s �
:

The final state is the Rindler vacuum for photons b̂2, a
coherent state for photons b̂1 with the average photon
number γ2=ð1 − γ2Þ, and the oscillator remains in the
coherent state with a reduced average excitation num-
ber A2 − γ2=ð1 − γ2Þ.
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