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We develop the reduced phase space quantization of causal diamonds in pure (2þ 1)-dimensional
gravity with a nonpositive cosmological constant. The system is defined as the domain of dependence of a
topological disc with fixed boundary metric. By solving the initial value constraints in a constant-mean-
curvature time gauge and removing all the spatial gauge redundancy, we find that the phase space is the
cotangent bundle of DiffþðS1Þ=PSLð2;RÞ. To quantize this phase space we apply Isham’s group-theoretic
quantization scheme, with respect to a BMS3 group, and find that the quantum theory can be realized by
wave functions on some coadjoint orbit of the Virasoro group, with labels in irreducible unitary
representations of the corresponding little group. We find that the twist of the diamond boundary loop
is quantized in integer or half-integer multiples of the ratio of the Planck length to the boundary length.
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I. INTRODUCTION

Among the many challenges to understanding nonper-
turbative quantum gravity are that standard canonical
quantization is inapplicable due to the nonlinearity of
the phase space, that local observables are not available,
and that general relativity in four or more spacetime
dimensions is (likely) not an ultraviolet-complete quantum
field theory. On top of those is the obstacle of removing the
diffeomorphism gauge redundancy (a.k.a. “coordinate free-
dom”), and the fact that spacetime diffeomorphisms include
deformations in timelike directions, making time evolution
a gauge transformation, which leads to the vexing “problem
of time” [1–3]. To make progress it is worthwhile to
consider simplified settings, and over the past several
decades much work of that nature has been done. Here
we consider a new such setting, in which all of the above-
mentioned challenges can be met, namely, causal diamonds
in (2þ 1)-dimensional general relativity with a nonpositive
cosmological constant.
By a (2þ 1)-dimensional causal diamond we mean the

domain of dependence of a spacelike topological disc with
fixed boundary metric. To quantize the system we employ
the reduced phase space approach, in which we first impose
all the initial value constraints and remove the gauge
ambiguities at the classical level, and then proceed with

the quantization. Since there are no local degrees of freedom
in (2þ 1)-dimensional gravity, and we choose the topology
of the spatial slices to be that of a disc, the classical states
(solutions to the Einstein equation, up to gauge trans-
formations) can only correspond to all possible shapes of
causal diamonds, with boundary length l determined by the
fixed boundary metric, embedded in anti-de Sitter space
(AdS3) if Λ < 0 or in Minkowski space (Mink3) if Λ ¼ 0
(see Fig. 1). We find that the corresponding phase space is
the cotangent bundle T�Q of a configuration space Q ¼
DiffþðS1Þ=PSLð2;RÞ that is the quotient of the infinite
dimensional group of orientation preserving smoothmaps of
the boundary loop into itself, by the projective special linear
group in two real dimensions (which is the finite dimen-
sional subgroup of DiffþðS1Þ induced by conformal iso-
metries1 of the unit flat disc). Similar (2þ 1)-dimensional
gravity systems have been considered in the literature, such
as spacetimes with closed spatial slices (where the reduced
phase space is finite-dimensional) [4–12], spacetimes with
finite timelike boundary [13–15], and asymptotically AdS3
spacetimes [16–23]. The causal diamonds provide a novel,
quasi-local system of quantum gravity in globally hyper-
bolic spacetimes that, while simple enough to be exactly
solvable classically, has an infinite-dimensional reduced
phase space of “boundary gravitons.”
In this paper we describe the classical reduction process

and explain how to quantize the resulting phase space using
Isham’s scheme [24,25] in which the quantization is*rasilva@umd.edu
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1In this paper a conformal transformation acts on tensors
as multiplication by a positive function followed with the
push-forward by a diffeomorphism. Metrics related by such a
transformation are said to be conformally equivalent; and
a transformation that leaves the metric invariant is called a
conformal isometry.

PHYSICAL REVIEW D 107, 024033 (2023)

2470-0010=2023=107(2)=024033(9) 024033-1 Published by the American Physical Society

https://orcid.org/0000-0003-4720-6690
https://orcid.org/0000-0002-1828-1993
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.024033&domain=pdf&date_stamp=2023-01-24
https://doi.org/10.1103/PhysRevD.107.024033
https://doi.org/10.1103/PhysRevD.107.024033
https://doi.org/10.1103/PhysRevD.107.024033
https://doi.org/10.1103/PhysRevD.107.024033
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


designed to preserve a group of symplectic (a.k.a. canoni-
cal) transformations of the phase space. This “quantization
group” in our case is the three-dimensional Bondi-Metzner-
Sachs group BMS3. We discuss the representation theory of
the algebra of quantum observables, and deduce that the
twist of the diamond boundary loop—which is proportional
to the spin of the diamond—is quantized in terms of the
ratio of the Planck length to the boundary length. This
paper is a brief summary of some aspects of our study, the
full details of which will appear in [26].

II. CLASSICAL

In the Arnowitt-Deser-Misner (ADM) formulation of
general relativity [27], the phase space before reduction is
described by Riemannian metrics hab and conjugate
momenta πab ¼ ffiffiffi

h
p ðKab − KhabÞ, where Kab is the extrin-

sic curvature on an initial value spatial surface (Cauchy
slice), here assumed to have the topology of a disc D.2 We
shall restrict to metrics that induce a fixed metric on the
boundary, hj

∂D ¼ γ. Note however that the total length l of
the boundary loop is the only gauge invariant attribute of
the boundary geometry that is fixed by this condition. The
maximal development of any data ðh; πÞ that satisfy the
initial value constraints of general relativity defines a
causal diamond.
A natural choice of intrinsic time function τ is given by

(minus) the mean extrinsic curvature on the leaves of a
foliation of the diamond by constant-mean-curvature
(CMC) Cauchy surfaces, τ ¼ −Kabhab. The nonpositive
cosmological constant Λ ≤ 0 ensures that, as τ ranges from
−∞ toþ∞, the CMC surfaces foliate the diamond [28–31].
This gauge-fixing of time also confers great simplification
to the Lichnerowicz method [32] of solving the Einstein
constraint equations [6,33], which consist of a scalar
constraint and a vector constraint. In this method, we start

with “seed data” ðhab; πabÞ on a CMC slice with a given
value of τ, satisfying the boundary condition on hab and the
vector constraint ∇aσ

ab ¼ 0, where σab ≔ Kab þ 1
2
τhab is

the traceless part of Kab and ∇a is the covariant derivative
determined by hab. Then, by means of a Weyl-trans-
formation, we use this seed data to generate initial data
ðehab;eπabÞ that satisfy both the vector and the scalar
constraints. The new data, defined by ehab ¼ eϕhab, eσab ¼
e−2ϕσab and eτ ¼ τ, continue to satisfy the vector constraint
(for any ϕ), satisfy the boundary condition iff ϕj

∂D ¼ 0,
and satisfy the scalar constraint iff ϕ satisfies the (two-
dimensional) Lichnerowicz equation

∇2ϕ − RðhÞ þ e−ϕσabσab − eϕχ ¼ 0; ð1Þ

where RðhÞ is the scalar curvature of the metric hab and
χ ¼ −2Λþ τ2=2. The fact that χ ≥ 0 ensures that this
equation always has a unique solution for ϕ given a
boundary condition [26,34].
Since any element in the family of Weyl-deformed data,

ðeλhab; e−2λσab; τÞ, leads to the same solution ðehab;eπabÞ of
the initial value problem, the constraint surface on the
phase space can be identified with the set of equivalence
classes ½ðhab; σabÞ ∼ ðeλhab; e−2λσabÞ�. Spatial diffeomor-
phisms that act trivially at the boundary, and only those,
correspond to gauge transformations [26], hence the
reduced phase space (i.e., the space of physically inequi-
valent solutions to the equations of motion) can be
identified as the set of equivalence classes of seed data,

½ðhab; σabÞ ∼ ðΨ�eλhab;Ψ�e−2λσabÞ�; ð2Þ

where Ψ is a boundary-trivial diffeomorphism on D (and
Ψ� is the push-forward) and λ is a function on D vanishing
at the boundary [26]. This happens to be the cotangent
bundle T�Q of the spaceQ of metrics on the disc with fixed
induced boundary metric, modulo diffeomorphisms and
Weyl transformations that are trivial on the boundary; and,
as one might expect, the symplectic structure is the natural
one on the cotangent bundle. In fact,Q is the homogeneous
space DiffþðS1Þ=PSLð2;RÞ,3 and thus the reduced phase
space is eP ¼ T�½DiffþðS1Þ=PSLð2;RÞ�. This is the first of
our main results.
There is another approach to the phase space reduction

based on a suitable change of coordinates from ADM
variables to “conformal coordinates,” which exploits the
fact that all metrics on a disc are conformally equivalent.

FIG. 1. A generic classical state corresponds to a causal
diamond in AdS3 (or in Mink3 if Λ ¼ 0) with boundary length
l. Note that in general the Cauchy horizon is not smooth since the
null generators exit at caustics.

2We adopt units with c ¼ 16πG ¼ 1.

3In brief, DiffþðS1Þ (orientation preserving diffeomorphisms
of the boundary loop, acting together with the corresponding
Weyl transformation that preserves the boundary metric) acts
transitively on Q (since all metrics on a disc are equivalent under
conformal transformations that are allowed to act nontrivially at
the boundary). The subgroup that leaves invariant each point of
Q, e.g., the (equivalence class of the) Euclidean round disc, is
PSLð2;RÞ. Therefore Q ¼ DiffþðS1Þ=PSLð2;RÞ.
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This alternate approach provides an explicit projection map
from the concrete geometrical ADM variables to abstract
variables describing eP [26]. It is useful for several con-
structions, and relevant when physically interpreting the
meaning of observables in the quantum theory, but we
postpone its discussion to Sec. IV since it is not required for
the quantization procedure.
The Hamiltonian generating evolution in τ on the

reduced phase space can be obtained by starting with
the Einstein-Hilbert action in the ADM form and then
reexpressing it in terms of variables on the reduced phase
space. The action S½C� along a curve C in the (constrained)
ADM phase space is

S½C�¼
Z
C
dt
Z
D
d2xπab _hab¼

Z
C̃

�
θ̃−dτ

Z
D
d2x

ffiffiffi
h

p �
; ð3Þ

where eC is the projection of C to eP, and θ̃ is the symplectic
potential on eP (which is locally equal to a sum

P
i pidqi

over a complete set of canonically conjugate coordinates).
Thus the reduced (time-dependent) Hamiltonian is identi-
fied as eHðτÞ ¼ R

D d2x
ffiffiffi
h

p
, that is, the area of the CMC

surface with K ¼ −τ [33].

III. QUANTUM

As the reduced phase space does not seem to admit a
natural global coordinate chart, the traditional Dirac
canonical quantization rule fq; pg ¼ 1 ↦ 1

iℏ ½bq; bp� ¼ 1̂
cannot be straightforwardly implemented. Isham developed
a generalization of Dirac’s canonical quantization rule that,
rather than being based on a preferred coordinate system, is
designed to preserve the structure of a group of symplectic
(canonical) transformations acting transitively on the phase
space [24,25]. In the simple case of a particle on a line R,
the functions x and p on phase space, acting as Hamiltonian
“charges,” generate the group of phase space translations,
which is represented projectively, unitarily and irreducibly
in the quantum theory. More generally, given a group G of
symplectic symmetries acting on the phase space, we can
generate a set of observables whose Poisson algebra closes.
These observables are the Hamiltonian charges Qi associ-
ated with the algebra g of G, and their Poisson algebra is
homomorphic to g, up to possible central extensions. If there
are central extensions, we extend G to include them as
generators, so that the Poisson algebra is then homomorphic
to g. If the group action is transitive then the set fQig is
complete in the sense that any function on the phase space
can be locally written in terms of them. Quantization then
proceeds by replacing the Poisson algebra by a commutator
algebra, fQi;Qjg¼ ckijQk ↦ 1

iℏ ½bQi; bQj� ¼ ckijbQk, and find-
ing unitary irreducible representations of this algebra.
Isham quantization is particularly natural when the phase

space is the cotangent bundle of a homogeneous space,eP ¼ T�ðK=HÞ, where H is a subgroup of a group K. The

configuration space K=H carries a natural action of K that
lifts to the cotangent bundle, and this provides “half” of the
quantization group. There is a simple way to extend this
group by “momentum translations” generated by charges
defined globally on the phase space: given any function f
on K=H, the 1-form df at every point can be subtracted
from the momentum 1-forms at that point. This defines a
symplectic map of the phase space that is generated by the
function f. To define a transitive action on the phase space
together with the K action one must choose a sufficiently
large collection of such functions; and, to minimize the
inclusion of algebra representations that fail to produce the
desired classical limit, this collection of functions should
presumably be as small as possible. Isham identified a
construction that does exactly this, provided K can be
linearly represented on a vector space V in such a way that
at least one of the K orbits in V is homeomorphic to K=H:
linear functions on V, i.e., elements of the dual V�, induce
on the orbit, and therefore on K=H, a suitable collection of
functions. Together with K the corresponding momentum
translations define a transitive group G ¼ V� ⋊ K of
symmetries on eP.4
In our case, eP ¼ T�Q, whereQ ¼ DiffþðS1Þ=PSLð2;RÞ,

the group K ¼ DiffþðS1Þ naturally acts from the left on Q,
but we have not found a representation of DiffþðS1Þ
containing an orbit homeomorphic to Q. Fortunately, how-
ever, for the purpose of identifying a suitable set of functions
onQwe can takeK to be the Virasoro group Vira, which is a
central extension of DiffþðS1Þ and thus can also act on Q
(where the central element just acts trivially). The coadjoint
representation ofVira, which acts onV ¼ vira� (wherevira
is the Lie algebra of Vira), does contain an orbit isomorphic
toQ [36–39], hencewe can takeG ¼ ðvira�Þ� ⋊ Vira as the
group to be quantized. This group is a central extension of
BMS3 [40,41].

5

In this way, the quantum theory is based on irreducible
unitary (projective) representations of ðvira�Þ� ⋊ Vira.
Since this group has the form of a semi-direct product
with an abelian factor [namely ðvira�Þ� with its vector
space group structure], we could hope to use Mackey’s
theory of induced representations to classify the represen-
tations [42]. (Mackey’s classification has not been rigor-
ously established for infinite dimensions, however [43].)

4For the example K=H ¼ SOð3Þ=SOð2Þð¼ S2Þ, the SOð3Þ
charges are the components of angular momentum, the momen-
tum translations are the Cartesian coordinates of the R3 in which
the configuration space S2 is realized as an orbit of SOð3Þ, and
the quantizing group is R3� ⋊ SOð3Þ, the Euclidean group in
three dimensions [35].

5BMS3 is familiar as the symmetry of asymptotically Min-
kowskian spacetime acting on the null cone at future null infinty.
Here it appears as a natural group of symplectic transformations
acting on the phase space of the diamond. Perhaps there is a
different way to view the reduction of the phase space of the
diamond and the action of this group, in terms of the null surfaces
that bound the diamond.
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Basically, for anyK-orbitO in ðvira�Þ��, with correspond-
ing little groupHO, one can construct a unitary irreducible
representation (irrep) consisting of wave functions on O
taking values in unitary irreps of HO. Note that, modulo
issues of infinite-dimensionality, ðvira�Þ�� ∼ vira�, and
one of the orbits in vira� is just DiffþðS1Þ=PSLð2;RÞ, so
there exist representations given by wave functions on Q,
taking values in unitary irreps of the corresponding little
group PSLð2;RÞ ×R (where R is the central element of
Vira). In particular, taking the trivial irrep of PSLð2;RÞ ×
R gives the usual Hilbert space ofC-valued wave functions
on Q, but it is worth noting that this is only one among a
plethora of possibilities. Much as the quantization of a
relativistic particle revealed the possibility of intrinsic spin,
which is in fact realized in nature, perhaps the nontrivial
representations of the little group PSLð2;RÞ ×R have
physical significance for quantum gravity.
We can also think in terms of the representations

of the algebra of G, , where virac is the
commutative algebra of momentum translations [which
is isomorphic to ðvira�Þ� ∼ vira as a vector space] and

denotes a semidirect sum, indicating that there is a
nontrivial commutator between the two algebras. Note
that vira is a central extension of diffðS1Þ by R, so its
elements can be characterized by a vector field on S1

plus a real number corresponding to the central direc-
tion. A convenient basis is defined by Fourier modes of
the vector field, that is, Ln ¼ einθ∂θ, with the central
element denoted by R. Similarly, virac is spanned by
elements An ¼ einθ∂θ and the central element denoted
by T. The algebra reads

½Ln; Lm� ¼ iðn −mÞLnþm − 4πin3δnþm;0R;

½An; Lm� ¼ iðn −mÞAnþm − 4πin3δnþm;0T;

½An; Am� ¼ 0;

½R; · � ¼ 0;

½T; · � ¼ 0; ð4Þ

where n;m ∈ Z.6 We reiterate that the L’s and R are
associatedwith the “configuration translations” (i.e., theK
action), and the A’s and T with the “momentum trans-
lations” (i.e., the V� action), but note that R and T act
trivially on the phase space. We find that this algebra can
be realized by Poisson brackets on the phase space with a
suitable choice of the charges Pn andQn corresponding to
Ln andAn, respectively, provided that the central chargesR
and T are realized by the constant functions 0 and 1,
respectively. (This choice of charges is discussed in
Sec. IV.) The resulting Poisson algebra is

fPn; Pmg ¼ iðn −mÞPnþm;

fQn; Pmg ¼ iðn −mÞQnþm − 4πin3δnþm;0;

fQn;Qmg ¼ 0: ð5Þ

This is a centrally extended bms3 algebra [40]. Finally,
quantization amounts to associating operators bPn and bQn to
Pn and Qn, respectively, and replacing f ; g by 1

iℏ ½ ; �,

½bPn; bPm� ¼ ℏðm − nÞbPnþm;

½bQn; bPm� ¼ ℏðm − nÞbQnþm þ 4πℏn3δnþm;0;

½bQn; bQm� ¼ 0: ð6Þ

The classical charges are not real and instead satisfy
ðPnÞ� ¼ P−n and ðQnÞ� ¼ Q−n, so their associated
operators must satisfy analogous adjoint relations,
ðbPnÞ† ¼ bP−n and ðbQnÞ† ¼ bQ−n. Some aspects of the
representation theory of this algebra have been studied
recently [41,44–47].
Note that (6) corresponds to a representation of (4) in

which the quantum Casimir operators bT and bR match the
classical values of 1 and 0, respectively. In the Mackey
construction of induced representations of ðvira�Þ� ⋊ Vira
we must therefore select an orbit on which bT is represented
as the identity and the central R factor in the little group is
represented trivially. The natural DiffþðS1Þ=PSLð2;RÞ
orbit is suitable for that purpose [26], in which case
the wave functions transform under a representation of
PSLð2;RÞ.

IV. CONFORMAL COORDINATES AND THE
CANONICAL CHARGES

In this section we briefly introduce the conformal
coordinates which allow us to carry out the reduction
process in an explicit fashion, providing the map between
the geometrical variables (e.g., spatial metric and extrinsic
curvature) and the abstract gauge-invariant variables
describing the reduced phase space. Such a map is relevant
in understanding the physical/geometrical meaning of
observables like the Q and P charges. A treatment includ-
ing all details is given in [26]. This section is somewhat
technical and can be skipped on a first read.
By virtue of the uniformization theorem, any Riemannian

metric hab on the disc D can be obtained from a reference
metric h̄ab via some conformal transformation. That is,
there exists an (orientation-preserving) diffeomorphism
Ψ∶D → D and a positive scalar Ω∶D → Rþ such that
hab ¼ Ψ�Ωh̄ab. Because of the boundary condition on h,
hj

∂D ¼ γ, the boundary value of Ω is determined from the
boundary action ψ ≔ Ψj

∂D via Ωh̄j
∂D ¼ ψ−1� γ. We shall

choose the reference disc to be the unit Euclidean disc, so
h̄ ¼ dr2 þ r2dθ2 in the usual polar coordinates, and choose
θ without loss of generality so as to satisfy γ ¼ ðl=2πÞ2dθ2.
Note that, given h, Ψ is determined only up to a PSLð2;RÞ

6Note that the Lie algebra bracket for the diffeomophism group
is the negative of the Lie bracket of the corresponding vector
fields on the manifold.
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ambiguity since the transformation can be composed from
the right with a conformal isometry of the reference disc,
i.e., if Φ�Θh̄ ¼ h̄ then ðΨ;ΩÞ ∘ ðΦ;ΘÞ ¼ ðΨ ∘Φ;Φ�ΩΘÞ
also maps h̄ to h. (We are introducing additional gauge in
the description, which is fine since it will be all removed in
the end.) We define the “pull-back” of σab to the reference
disc by σ̄ab ≔ Ω2Ψ−1� σab, which implies that σ̄ab is sym-
metric, traceless and divergenceless with respect to h̄ if and
only if σab has the same properties with respect to h. So far
we have a “change of coordinates” from ðhab; σabÞ to
ðΨ;Ω; σ̄abÞ. Imposing the scalar constraint leads to a
Lichnerowicz equation for Ω, and the boundary value of
Ω is determined from ψ (and γ); since that equation has a
unique solution for Ω, given ψ and σ̄ab, the constraint
surface in phase space can be parametrized by ðΨ; σ̄abÞ,
where σ̄ab is symmetric, traceless and divergenceless with
respect to h̄. This space of σ̄’s is isomorphic to a subspace of
dual vector fields bσ on the boundary S1; given the form of
the symplectic structure, it is natural to realize the isomor-
phism as bσðξÞ ≔ R

dθbσðθÞξðθÞ ≔ −2
R
dθσ̄abnaξb, where

ξ ¼ ξðθÞ∂θ is a vector field on the boundary and n is the unit
outward-pointing normal vector field on the boundary. In
this realization of the isomorphism, the space of bσ’s is
missing the Fourier modes 1, sin θ, cos θ, since they
annihilate the vector fields ξðθÞ ¼ 1; sin θ; cos θ. Via this
isomorphism, the constraint surface can be parametrized by
ðΨ;bσÞ. It is clear from the presymplectic form that any two
Ψ’s with the same boundary action ψ are gauge-equivalent,
so we can quotient out the bulk diffeomorphisms and obtain
a partially reduced phase space coordinatized by ðψ ;bσÞ. By
further inspection of the symplectic form one discovers that
there remains a PSLð2;RÞ group of gauge transformations,
which acts on ψ from the right and on bσ via the coadjoint
action. The quotient under this group finally leads to the
reduced phase space T�½DiffþðS1Þ=PSLð2;RÞ�.
The canonical charges can be explicitly expressed in

terms of the ðψ ;bσÞ variables. (Only the results are presented
here; the derivation can be found in [26].) As the canonical
group acts on the phase space, each element ζ of the Lie
algebra induces a vector field Xζ on the phase space; the a
corresponding Hamiltonian charge Hζ is a solution of
δHζ ¼ −iXζ

ω, where δ denotes the exterior derivative on
phase space and iXω is the insertion of X into the first slot
of the symplectic form ω. The “momentum” (P) charges
are associated with the Vira part of the group, acting as
configuration space “translations,” therefore correspond-
ing to algebra elements purely in the vira factor of

. If bξ ¼ ðξðθÞ∂θ; ξ0Þ ∈ vira, where ξ0 is
the central component, then

Pξ̂ðψ ;bσÞ ¼
Z

dθ
bσðθÞ
ψ 0ðθÞ ξðψðθÞÞ: ð7Þ

In the earlier notation, Pn ≔ Pξ̂¼ðeinθ∂θ ;0Þ, and the central
charge R ≔ Pξ̂¼ð0;1Þ ¼ 0. The “position” (Q) charges are

associated with the ðvira�Þ� part of the group, acting as
“vertical translations” on phase space, thus corresponding
to algebra elements purely in the virac factor of g. Ifbη ¼ ðηðθÞ∂θ; η0Þ ∈ virac, where η0 is the central compo-
nent, then

Qη̂ðψ ;bσÞ ¼
Z

dθ
1 − 2S½ψ �ðθÞ

ψ 0ðθÞ ηðψðθÞÞ þ η0; ð8Þ

where S½ψ �ðθÞ ≔ ψ 000ðθÞ=ψ 0ðθÞ − 3
2
ðψ 00ðθÞ=ψ 0ðθÞÞ2 is the

Schwarzian derivative of ψ . In the earlier notation,
Qn ≔ Qη̂¼ðeinθ∂θ ;0Þ; and the central charge T ≔ Qη̂¼ð0;1Þ ¼ 1.
It is straightforward to express the Pξ charges in terms of

the physical spatial metric and extrinsic curvature. This can
be done by direct manipulation of expression (7), basically
by reversing the map from the reference disc variables
ðh̄ab; σ̄abÞ to the physical disc variables ðhab; σabÞ so as to
express ðψ ;bσÞ in terms of ðhab; σabÞ. Instead of going
through this formal derivation (which can be found in [26]),
we can infer the answer by noticing that the charge must
descend from a function on the unreduced phase space that
generates a corresponding diffeomorphism on the spatial
slice. We know that this charge must be related toR
d2xπab£ξhab, where ξ is now an arbitrary extension of

the boundary vector field to the disc. However this function
alone generates a pure diffeomorphism on the ADM phase
space and thus does not generally respect the boundary
conditions on the induced metric (unless ξ is an isometry of
the boundary metric). That can be fixed by adding a
constraint term which generates a compensating Weyl
transformation. The appropriate constraint here comes
from the gauge fixing of time τ ¼ −K, that is, Pξ ¼
−
R
d2xπab£ξhab þ

R
d2x

ffiffiffi
h

p
ζðK þ τÞ for some scalar ζ.

When this expression is evaluated imposing the CMC
gauge condition and the vector constraint ∇aπ

ab ¼ 0, it
reduces to Pξ ¼ −2

R
d2x

ffiffiffi
h

p
σab∇aξb. This inferred form

can be shown to agree with the pull-back to the (con-
strained, gauge-fixed) ADM phase space of the Pξ’s
defined in (7). Using Stokes’ theorem we get
Pξ ¼ −2

R
∂
dsKabnaξb, where n is the unit outward-point-

ing normal vector field at the boundary of the disc, and ds is
the proper length along the boundary. Restoring the factor
of 16πG that had previously been set to unity, this becomes
Pξ ¼ − 1

8πG

R
∂
dsKabnaξb. The vector field ξ that labels the

charge P0 is ∂θ on the reference disk. In terms of the vector
field ta tangent to the boundary, with unit norm with respect
to the physical metric γ, we have on the boundary
∂θ ¼ l

2π t
a, hence P0 ¼ − l

16π2lP

R
∂
dsKabnatb. If u is the

unit future-pointing vector field normal to the CMC slice,
then P0 ¼ − l

16π2lP

R
∂
ds∇buanatb. Integrating by parts we

conclude that P0 ¼ l
16π2lP

R
∂
dsuatb∇bna ¼ l

16π2lP
T , where

T is the twist of the boundary loop, as embedded in the
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spacetime, which is defined as the integral of the torsion
uatb∇bna with respect to proper length.
Regarding the appearance of the Schwarzian in the

expression (8) for the Qη̂ charges we offer here a brief
explanation. When the configuration space is embedded as
a coadjoint orbit in vira�, each point x ∈ Q corresponds to
an element of vira�. In this context, the charge Qη̂

evaluated at x is the value of the dual vector x ∈ vira�
acting on the vector bη ∈ vira, i.e.,Qη̂ðxÞ ¼ xðbηÞ. The point
x is labeled by a diffeomorphism ψ , relative to a reference
point x0 ∈ Q, via the coadjoint action x ¼ coadψx0. (Of
course this labeling system is not one-to-one because x0 is
invariant under a PSLð2;RÞ subgroup of DiffþðS1Þ.) This
yields the expression Qη̂ðxÞ ¼ coadψx0ðbηÞ, which for a
simple choice of x0 corresponds to (8). The Schwarzian
appears in this expression because it figures in the coadjoint
action.
Note that the Q’s do not depend on bσ and, as can be

shown from basic properties of the Schwarzian derivative,
depend only on the right PSLð2;RÞ equivalence classes
½ψ � ∈ DiffþðS1Þ=PSLð2;RÞ. A given spatial metric h
uniquely determines one such equivalence classes [ψ],
and one class [ψ] determines a spatial metric up to
boundary-trivial conformal transformations, ½h� ¼
½Φ�Θh�, where Φ ∈ DiffþðDÞ acts as the identity on the
boundary and the function Θ is 1 at the boundary.
Therefore, the Q charges evidently depend only on the
conformal class of the spatial metric.
It can be shown thatQ0 is bounded from above, attaining

a maximum value of 2π when ½ψ � ¼ ½I� [26,41,48]. In that
configuration,Qη̂ ¼

R
dθηðθÞ þ η0, hence allQn with n ≠ 0

vanish. Classically it corresponds to a spatial geometry that
is related to the round disc by a boundary-trivial conformal
transformation.

V. SPIN/TWIST

An interesting observable to discuss in more detail is P0.
It is the “zero Fourier mode” of DiffþðS1Þ ⊂ Vira, i.e., it
generates the SOð2Þ subgroup of rotations, suggesting that
it corresponds to the spin of the diamond. This interpre-
tation can be further strengthened by noticing that it is
precisely (minus) the on-shell value of the ADM charge
associated with a vanishing lapse and a shift that acts as an
isometry of the boundary loop. The charge P0 generates not
only a symmetry of the symplectic form (as do all of the P’s
and Q’s), but also a true dynamical symmetry. That is, it
commutes with the CMC time evolution Hamiltonian
[defined below (3)], ½P0; eH� ¼ 0, as will become clear
presently. We have argued that the physical states corre-
spond (classically) to shapes of diamonds embedded in
AdS3 (or Mink3 if Λ ¼ 0), with boundary length l, so P0

must correspond to some aspect of the shape. As shown
in Sec. IV, it turns out that P0 is proportional to the twist
T of the diamond boundary loop, i.e., the loop integral
(with respect to proper length) of the torsion of the curve

(as embedded in the spacetime). The twist can also be
interpreted as the holonomy of Fermi-Walker transport of
an orthogonal frame around the loop, i.e., the (hyperbolic)
angle of the boost relating the final frame to the initial one.
The precise relation (which is obtained using the previously
mentioned “conformal coordinates” characterization of the
reduced phase space) is

P0 ¼
l

16π2G
T : ð9Þ

Note that the twist of the boundary is clearly independent of
the CMC slice of the diamond, hence it is time independent
and thus commutes with eH as stated above.7

At the quantum level, note that the Poisson brackets (5)
imply ½bP0; bPn� ¼ nℏbPn and ½bP0; bQn� ¼ nℏbQn, so the P’s
and Q’s act as ladder operators for bP0. That is, if jsi is an
eigenvector of bP0 with eigenvalue sℏ, then bPnjsi and bQnjsi
have eigenvalue ðsþ nÞℏ. Since the P’s and Q’s are
represented irreducibly in the Hilbert space, the spectrum
of bP0 is fðsþ nÞℏ; ∀ n ∈ Zg, where without loss of
generality we can take s ∈ ½0; 1Þ. Classically, τ-time
reversal flips the sign of P0; if this (antisymplectic)
symmetry of the phase space is represented by an anti-
unitary transformation in the quantum theory—as one
might expect given that the classical Hamiltonian is
invariant under this symmetry—then in particular the
spectrum of bP0 will be symmetric under sign reversal. In
this case, only s ¼ 0 and s ¼ 1

2
are allowed. From for-

mula (9) we conclude that the twist is quantized as

T ¼ 16π2lP

l
ðsþ nÞ; n ∈ Z; ð10Þ

where (in 3d) lP ¼ ℏG is the Planck length, in units with
c ¼ 1. In the classical limit l ≫ lP, the twist quantum is
very small, so that a continuum of twist values is recovered.

VI. DISCUSSION

We studied quantization of causal diamonds of fixed
boundary length in pure (2þ 1)-dimensional general rel-
ativity gravity with a nonpositive cosmological constant,
via the reduced phase space approach. The low dimension-
ality allowed us to solve the constraints exactly and remove

7This relationship between twist and spin seems to be related
to a result in [49]. Working in an extended phase space including
edge modes in 3þ 1 spacetime dimensions, they find that the
generator of volume-preserving diffeomorphisms of the “corner,”
S2, is essentially the curvature of the natural connection on the
normal bundle of S2 (as embedded in the ambient spacetime). In
our case the corner is the boundary loop, S1; volume-preserving
diffeomorphisms are just the isometries of the boundary metric;
and, although the curvature of the normal bundle connection
vanishes (because S1 is 1-dimensional), there is a nontrivial
holonomy (around the loop) which is equal to the twist.
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all the gauge ambiguities, resulting in the phase space T�Q
with Q ¼ DiffþðS1Þ=PSLð2;RÞ. Further, this phase space
could be quantized exactly, at the kinematical level, with all
the rigor and generality of Isham’s group quantization
scheme. We ended up with a classification of all possible
quantizations based on irreducible unitary representations
of the bms3 algebra. This differs from the canonical
quantization of pure asymptotically AdS3 (with trivial
topology) based on the group Vira × Vira [20], whose
algebra is vira ⊕ vira. Note that although the quantization
groups differ the phase spaces are the same, since T�Q ∼
Q ×Q [21,50].
The quantization was strictly kinematical because only

the canonical charges Qn and Pn (“coordinates” on phase
space) have been quantized. This was sufficient to reveal
that the spin of the diamond, or equivalently the twist of the
diamond boundary loop, is quantized in integer or half-
integer multiples of 16π2lP=l. To fully characterize the
quantum theory one must also represent the Hamiltonian eH
that generates evolution in CMC time. This Hamiltonian is,
however, a very complicated function on the reduced
phase space, for which we have not found any preferred
operator ordering or even any explicit expression in terms
of the canonical charges. It may be that progress could be
made using a perturbative approach. There are certain
regimes where the Hamiltonian simplifies, even as much as
becoming “free” (quadratic in Pn) in the limit l ≫ jΛj−1=2
when the maximal slice is nearly a hyperbolic disc.
This includes the case where the boundary loop
approaches the boundary of AdS, in which the diamond
approaches a “Wheeler-DeWitt patch” of AdS. It would be
interesting to explore such regimes, and in particular the
possible connection to quantization of the diamond from
the perspective of AdS=CFT duality (and its TTbar
deformations).
Another important open question is the geometrical

meaning of the charges Qn. Unlike the Pn, which have a
simple interpretation as Fourier components of the torsion
of the boundary curve, theQn are related to the shape of the
diamond in a complicated, implicit fashion. As explained in
Sec. IV we know that the Q charges depend only on the
configuration space variables ½ψ � ∈ DiffþðS1Þ=PSLð2;RÞ,
which implies that they depend only on the conformal class
of the spacial metric, ½hab�, where two metrics are identified
if they can be related by a conformal transformation that is

trivial on the boundary. But, despite some effort, we have
not yet been able to express Qn directly in terms of the
spatial conformal metric. In the asymptotically flat case,
whose group of symmetries at null infinity is also BMS3,
−Q0 plays the role of energy (i.e., the generator of
u-coordinate translations, up to a scaling factor), so by
analogy this suggests that −Q0 should be some sort of
quasilocal mass. In fact, it is noteworthy that for many
representations of ðvira�Þ� ⋊ Vira, including the one
associated with the orbit DiffþðS1Þ=PSLð2;RÞ with
T ¼ 1, −Q0 is bounded from below and unbounded from
above [41,48]. In the case of the DiffþðS1Þ=PSLð2;RÞ orbit
the minimum value of −Q0 is equal to −2π, and it is
attained by a (non-normalizable) state corresponding to a
wave function localized at ½ψ � ¼ ½I�, i.e., at the spatial
geometry conformal to a flat round disc.
One would also like to understand what is the nature of

a “quantum causal diamond,” given that the classical
“spacetime shape” interpretation, which requires that Qn
and Pn are all simultaneously specified, fails to make
sense in the quantum theory. (We note that there are
certain observables that do commute among themselves,
such as the set including P0, Q0 and any operators of the
form Qn1Qn2 � � � such that n1 þ n2 þ � � � ¼ 0; some of
these operators are actually self-adjoint, like Q−nQn for
all n.) A perhaps related question is whether the quantized
theory depends upon the CMC time gauge choice used for
the phase space reduction. Finally, it might be interesting
to analyse the system using the formulation of this gravity
theory as a pair of SLð2; RÞ Chern-Simons theories [4,51].
The fixed metric boundary condition that we have
imposed would be a complicated condition that couples
those two theories.
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