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The spatial covariant gravities provide a natural way to including odd-order spatial derivative terms into
the gravitational action, which breaks the parity symmetry at gravitational sector. A lot of parity-violating
scalar-tensor theories can be mapped to the spatial covariant framework by imposing the unitary gauge.
This provides us with a general framework for exploring the parity-violating effects in primordial
gravitational waves (PGWs). The main purpose of this paper is to investigate the polarization of PGWs in
the spatial covariant gravities and their possible observational effects. To this end, we first construct the
approximate analytical solution to the mode function of the PGWs during the slow-roll inflation by using
the uniform asymptotic approximation. With the approximate solution, we calculate explicitly the power
spectrum and the corresponding circular polarization of the PGWs analytically. It is shown that the new
contributions to power spectrum from spatial covariant gravities contain two parts, one from the parity-
preserving terms and the other from the parity-violating terms. While the parity-preserving terms can only
affect the overall amplitudes of PGWs, the parity-violating terms induce nonzero circular polarization
of PGWs, i.e., the left-hand and right-hand polarization modes of GWs have different amplitudes. The
observational implications of this nonzero circular polarization is also briefly discussed.

DOI: 10.1103/PhysRevD.107.024031

I. INTRODUCTION

The inflation which took place at the early Universe
has become a dominant paradigm in the standard cosmol-
ogy [1–6]. In this paradigm, primordial density and
gravitational-wave fluctuations are created from quantum
fluctuations during the inflation process. The former
provides primordial seeds for the formation of observed
large-scale structure and creates the temperature anisotropy
in the cosmic microwave background (CMB), which was
already detected by various CMB experiments [7–10]. The
primordial gravitational waves (PGWs), on the other hand,
also produce distinguishable signatures in both the spectra
of the CMB [11–15] and the galaxy shaped power spec-
trum [16–22]. In CMB, the PGWs can produce the TT,
EE, BB, and TE spectra, but the TB and EB spectra vanish
if the parity symmetry in gravity is respected [11–15].

These signatures are important targets of future CMB
experiments [23–26]. Similarly, the PGWs also leave distinct
imprints in theB-mode of the galaxy-shaped power spectrum
but with vanishing E-B correlation due to the parity con-
servation of the theory [16–22]. It is therefore expected that
the future galaxy surveys could also provide invaluable
information about the physics of PGWs [22,27,28].
In most of inflation models that produce PGWs, the

theory of general relativity (GR) is assumed to describe the
theory of gravity. Due to the parity symmetry of this theory,
the PGWs have two polarization modes which share
exactly the same statistical properties and the correspond-
ing inflationary power spectra take the same form. If the
parity symmetry is violated, however, the inflationary
power spectra of right- and left-handed PGWs can have
different amplitudes. The corresponding relative difference
between the power spectra of right- and left-handed PGWs
measures the level of the parity violation. In CMB, such
parity violating effects can induce nonvanishing TB and EB
correlation in CMB at large scales and thus the precise
measurement of TB and EB spectra could be an important
evidence of the parity violation of the gravitational
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interaction [29–33]. It is also proposed that the future
ground- and space-based interferometers (such as LIGO/
Virgo [34,35], the big bang observer [36], LISA and Taiji/
Tianqin [37,38], etc.) are also able to detect or constrain the
parity-violating effects in the stochastic gravitational-wave
background of primordial origin. In addition, parity violat-
ing PGWs also leaves imprints on the large scale structure
of the Universe [39] and sources nonzero E-B correlation in
the galaxy shape power spectrum [22]. Thus the future
galaxy surveys can provide an important approach for
testing or constraining the parity violating effects in
PGWs [22,39].
Theoretically, gravitational parity violation has to some-

how modify the theory of GR. This can be achieved by
adding some parity-violating terms into the gravitational
action of GR. In fact, the gravitational terms with parity
violation are ubiquitous in numerous candidates of quan-
tum gravity, such as string theory, loop quantum gravity,
and Horava-Lifshitz gravity. One important example is the
Chern-Simons modified gravity, which modifies the GR by
adding a gravitational Chern-Simons term, arising from
string theory and loop quantum gravity [40,41]. This theory
has been extended to a chiral scalar-tensor theory by
including the higher derivatives of the coupling scalar
field [42]. On the other hand, by breaking the time
diffeomorphism (or Lorentz symmetry) of the gravitational
theory, one can naturally add parity-violating but spatial
covariant terms into the gravitational action. This type
of parity-violating theories includes Horava-Lifshitz
gravities with parity violations [43–46] and more generally,
the spatial covariant gravities [47–49]. Other parity-
violating theories, to mention a few, include Nieh-Yan
modified teleparallel gravity [50,51], parity-violating sym-
metric teleparallel gravities [52,53], and standard model
extension [54–58], Holst gravity [59], etc.
In all these modified theories, a basic prediction of parity

violation is the circular polarization of PGWs, i.e., the left-
hand and right-hand polarization modes of GWs propagate
with different behaviors. As we also mentioned in the
above, such asymmetry between the left- and right-handed
modes of PGWs can induce various observational or
experimental effects in CMB, stochastic gravitational-
wave background, and galaxy-shaped power spectrum.
These phenomenological effects have motivated a lot of
works in this directions (see Refs. [22,43–45,60–82] and
references therein for example). It is worth noting that the
gravitational-wave constraints on the parity violation in
gravity have also been extensively explored in the literature
by using the gravitational-wave data realized by LIGO/
Virgo Collaboration [83–95].
Spatial covariant gravities is one of modified theory of

GR, which breaks the time diffeomorphism of the gravity
but respects spatial diffeomorphisms [47–49,96]. Such
spatial covariance provides a natural way to incorporate
the parity-violating terms into the theory [83]. With
spatial covariance, the parity violation can be achieved

by including the odd-order spatial derivatives into the
gravitational action. It is shown in [47,97] that the spatial
covariant gravities can provide a unified description for a
lot of scalar-tensor theory by imposing the unitary gauge,
including those with parity violation, such as the Chern-
Simons modified gravity, chiral scalar-tensor theory,
Horava-Lifshitz gravities, etc. Therefore, the spatial covar-
iant gravities can provide a general framework for us to
explore the parity violating effects in PGWs. For this
purpose, in this paper we study the circularly polarized
PGWs in this theory of gravity with parity violation, and
the possibility to detect the chirality of PGWs by future
potential CMB observations and galaxy surveys.
This paper is organized as follows. In the next section, we

present a brief introduction of the construction of the spatial
covariant gravities and then discuss the associated propaga-
tion of GWs in the homogeneous and isotropic cosmological
background in Sec. III. In Sec. IV, we first derive the master
equation that describes the propagation of GWs during
inflation and construct the approximate analytical solution
to the PGWs by using the uniform asymptotic approxima-
tion. With such approximate solution we then calculate
explicitly the power spectrum and the polarization of
PGWs during the slow-roll inflation. The effects of the
parity violation in the CMB spectra and galaxy-shaped
spectrum, and their detectability have also been briefly
discussed. The paper is ended with Sec. V, in which we
summarize ourmain conclusions and provide someoutlooks.
Throughout this paper, the metric convention is chosen

as ð−;þ;þ;þÞ, and greek indices ðμ; ν; · · ·Þ run over
0,1,2,3 and latin indices ði; j; kÞ run over 1,2,3.

II. SPATIAL COVARIANT GRAVITIES

In this section, we present a brief introduction of the
framework of the spatial covariant gravity, for details about
this theory, see [47,48] and references therein.
We first start with the general action of the spatial

covariant gravity,

S ¼
Z

dtd3xN
ffiffiffi
g

p
LðN; gij; Kij; Rij;∇i; εijkÞ; ð2:1Þ

where N is the lapse function, gij is the 3-dimensional
spatial metric, Kij is the extrinsic curvature of t ¼ constant
hypersurfaces,

Kij ¼
1

2N
ð∂tgij −∇iNj −∇jNiÞ; ð2:2Þ

with Ni being the shift vector, Rij the intrinsic curvature
tensor,∇i the spatial covariant derivative with respect to gij,
and εijk ¼ ffiffiffi

g
p

ϵijk the spatial Levi-Civita tensor with ϵijk
being the total antisymmetric tensor. The most important
feature of the spatial covariant gravity is that it is only invariant
under the three-dimensional spatial diffeomorphism, which
breaks the timediffeomorphism.Normally, theviolation of the
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timediffeomorphismcan lead to an extra degree of freedom, in
addition to the two tensorial degree of freedom in GR. Indeed,
it has been verified that the spatial covariant gravity described
by the action (2.1) can propagate up to three dynamical
degrees of freedom [48]. In [49,96], the above action has also
been extended by introducing _N in the Lagrangian through
1
N ð _N − Ni∇iNÞ. Since such terms does not contribute to the
gravitational waves at quadratic order, we will not consider
them in this paper.
There are a lot approaches to construct the gravitational

theories with spatial covariance. In this paper, we adopt the
approach used in [83] which constructs the Lagrangians of
the theory by using the linear combinations of the extrinsic
curvature Kij, intrinsic curvature Rij, as well as their spatial
derivatives and derivatives of the spatial metric itself. Then,
up to the fourth order in derivatives of hij, we have the
building blocks as shown in Table I that are all scalars under
transformation of spatial diffeomorphisms. Then the gen-
eral action of the gravitational part will be given by [83]

Sg ¼
Z

dtd3x
ffiffiffi
g

p
NðLð0Þ þ Lð1Þ þ Lð2Þ þ Lð3Þ þ Lð4Þ

þ L̃ð3Þ þ L̃ð4ÞÞ; ð2:3Þ

where Lð0Þ;Lð1Þ;Lð2Þ;Lð3Þ, and Lð4Þ are the parity-
preserving terms, which are given by

Lð0Þ ¼ cð0;0Þ1 ; ð2:4Þ

Lð1Þ ¼ cð1;0Þ1 K; ð2:5Þ

Lð2Þ ¼ cð2;0Þ1 KijKij þ cð2;0Þ2 K2 þ cð0;2Þ1 R; ð2:6Þ

Lð3Þ ¼ cð3;0Þ1 KijKjkKi
k þ cð3;0Þ2 KijKijK þ cð3;0Þ3 K3

þ cð1;2Þ1 ∇i∇jKij þ cð1;2Þ2 ∇2K þ cð1;2Þ3 RijKij

þ cð1;2Þ4 RK; ð2:7Þ

Lð4Þ ¼ cð4;0Þ1 KijKjkKi
kK þ cð4;0Þ2 ðKijKijÞ2 þ cð4;0Þ3 KijKijK2 þ cð4;0Þ4 K4

þ cð2;2Þ1 ∇kKij∇kKij þ cð2;2Þ2 ∇iKjk∇kKij þ cð2;2Þ3 ∇iKij∇kKk
j þ cð2;2Þ4 ∇iKij∇jK

þ cð2;2Þ5 ∇iK∇iK þ cð2;2Þ6 RijKi
kK

jk þ cð2;2Þ7 RKijKij þ cð2;2Þ8 RijKijK þ cð2;2Þ9 RK2

þ cð0;4Þ1 ∇i∇jRij þ cð0;4Þ2 ∇2Rþ cð0;4Þ3 RijRij þ cð0;4Þ4 R2; ð2:8Þ

TABLE I. The building blocks of spatial covariant gravities up to the fourth order in derivatives of hij, where dt, ds
are the number of time and spatial derivative, respectively, and d ¼ dt þ ds denotes the total numbers of time and
spatial derivatives. Here ω3ðΓÞ denotes the spatial gravitational Chern-Simons term, and ω3ðΓÞ ¼ εijkðΓm

jl∂jΓl
km þ

2
3
Γn
ilΓl

jmΓm
knÞ with Γk

ij ¼ 1
2
gkmð∂jgmj þ ∂jgij − ∂mgijÞ being the spatial Christoffel symbols. The terms in this Table is

the same as those of Table I in [83] except the two new terms ω3ðΓÞ and ω3ðΓÞK.

d ðdt; dsÞ operators

0 (0, 0) 1

1
(1, 0) K
(0, 1) ...

2
(2, 0) Kij, K2

(1, 1) ...
(0, 2) R

3

(3, 0) KijKjkKi
k, KijKijK, K3

(2, 1) εijkKi
l∇jKkl

(1, 2) ∇i∇jKij, ∇2K, RijKij, RK
(0, 3) ω3ðΓÞ

4

(4, 0) KijKjkKi
kK, ðKijKijÞ2, KijKijK2, K4

(3, 1) εijk∇mKi
nKjmKkn; εijk∇iKj

mKk
nKmn; εijk∇iKj

lK
klK

(2, 2) ∇kKij∇kKij, ∇iKjk∇kKij, ∇iKij∇kKk
j , ∇iKij∇jK, ∇iK∇iK, RijKi

kK
jk, RKijKij, RijKijK, RK2

(1, 3) εijkRil∇jKk
l ; εijk∇iRj

lK
kl, ω3ðΓÞK

(0, 4) ∇i∇jRij;∇2R; RijRij; R2
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and L̃ð3Þ and L̃ð4Þ are parity-violating terms which are
given by

L̃ð3Þ ¼ cð2;1Þ1 εijkKi
l∇jKkl þ cð0;3Þ1 ω3ðΓÞ; ð2:9Þ

L̃ð4Þ ¼ cð3;1Þ1 εijk∇mKi
nKjmKkn þ cð3;1Þ2 εijk∇iKj

mKk
nKmn

þ cð3;1Þ3 εijk∇iKj
lK

klK þ cð1;3Þ1 εijkRil∇jKk
l

þ cð1;3Þ2 εijk∇iRj
lK

kl þ cð1;3Þ3 ω3ðΓÞK: ð2:10Þ

All the coefficients like cðdt;dsÞi are functions of t and N.
Note that in Table I and Eqs. (2.9) and (2.10), we add the
spatial Chern-Simons term ω3ðΓÞ and its coupling to K,
which are absent in the original action in [83]. It is
interesting to note that the above action reduces to GR if
one imposes

cð2;0Þ1 ¼ cð0;2Þ1 ¼ −cð2;0Þ2 ¼ M2
Pl

2
; ð2:11Þ

with all other coefficients cðdt;dsÞi being setting to zero.
The spatial covariant gravity described in the above

action can represent a very general framework for describ-
ing the propagations of GWs in the low-energy effective
gravities with Lorentz or parity violation. To our knowl-
edge, a lot of modified gravities can be casted in the

framework of the spatial covariant gravity. In addition, it is
shown that one in general can relate the spatial covariant
gravity to the scalar-tensor theories in the unitary
gauge [47,97].

III. GWS IN SPATIAL COVARIANT GRAVITIES

Let us investigate the propagation of GWs in the spatial
covariant gravities with the action given by (2.3). We con-
sider the GWs propagating on a homogeneous and isotropic
background. The spatial metric in the flat Friedmann-
Robertson-Walker universe is written as

gij ¼ aðτÞðδij þ hijðτ; xiÞÞ; ð3:1Þ

where τ denotes the conformal time, which relates to the
cosmic time t by dt ¼ adτ, and a is the scale factor of the
universe. Throughout this paper, we set the present scale
factor a0 ¼ 1. hij denotes the GWs, which represents the
transverse and traceless metric perturbations, i.e.,

∂
ihij ¼ 0 ¼ hii: ð3:2Þ

To proceed one can substitute the above spatial metric into
the action (2.3) and expand it to the second order in hij.
Here we write the quadratic action in the form as shown
in [83],

Sð2Þ ¼
Z

dtd3x
a3

2

�
G0ðtÞ _hij _hij þ G1ðtÞϵijk _hli

1

a
∂j
_hlk − G2ðtÞ _hij

Δ
a2

_hij

þW0ðtÞhij
Δ
a2

hij þW1ðtÞϵijkhli
1

a
Δ
a2

∂jhlk −W2ðtÞhij
Δ2

a4
hij

�
; ð3:3Þ

where Gn and Wn are given by [83]1

G0 ¼
1

2
½cð2;0Þ1 þ 3ðcð3;0Þ1 þ cð3;0Þ2 ÞH þ 3ð3cð4;0Þ1 þ 2cð4;0Þ2 þ 3cð4;0Þ3 ÞH2�; ð3:4Þ

G1 ¼
1

2
½cð2;1Þ1 − ðcð3;1Þ1 − 2cð3;1Þ2 − 3cð3;1Þ3 ÞH�; ð3:5Þ

G2 ¼
1

2
cð2;2Þ1 ; ð3:6Þ

W0 ¼
1

2

�
cð0;2Þ1 þ 1

2
_cð1;2Þ3 þ 1

2
ð3cð1;2Þ3 þ 6cð1;2Þ4 þ 2_cð2;2Þ6 þ 3_cð2;2Þ8 ÞH

þ 1

2
ð4cð2;2Þ6 þ 6cð2;2Þ7 þ 9cð2;2Þ8 þ 18cð2;2Þ9 ÞH2 þ 1

2
ð2cð2;2Þ6 þ 3cð2;2Þ8 Þ _H

�
; ð3:7Þ

W1 ¼
1

4
ð_cð1;3Þ1 þ _cð1;3Þ2 Þ þ cð0;3Þ1 − 3cð1;3Þ3 H; ð3:8Þ

W2 ¼ −
1

2
cð0;4Þ3 : ð3:9Þ

1In W1 we add the contributions from the two new terms ω3ðΓÞ and ω3ðΓÞK.
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In above a dot denotes the derivative with respect to the
cosmic time t and H ¼ _a=a is the Hubble parameter. We
consider the GWs propagating in the vacuum, and ignore
the source term. Varying the action with respect to hij, one
can derive the equation of motion for hij as�
G0 −G2

∂
2

a2

�
h00ij þ

�
2HG0 þG0

0 −G0
2

∂
2

a2

�
h0ij

−
�
W0 −W2

∂
2

a2

�
∂
2hij

þ ϵilk
∂
l

a
½G1∂

2
τ þ ðHG1 þ G0

1Þ∂τ −W1∂
2�hkj ¼ 0; ð3:10Þ

where H≡ a0=a and a prime denotes the derivative with
respect to the conformal time τ.

IV. POLARIZATION OF PGWS

A. Equation of motion for GWs

In order to study the propagation of GWs in the spatial
covariant gravities, it is convenient to decompose the GWs
into the circular polarization modes. To study the evolution
of hij, we expand it over spatial Fourier harmonics,

hijðτ; xiÞ ¼
X
A¼R;L

Z
d3k
ð2πÞ3 hAðτ; k

iÞeikixieAijðkiÞ; ð4:1Þ

where eAij denotes the circular polarization tensors and
satisfy the relation

ϵijknieAkl ¼ iρAe
jA
l ; ð4:2Þ

with ρR ¼ 1 and ρL ¼ −1. We find that the propagation
equations of these two modes are decoupled, which can be
casted into the form [83]

h00A þ ð2þ ΓAÞHh0A þ ω2
AhA ¼ 0; ð4:3Þ

where

HΓA ¼
�
ln
�
G0 þ ρAG1

k
a
þ G2

k2

a2

��0
; ð4:4Þ

ω2
A

k2
¼ W0 þ ρAW1

k
a þW2

k2

a2

G0 þ ρAG1
k
a þ G2

k2

a2
: ð4:5Þ

With this equation, the propagation properties of GWs in
the cosmological background have been explored in details
in [83]. Some conditions to make the two polarization
modes propagate in the same speed have been considered
and a lot of parity-violating gravities with both of polari-
zation modes propagating in the speed of light have
been also identified in [83]. In the above equation, the

derivations of the spatial covariant gravities from GR are
fully characterized by the quantities ΓA and ω2

A. The former
represents the corrections to the damping rate which
modifies the amplitude damping rate of the GWs during
their propagations in the cosmological background, and the
latter is the modified dispersion relation of GWs which
leads to a phase shifting of GWs from distant sources.
For later convenience of calculating the primordial

power spectra of GWs, let us introduce a new variable

uA ¼
ffiffiffi
2

p
zhA; ð4:6Þ

with

z ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0 þ ρAG1

k
a
þ G2

k2

a2

s
: ð4:7Þ

Then the equation of motion (4.3) can be rewritten in the
form

u00A þ
�
ω2
A −

z00

z

�
uA ¼ 0; ð4:8Þ

and we expect the derivations from GR are small such that

ΓA ≪ 1;

����ω2
A

k2
− 1

���� ≪ 1: ð4:9Þ

Thus, we can consider all the new effects on GWs beyond
GR as small corrections to the standard GR result. In this
way, we are able to expand ωA and z00

z as

ω2
A

k2
≃
W0

G0

þ ρA
W1 − G1

G0

k
a
þW2 − G2

G0

k2

a2
; ð4:10Þ

z00

z
≃
�
1 −

1

2
ρA

G1

G0

k
a
−
G2

G0

k2

a2

�
a00

a

þ 1

2

�
G00
0

G0

þ ρA
G00
1

G0

k
a
þ G00

2

G0

k2

a2

�

þ
�
G0
0

G0

−
G0
2

G0

k2

a2

�
a0

a
þ G2

G0

k2

a2
a02

a2
: ð4:11Þ

Note that in the above expansion, we only consider the
first-order terms of each coefficients, i.e., 1 −W0=G0, W1,
G1, W2, G2, G0

0, and G00
0.

In this article, we consider the PGWs during the infla-
tionary stage, and assume that the background evolution
during the inflation is slowly varying. With this consid-
eration, we can treat all the coefficients G0, G1, G2,W0,W1,
and W2 as slowly-varying quantities. Then one is able to
expand the modified dispersion relation ω2

A in (4.10) and
effective time-dependent mass term z00=z in (4.15) in terms
of the slow-roll quantities as
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ω2
A

k2
≃
W0

G0

− ρA
W1 − G1

G0

Hkτ

þW2 − G2

G0

H2k2τ2; ð4:12Þ

and

z00

z
≃

1

τ2

�
2þ 3ϵ1 þ

3H _G0 þ G̈0

2H2G0

�

þ k
τ
ρA

2H2G1 −H _G1 − G̈1

2HG0

− k2
2H2G2 þH _G2 − G̈2

2G0

:

ð4:13Þ

It is worth noting that, in order to obtain the above
expansions, we have used the relation

a ≃ −
1þ ϵ1
τH

; ð4:14Þ

with ϵ1 ¼ − _H=H2.
With the expressions of z00=z and ω2

A=k
2, one observes

that the equation of motion in Eq. (4.8) can be cast into
the form

u00A þ
�
−
v2t − 1

4

k2τ2
− ρA

d−1
kτ

þ d0 − ρAd1kτ þ d2k2τ2
	
k2uA

¼ 0; ð4:15Þ

where

ν2t ≡ 9

4
þ 3ϵ1 þ

3H _G0 þ G̈0

2H2G0

; ð4:16Þ

d−1 ≡ 2H2G1 −H _G1 − G̈1

2HG0

; ð4:17Þ

d0 ≡W0

G0

þ 2H2G2 þH _G2 − G̈2

2G0

; ð4:18Þ

d1 ≡W1 − G1

G0

H; ð4:19Þ

d2 ≡W2 − G2

G0

H2; ð4:20Þ

and all these coefficients are slowly varying and dimen-
sionless. Obviously, this equation does not have analytical
solutions even if one treats all the slowly varying quantities
as constants. In order to obtain its solution, we have to
consider some approximations. In this paper, we will
consider the uniform asymptotic approximation, which is
developed in a series of papers for a better treatment to

equations with turning points and poles. This approxima-
tion has been widely applied in calculating primordial
spectra for various inflation models [98–102] and appli-
cations in studying the reheating process [103] and quan-
tum mechanics [104]. In the following subsections, we
apply this approximation to construct the approximate
solution of (4.15) and calculate the corresponding primor-
dial tensor power spectra in the spatial covariant gravities.

B. Uniform asymptotic approximation

In this subsection, we employ the uniform asymptotic
approximation method to construct the approximate
asymptotic solutions. Most of the expressions and results
used here can be found in [82,98,99,101,102].
In the uniform asymptotic approximation, it is conven-

ient to write the equation of motion (4.15) in the following
standard form [98,102,105],

d2uAðyÞ
dy2

¼ ½gðyÞ þ qðyÞ�uAðyÞ; ð4:21Þ

where y≡ −kτ is a dimensionless variable and

gðyÞ þ qðyÞ≡ v2t − 1
4

y2
þ ρAd−1

y
− d0 þ ρAd1y − d2y2:

ð4:22Þ

In general, gðyÞ and qðyÞ have two poles (singularities); one
is at y ¼ 0þ and the other is at y ¼ þ∞. In the uniform
asymptotic approximation, in order to make the approxi-
mate solution being valid around the poles, one has to
ensure that the error control function associated with the
approximate solution to be convergent. For the equation of
motion in (4.21) with gðyÞ þ qðyÞ given by (4.22), it is
shown in [98] that in order to make its error control
function to be convergent around the second-order pole at
y ¼ 0þ, one has to choose,

qðyÞ ¼ −
1

4y2
: ð4:23Þ

Then gðyÞ is given by

gðyÞ ¼ ν2t
y2

þ ρA
d−1
y

− d0 þ ρAd1y − d2y2: ð4:24Þ

Except for the two poles at y ¼ 0þ and y ¼ þ∞, gðyÞ may
also have a single zero in the range y ∈ ð0;þ∞Þ, which
called a single turning point of gðyÞ. Since in GR limit,
we have ν2t ≃ 9

4
þ 3ϵ1, d0 ¼ 1, and d−1 ¼ 0 ¼ d1 ¼ d2, we

expect all the new terms with coefficients d−1, d1, and d2
can be considered as small corrections. With this consid-
eration and solving the equation gðyÞ ¼ 0, we obtain the
turning point,
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yA0 ≃
νtffiffiffiffiffi
d0

p þ ρAd−1 þ ρAd1ν2t − d2ν3t
2

: ð4:25Þ

In deriving the above expression, we have directly used

d0 ¼ 1 in the second term since d0 − 1 ≃ W0

G0
− 1þ

2H2G2þH _G2−G̈2

2G0
is a small corrections as well. In the uniform

asymptotic approximation, the approximate solution
depends on the type of turning point. The turning point
y0 is a single root of the equation gðyÞ ¼ 0, which also
called single turning point as well. Thus, in the following
discussion, we will discuss the solution around this single
turning point in details.
For the single turning point y0, the approximate solution

of equation of motion around this turning point can be
expressed in terms of Airy-type functions as [98]

uA ¼ α0

�
ξ

gðyÞ
�

1=4
AiðξÞ þ β0

�
ξ

gðyÞ
�

1=4
BiðξÞ; ð4:26Þ

where AiðξÞ and BiðξÞ are the Airy functions, α0 and β0 are
two integration constants, ξ is the function of y and the
form of ξðyÞ is given by [98]

ξðyÞ ¼

8>><
>>:



− 3

2

R
y
y0

ffiffiffiffiffiffiffiffiffiffi
gðy0Þp

dy0
�
2=3

; y ≤ y0;

−


3
2

R
y
y0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðy0Þp

dy0
�
2=3

; y ≥ y0:
ð4:27Þ

As shown in [98,105], the above solution is not only valid
around the turning point, but valid in the while domain
y ∈ ð0;þ∞Þ. It is shown in [98,105] that with the choice
of qðyÞ given in (4.23), the error control function of the
approximate solution of (4.26) is convergent even around
the two poles y ¼ 0þ and y ¼ þ∞. With this solution, we
need to determine the coefficients α0 and β0 by matching
it with the two boundary conditions. One requires the
mode function uA satisfies the following normalization
condition, i.e.,

i
ℏ
ðu�Au0A − u�A

0uAÞ ¼ 1; ð4:28Þ

where u�A denotes the complex conjugate of the mode
function uA. The second boundary condition that fixes the
mode function uA completely comes from the initial con-
dition in the limit y → þ∞, which corresponds to the
assumption that the universe was initially in an adiabatic
vacuum,

lim
y→þ∞

ukðyÞ ≃
1ffiffiffiffiffiffiffiffiffi
2ωA

p e−i
R

ωkdτ

¼
ffiffiffiffiffi
1

2k

r �
1

−g

�
1=4

exp

�
−i

Z
y

yi

ffiffiffiffiffiffi
−g

p
dy

�
:

ð4:29Þ

When y → þ∞, we note that ξðyÞ is very large and negative.
In this limit, the asymptotic form of the Ariy functions read

Aið−xÞ ¼ 1

π1=2x1=4
cos

�
2

3
x3=2 −

π

4

�
; ð4:30Þ

Bið−xÞ ¼ −
1

π1=2x1=4
sin

�
2

3
x3=2 −

π

4

�
: ð4:31Þ

Combining the initial condition and the approximate ana-
lytical solution, we obtain

α0 ¼
ffiffiffiffiffi
π

2k

r
ei

π
4; β0 ¼ i

ffiffiffiffiffi
π

2k

r
ei

π
4: ð4:32Þ

In Fig. 1, we plotted the time evolution of the power spectra
jk3=2uA=ðztHÞj2 for both the uniform asymptotic solutions
and numerical solutions of the right-handed and the left-
handed modes respectively. We also displayed the cases in
GR for comparison. From this figure, one can see clearly that
our analytical solutions are extremely close to the numerical
ones, and even are not distinguishable from the numeri-
cal ones.

C. Power spectra and circular polarization
of PGWs

With the above approximate solutions of the PGWs, we
are able to calculate the corresponding primordial power
spectra for each polarization modes of the PGWs in the
limit y → 0. Their power spectra is normally computed via

PL
T ¼ 2k3

π2

���� uLðyÞz

����2;
PR

T ¼ 2k3

π2

���� uRðyÞz

����2: ð4:33Þ

In the limit y → 0þ, the variable ξðyÞ, which is the
argument of the Airy function, becomes very large and
positive, allowing the use of the following asymptotic
forms

AiðxÞ ¼ 1

2π1=2x1=4
exp

�
−
2

3
x3=2

�
; ð4:34Þ

BiðxÞ ¼ −
1

π1=2x1=4
exp

�
2

3
x3=2

�
: ð4:35Þ
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These asymptotic forms indicate that only the growing
mode of uAðyÞ is relevant in the limit y → 0. Thus,
the approximate solution near the pole y ¼ 0þ can be
expressed in the form

uAðyÞ ≈ β0

�
1

π2gðyÞ
�

1=4
exp

�Z
y0

y
dy

ffiffiffiffiffiffiffiffiffi
gðyÞ

p �

¼ i
1ffiffiffiffiffi
2k

p
�

1

gðyÞ
�

1=4
exp

�Z
y0

y
dy

ffiffiffiffiffiffiffiffiffi
gðyÞ

p �
: ð4:36Þ

The power spectra of PGWs are then given by

PA
T ¼ k2

π2
1

z2
y
νt
exp

�
2

Z
y0

y
dy

ffiffiffiffiffiffiffiffiffi
gðyÞ

p �

≃
H2

18π2e3G0

�
1þ

�
2 ln 2 −

8

3

�
ϵ1 þ

ð3 ln 2 − 1Þ _G0

3HG0

þ πρAð9d1 þ 8d−1Þ
16

−
9

4
d2

�
: ð4:37Þ

Note that in estimation the above integral, we take the limit
y → 0þ and the detail calculation of the integral of

ffiffiffi
g

p
is

presented in Appendix. Obviously, the power spectra can
be modified due to the presence of both the parity-
preserving terms and parity-violating terms in the gravita-
tional action (2.3). It is easy to check that when one takes
G0 ¼ M2

Pl=4 and d−1 ¼ d1 ¼ d2 ¼ 0, the standard GR
result can be recovered. The parity-preserving terms can
only affect the overall amplitude of both the left- and right-
handed polarization modes of GW, which are related to the
quantities G0 and d2 in the above expression. The relevant
terms in the gravitational action are those with coefficients

cð2;0Þ1 , cð3;0Þ1 , cð3;0Þ2 , cð4;0Þ1 , cð4;0Þ2 , cð4;0Þ3 , cð2;2Þ1 , and cð0;4Þ3 . The
parity-violating terms, on the other hand, affect the ampli-
tudes of left- and right-handed polarization modes of GW in

different ways. For positive value of 9d1 þ 8d−1 in the
above expression, the parity violation trends to enhanced
(suppress) the power spectra of the right- (left-)handed
modes. This effect is related to those terms with coefficients

cð2;1Þ1 , cð3;1Þ1 , cð3;1Þ2 , cð3;1Þ3 , cð1;3Þ1 , cð1;3Þ2 , cð1;3Þ2 , cð0;3Þ1 , and cð1;3Þ3

in the gravitational action (2.3).
Here we would like to mention that in the calculation of

the power spectra, we only consider the first-order approxi-
mation in the uniform asymptotic approximation. The
corresponding relative error of the overall amplitude

H2

18π2e3G0
of the power spectra in Eq. (4.37) is less than

10%, see the discussion about the relative error at each
order in Ref. [101]. In principle, this calculation can be
significantly improved by considering high-order uniform
asymptotic approximation. For example, as shown in [101],
at the third-order uniform asymptotic approximation, the
relative error of the overall amplitude can be improved to be
less than 0.15%. However, the small corrections presented
in the square bracket in (4.37) can be quit precise provided
that these corrections are sufficient small. As we will
mentioned later, the resulted circular polarization calcu-
lated from (4.37) can be exactly reduced to the exact result
in the Chern-Simons gravity.
Now, we are in a position to calculate the degree of

the circular polarization of PGWs, which is defined by the
differences of the amplitudes between the two circular
polarization states of PGWs as

Π≡ PR
T − PL

T

PR
T þ PL

T
≃
πð9d1 þ 8d−1Þ

16
: ð4:38Þ

As expected, the degree of the circular polarization Π only
depends on the parity-violating terms in the gravitational
action. It is not difficult to check that the above expression
can exactly reduce to the cases of Chern-Simons modified

FIG. 1. The uniform asymptotic approximate solutions of mode functions jk3=2uA=ðztHÞj2 (solid curves) and the corresponding
numerical solutions (dotted curves). Left panel presents the solution of the left hand mode while the right panel presents the right hand
mode. In each panel, the solid curves with blue color corresponds to the solution for case of general relativity, and green and darker
yellow colors correspond to the spatial covariant gravities with different values of the parity-violating parameters. The numerical
solution associated with each analytical solutions are presented by the red dotted curves.
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gravity [79], chiral scalar-tensor theory [82], and Havara-
Lifshitz gravity. It is important to mention here that, in our
treatment, we have assumed that all the new effects from
spatial covariant gravities are considered as small correc-
tions. In this sense, we observe that the degree of the
circular polarization Π is small due to the suppressing
parameter jd1j; jd−1j < Oð1Þ. In Fig. 2, we plotted the
analytical expression of the circular polarizationΠ in (4.38)
(the solid and blue curves) and the corresponding numerical
results (the dotted and red curves). From this figure, one
can see clearly how well the numerical results are approxi-
mated by our analytical ones.

D. Detectability of the parity-violating effects

As we mentioned in the introduction, the parity-violating
effect in PGWs, which is measured by the observable Π,
can produce a lot of observational information in CMB and
galaxy surveys.
In CMB, one important effect is the induction of nonzero

the TB and EB spectra in the CMB data. This implies that
one can probe the parity violation by measuring the CMB
EB and TB angular cross-correlators. However, as analyzed
in [43] (see also [106]), such proposal is only optimistic
when Π > Oð0.5Þ, especially considering that the tensor-
to-scalar ratio has been constrained to be r < 0.036 at
95% confidence level in Ref. [107]. Note that a more
stringent constraint has been reported from a combined
analysis of newly released dataset including CMB and GW
data [108]. Therefore, it seems very difficult to detect these
effects in the future CMB experiments. According to the
analysis in [39], the main difficulty comes from the two-
dimensional projection of CMB, which suppresses the
parity-violating signal due to approximate reflective sym-
metries, and confuses the tensor modes with scalar ones,
leading to additional noise contributions. Possible ways for
bypassing such challenge are proposed. The first one is to
consider the three-points or even high-order correlators,
such as the primordial bispectra and trispectra and their

signatures in CMB [63,67]. Another way is to search the
tensor fossil effects due to parity violation in the statistics of
the large-scale structure in future galaxy surveys [39].
These two topics are obvious beyond the scope of the
current paper and we leave them for our future works.
Another proposal for detecting primordial parity-

violating effects is to consider the imprints of circular
polarization on the galaxy intrinsic alignments [67]. Similar
to CMB, the circular polarization Π can directly induce a
distinctive imprint in the galaxy shape spectrum, i.e., the
nonzero EB correlation in the shape spectrum. Considering
such signature can not be produced by the scalar modes,
any signature of EB correlation in the future galaxy surveys
would be a smoking gun for parity violation in PGWs, as
mentioned in [67].

V. CONCLUSION AND OUTLOOK

The spatial covariant gravities can provide a unified
description for a lot of scalar-tensor theories in the unitary
gauge. Such framework breaks the time diffeomorphism
of the gravity but respects spatial diffeomorphisms, so that
one is able to include the parity violating odd-order spatial
derivative terms but with spatial covariance into the
gravitational action. It is also shown in [47,97] that a lot
of parity-violating theories in the unitary gauge can be
mapped to spatial covariant gravities. In this paper, we
study the circular polarization of PGWs in the spatial
covariant gravities and discuss its possible observational
signatures. For this purpose we first solve the evolution of
PGWs during slow-roll inflation by applying the uniform
asymptotic approximation to the equations of motion for
the PGWs. Using this approximation, we construct the
approximate analytical solutions to the PGWs during the
slow-roll inflation, with which we calculate explicitly both
the power spectra for the two polarization modes and the
corresponding degree of circular polarization of PGWs in
the spatial covariant gravities. It is shown that with the
presence of the parity violation, the power spectra of PGWs

FIG. 2. The degree of circular polarization Π as a function of d1 for different values of d−1 ¼ 0 (left panel) and d−1 ¼ 0.02 (right
panel), respectively. In both panels, the blue and solid curve represent the analytical results in Eq. (4.38) and the red and dotted curves
are the numerical results.
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are slightly modified and the degree of circular polarization
becomes nonzero. The magnitude of the degree circular
polarization directly depends on the parity-violating terms
in the gravitational action (2.3), which are expected to be
quit small due to the suppression of d−1; d1 < Oð1Þ. This
implies very difficult to detect or effectively constrain the
theories by using the TE and EB power spectra of future
CMB data. The possible signatures of the circular polari-
zation of PGWs in non-Gaussianities, large-scale structure,
and EB correlation in the galaxy-shaped power spectrum
are also briefly discussed.
Our work can be improved in several aspects. First, in the

current study, we have not yet considered the effects of
parity violation arising from the spatial covariant gravities
in the non-Gaussianities of PGWs. According to the
analysis in [70], the parity-violating effects in the tensor-
tensor-scalar bispectrum could be large enough and detect-
able in the future CMB data. Thus, it is interesting to
explore further whether the parity-violating terms in spatial
covariant gravities could lead to any possible observational
signatures in the non-Gaussianity of PGWs. Second, the
parity-violating effects in primordial bispectrum and tris-
pectrum of PGWs can also leave imprints in the statistic
large scale structure [39] as well as the EB correlation in
galaxy shape power spectrum [22]. We would like to come
back to these topics in our future works.
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APPENDIX: CALCULATION OF INTEGRAL
OF

ffiffiffi
g

p
IN EQ. (4.36)

In this appendix we present the calculation of the
following integral, Z

y0

y
dy0

ffiffiffiffiffiffiffiffiffiffi
gðy0Þ

p
: ðA1Þ

For this purpose, we can write the function gðyÞ in the
following form

gðyÞ ¼ y0 − y
y2

ða0 þ a1yþ a2y2 þ a3y3Þ: ðA2Þ

Here the coefficients a0, a1, a2, and a3 are determined by
comparing the above form with (4.24), which leads to

a0 ¼ d0y0 − d−1ρA − d1ρAy20 þ d2y30; ðA3Þ

a1 ¼ d0 − d1ρAy0 þ d2y20; ðA4Þ

a2 ¼ −d1ρA þ d2y0; ðA5Þ

a3 ¼ d2: ðA6Þ

It is evident that the magnitude of the coefficients a2 and a3
are determined by Oðd1; d2Þ, which can be treated as small
corrections of the new terms beyond GR in spatial covariant
gravity. Thus we can expand

ffiffiffiffiffiffiffiffiffi
gðyÞp

by treating a2 and a3
as small perturbations. Then we have

ffiffiffiffiffiffiffiffiffi
gðyÞ

p
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðy0 − yÞða0 þ a1yÞ
p

y

þ 1

2
yða2 þ a3yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0 − y

a0 þ a1y

r
: ðA7Þ

Thus, the integral of
ffiffiffi
g

p
can be split into two parts,

lim
y→0

Z
y0

y
dy0

ffiffiffiffiffiffiffiffiffiffi
gðy0Þ

p
¼ I0 þ I1; ðA8Þ

where

I0 ¼
ffiffiffiffiffi
a1

p
y0lim

x→0

Z
1

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − x0Þðb0 þ x0Þp
x0

dx0

¼ ffiffiffiffiffi
a1

p
y0

�
ð1 − b0Þarccscð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b0

p
Þ

þ
ffiffiffiffiffi
b0

p
ln

4b0
ð1þ b0Þx

−
ffiffiffiffiffi
b0

p �
; ðA9Þ

I1 ¼
a3y30
2

ffiffiffiffiffi
a1

p lim
x→0

Z
1

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x0

b0 þ x0

s
x0ðc0 þ x0Þdx0

¼ a3y30
48

ffiffiffiffiffi
a1

p ½
ffiffiffiffiffi
b0

p
ð3 − 4b0 − 15b20 þ 6c0 þ 18b0c0Þ

þ 3ð1 − 2b0 þ 5b20 þ 2c0 − 6b0c0Þ
× ð1þ b0Þarccscð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b0

p
Þ�; ðA10Þ

with x≡ y=y0 and

b0 ≡ a0
a1y0

; ðA11Þ

c0 ≡ a2
a3y0

: ðA12Þ
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