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Blip glitches, a type of short-duration noise transient in the LIGO-Virgo data, are a nuisance for the
binary black hole (BBH) searches. They affect the BBH search sensitivity significantly because their time-
domain morphologies are very similar, and that creates difficulty in vetoing them. In this work, we
construct a deep-learning neural network to efficiently distinguish BBH signals from blip glitches. We
introduce sine-Gaussian projection (SGP) maps, which are projections of gravitational wave (GW)
frequency-domain data snippets on a basis of sine-Gaussians defined by the quality factor and central
frequency. We feed the SGP maps to our deep-learning neural network, which classifies the BBH signals
and blips. Whereas only simulated BBH signals are used for training, both simulated and real BBH
signals are used for testing. For glitches only blips from real LIGO data are used for both testing and
training. We show that our network significantly improves the identification of the BBH signals in
comparison to the results obtained using traditional-χ2 and sine-Gaussian χ2. For example, our network
improves the sensitivity by 75% at a false-positive probability of 10−2 for BBHs with total mass in the
range ½80; 140�M⊙ and SNR in the range [3, 8]. When tested on real GW events, it correctly identifies
95% of the events in GWTC-3. The computation time for classification is a few minutes for thousands of
SGP maps on a single core. With further optimization in the next version of our algorithm, we expect a
further reduction in the computational cost. Our proposed method can potentially improve the veto
process in the LIGO-Virgo GW data analysis and conceivably support identifying GW signals in low-
latency pipelines.
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I. INTRODUCTION

The age of gravitational wave (GW) astronomy has
accelerated since the detection of the first GW event,
GW150914 [1,2]. As of now, the LIGO [3] and Virgo [4]
collaborations have detected over 90 compact binary
coalescence (CBC) signals [5–10], which include binary
black boles (BBHs), neutron-star-black-hole binaries and
binary neutron stars. Now, with KAGRA [11] joining the
global network and with LIGO-India expected to come
online later this decade [12], the rate of detection of CBC
events is expected to increase quite significantly. One
challenge that detection efforts face is erosion of some
sensitivity of our detection pipelines caused by noise
transients that share some characteristics with CBC wave-
forms [13]. Some of these noise artifacts are difficult
to differentiate from CBC signals, especially when the
latter are from binaries with large total mass [14,15].
Considerable efforts have been invested in guarding
against misclassification of those transients as CBC
signals. This work contributes to that effort.

One specific type of short-duration noise transient,
known as a blip glitch, is one of the major contributors
to degrading the search sensitivity of CBC signals as well
as other short-duration GW signals [2,15]. Recent studies
on blip glitches found that both LIGO detectors (located in
Livingston and Hanford) report around 2 blip glitches per
hour [16]. Blips are found in Virgo and GEO600 detectors
as well [16]. The origin of a majority of blip glitches is still
a mystery [16]. When it comes to the morphology of
blip glitches, they are of short duration, Oð10Þ ms in the
time domain, and have a bandwidth of more than 100 Hz
in the frequency domain. The shape of a blip glitch in
the time domain resembles GW signals from BBHs either
with a large total mass, with highly asymmetric component
masses, or with component spins and orbital angular
momentum antialigned. As a result, blips affect the
efficiency of search of such BBH signals. Studies con-
ducted to diagnose the source of blip glitches show that
they have very little correlation with auxiliary channels.
Only a few blips show correlations with the laser intensity
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stabilization, computer errors, power recycling control
signals, and relative humidity inside the detector. In total,
only around 8% of LIGO Hanford (H1) and 2% of LIGO
Livingston (L1) blips in the second observation run (O2)
run have shown correlations with any of the auxiliary
channels [16]. It is possible that more than one physical
mechanism is responsible for blips. Hence, it is important
to understand blip glitches and mitigate their adverse
effects on the search sensitivity to CBCs and other
short-duration signals. In this work, we have mainly used
blip glitches identified by the Gravity Spy [17–20] project
from H1 and L1 LIGO O2 run and first part of third
observational (O3a) run. Gravity Spy is a state-of-the-art
tool to classify the glitches present in LIGO data. Up to
now, it has identified 23 different types of glitches includ-
ing blips in the LIGO data by combining efforts of human
volunteers (citizen science) and deep learning networks.
In the past, there have been efforts to understand blips

(e.g., [21–23]) and to mitigate their effect on CBC searches
with a combination of modeling and statistical methods
(e.g., [14,24,25]). Even though some of these methods are
effective at vetoing blips, there is still a lot of room for
improvement. In recent years, machine learning (ML)
algorithms have been proposed as being useful for GW
data analysis. There have been several studies on classi-
fication, characterization or parameter estimation of GW
data with the help of ML algorithms such as the convolu-
tional neural network (CNN), the recurrent neural network,
and the variational autoencoders (e.g., [26–37]). CNNs are
better suited for spatial data such as images (e.g., [17,27]),
whereas recurrent neural networks work well with temporal
or sequential data such as text or video (e.g., [32,33]).
Likewise, different ML algorithms can help in achieving
various goals of GW data analysis. The purpose of this
work is to exploit the tremendous image classification
capabilities of CNNs in order to veto the blip glitches that
appear in the LIGO-Virgo data. Better discrimination of
glitches against BBH signals help in improving the
significance of BBH detections. This helps in the identi-
fication of weak signals, which reduces the Malmquist bias
and, thereby, aids the characterization of BH and BBH
populations more accurately.
This paper is arranged as follows. In Sec. II, we

introduce the sine-Gaussian projection maps and explain
how to generate them. In Sec. III, we give details of the
simulations and data preparation. Section IV outlines the
neural network that we constructed in this work. Section V
describes the existing methods like traditional χ2 and sine-
Gaussian χ2 to veto blip like glitches. Finally, in Sec. VI,
we present the results and performance of the network
followed by Sec. VII on conclusions and future prospects.

II. SINE-GAUSSIAN PROJECTION MAP

A critical aspect of ML is presenting the data to the
network in the most appropriate way. The data

representation used in ML networks can have a significant
impact on their performance. There are machine learning
studies where the two-dimensional spectrogram of GW
data like omega Q-scan or omicron time-frequency (TF)
maps [38] have been used to categorize glitches (e.g., [17]),
and continuous wavelet transform-based TF maps are used
to classify signals from glitches (e.g., [27]). In this section,
we introduce the sine-Gaussian projection (SGP) maps and
explain how they are a useful way to represent GW data
when it comes to distinguishing blips from BBH signals
using a deep-learning image classifier.
Blips are one of the classes of glitches that resemble high

mass-ratio or high component-mass BBH signals in the
time domain and show similar TF morphology [14,16],
as illustrated in Fig. 1. As a result, machine-learning
algorithms that make use of TF maps may not be as
efficient in distinguishing blips and high-mass BBH
signals. Alternatively, showing a contrast between the
blips and high-mass BBH in the two-dimensional data by
projecting these signals on sine-Gaussian parameter space
may provide certain advantages to a machine-learning
network for classifying them better. As we show below,
the blips and high-mass BBH signals have strong projec-
tions in different regions of the sine-Gaussian parameter
space, which comprises the quality factor (Q) and the
central frequency (f0), and present easily distinguishable
features. In this way, the SGP maps offer complementary
information for exploitation in the classification problem.
The projected GW data snippet on the normalized sine-
Gaussian waveforms in the Q − f0 parameter space is
called an SGP map. These SGP maps constitute our input
data to the CNN. We call our neural network a sine
Gaussian projection map-convolution neural network
(SIGMA-NET).
Mathematically, a sine-Gaussian waveform can be

expressed as

gðtÞ≡ Ae
−4πf2

0

ðt−t0Þ2
Q2 cosð2πf0tþ ϕ0Þ; ð1Þ

where A is constant amplitude, Q is the quality factor, f0 is
the central frequency, ϕ0 is the phase, and t0 is the central
time of the sine-Gaussian waveform. The projection of a
data train x on the sine-Gaussian g is defined as [39]

ðx;gÞ ¼ 4ℜ
Z

fupper

flower

x̃�ðfÞg̃ðfÞ
SnðfÞ

df; ð2Þ

where SnðfÞ is the power spectral density of the noise, and
flower and fupper are determined, respectively, by the
seismic cutoff frequency and the Nyquist frequency.
To construct an SGPmap, we first choose the appropriate

region of the sine-Gaussian parameter-space onto which the
data snippet is to be projected. For our study, the parameter
ranges are f0 ∈ ½20; 520� Hz and Q ∈ ½2; 80�. The choice
of these ranges is made after extensive study of the
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projection of various blips and CBC signals with the
objective of capturing most of their power. We then sample
points in that chosen region uniformly and the data is
projected over the sine-Gaussian waveform corresponding
to each sampled point using Eq. (2). The projections so
computed are presented using a color map, where the
color represents how strong or weak the projection is, as
shown in Fig. 2. The pixels are smoothed using spline
interpolation.
As we can see, there are clear distinguishing features

between blips and BBH signals in the SGP maps. Blip
glitches show high projection at low Q (in the range from 2
to 10) and have a projection over a wider range of
frequencies than the BBH signals, as shown in Fig. 2.
The BBH signals, on the other hand, do not show much
projection above 200 Hz. The extended projection along Q
depends on the component masses of the binary, although it
is always more extended than blips along theQ values. The
projections of BBH signals contrast well with the projec-
tions of blips on the SGP maps, especially, for high signal-
to-noise ratio (SNR) transients (e.g., above match-filter
SNR of 7). For low SNRs (<7), this contrast diminishes
and identifying the BBH projections correctly becomes

challenging. To overcome this issue impacting low SNR
signals, we use multiview learning, which is explained in
Sec. III.

III. DATA SIMULATION AND GENERATION

In this study, we work with real blips and simulated
nonspinning BBH signals injected in real data. Limiting our
attention to nonspinning BBH signals is of some relevance
in realistic searches since significant spin has been found
only in a small subset of the BBHs detected so far [8]. This
aspect notwithstanding, it is highly desirable to unearth
more spinning BBHs since those systems can provide some
fascinating exhibition of two-body dynamics predicted by
general relativity. They will also be important in informing
more fully our survey of the BBH and black hole
populations. We plan to extend the present work to the
case of spinning black holes in the future. Here we note that
one of the important differences we anticipate in that study
is the bandwidth of the signals, arising from the fact that the
frequency of the innermost stable circular orbit (ISCO) is
affected by black hole spin [40]. Signals from BBHs with
higher ISCO frequencies will adversely effect their

FIG. 1. Examples of time-frequency maps of some of the blips (right panels) and BBH events (left panels) showing the similarities and
differences of the two in this two-dimensional representation.
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distinguishability from blips owing to an increased overlap
in the frequency bands. Nevertheless, the fact that the
projection of the BBH signals in SGP maps exhibit a larger
spread in the quality factor compared to blips is expected to
provide some discriminatory power. We will explore in the
future how useful this feature proves to be in searches for
spinning BBHs. We next describe the procedure followed
here for fetching real data and generating simulated data in
the form of time series, which are then used to prepare the
SGP maps.
We begin by identifying GPS times of the blip glitches

from Gravity Spy and then fetch the corresponding H1 and
L1 data from O2 and O3a [41]. While most of our blips are
taken from O2, we choose 30% of the 6000 test sample
blips from O3a. We use the “cleaned C02” and “cleaned
C01” frame types for the O2 and O3 data, respectively [23].
For each blip, we choose a 16-sec-long data segment out of
which a 2-sec-long segment is chopped such that the GPS
time falls at the center of the segment while the whole data
segment is used to calculate the power spectral density
(PSD), as described later in this section.
We simulate nonspinning BBH signals using the

IMRPhenomPv2 [42] template such that their masses
m1; m2 ∈ ½10; 100�M⊙ and their sky locations follow a
uniform distribution. The frequency cutoff on the lower end
(flower) is set to 20 Hz and the upper cutoff (fupper) is set to
2048 Hz. The match-filtering SNR for BBHs is also drawn
uniformly from the range [4,10] for the H1 detector. This
fixes the SNR for the BBH signal in the L1 detector,
accordingly.
We inject the simulated BBH signals into the real O2

noise as explained below. First, we identify a 64-sec-long
data segment from the O2 data that has no known triggers.

We further verify by plotting a Q-transform map and ensure
that this data segment has no GW signals and is artifact
free. Next, we randomly draw 2-sec-long data segments
from this main segment such that the peak of the BBH
signal is located at the center of the segment.
Subsequently, we apply a windowing function to the

BBH and blip time series data samples in order to reduce
the spectral leakage due to discontinuity at the edges of the
chopped segment. Windowing ensures a smooth and
gradual transition of time series amplitude to zero at the
edges. As the input to our network is the SGP maps, it is
crucial to find an optimal combination of various factors
that will maximize the projection of BBH signals and blips.
As a result, the length of the data segment, the location of
the signal or blip within the segment and the choice of
windowing had to be tuned by performing several tests. For
example, longer data segments result in increased noise in
the SGP maps and shorter data segments also adversely
affect the SGP maps due to the windowing process. Hence,
we find that an intermediate length of two seconds is the
most appropriate choice for the signal parameter ranges
chosen for this work.
Once the time series data for blips and BBH are

prepared, we proceed to generate the SGP maps for our
sample. The first step is to calculate the PSDs. For each
blip, we use the 16-sec-long data segment that contains the
blip and apply the standard Welch’s method to calculate the
PSD. This method ensures that the presence of the blip in
the segment does not affect the PSD calculation. For the
BBH sample, we use the same 64-sec-long data segment
that was used as the background noise for the BBH signals.
We apply the sameWelch’s method to get the PSD required
for the BBH sample.

FIG. 2. The sine-Gaussian projection map of an H1 blip from O2 run with SNR 16 (left) and a simulated BBH event injected in real
noise from H1 O2 run with SNR 16 (right). Here the SNR for blips is calculated in the same way as for BBH signals. The color bar
represents value of projections as calculated using Eq. (2).
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In the next step, we calculate the projection of the data
(BBH and blips) on the sine-Gaussian waveform [see
Eqs. (1) and (2)] and represent it using the 2D parameter
space of Q − f0 (see Sec. II for details) for each detector
separately. The color in each pixel of an SGP map
represents the strength of the projection.
Initially, we experimented with analyzing SGP maps of

individual detectors separately for each blip and BBH
signal. While the network performance was satisfactory at
high SNRs, there was room for further improvement in the

sensitivity of low-SNR GW events. We then considered
analyzing maps from both detectors simultaneously. There
is a clear advantage of working with multidetector data
because a true astrophysical signal, such as that from a
BBH, if sufficiently strong, will appear in both the detectors
whereas nonastrophysical noise transients such as blips
rarely coincide for two independent detectors. This is well
evident for an example data of BBH (Fig. 3) and a blip
(Fig. 4) showing both H1 and L1 detectors. One could
consider including data from more than two detectors

FIG. 3. Here we show an example of a simulated BBH input sample fed to the network. The H1 (left) and L1 (right) SGP maps are
placed adjacent to each other. Axis labels and color bars are omitted. Here, the SNR ≈ 10 for H1 and ≈9 for L1.

FIG. 4. Similar to Fig. 3, except that a blip input sample is fed to the network here. The H1 (left) and L1 (right) SGP maps are kept
adjacent to each other. We can see a blip is present in H1 (left) with an SNR ≈ 11.
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which may or may not be efficient in our end goal.
However, we leave this exercise for future work and stick
to using two-detector data.
In order to analyze SGP maps from both detectors

simultaneously, we consider a multiview learning model
of the CNN, e.g., [43]. In this form of learning, the
network learns using multiple image representations of a
given class of objects. The multiview model of learning
increases the distinguishable features in the input images
and the learning capability of the network as a whole.
Multiview learning could be done in mainly two ways,
parallel view and merged view. In parallel-view learning,
images are fed to the network through more than one input
channel and combined subsequently after passing through
a few hidden layers. On the contrary, in merged-view
learning, the images are placed adjacent to each other in a
grid and then fed to the network through a single input
channel.
In this study, we adopt the merged-view learning where

the SGP maps, for each BBH or blip, created using the H1
and L1 detectors, are placed laterally as a single input
image for the network. For example, see Figs. 3 and 4
where the images, without any labels and tick marks, are
fed to the network.
We choose 10 000 SGP maps for training and 3000

SGP maps for validation where the blips and BBH signals
are in equal proportion. For the test sample containing
BBH signals, we produce two distinct samples as a
function of mass and mass ratios. Each BBH sample
comprises 12 000 SGP maps. We produce 6000 SGP
maps of blips for the test sample. Additionally, we use the

sample of 49 real GW events taken from O1, O2, and
O3a [5,6].

IV. DEEP LEARNING NETWORK

The goal of our study is to distinguish BBH from blip
glitches. For this classification problem, we use a deep
learning algorithm known as convolutional neural network
[44–46]. We follow the supervised learning approach
where we train the network on SGP maps belonging to
both the BBH and blip classes. The trained network then
gives us predictions whether a test SGP map contains a
BBH or a blip.
We describe below the structure of the network devel-

oped in this work and summarize the training process
leading to the final model that will make robust predictions.
As mentioned in the previous section, the input data for the
network are two SGP maps corresponding to H1 and L1
detectors for each BBH or blip. These maps are placed
laterally such that their final dimension is 150 × 300 along
with three color channels as seen by the network. Our
network has four convolution blocks followed by a flat-
tened layer and two fully connected blocks that are
connected to an output layer (see Fig. 5). Each convolution
block has a convolution layer and a pooling layer. We
choose the relu (rectified linear unit) activation function in
the convolution layers and a max-pooling option in the
pooling layer. Max pooling has been shown to perform
better in classification tasks where one has to deal with
sharp features in the images in comparison to other options
such as average pooling and min pooling. Subsequently, we

FIG. 5. Schematic diagram of our neural network. Each layer uses a relu activation function except for the last one, which uses a
sigmoid function. The final output is the probability that the input image corresponds to a BBH signal. Here, “Conv k” stands for kth
convolutional layer, “MaxP k” stands for kth max-pooling layer, “Flatten” denotes the flattening of 2D matrix, “DropoutðxÞ” layer is to
tackle overfitting by dropping some of the neurons, and “DenseðkÞ” is fully connected layer with k neurons [47].
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introduce a flattened layer followed by the relu activation
function. Next, in each of the fully connected blocks, we
have a dropout and a dense layer. The dropout layer helps in
preventing overfitting issues. Finally, in the output layer, we
apply the sigmoid activation function to predict the classi-
fication probabilities. This layer has a single neuron that
gives the probability that the input image belongs to BBH
class. In order to determine the probability for the class of
blips, we simply subtract the predicted probability from 1.
We choose binary cross-entropy to define the loss

function of the network as it is appropriate for binary
classification. We use the “adam” optimizer [48] with a
learning rate set to 0.001 and other parameters set to their
default values as they happened to be an adequate choice
based on the tests we conducted. We use the metric
“accuracy” to measure the network performance.
Our training sample includes 5000 maps of blips and

BBHs each whereas the validation sample includes 1500
maps of blips and BBHs each. We train our network for 10
epochs and each epoch consists of the training samples
divided into 300 batches. The validation sample is divided
into 100 batches. During the training process, we use the
“fit generator” method available in KERAS [49], which
loads the data into primary memory in batches and feeds it
to the network for training. As we do not load the whole
training data at once into the memory, it reduces the load
on the computing node and makes the training process
quite fast.

V. EXISTING METHODS TO TACKLE BLIPS

Before testing the performance of our machine learning
model and comparing it with existing methods for vetoing
blips in GW data, we briefly summarize two of the main
statistics in the GW data analysis that are currently
employed for vetoing the blips, namely, traditional χ2

[50], and sine-Gaussian χ2 [14].
The traditional χ2 is constructed by subdividing the

template waveform triggered by the match-filtering process
into p nonoverlapping frequency bins. Each bin contributes
equally to the SNR of the best matching CBC template
[50]. If the data segment s is adequately described as a
Gaussian noise with an added CBC signal that shows a
large correlation with the template h, this will follow a χ2

distribution with 2p − 2 degrees of freedom. Most noise
transients present in the GW data show a higher χ2 in
comparison to CBC signals, making it easy to distinguish
signals vs noise artifacts. The definition for the traditional
reduced χ2 is

χ2r ¼
1

2p − 2

Xp
i¼1

kðsjhiÞ − ðhijhiÞk2; ð3Þ

where p is the number of bins, hi is the time domain
representation of the waveform corresponding to the ith
bin, and for any two data segments the inner product is

defined by Eq. (2). The traditional χ2 is then combined with
the SNR to create a ranking statistic called reweighted
SNR, which, as used in the PyCBC [51–54] analysis, is

ρ̃ ¼
(
ρ for χ2r ≤ 1

ρ½1
2
ð1þ ðχ2r Þ3Þ�−1

2 for χ2r > 1
: ð4Þ

The sine-Gaussian (SG) χ2 takes advantage of the excess
power that blips typically possess in higher frequency
regions in comparison to CBC signals. It computes this
excess power by utilizing a set of sine-Gaussian waveforms
whose central frequency ranges from 30–120 Hz above the
final frequency of the triggered template [14]. It is defined as

χ2r;sg ¼
1

2N

XN
i¼1

hsjgii2; ð5Þ

where gi is the ith sine-Gaussian waveform.
The reweighted SNR used in the case of SG χ2 is given as

ρ̃sg ¼
� ρ̃ for χ2r;sg ≤ 4

ρ̃ðχ2r;sg=4Þ−1
2 for χ2r;sg > 4

: ð6Þ

The number of binsp in the case of the traditional χ2 and the
number of sine-Gaussianwaveforms in the case of the SG χ2

are tuned empirically based on the distribution of single
detector background triggers in engineering data.

VI. PERFORMANCE AND RESULTS

After training our network on a sample of real blips and
simulated BBH signals, we obtain a final model that can
make predictions on a test sample. In this section, we
evaluate our model’s performance using some of the
standard metrics, for example, the receiver-operating char-
acteristic (ROC) curves and F1 score. We also present
model predictions for the real GW events.

TABLE I. Details of the test sample. Whereas blips are divided
based on their SNRs alone, the BBH samples are divided based
on their SNRs and a mass parameter, which is taken to be either
their total mass or their mass ratio. The total number of unique
samples for each type is given in the last column.

Type

SNR

Total[3,8] [8,15]

Blips 3000 3000 6000

BBH1 12 000
Mtotal ∈ ½20; 80�M⊙ 3000 3000
Mtotal ∈ ½80; 140�M⊙ 3000 3000

BBH2 12 000
q ∈ ½1; 2� 3000 3000
q ∈ ½2; 10� 3000 3000

GWTC-2 and GWTC-3 81

Other marginal and OGC4 events 34
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First, we describe how the test sample is prepared. We
select a sample of 6000 blips that are divided equally into
two SNR bins. For the BBHs, we generate two distinct
samples such that one has a uniform distribution in total
massMtotal and the other is uniform in mass-ratio q (which
is defined as the ratio of the primary mass to the secondary
mass). Each of the BBH samples is divided equally into two
bins as per the total mass or the mass-ratio. These sub-
samples are further divided into two SNR bins. The
breakdown of the full test sample according to the bins,
how the bins are defined and the unique number of test
samples used in our analysis are given in Table I. We also
list the number of GW events tested in this work.
Next, we test the performance of our network in each

bin for BBH versus blips. To generate the ROC curves,
we calculate the true-positive probability (TPP) and false-
positive probability (FPP) for varying thresholds of
detection.

TPP ¼ True Positive
True Positiveþ False Negative

ð7Þ

FPP ¼ False Positive
False Positiveþ True Negative

ð8Þ

The resulting ROC curves for BBH1 sample split by
their total mass are shown in Fig. 6 and for BBH2 sample
split by their mass ratio are shown in Fig. 7. As expected,
the network performs better at high SNRs (solid curves)
than low SNRs for both BBH1 and BBH2 samples.
The gray band roughly shows the region where we have
limited samples in low SNR bins that increase the uncer-
tainties on the ROC. Hence, for the low SNRs, we focus on

FPP > 0.01. Interestingly, the ROC curves are only mar-
ginally different across the bins in total mass or the mass
ratio. It is encouraging to see that the network is robust and
performs equally well in the total mass or mass-ratio ranges
we explore here.
We also compare the performance of the neural network

classifier with existing methods to veto blips mentioned in
Sec. V, namely traditional χ2 and SG χ2. We can see from
the ROC curves that our network performs better than the
traditional χ2 and SG χ2, which are used here in their
network form calculated as quadrature sum of their value in
H1 and L1 detectors. Although, in current LIGO search
pipelines these statistics are applied in modified form with
improved modeling of background distribution [53,55,56].
The performance of our neural network classifier is better at
higher total masses and higher mass ratios in comparison to
the lower bins. In all cases, the CNN performs either better
or comparable to traditional χ2 and SG χ2. It is important to
highlight the improvement in sensitivity with our network
at low SNRs for high total mass and/or high mass-ratio
BBHs, where the existing methods are known to have a
poor performance. At high masses, our network shows 75%
increment in the TPP than the traditional χ2 and SG χ2 at an
FPP of 10−2 and for high mass ratios, the neural network
shows around 50% improvement in TPP at an FPP of 10−2

compared to other methods.
We use another metric called F1 score to assess the

efficiency of our network. F1 score is defined as the
harmonic mean of precision and recall of a classifier.

F1 score ¼ 2 � precision � recall
precisionþ recall

; ð9Þ

FIG. 6. Comparison of ROC curves for CNN with those for two other methods, namely the traditional χ2 [50] and the sine-Gaussian χ2

[14]. The curves are shown for low- and high-SNR bins (solid and dotted, respectively). On the left, we show the performance at low-
mass BBH signals, which is similar to that of the high-mass BBH signals on the right. The gray shaded region has more uncertainty for
the low SNRs (dotted curve) due to limited sample size. The solid circle marks the TPP-FPP for a threshold of 0.8.
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where

precision ¼ TP
TPþ FP

; ð10Þ

and

recall ¼ TP
FNþ TP

: ð11Þ

Here, TP is true positive, FP is false positive, and FN is
false negative. The F1 score is calculated for the two SNR
and two total mass bins. The F1 score values are shown in
Fig. 8. As we can see, the network performs well both at
low and high SNRs. The performance seems to be almost
independent of the total mass of the binary.
We also test our network on the real events from

GWTC-3 and the results are shown in Fig. 9. Four events

are not included in our sample, as one of the detector (H1
or L1) data is not available for these events. The network
predicts 95% GW events correctly as BBH signals.
Among the high SNRs, the event GW170817 is mis-
classified, which is a binary neutron star merger signal
with a glitch overlapping in the L1 detector. Among the
low SNR events, GW191219_163120, GW200308_
173609, and GW200220_124850 are not classified as
BBH. Upon inspection of the SGP maps, we find that
there is a hint of projection in one of the detectors, but the
projection in the other detector is not very clean due to low
SNR. This is consistently seen in the maps of all of the
three events, which is the most likely explanation for the
misclassification.
In Table II, we show the computation times for

analyzing GW data with our network. The training and
classification of several thousand samples by the network

FIG. 7. Comparison of ROC curves for CNN with those for two other methods. Same as Fig. 6 except the performance is shown for
low and high mass ratios of BBH signals (left and right, respectively).

FIG. 8. F1 score of our neural network for a threshold of 0.8.
Scores are shown for low and high total mass of the BBH signals
(x axis) further split by their SNRs (y axis).

FIG. 9. Detection efficiency of our network on the real BBH
events from GWTC-3. The format is the same as in Fig. 8 and the
threshold is also set to 0.8.
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is quite fast even on a single core. Although the generation
of SGP maps is done using multiple cores, which makes it
reasonably fast, there is further room for improvement in
the process of generating a single SGP map. The latter
process executes on a single core currently. We anticipate
that through some changes, for example, parallellization
of certain loops and by reducing the data sampling rate
from 4096 to 2048 Hz without affecting our results, we
can speed up the generation of an SGP map by factor of
a few.

VII. CONCLUSION AND FUTURE PROSPECTS

Blip glitches are known to have similar time-frequency
characteristics to those of BBH signals of high total mass.
Thus, the standard pipelines find it difficult to distinguish
high-mass BBH signals from these glitches. We use sine-
Gaussian projection (SGP) maps, a new way of visualizing
GW data, to discriminate BBH signals from blips. We
create the SGP maps by projecting the BBH signals and
blips on the two-dimensional parameter space of sine-
Gaussian waveforms. These maps are complementary to
the continuous-wave transform maps commonly used in
GW data analyses.
In order to demonstrate the usefulness of SGP maps we

develop a deep learning framework that uses convolu-
tional neural network to classify BBH signals and blips. It
can help in reducing the ambiguity between CBC and blip
triggers generated from LIGO-Virgo runs. We compare
our method with those used in the standard pipelines for
identifying BBH signals in the LIGO-Virgo GW data. We
find that our network performs consistently much better
than traditional χ2 and sine-Gaussian χ2 for BBH signals
with SNR > 8 and a total mass ∈ ½20; 140�M⊙ where
the mass ratio goes from 1 to 10. For low SNRs (∈ ½3; 8�)
too, the network performs significantly better when
FPP > 0.01. However, we notice that below FPP of
≈0.01, the limited size of our training sample does not
allow characterization of our network robustly as we do
not have sufficient numbers of blips in real data from first
two observing runs. This will not be a limiting factor in
our subsequent work where we plan to include data from
third observing run as well. We also find that our network

is able to correctly identify 77 out of 83 CBC events from
LIGO-Virgo’s O1, O2, and O3 observing runs. Our
network correctly identifies 15 out of the 19 LIGO
marginal events [8] and all of the 15 GW events from
the fourth open gravity catalog (4-OGC) [57]. An imme-
diate application where our network can contribute
to BBH searches is one where it scrutinizes triggers
judged as blips, e.g., by other tools such as the one in
Refs. [18,43]. In a subset of those cases, SIGMA-NET
would lend support to such a categorization. On the other
hand, if its support is weak for the hypothesis that a trigger
is a blip (as opposed to a BBH signal), then it would be
flagged for further analysis by signal-specific search
pipelines (e.g., those employing matched filtering of
the corresponding data snippet). The network output
can also be used to weight the SNR of the triggers. It
will reduce the background due to blips and hence
improve the search sensitivity.
Broader varieties of glitches have been targeted in ML

networks in Refs. [27,58]. The recent work in Ref. [58]
shows how a χ2 statistic can be tuned with the help of an
ML network for a wide variety of glitches to perform the
vetoing task optimally. In this instance, the ML network
helps in choosing the time and frequency shifts that, when
applied to the triggered CBC template, yield the basis
vectors for the χ2 [22]. That basis aptly collects the power
of glitches in the region where the CBC signals are
expected to have negligible projections. The improve-
ment in performance of that network, however, is not as
high as what was achieved in this work (for blips).
Nevertheless, in future it will be interesting to study if
ideas from that work can be utilized to broaden the target
glitch categories without hurting the performance
improvement much. We could also consider including
data from additional detectors (e.g., Virgo and KAGRA).
Inclusion of multiple SGP maps for the same BBH will
most likely improve the sensitivity of identifying them
but at the cost of increased computational times, which
results from the additional data that needs to be proc-
essed. However, more detector data also increases the
probability of finding accidentally coincident glitches.
This could then adversely affect the performance of the
neural network. Thus, one will have to perform a risk-
benefit exercise when deciding on using data from
additional detectors.
In this work we focused on demonstrating the usefulness

of the SGP maps by using them to distinguish blip glitches
from BBH signals. In the future, with the inclusion of
various artifact categories—including the no-signal and no-
glitch categories—in the training, SIGMA-NET could be
developed to potentially analyze GW data in low-latency
searches in order to generate an initial set of triggers as
candidate BBH events where the speed would be signifi-
cantly higher than the match-filtering based template-bank
search.

TABLE II. Computation time for various sections of SIGMA-
NET. All times are computed for a single core of Intel Xeon Gold
6142 CPU. Multiprocessing and parallelizing further reduces the
computation times. For example, parallelizing on k processors
reduces all computational costs by a factor of k.

Operation Time

Generating 1 SGP map 30 sec

Training of the network on 10 000 samples 20 min

Classification of 3000 SGP maps 90 sec
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