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It is proved that spherically symmetric extremal black holes possess at least one external light ring. Our
remarkably compact proof is based on the dominant energy condition which characterizes the external
matter fields in the nonvacuum asymptotically flat extremal black-hole spacetimes.
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I. INTRODUCTION

The nonlinearly coupled Einstein-matter field equations
predict, under plausible physical assumptions [1–5], that
curved spacetimes of highly compact objects are character-
ized by the presence of closed null circular trajectories
(external light rings). The fact that massless particles can
perform orbital motions along closed circular geodesics
plays a key role in understanding many of the fundamental
physical properties of the corresponding central compact
objects [1–19].
In particular, the intriguing physical phenomenon of

strong gravitational lensing, which can be used as an
important observational tool to identify the existence of
cosmological black holes, is a direct outcomeof the presence
of closed null geodesics in the highly curved near-horizon
regions of the corresponding black-hole spacetimes [6–8].
In addition, it is well established (see [9–12] and references
therein) that the relaxation rates of perturbed black-hole
spacetimes are closely related to the instability timescales
that characterize the geodesic motions of massless particles
along the null circular geodesics of the corresponding
curved spacetimes.
Interestingly, it has been proved [13,14] that, as judged

by far away asymptotic observers, the innermost null
circular geodesic of a black-hole spacetime provides the
fastest way to travel around the central black hole. In
addition, it has been revealed [4,11,15,16] that, in spheri-
cally symmetric hairy (nonvacuum) black-hole spacetimes,
the effective lengths of the external matter fields are
bounded from below by the radii of the innermost null
circular geodesics that characterize the corresponding
curved spacetimes.
The fact that null circular geodesics have a significant

role in determining many of the fundamental physical
properties of black-hole spacetimes naturally raises the
following important question: Do the Einstein-matter field
equations guarantee the existence of external null circular
trajectories (light rings) in all black-hole spacetimes?
Intriguingly, the existence of closed null circular geodesics

in the external regions of asymptotically flat nonextremal
spherically symmetric black-hole spacetimes has been
proved in [4]. A general (and mathematically elegant) proof
for the existence of null circular geodesics in nonextremal
stationary axisymmetric black-hole spacetimes has recently
been presented in the physically interesting work [5].
It is important to point out that the theorems presented

in [4,5] for the existence of external null circular geodesics
in generic black-hole spacetimes seem to fail for extremal
hairy (nonvacumm) black-hole configurations. Motivated
by this fact, it has recently been proved [20] that extremal
black-hole spacetimes with positive tangential pressures on
their horizons [pTðr ¼ rHÞ > 0, see Eq. (2) below] possess
external light rings. However, as emphasized in [20], the
existence theorem presented in [20] is not valid for
extremal black holes with nonpositive horizon tangential
pressures. This fact leaves open the possibility of finding
extremal black-hole spacetimes with nonpositive horizon
tangential pressures that do not have external light rings.
The main goal of the present compact paper is to

complete our knowledge about the (in)existence of external
null circular geodesics in extremal black-hole spacetimes.
In particular, using analytical techniques, we shall explic-
itly prove below that the nonlinearly coupled Einstein-
matter field equations guarantee that asymptotically flat
spherically symmetric hairy (nonvacuum) extremal black-
hole spacetimes whose external matter fields respect the
dominant energy condition are always characterized by
the presence of external null circular geodesics (closed
light rings).

II. DESCRIPTION OF THE SYSTEM

We consider spherically symmetric extremal black-hole
spacetimes which, using the familiar Schwarzschild space-
time coordinates ft; r; θ;ϕg, are characterized by the
curved line element [13,19,21]

ds2 ¼ −e−2δμdt2 þ μ−1dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ
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where the radially-dependent functions μ ¼ μðrÞ and
δ ¼ δðrÞ are determined by the matter content of the
nonvacuum spacetime.
Using the line element (1) and the notations [22]

ρ≡ −Tt
t; p≡ Tr

r; pT ≡ Tθ
θ ¼ Tϕ

ϕ ð2Þ

for the radially-dependent energy density ρ, radial pres-
sure p, and tangential pressure pT of the external static
matter configurations, one finds that the Einstein-matter
field equations Gμ

ν ¼ 8πTμ
ν yield the radial differential

equations [13,19]

dμ
dr

¼ −8πrρþ 1 − μ

r
ð3Þ

and

dδ
dr

¼ −
4πrðρþ pÞ

μ
; ð4Þ

which relate the metric functions to the external matter
sources.
Extremal black-hole spacetimes are characterized by the

horizon boundary conditions [23]:

μðr ¼ rHÞ ¼ 0; ð5Þ
�
dμ
dr

�
r¼rH

¼ 0; ð6Þ

�
d2μ
dr2

�
r¼rH

> 0; ð7Þ

δðr ¼ rHÞ < ∞;

�
dδ
dr

�
r¼rH

< ∞; ð8Þ

and

pðr ¼ rHÞ ¼ −ρðr ¼ rHÞ ¼ −ð8πr2HÞ−1: ð9Þ

In addition, the radially-dependent metric functions of
asymptotically flat black-hole spacetimes are characterized
by the functional relations

μðr → ∞Þ → 1 ð10Þ

and

δðr → ∞Þ → 0: ð11Þ

Taking cognizance of the Einstein equation (3), one finds
the expression

μðrÞ ¼ 1 −
2mðrÞ

r
ð12Þ

for the dimensionless metric function μðrÞ, where

mðrÞ ¼ rH
2
þ
Z

r

rH

4πr2ρðrÞdr ð13Þ

is the gravitational mass contained within a sphere of radius
r [here mðr ¼ rHÞ ¼ rH=2 is the mass contained within the
black-hole horizon]. Taking cognizance of Eqs. (10), (12),
and (13), one deduces the characteristic functional relation

r3ρðrÞ → 0 for r → ∞ ð14Þ

for the external energy density in asymptotically flat black-
hole spacetimes.
Our proof, to be presented below, for the existence of

external null circular geodesics in extremal black-hole
spacetimes is based on the well known dominant energy
condition which, for a given density profile of the matter
fields, bounds from above the (radial and tangential) pressure
components of the corresponding matter distribution [23]:

jpj; jpT j ≤ ρ: ð15Þ

III. THE PROOF FOR THE EXISTENCE OF
EXTERNAL NULL CIRCULAR GEODESICS
IN EXTREMAL BLACK-HOLE SPACETIMES

In the present section we shall explicitly prove that
extremal hairy (nonvacuum) black-hole spacetimes that
respect the dominant energy condition (15) necessarily
possess at least one external light ring whose radius
satisfies the inequality rγ > rH.
To this end, we shall analyze the radial functional

behavior of the dimensionless function

N ðrÞ≡ 3μ − 1 − 8πr2p ð16Þ

in the extremal black-hole spacetime (1). It has been
explicitly proved [15] that, in spherically symmetric
black-hole spacetimes, the radii of null circular geodesics
are determined by the mathematically compact relation

N ðr ¼ rγÞ ¼ 0: ð17Þ

Taking cognizance of Eqs. (5), (9), and (16), one deduces
the boundary relation

N ðr ¼ rHÞ ¼ 0 ð18Þ

on the outer horizon of the extremal black hole. In addition,
the functional relation (14), which characterizes asymp-
totically flat black-hole spacetimes, together with the
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assumed dominant energy condition (15), imply the
asymptotic functional behavior

r3pðrÞ → 0 for r → ∞ ð19Þ

for the external radial pressure. From Eqs. (10) and (19) one
finds the characteristic large-r behavior

N ðr → ∞Þ → 2 ð20Þ

of the dimensionless radial function (16).
Defining the dimensionless function

F ≡ r
dμ
dr

ð21Þ

and using Eqs. (6) and (7), one finds the characteristic
relation

�
dF
dr

�
r¼rH

¼ rH

�
d2μ
dr2

�
r¼rH

> 0 ð22Þ

for extremal black holes. In addition, from the Einstein
equation (3) and the boundary condition (6) one obtains the
horizon relation

�
dF
dr

�
r¼rH

¼ −
d
dr

½8πr2ρ�r¼rH ð23Þ

for the extremal black-hole spacetime (1). From Eqs. (22)
and (23) one deduces that the dimensionless function r2ρ
decreases in the vicinity of the extremal black-hole horizon:

�
dðr2ρÞ
dr

�
r¼rH

< 0: ð24Þ

Taking cognizance of the horizon boundary relation (9)
and the assumed dominant energy condition (15), one
deduces from (24) that the radial expression r2p is a
negative increasing function in the vicinity of the black-
hole horizon:

½r2p�r¼rH < 0 and

�
dðr2pÞ
dr

�
r¼rH

> 0: ð25Þ

From the analytically derived functional relation (25)
and the horizon boundary condition (6) for extremal black
holes, one finds the characteristic inequality [see Eq. (16)]

�
dN
dr

�
r¼rH

¼ −8π
�
dðr2pÞ
dr

�
r¼rH

< 0; ð26Þ

which, together with the relation (18), imply that the
dimensionless radial function (16) is nonpositive in the
vicinity of the black-hole horizon. In particular, the radial
functionN ðrÞ is characterized by the near-horizon property:

N ðr=rH → 1þÞ → 0−: ð27Þ

Finally taking cognizance of the analytically derived
near-horizon relation (27) and the characteristic asymptotic
behavior (20) of the dimensionless radial function (16), one
deduces that spherically symmetric extremal black-hole
spacetimes whose external matter fields respect the dom-
inant energy condition (15) possess at least one external
null circular geodesic (closed light ring) which is charac-
terized by the functional relation

N ðr ¼ rγÞ ¼ 0 with rγ > rH: ð28Þ

IV. SUMMARY

Null circular geodesics play important roles in funda-
mental as well as observational studies of the physics of
curved black-hole spacetimes (see [1–18] and references
therein). Interestingly, the existence of closed light rings in
asymptotically flat nonextremal black-hole spacetimes has
been proved, using the Einstein-matter field equations, in
[4] for spherically symmetric nonvacuum (hairy) black-
hole configurations. A mathematically elegant proof for the
existence of external null circular geodesics in nonextremal
stationary axisymmetric black-hole spacetimes has been
provided in the highly important work [5].
Intriguingly, the existence theorems presented in [4,5]

seem to fail for extremal black-hole spacetimes. Motivated
by this observation, we have raised the following physically
important question [20]: Do extremal black-hole space-
times always possess external light rings?
In the present paper we have presented a remarkably

compact theorem, which is based on the nonlinearly
coupled Einstein-matter field equations, that reveals the
physically important fact that spherically symmetric
asymptotically flat extremal hairy (nonvacuum) black holes
whose external matter fields respect the dominant energy
condition necessarily possess at least one external light ring
(closed null circular geodesic).
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