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Future space gravitational-wave detectors will detect gravitational waves with high sensitivity in the
mHz frequency band. One possible source is the stochastic gravitational-wave background (SGWB),
possibly from astronomy and cosmology. Detecting SGWB could provide an opportunity to directly
examine the polarization of gravitational waves. While general relativity predicts only two tensor modes for
gravitational-wave polarization, general metric theories of gravity allow up to four additional modes,
including two vector and two scalar modes. Observing other polarization modes of gravitational waves
would directly indicate that general relativity needs to be modified. However, the application of
polarization identification methods developed for ground-borne detectors to space-borne detectors will
require improvement. In this paper, we design a new statistic for the characteristics of space-borne detectors
and perform Bayesian analysis. We analyze the performance of the new statistics, including the signal-to-
noise ratio, ability to identify SGWB, and parameter estimation. The results show that the Bayesian method
with new statistics is good enough to meet the needs of space detectors to identify polarized SGWB. In
particular, space-borne gravitational-wave detectors will have the ability to distinguish the scalar-breathing
mode and the scalar-longitudinal mode with this Bayesian method, which ground-based detectors cannot.
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I. INTRODUCTION

Since the first gravitational-wave (GW) signal
GW150914 was detected by Advanced LIGO in 2015
[1], Advanced LIGO and, later, Advanced Virgo have
detected nearly a hundred GWs sourced from compact
binary coalescences [2–6], which open the era of gravita-
tional-wave astronomy. In addition to obtaining astronomi-
cal information, GWs provide an opportunity to test gravity
in a strong field [7–10]. Among them, the test of gravi-
tational-wave polarization is an important component.
General relativity (GR) predicts that there only exist two
tensor polarizations for gravitational wave, the plus and
cross modes. However, there are four additional polar-
izations allowed by the generic metric theories of gravity,
including two vector modes and two scalar modes [11–15].
If these additional polarizations are detected, it would
represent a clear violation of general relativity.
In the recent years, with the successful operation of more

and more ground-based detectors, the ground-based detec-
tion network has begun to support polarization analysis
[16–19]. However, because of the lack of predictions for
the template of inspiral-merger-ringdown GW signal in
modified gravity, the limit of alternative polarizations

through compact binary coalescences signals is still weak.
In addition to directly detecting gravitational waves from
binary star mergers, another important goal of the detector
is to observe the stochastic gravitational-wave background.
There are numerous sources of stochastic gravitational-
wave background (SGWB), for example, the superposition
of a large number of unidentifiable weak binary signals
[20–23]. In addition to the astrophysical sources, there are
many ways to generate SGWB in the early Universe, such
as cosmological phase transitions [24,25], primordial
gravitational waves [26,27], cosmic strings [28,29], etc.
The detection of the SGWB can provide another test of
polarization.
So far, there is no clear evidence that SGWB has been

detected. The detectors of different frequency bands give
the independent constraints on SGWB. In the nHz band, the
common-spectrum features have been found in data accu-
mulated over many years by the Pulsar Timing Array
(PTA), but there is no significant evidence of correlations
[30–33], which is necessary to claim a detection of SGWB.
In the Hz hand, the ground-based laser interferometers give
an upper limit of fractional energy density of SGWB
ΩGW ≤ 5.8 × 10−9 [34]. The future space-based interfer-
ometers such as LISA [35], TianQin [36], Taiji [37], and
DECIGO [38], will be able to detect SGWB with high
sensitivity in the mHz band [39–41]. For more detection*cgshao@hust.edu.cn
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strategies and current status reference, review Refs. [42,43].
Once we have detected the SGWB, we need to answer
whether there is only tensor polarization or alternative
polarizations are included.
If there are multiple detectors, the different correlation

channels formed will be able to separate the mixture of
polarization [44,45]. This method can separate different
polarizations within each frequency bin and does not
require a parametrized model of the energy density spec-
trum of the background. However, this method is not very
sensitive, and the characterization of spectrum of different
polarizations is unclear. Another more practical approach is
the Bayesian method presented in Ref. [46], which has
been used to search for SGWB with alternative polar-
izations in ground-based detector data [47–49]. The
Bayesian method requires model assumptions but is more
capable and can provide more information from the data.
Future space-based gravitational-wave detectors are

expected to detect SGWB; after all, there are abundant
potential sources in their sensitive frequency band. For
space-based detectors, how to detect SGWB with alter-
native polarizations needs to be studied. They will be
mobile in space, unlike ground-based detectors, which are
relatively stationary once deployed. Recently, a cancella-
tion method based on time delay interferometry (TDI)
combination has been proposed [50] and constructs a
special combination that is insensitive to tensor polariza-
tion. We focus on the applicability of traditional methods
for ground-based detectors to space-based detectors. In this
paper, we apply the Bayesian method in Ref. [46] to space-
based detectors and find that corresponding tuning for
space-based detectors is required to improve performance.
We design a new statistic and analyze the performance of
detection and characterization of SGWB with alternative
polarizations.
The outline of the paper is as follows. In Sec. II, we

review the SGWB in general metric theories of gravity and
the detection method. In Sec. III, we design a new statistic
of Bayesian analysis for space-borne detectors. Then, we
calculate its signal-to-noise ratio (SNR) and evaluate its
performance. In Sec. IV, the Bayesian mode selection is
used to determine whether the data contain background
signal and whether the signal contains alternative polar-
izations. The odds ratio to identify alternative polarizations
is constructed somewhat differently from the previous
literature. Then, in Sec. V, the aspect of parameter estima-
tion is discussed, especially for the case involving two
scalar polarizations. Finally, a discussion is presented
in Sec. VI.

II. DESCRIPTION AND DETECTION OF SGWB

A. Stochastic background with non-GR polarizations

The metric perturbations at any spacetime point ðt; x⃗Þ
corresponding to SGWB can be expressed as a

superposition of plane waves of different frequencies from
different directions [42],

habðt; x⃗Þ ¼
Z

∞

−∞
df

Z
d2Ωn̂

X
A

hAðf; n̂ÞeAabðn̂Þei2πfðtþn̂·x⃗=cÞ;

ð1Þ

where A ¼ fþ;×; X; Y; B; Lg represents different polari-
zation modes, whereþ;× represent tensor modes predicted
by general relativity and X, Y and B, L represent vector and
scalar modes allowed by the general metric theory of
gravity. Explicitly, for GW coming from the sky direction
n̂, the six spin-2 polarization basis tensors are

eþabðn̂Þ ¼ θ̂aθ̂b − ϕ̂aϕ̂b; e×abðn̂Þ ¼ θ̂aϕ̂b þ ϕ̂aθ̂b;

eXabðn̂Þ ¼ θ̂an̂b þ n̂aθ̂b; eYabðn̂Þ ¼ ϕ̂an̂b þ n̂aϕ̂b;

eBabðn̂Þ ¼ θ̂aθ̂b þ ϕ̂aϕ̂b; eLabðn̂Þ ¼
ffiffiffi
2

p
n̂an̂b; ð2Þ

where θ̂, ϕ̂ are perpendicular to the propagation direction:

n̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ;
θ̂ ¼ ðcos θ cosϕ; cos θ sinϕ;− sin θÞ;
ϕ̂ ¼ ð− sinϕ; cosϕ; 0Þ: ð3Þ

The fourier coefficients hAðf; n̂Þ are random variables,
whose statistic is significant. The statistical properties of
the SGWB are described by the probability distribution of
the metric perturbations. In this work, we assume that the
SGWB is Gaussian, stationary, and isotropic. So, only the
quadratic expectation is needed to describe its statistical
behavior,

hhAðf; n̂Þh�A0 ðf0; n̂0Þi ¼ 1

8π
SAhðfÞδðf−f0ÞδAA0δ2ðn̂; n̂0Þ; ð4Þ

where SAhðfÞ can be regarded as the component corre-
sponding to the A polarization of a one-sided gravitational-
wave strain power spectral density function. Here, the
square bracket indicates ensemble average and can be
evaluated by doing spatial averages under the assumptions
above. We further assume that both the tensor and vector
modes are unpolarized, which implies that

Sþh ¼ S×h ¼ STh=2;

SXh ¼ SYh ¼ SVh =2: ð5Þ

However, the two scalar modes should be considered as
two independent polarization modes, since one is the
longitudinal and the other is transverse.
Conventionally, SGWB is described by its fractional

energy density [51],
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ΩA
gwðfÞ ¼

1

ρc

dρAgw
d ln f

; ð6Þ

defined as the energy density of the component of A
polarization per logarithmic frequency bin d ln f, normal-
ized by the critical energy density of the closed Universe
ρc ≡ 3c2H2

0=8πG. Here G is the gravitational constant,
and H0 ¼ 67.4 km s−1 Mpc−1 is the Hubble constant [52].
In general relatively, the relation between SAhðfÞ and
ΩA

gwðfÞ is [51]

ΩA
gwðfÞ ¼

2π2

3H2
0

f3SAhðfÞ: ð7Þ

Note that Eq. (7) holds only if the stress energy of
gravitational waves obeys Isaacson’s formula [53]:

ρgw ¼ c2

32πG
h _habðt; x⃗Þ _habðt; x⃗Þi: ð8Þ

However, in some alternative theories of gravity, the
situation is different, in which case we consider ΩA

gwðfÞ
as a function of the observable SAhðfÞ rather than the
fractional energy density.

B. Correlation analysis

Since SGWB is weak and random, it will be masked
by noise and difficult to identify in a single detector.
Fortunately, SGWB introduces a correlated signal into
multiple detectors. The correlation analysis is a standard
method used to detect SGWB [51]. SGWB can be searched
by measuring the cross-correlation between two detectors,

ĈðfÞ ∝ s̃IðfÞs̃�JðfÞ; ð9Þ

where s̃IðfÞ and s̃JðfÞ are frequency domain data for a pair
of detectors. If SGWB is present and the noise of the two
detectors is uncorrelated, the expected cross-correlation
between two detectors is

hs̃IðfÞs̃�Jðf0Þi ≈ hh̃IðfÞh̃�Jðf0Þi

¼ 1

2
δðf − f0Þ

X
A

ΓA
IJðfÞSAhðfÞ; ð10Þ

where the overlap reduction functions (ORFs) are regarded
as the response of the detector pair correlation to the
isotropic background of each polarization [44,51],

ΓA
IJðfÞ ¼

1

8π

Z
d2Ωn̂

X
p∈A

Rp
I ðf; n̂ÞRp�

J ðf; n̂Þ: ð11Þ

Here, Rp
I ðf; n̂Þ is the antenna response function of the Ith

detector to signals with polarization p.

The prerequisite for correlated data analysis is to
calculate the ORFs. However, for the two laser interfer-
ometer detectors, it is difficult to obtain analytical results
directly from the spatial integration of the product of their
response functions. The full expression for the antenna
response function of the Michelson-type laser interferom-
eter detector is

RA
I ðf; n̂Þ ¼

1

2
eAabðn̂Þ½uaI ubI T ûIðf; ûIÞ − vaI v

b
I T v̂Iðf; v̂IÞ�

× ei2πfn̂·r⃗I=c; ð12Þ

where ûI and v̂I are the direction vectors of the Ith
detector’s two arms, respectively, and r⃗I is the position
vector. Here,

T ûðf; ûÞ

¼ 1

2
e−i2πfL=c½e−iπfL=cð1−n̂·ûÞsincðπfL=cð1þ n̂ · ûÞÞ

þ eiπfL=cð1þn̂·ûÞsincðπfL=cð1 − n̂ · ûÞÞ� ð13Þ

is the round-trip timing transfer function for photon
propagation along û with arm length L. For ground-based
detectors, the small antenna approximation is accurate
enough in the sensitive frequency band. Within the
small antenna approximation 2fL=c ≪ 1, the round-trip
timing transfer function approximates T ûðf; ûÞ ≈ 1, so the
response function is reduced to a simple expression,
namely,

RA
I ðf; n̂Þ ¼

1

2
eAabðn̂Þ½uaI ubI − vaI v

b
I �ei2πfn̂·r⃗I=c: ð14Þ

The analytical expression of ORFs can be obtained within
the small antenna approximation [44,51]. It is trivial that
the ORF of two detectors dependence on their relative
orientation and distance. Surprisingly, there are sufficient
constraints for ground-based detectors such that the
dependency can be described with only three parameters,
one of which is distance and two of which are used to
represent relative directions.
The situation is more complicated for space-borne

detectors, where the small antenna approximation is not
always satisfied within their sensitive frequency bands.
The configuration of space-based detectors, with some
differences from ground-based detectors, usually consists
of three satellites forming six unidirectional laser links.
Although it is still possible to form a Michelson interfer-
ometer-type channel with four links between the two arms,
the instability of the arm length causes the laser phase noise
to be too large to achieve gravitational-wave detection.
To suppress the laser phase noise, the TDI technology is
needed. If the small antenna approximation is applied
again, namely, T ûðf; ûÞ ≈ 1, the response function of the
first-generation TDI Michelson combination X reads
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RA
I ðf; n̂Þ ¼

1

2
ð1 − e−i4πfLI=cÞ

× eAabðn̂Þ½uaI ubI − vaI v
b
I �ei2πfn̂·r⃗I=c: ð15Þ

Following Ref. [44], the ORFs for different polarizations
can be expressed in terms of the detector tensors
Dab

I ¼ 1=2ðuaI ubI − vaI v
b
I Þ, and the directional vector

between two detectors ŝ ¼ r⃗J−r⃗I
jr⃗J−r⃗I j:

ΓA
IJ;XðfÞ ¼ 4ei2πfðLJ−LIÞ=c sinð2πfLI=cÞ sinð2πfLJ=cÞ

× ½ρA1 ðαÞDab
I DJ;ab þ ρA2 ðαÞDab

I DJ;bcsasc

þ ρA3 ðαÞDab
I Dcd

J sasbscsd�; ð16Þ

where

2
64
ρT1
ρT2
ρT3

3
75 ¼ 1

70

2
64
28 −40 2

0 120 −20
0 0 35

3
75
2
64
j0
j2
j4

3
75; ð17Þ

2
64
ρV1
ρV2
ρV3

3
75 ¼ 2

35

2
64
7 5 −2
0 −15 20

0 0 −35

3
75
2
64
j0
j2
j4

3
75; ð18Þ

2

2
64
ρB1
ρB2
ρB3

3
75 ¼

2
64
ρL1
ρL2
ρL3

3
75 ¼ 2

105

2
64
14 20 6

0 −60 −60
0 0 105

3
75
2
64
j0
j2
j4

3
75: ð19Þ

Here, jnðαÞ is the nth-order spherical Bessel function with
its variable given by αðfÞ ¼ 2πfjr⃗J − r⃗Ij=c. Note that the
expression of ORFs for the TDI-X channel differs from
those of the ground-borne Michelson interferometer in two
ways: first, the low-frequency response is remarkably low
and proportional to f2, due to the application of TDI
technology, and, second, the phase factor ei2πfðLJ−LIÞ=c
brought about by the difference in arm length makes its
imaginary part impossible to ignore. In addition, there is no
way to continue simplifying the above expression by
choosing the right parameters as for ground-borne detec-
tors. The orientation between two space gravitational-wave
detectors is usually not fixed, so the general ORF of
space-borne detectors requires six parameters to be fully
described, which is much more complex than the three
parameters of ground-borne detectors.
The small antenna approximation expression is not

accurate enough, and the ORFs of the two scalar polar-
izations are degenerate. Therefore, we extend the small
antenna approximation to develop a more accurate analysis
method, consistent with the numerical integration in the
sensitive frequency band of the detectors [54]. In addition
to the advantage of high precision, our method is not
limited to the Michelson-type interferometer but also

applies to any TDI combination. Our strategy is to split
the integral in ORF for any TDI combination into individ-
ual expression between two arms and perform the integra-
tion by expanding the expression according to frequency
(see Appendix A for details.). The response function of any
TDI combination can be expressed as the linear sum of the
one-way response of each link multiplied by the delay
factor, namely,

RA
I;TDIðf; n̂Þ ¼

1

2
e−

iπfL
c eAabðn̂Þ

X
i

Pi;TDIuaI;iu
b
I;i

× sin c

�
πfL
c

½1þ n̂ · ûI;i�
�
ei2πfn̂·r⃗I;i=c; ð20Þ

where i represents each unidirectional link with a direc-
tional vector ûI;i and the position vector of the midpoint of
the link is denoted as r⃗I;i. Here, Pi;TDI is the delay factor of
the TDI combination on the ith link. Thus, the ORFs for
any TDI combination can be split into calculations between
individual links belonging to two separate detecters,
namely,

ΓA
IJ;TDIðfÞ ¼

1

8π

Z
d2Ωn̂

X
p∈A

Rp
I ðf; n̂ÞRp�

J ðf; n̂Þ

¼ e
i
2
ðβ0−βÞ

32π

X
i;j

PI;iP�
J;ju

a
i u

b
i u

0c
j u

0d
j

× ΓA
abcdðαij; β; β0; ûi; û0j; ŝijÞ; ð21Þ

where β ¼ 2πfL=c, β0 ¼ 2πfL0=c (no prime for I detector,
with the prime for J detector), and indicators i and j
represent a link belonging to detectors I and J, respectively.
Only the function ΓA

abcd needs to be evaluated, and the
complete expression is

ΓA
abcd ¼

Z
d2Ωn̂ sinc

�
β

2
ð1þ n̂ · ûiÞ

�
sinc

�
β0

2
ð1þ n̂ · û0jÞ

�
×
X
p∈A

epabe
p
cde

−iαijn̂·ŝij ; ð22Þ

where ŝij is the direction vector from the i link of the
detector I to the j link of the detector J, and αij ¼
2πfΔsij=c. It is extremely complicated to integrate this
expression directly. Given that the low-frequency band
contributes most of the SNR, expanding by frequency is a
reasonable strategy. Up to the second order of frequency,
the expression is approximated as

ΓA
abcd ≈

Z
d2Ωn̂

�
1 −

β2

24
ð1þ n̂ · ûiÞ2 −

β02

24
ð1þ n̂ · û0jÞ2

�
×
X
p∈A

epabe
p
cde

−iαijn̂·ŝij : ð23Þ
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This expression can be broken down into three parts of
computation, where the result of order zero can be found in
Ref. [51]. Extending the method proposed in Ref. [51], the
other two second-order parts can be analytically calculated.
Details and discussion are attached in Appendix A.
Figure 1 displays the tensor ORFof the TDI-X channel for

LISA-TianQin network somewhere in the orbit, adopting
numerical integration, small antenna approximation, and our
method, respectively. Our results are highly consistent with
the numerical integration,while the error of the small antenna
approximation increases gradually with frequency. In addi-
tion, our approach is scalable enough to apply to any TDI
channel including combinations that cannot be expressed in
Michelson interferometer form because the strategy we
employ is to split the calculation of any TDI combination
into separate links for operation. What is more, the degen-
eracy of two scalar polarizations in Eq. (16) is broken.
Although the distinction between the ORFs for two scalar
polarizations is not particularly obvious, it provides the
cornerstone for two scalar polarization resolution.
The orbital characteristics of space-borne detectors make

their data analysis somewhat different from those on the

ground. While the relative distance and direction of two
ground-borne detectors are fixed, the relative orientation of
two space detectors may change with the movement. So,
the ORF of space-borne detectors may vary with time,
while the ground-borne one is constant. The time depend-
ence of space orbit position and direction can be simplified
only under the height approximation. Even so, the time
dependency after entering the ORFs expression will be too
complex. On the other hand, for two space-borne gravita-
tional-wave detectors, an average ORF needs to be defined
to characterize the response strength of their cross-corre-
lation signal to SGWB. Take the ORF at N positions in one
orbital period of the two detectors and calculate its root
mean square, and the desired average ORF is given by

Γ̃AðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

jΓA
i ðfÞj2

vuut : ð24Þ

We consider three typical space-borne gravitational-
wave detector pairs: LISA-TianQin (L-TQ), LISA-Taiji
(L-TJ), and TianQin Iþ II (TQ Iþ II). The situation of
LISA and TianQin is the most complicated. Their sensitive
frequency band is different due to the different arm lengths,
and the orientation changes are the most complicated
because one is the heliocentric orbit and the other is the
geocentric orbit. LISA and Taiji are detectors with similar
configurations, but at relatively long distances. And the
TianQin Iþ II are similar in configuration, with satellites
perpendicular to each other and both orbiting the Earth. The
average ORFs for the tensor polarization of these three
detector pairs are shown in Fig. 2, in which the TDI-A
channel is adopted. The combination of the first-generation
TDI Michelson channel can construct noise-orthogonal A
and E channels, which are often used when discussing the
detection of SGWB. LISA-Taiji has similar and relatively
longer arm length, so it is more sensitive in the low-
frequency band. On the contrary, the TianQin Iþ II is more

FIG. 1. The comparison of the ORF of LISA-TianQin network
for tensor-polarized SGWB calculated by different methods. The
above subfigure is the real part of the ORF; the lower one is the
imaginary part of the ORF. The ORF of the TDI-X channel at a
certain point in the orbit is calculated, adopting numerical
integration (black solid), small antenna approximation (blue
dashed), and our method (red dotted), respectively.

FIG. 2. The average ORF of TDI-A channel for different
networks. The red solid line represents the LISA-TianQin net-
work; the blue dashed line represents the LISA-Taiji network; and
the green dot-dashed line represents the TQ I-II.
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sensitive in the higher-frequency band due to the same and
shorter arm length. Moreover, they are all geocentric orbits
and are certainly close together, so the upper limit sensi-
tivity is higher than that of LISA-Taiji. Finally, LISA-
TianQin falls somewhere in between, as expected. We can
conclude that the closer the detectors are, the stronger the
detection capability, and the difference in the arm length of
the two detectors will lead to a reduction in detection
capability.
In addition, ORF changes caused by different orbits can

cause other problems. In the next section, we will cover the
huge differences in LISA and TianQin orbits, which can
cause great trouble with actual data processing for the
LISA-TianQin network.

III. STATISTIC OF BAYESIAN ANALYSIS

In actual data analysis, the data are divided into many
time segments (labeled by i, 1 ≤ i ≤ N). Within each time
segment, an estimator is constructed from the cross-
correlation of two detectors,

ĈiðfÞ ¼
2

ΔT
2π2

3H2
0

f3s̃1;iðfÞs̃�2;iðfÞ; ð25Þ

where ΔT is the segment duration that satisfies the require-
ment to be greater than the light travel time between the two
detectors and less than the timescale over which the ORF
will vary. The normalization is chosen such that the mean
and variance of the estimator are

hĈiðfÞi ¼
X
A

ΓA
i ðfÞΩAðfÞ ð26Þ

and

σ2i ðfÞ ¼
1

2ΔTΔf

�
2π2

3H2
0

�
2

f6PI;iðfÞPJ;iðfÞ; ð27Þ

respectively. Here, ΓA
i ðfÞ is the ORF of two detectors

for the ith segment, Δf is the frequency bin width, and
PI;iðfÞ and PJ;iðfÞ are the noise power spectral densities of
the two detectors. The likelihood function for the N
estimators is

L½ĈiðfÞjA� ∝ exp

�
−
XN
i¼1

X
f

jĈiðfÞ−
P

AΓA
i ðfÞΩAðfÞj2

2σ2i ðfÞ
�
;

ð28Þ

where A represents a hypothesis that predicts that the
background has a specific energy spectrum.
For ground-based detectors, an optimal estimator can be

constructed to simplify the Bayesian analysis. The key
point is that the ORFs of the two ground-based detectors
are invariant once deployed. The analysis of N independent

repeated measures is equivalent to that of its average. So,
the single cross-power estimator can be constructed as

ĈðfÞ ¼
P

iĈiðfÞσ−2i ðfÞP
iσ

−2
i ðfÞ ; ð29Þ

with the corresponding variance

σ−2ðfÞ ¼
X
i

σ−2i ðfÞ: ð30Þ

And the corresponding likelihood function reduces to

L½ĈðfÞjA�∝ exp

�
−
X
f

jĈðfÞ−P
AΓAðfÞΩAðfÞj2
2σ2ðfÞ

�
: ð31Þ

The above estimator greatly reduces the computational
cost, but when applied to the space-based detectors, it will
run into trouble. The problem arises from the fact that the
ORFs of two space-based detectors may vary as they orbit
to different positions, which means that ΓA

i ðfÞ ≠ ΓA
j ðfÞ for

i ≠ j. In this case, the mean of estimator ĈðfÞ becomes

hĈðfÞi ¼
X
A

Γ̄AðfÞΩAðfÞ; ð32Þ

where Γ̄AðfÞ ¼ 1
N

P
N
i¼1 ΓA

i ðfÞ. And ΓAðfÞ in Eq. (31) will
be replaced by Γ̄AðfÞ. The optimal SNR for this estimator
is [51]

SNRopt ≈
3H2

0

2π2
ffiffiffiffi
T

p �Z
∞

−∞
df

jPAΓ̄AðfÞΩAðfÞj2
f6PIðfÞPJðfÞ

�
1=2

; ð33Þ

which is likely to be much smaller than that for individual
analysis of the N statistics and then accumulating,

gSNRopt ≈
3H2

0

2π2
ffiffiffiffi
T

p �Z
∞

−∞
df

jPAΓ̃AðfÞΩAðfÞj2
f6PIðfÞPJðfÞ

�
1=2

: ð34Þ

Direct averaging of ORFs at different locations may
degrade the SNR, in other words, jΓ̄AðfÞj < jΓ̃AðfÞj. The
ratio of these two averages jΓ̄AðfÞj=jΓ̃AðfÞj for different
detector pairs and different polarization modes is shown in
Fig. 3. The case for the LISA-TianQin is the worst, with the
SNR being depressed by orders of magnitude. If no
measures are taken, it will be difficult to extract effective
information from the data.
Furthermore, the direct mean and root mean square of the

ORFs for the LISA-TianQin one-year orbits are shown in
Fig. 4. For the LISA-TianQin network, the mean ORF is 2
orders of magnitude smaller than the root-mean-square
ORF. Therefore, data analysis with statistic ĈðfÞ may miss
an otherwise strong background signal. It is worth noting
that all space gravitational-wave detectors may face such a
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problem, since they are relatively moving. The difference is
the magnitude of the effect. If the relative distance and
orientation of the two detectors are basically unchanged
during the orbit, such as LISA-Taiji, the change of ORF are
small, and the attenuation of direct average is small as seen
in Fig. 3. Below, we will propose a general solution and use
LISA-TianQin as an example to demonstrate the practical
effect of the above problem.
To avoid the attenuation caused by orbit averaging, we

construct estimators for each segment as

ĈA
i ðfÞ ¼

2

ΔT
2π2

3H2
0

f3s̃1;iðfÞs̃�2;iðfÞΓA�
i ðfÞ; ð35Þ

and the mean and variance are

hĈA
i ðfÞi ¼ ΓA�

i ðfÞ
X
A0

ΓA0
i ðfÞΩA0 ðfÞ ð36Þ

and

ðσAi ðfÞÞ2 ¼ σ2i ðfÞjΓA
i ðfÞj2; ð37Þ

respectively. The combined single estimator is given by

ĈAðfÞ ¼
P

iĈ
A
i ðfÞσ−2i ðfÞP
iσ

−2
i ðfÞ : ð38Þ

The mean and variance are

hĈAðfÞi ¼
X
A0

HAA0 ðfÞΩA0 ðfÞ ð39Þ

and

ðσAðfÞÞ2 ¼ HAAσ2ðfÞ; ð40Þ

where HAA0 ðfÞ ¼ 1
N

P
i ΓA�

i ðfÞΓA0
i ðfÞ. So, the correspond-

ing likelihood function of ĈAðfÞ is

L½ĈAðfÞjA�∝ exp

�
−
X
f

jĈAðfÞ−P
A0HAA0 ðfÞΩA0 ðfÞj2

2HAAσ2ðfÞ
�
:

ð41Þ

The total likelihood function becomes

L½fĈAðfÞgjA� ∝
Y
A

L½ĈAðfÞjA�: ð42Þ

To assess the power of a statistic, its optimal SNR is
required. In the usual way [51], the optimal SNR for
statistic CAðfÞ is

SNRA
opt ≈

3H2
0

2π2
ffiffiffiffi
T

p �Z
∞

−∞
df

jPA0HAA0 ðfÞΩA0 ðfÞj2
f6HAAðfÞPIðfÞPJðfÞ

�
1=2

:

ð43Þ

Table I lists the SNRs of all four statistics for different
purely single polarized SGWB. For SGWB with only a
single polarization, SNRA

opt for SGWB with A polarization

FIG. 4. The mean and root mean square of the ORFs for the
LISA-TianQin.

FIG. 3. The ratio of arithmetic mean and root mean square of
ORF of TDI-A channel for different networks. Different networks
are represented by different colors: LISA-TianQin (red), LISA-
Taiji (blue), and TQ I-II (green). And the polarizations are
distinguished by line type: tensor (solid), vector (dashed),
scalar-breaking (dotted), and scalar-longitudinal (dot-dashed).

TABLE I. Optimal SNRs of different statistics ĈAðfÞ for
different purely tensor, vector, scalar-breathing, and scalar-
longitudinal polarized SGWBs. The energy spectrum of SGWB
with different polarization are assumed to be power-law distri-
butions with index 2=3, and their amplitudes are chosen such that
the optimal SNR calculated by Eq. (34) is 10.

Tensor Vector Breathing Longitudinal

SNRT
opt 10.00 6.14 6.03 6.04

SNRV
opt 4.53 10.00 5.62 5.65

SNRB
opt 4.84 5.20 10.00 9.93

SNRL
opt 4.80 5.24 9.93 10.00
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is the same as gSNRopt. The SNR of the other three statistics
not corresponding to A polarization will be reduced, but
will still be larger than that of statistic ĈðfÞ. Note that
the behaviors of ORFs for two scalar polarizations are
similar, so the results of statistics ĈB and ĈL are close.
For SGWB with mixed polarizations, the SNR of any of
the four statistics cannot achieve the optimal SNR.
For example, for SGWB with mixed tensor and vector
polarization, the SNRs for different statistics are listed
in Table II. The spectra of SGWB are chosen as
ΩTðfÞ ¼ 8.59 × 10−12ðf=1 mHzÞ2=3 and ΩVðfÞ ¼ 7.58×
10−12ðf=1 mHzÞ2=3, with optimal SNR gSNRopt ¼ 14.87.
The SNR for each statistic ĈAðfÞ is slightly smaller than the

optimal SNR, but much better than that of the original
statistic ĈðfÞ, which is SNRopt ¼ 0.01. We can conclude

that SNRopt ≪ SNRA
opt ≤ gSNRopt for the LISA-TianQin

network. To more directly understand the effect of orbital
averaging, we simulate a background of a mixture of tensor
and vector polarizations into the data to generate the
statistic ĈiðfÞ. The two individual statistics ĈðfÞ and
ĈTðfÞ constructed in different ways are shown in Fig. 5.
We can see that it is difficult to distinguish the background
signal in the data by ĈðfÞ, although the optimal SNR of the
data is high enough.

IV. DETECTION OF POLARIZED
BACKGROUND

General alternative theories of gravity predict that
gravitational waves contain a mixture of tensor and other
polarizations instead of pure tensor polarization. Even if
the alternative polarizations are not concerned, when the
background is assumed a priori to be pure tensor polari-
zation, any other polarization will interfere with the search
for the gravitational-wave background. It is therefore
important how to determine whether the data contain a
background signal and, if so, whether it contains alternative
polarizations which are not allowed by GR. We choose
to adopt the Bayesian method proposed in Ref. [46] to
detect the gravitational background and identify the alter-
native polarizations. The detection part is done by Bayesian
model selection. After determining whether a signal
exists in the data, Bayesian statistics can be employed to
obtain a posterior probability density function of the
spectral parameters. The PyMultiNest package [55] is used
to perform the calculation.
Once the measurement data are given, we can compute

Bayesian evidence for various hypotheses to determine
whether the data contain a background signal and whether
alternative polarizations are present in the signal. We
consider three hypotheses:
(1) Gaussian noise (N).—No background signal in the

data, and the data consists of Gaussian distributed
noise.

(2) Signal (SIG).—The data contain Gaussian distrib-
uted noise and signals with any polarization(s) and
the assumed spectrum.

(3) Pure tensor-polarized signal (GR).—The data con-
tain Gaussian distributed noise and signals with pure
tensor polarization, consistent with GR predictions.

The Bayesian evidence of statistic ĈA for hypotheses A
with parameters θA is defined as

PðĈAjAÞ ¼
Z

LðĈAjθA;AÞπðθAjAÞdθA; ð44Þ

where the likelihood LðĈAjθA;AÞ is given by Eq. (42) and
πðθAjAÞ is the prior probability under hypotheses A. The

FIG. 5. The simulated measurements ĈðfÞ (upper) and ĈTðfÞ
(lower) for a background with mixture of tensor and vector
polarizations, recovered after one year of observation with
LISA-TianQin network. The parameters of spectra of background
for the simulation are ΩTðfÞ ¼ 8.59 × 10−12ðf=1 mHzÞ2=3
and ΩVðfÞ ¼ 7.58 × 10−12ðf=1 mHzÞ2=3, with optimal SNRgSNRopt ¼ 14.87.

TABLE II. Optimal SNRs of different statistics for SGWB with
mixed tensor and vector polarizations.

gSNRopt SNRT
opt SNRV

opt SNRB
opt SNRL

opt

14.87 11.93 9.22 12.59 12.50
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energy density spectrum for different hypotheses can be
expressed as

ΩNðfÞ ¼ 0;

ΩGRðfÞ ¼ ΩT
0

�
f
f0

�
αT
;

ΩSIGðfÞ ¼
X
A

ΩA
0

�
f
f0

�
αA
: ð45Þ

To meet the needs of data analysis, we can define two
odds ratios,

OSIG
N ¼ PðĈAjSIGÞ

PðĈAjNÞ
πðSIGÞ
πðNÞ ;

OSIG
GR ¼ PðĈAjSIGÞ

PðĈAjGRÞ
πðSIGÞ
πðGRÞ ; ð46Þ

where πðSIGÞ, πðNÞ, and πðGRÞ are the prior probabilities
assigned to each hypothesis, and we set them all to 1 in this
paper. The former odds ratio OSIG

N is conventionally
defined, which quantities the probability of the presence
of a background signal in the data. The latter odds ratio
OSIG

GR is somewhat different from that in the literature, which
usually definesONGR

GR . The hypothesis NGR is that there is a
signal in the data and the signal contains alternative
polarizations. It consists of several subsets: a mix of tensor
and vector (TV), a mix of tensor and scalar-breathing (TB),
and so on. However, it is hard to represent each of its
subsets. For example, the hypothesis TV cannot be directly
represented as ΩTVðfÞ ¼ ΩT

0 ð ff0ÞαT þΩV
0 ð ff0ÞαV , and the

restriction ΩT
0 ;ΩV

0 ≠ 0 must be added. Otherwise, it will
represent the union of the three hypotheses T, V, and TV.
Therefore, from this point of view, it is not straightforward

to translate the hypothesis NGR into the Bayesian model.
Instead, we choose to construct OSIG

GR , which has the same
effect as ONGR

GR . OSIG
GR indicates the possibility that there is a

signal in the data but the signal does not agree with the GR
prediction.
The distribution of odds ratios OSIG

N and OSIG
GR gathered

from repeated simulations of signals with the same
intensity are shown in Fig. 6. The indices are always
fixed as 2=3, and the amplitudes are chosen so that the
SNRs of both the tensor and scalar polarization compo-
nents are 10. For pure tensor and mixed polarization, the
specific spectra are ΩTðfÞ ¼ 8.59 × 10−12ðf=1 mHzÞ2=3
and fΩTðfÞ ¼ 8.59× 10−12ðf=1 mHzÞ2=3;ΩBðfÞ ¼ 1.71×
10−11ðf=1 mHzÞ2=3g. As shown in the left side of Fig. 6,
the distribution of OSIG

N for Gaussian noise is concentrated
around lnOSIG

N ¼ −4.3. In contrast, the pure tensor back-
ground yields a distribution around lnOSIG

N ¼ 8.6 and the
mixed polarization background distribution centered at
lnOSIG

N ¼ 24.6. What can be clearly seen in this subfigure
is the significant separation in the distribution of these three
cases, which means that the existence of a signal in the data
and the strength of the signal can be inferred by OSIG

N . The
right side of Fig. 6 shows the distribution of OSIG

GR , which
characterizes the likelihood that alternative polarizations
are included in the signal. For Gaussian noise and pure
tensor polarized background, OSIG

GR < 0. Compared with
Gaussian noise, the odd ratios OSIG

GR of pure tensor
polarization background are less negative. This is because
both the numerator and denominator of odds ratios we
construct contain the tensor component. However, it
does not affect the determination of whether the signal
contains alternative polarizations. The mixed polarized
background yields a positive distribution of OSIG

GR , centered
at lnOSIG

GR ¼ 5.1.

FIG. 6. The distribution of odds ratios OSIG
N (left) and OSIG

GR (right) for different simulated data. For the Gaussian noise (gray), the
distribution of OSIG

N and OSIG
GR is concentrated and less than 0. And for the pure tensor polarized signal with index 2=3 (blue), the

amplitude is set reasonably so that the SNR is 10. Finally, for a background with mixture of tensor and scalar-breathing polarization
(light brown), the indices for two polarizations are both 2=3, and the amplitude of each polarization component is set reasonably so that
the SNR of the individual components is 10 and the total SNR is 15.
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The variation of odds ratios OSIG
N and OSIG

GR with
amplitudes of background is shown in Fig. 7. For a purely
tensor-polarized background, as the amplitude increases,
the OSIG

N representing the signal strength increases.
Naturally, OSIG

N depends on the SNR of data, and the
specific relationship is lnOSIG

N ∝ SNR2. On the other hand,

as the amplitude of pure tensor background increases,OSIG
GR ,

which represents the deviation from GR, first increases and
then tends to stabilize at −2.2 for loud signal. For the case
of remixing the scalar-breathing polarization on the basis of
the tensor components, as the amplitude of the scalar-
breathing polarization increases, both OSIG

N and OSIG
GR are

FIG. 7. Odds ratiosOSIG
N (left) andOSIG

GR (right) for different simulated data. Each point in the graph represents a simulation result. The
top row is the change in odds ratios as the increase of amplitude for pure tensor background with index 2=3. The lower row shows the
increase in the odds ratio as the amplitude of the scalar-breathing polarization in background increases, mixed with a fixed tensor
component.

FIG. 8. Odds ratios OSIG
N (left) and OSIG

GR (right) for simulated data with a background with mixture of tensor and scalar-breathing
polarizations. The tensor and scalar-breathing components have the same index 2=3. The horizontal and vertical coordinates of the left
and right images are the same, and they are the amplitudes of the tensor and scalar-breathing components, respectively.
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expected to continue increasing monotonically. Growth is
only apparent once a threshold is exceeded, which means
that alternative polarization needs to reach a certain
intensity to be recognized.
A more general case is presented in Fig. 8, in which the

amplitude of the tensor component is no longer fixed.
The left side of Fig. 8 again shows that OSIG

N grows with
the SNR, regardless of which polarization component
contributes. And the right-hand subplot about OSIG

N can
be roughly divided into three distinct regions. When the
amplitude of scalar component is small, OSIG

N will increase
slightly once the amplitude of the tensor components
exceeds a critical value that can be detected. However,
its growth is very small, with a small probability of
exceeding 0. Only when the amplitude of the alternative
polarization component exceeds a certain value, OSIG

N will
continue to grow with the increase of the amplitude.
Whether or not an alternative polarization can be detected
depends on its amplitude, independent of the intensity of
the tensor component.

V. PARAMETER ESTIMATION
OF THE SPECTRUM

After we have determined that the data contain a back-
ground signal using Bayesian model selection, the next step
is to estimate the parameters of the signal. Alternatively, if
there is no signal, an upper limit on the background
amplitude for each polarization mode can be placed.
Furthermore, we can limit the amplitude of the alternative
polarization if it is a background signal that coincides with
the GR.
Parameter estimation is performed by using Bayesian

statistics to obtain posterior probability density functions

(PDFs) for spectral parameters. The PDFs for hypothesisA
are obtained from Bayes’s theorem:

pðθAjĈA;AÞ ¼ pðĈAjθA;AÞπðθAjAÞ
PðĈAjAÞ : ð47Þ

The marginalized PDF for a single parameter is obtained by
integrating for the rest parameters. The Bayesian upper
limit is equivalent to a Bayesian credible interval for a
parameter with the lower bound of the interval set to the
minimum value that the parameter can take, when the
evidence suggests no signal. For example, the 95% credible
upper limit ΩT;95% on parameter ΩT is defined by

pðminΩT ≤ ΩT ≤ ΩT;95%jĈA;AÞ ¼ 0.95; ð48Þ

where minΩT is the minimum value of ΩT allowed by
the prior.
To analyze the ability of Bayesian method to identify

polarized background signal, we apply it to simulated data
of different situations, including the pure Gaussian noise, a
tensor background, and the backgrounds of mixed tensor
and other polarizations. The specific simulated parameters
for each case and the associated odds ratio are listed in
Table III. The odds ratioOSIG

N works as expected and can be
used to determine whether the data contains background
signal. However, the odds ratioOSIG

GR performed worse than
expected and only worked well if the signal contained a
strong alternative polarization. However, the reality is that
the alternative polarizations are usually less intense relative
to the tensor polarization, if present.
The Bayesian model selection is used to determine

whether the data contained background signal and, if so,

TABLE III. Simulation parameters for each case. The logarithm of the amplitude parameter is in base 10. The odds ratios for each
simulation are also shown in the two rightmost columns.

Case logΩT
0 αT logΩV

0 αV logΩB
0 αB logΩL

0 αL lnOSIG
N lnOSIG

GR

1. Noise � � � � � � � � � � � � � � � � � � � � � � � � −4.27 −2.86
2. Tensor −11.07 0.67 � � � � � � � � � � � � � � � � � � 9.05 −2.43
3. Tensor þ vector −11.07 0.67 −11.12 0.67 � � � � � � � � � � � � 29.16 1.34
4. Tensor þ breathing −11.07 0.67 � � � � � � −10.76 0.67 � � � � � � 24.60 4.91
5. Tensor þ scalar −11.07 0.67 � � � � � � −12.65 3.00 −11.07 0.67 59.64 40.01

TABLE IV. Bayesian estimation of parameters for each case. The top row in each case is the injected parameters, and the bottom row is
the Bayesian estimated parameters, or 95% credible upper limits.

Case lnΩT
0 αT lnΩV

0 αV lnΩB
0 αB lnΩL

0 αL

1. Noise < − 12.00 � � � < − 12.08 � � � < − 11.71 � � � < − 11.99 � � �
2. Tensor −11.10þ0.13

−0.16 0.69þ0.38
−0.41 < − 11.92 � � � < − 11.58 � � � < − 11.88 � � �

3. Tensor þ vector −11.02þ0.18
−0.30 0.52þ0.61

−0.46 −11.22þ0.29
−0.50 0.64þ0.64

−0.53 < − 11.35 � � � < − 11.60 � � �
4. Tensor þ breathing −11.09þ0.17

−0.24 0.63þ0.55
−0.47 < − 11.86 � � � −11.61þ0.92

−3.12 0.43þ0.94
−2.08 −11.54þ0.60

−3.13 0.41þ0.82
−1.97

5. Tensor þ scalar −10.95þ0.12
−0.25 0.31þ0.59

−0.37 < − 11.40 � � � −12.07þ0.26
−1.21 2.68þ0.69

−0.17 −11.81þ0.80
−3.01 0.42þ0.96

−2.07
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whether they contained alternative polarizations. At the
same time, the posterior PDF of the parameters can be used
to estimate the parameters. The PyMultiNest package [55] is
used to perform the associated computations. The results
are shown in Table IV. First, for the Gaussian noise, there is
no evidence that there is a signal, and the 95% credible
upper limits on each amplitude are logΩT

0 < −12.00,

logΩV
0 < −12.08, logΩB

0 <−11.71, and logΩL
0 <−11.99.

Second, for the pure tensor background with amplitude
logΩT

0 ¼ −11.07 and index αT ¼ 2=3, there is strong
evidence that there is a background consistent with general
relativity, with a central 68% credible interval of −11.26<
logΩT

0 < −10.97 and a median value of logΩT
0 ¼ −11.10.

The 95% credible upper limits on amplitudes of the

FIG. 9. The posteriors for a simulation of a background with pure tensor polarizations (case 2). The colored histograms along the
diagonal show the marginalized one-dimensional posteriors for the amplitudes and slopes of the tensor, vector, scalar-breathingm and
scalar-longitudinal polarizations (blue, green, orange, and red, respectively). The rest of the subplots show the joint two-dimensional
posteriors between each pair of parameters. The parameters of tensor polarizations are peak around their true values.
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alternative polarizations are logΩV
0 <−11.92, logΩB

0 <
−11.58, and logΩL

0 < −11.88. The corresponding poste-
riors are shown in Fig. 9. The colored histograms along the
diagonal show the marginalized one-dimensional (1D)
posteriors for the amplitudes and slopes of the tensor,
vector, scalar-breathing, and scalar-longitudinal polariza-
tions (blue, green, orange, and red, respectively). The rest
subplots show the joint two-dimensional (2D) posteriors
between each pair of parameters. The real parameters are
marked with black lines for comparison. Third, for a
background with mixed polarizations of tensor and vector,
the two polarization modes can be well resolved as shown
in Table IV. And the specific posterior distribution (includ-
ing the subsequent cases) is shown in Appendix B.
However, it is difficult for cases involving scalar polar-
izations. A single scalar-breathing mode or a single scalar-
longitudinal mode is not easily identified accurately but
will be identified as a mixture of the two (see case 4). If
both modes are included, and the spectral indices of the two
differ significantly (e.g., 3 for the breathing mode and 2=3
for the longitudinal mode in case 5), there is a chance to
distinguish the two modes. Or for the case of the same
index, the respective signals of the two modes need to be
strong enough to be well resolved.

VI. DISCUSSION

In this paper, we studied the data analysis method of
alternative polarizations of SGWB with space-borne detec-
tors. Compared with ground-based detectors, the relative
motion between different space detectors will affect their
correlations. Therefore, the data analysis methods of space-
borne detectors to search for the polarized SGWB will be
different from those on the ground. We developed a
Bayesian method for space-borne gravitational-wave detec-
tors to detect the SGWB with general polarizations or to
constrain the amplitudes of alternative polarizations when
there is no signal. A new statistic is designed to avoid the
decay of SNR for the correlation signal due to average
orbital motion. For pure tensors or pure other alternative
polarizations, the SNR of the statistic can achieve the
optimal SNR.
Taking the LISA-TianQin network as an example, the

detection and characterization capabilities of this Bayesian
method for SGWB with general polarizations of are
analyzed. Because of their orbital differences, orbital
averaging can cause significant attenuation of traditional
correlation statistics. The new statistic restores signal
identifiability. The first step of the specific data analysis
is to determine whether the data contain signals. Bayesian
model selection is used to do this, and the corresponding
odds ratioOSIG

N is consistent with that in the literature. If the
evidence indicates the presence of a signal, another odd
ratio OSIG

GR is calculated to determine whether the signal
contains alternative polarizations. This odds ratio is con-
structed differently from ONGR

GR in the literature. It is easier

to describe and also has the same ability to identify
alternative polarizations. We have performed simulations
and show that LISA-TianQin can indeed identify non-
tensorial polarizations in SGWB by this method. The next
step is to perform parameter estimation of the background
signal. The posterior PDFs of the parameters are given by
standard Bayesian statistics. Parameter estimation can be
used to determine which alternative polarization the signal
contains, whether it is a vector, a scalar-breathing mode, a
scalar-longitudinal mode, or a mixture of them. If there is
no signal, or if the signal is consistent with the GR, the
upper limits of the alternate polarizations are given instead.
Interestingly, space-borne detectors have the potential to

distinguish between two scalar modes, which ground-borne
detectors cannot. In the frequency band where ground
detectors are sensitive, the small antenna approximation is
fully satisfied, which leads to degeneracy of the response to
scalar-breathing and scalar-longitudinal modes. In princi-
ple, no matter how advanced data analysis methods are,
ground-borne detectors cannot distinguish these two scalar
modes of different nature. However, the degeneracy of the
responses to the two scalar modes is broken in the relatively
high-frequency region where space gravitational-wave
detectors are sensitive. This makes it possible to distinguish
the two polarizations when the shapes of the spectra for the
two scalar modes are very different. Or for the same
spectral indices, if the amplitudes of the two modes are
large, they can also be distinguished.
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APPENDIX A: OVERLAP REDUCTION
FUNCTION OF ANY TDI CHANNEL

If a two-detector network is considered as a whole
detector, the final output is the cross-correlation of the
outputs of the two detectors. Then, the overlap reduction
function can be regarded as the response of this whole
detector to the gravitational-wave background. It is defined
as the sky averaged of the product of the response functions
of the two detectors,

ΓA
IJðfÞ ¼

1

8π

Z
d2Ωn̂

X
a∈A

Ra
I ðf; n̂ÞRa�

J ðf; n̂Þ; ðA1Þ
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where A ¼ T; V; B; L. To keep the definitions consistent,
the definitions of the two scalars differ by a factor of 2 as

ΓB
IJðfÞ ¼

1

4π

Z
d2Ωn̂RB

I ðf; n̂ÞRB�
J ðf; n̂Þ;

ΓL
IJðfÞ ¼

1

4π

Z
d2Ωn̂RL

I ðf; n̂ÞRL�
J ðf; n̂Þ: ðA2Þ

We directly used the original expression without normal-
izing it, for the convenience of calculation.
In general, the integrals in Eq. (A1) can only be

evaluated numerically, due to the complex orientation
dependence of the response function. However, for
ground-borne interferometers, the integral can be done
analytically in the small-antenna limit. In this case, the
response function of the Michelson-type interferometer can
be expressed as

Ra
I ðf; n̂Þ ≃

1

2
Dab

I eaabe
i2πfn̂·x⃗I=c; ðA3Þ

where Dab
I is the detector tensor defined with the two arm

orientation vectors. The expression on the basis of this
approximation can be found in Refs. [44,51]. What is more,
in the simple case for PTA, the integral can be calculated
analytically without any approximation [56].
The situation is a bit more complicated for space-borne

interferometers. To suppress the laser phase noise, the TDI
technology is applied. Although the Michelson-type inter-
ferometer exists among the many TDI combinations, there
are many different types of combinations. The response
function of those TDI combinations are not as simple as
Eq. (A3). The response function of any TDI combination
can be expressed as

RAðf; n̂Þ ¼
X
i

PiRabðf; n̂; ûi; r⃗iÞeAabðn̂Þ; ðA4Þ

where

Rabðf; n̂; û; r⃗Þ ¼ 1

2
uaube−

iπfL
c sin c

�
πfL
c

½1þ n̂ · û�
�

× ei2πfn̂·r⃗=c ðA5Þ

is the response function of a link from one satellite to
another, Pi is the delay coefficient of the link, and r⃗ is the
midpoint of the arm. So, the ORF for any TDI channel
reads

ΓA
TDIðfÞ ¼

1

8π

Z
d2Ωn̂

X
p∈A

Rp
I ðf; n̂ÞRp�

J ðf; n̂Þ

¼ e
i
2
ðβ0−βÞ

32π

X
i;j

PI;iP�
J;ju

a
i u

b
i u

0c
j u

0d
j

× ΓA
abcdðαij; β; β0; ûi; û0j; ŝijÞ; ðA6Þ

where

ΓA
abcdðαij; β; β0; ûi; û0j; ŝijÞ

¼
Z

d2Ωn̂

X
p∈A

sin c

�
β

2
½1þ n̂ · ûi�

�

× sin c

�
β0

2
½1þ n̂ · û0j�

�
epabe

p
cde

−iαijn̂·ŝij : ðA7Þ

Expanding Eq. (A7) by frequency to second order, one
obtains that

ΓA
abcdðα; β; β0; û; û0; ŝÞ
¼ ΓAð0Þ

abcdðα; ŝÞ þ ΓAð2Þ
abcdðα; β; û; ŝÞ þ ΓAð2Þ

abcdðα; β0; û0; ŝÞ;
ðA8Þ

where

ΓAð0Þ
abcdðα; ŝÞ ¼

Z
d2Ωn̂

X
p∈A

epabe
p
cde

−iαn̂·ŝ; ðA9Þ

and

ΓAð2Þ
abcdðα;β;û; ŝÞ¼−

β2

24

Z
d2Ωn̂ð1þ n̂ · ûÞ2

X
p∈A

epabe
p
cde

−iαn̂·ŝ:

ðA10Þ

According to the symmetry of the index, ΓAð0Þ
abcd can be

constructed as

ΓAð0Þ
abcdðα; ŝÞ ¼ AAð0ÞðαÞδabδcd þ BAð0ÞðαÞðδacδbd þ δbcδadÞ

þ CAð0ÞðαÞðδabscsd þ δcdsasbÞ
þDAð0ÞðαÞðδacsbsd þ δadsbsc

þ δbcsasd þ δbdsascÞ þ EAð0ÞðαÞsasbscsd:
ðA11Þ

HU, WANG, TAN, and SHAO PHYS. REV. D 107, 024026 (2023)

024026-14



The coefficient can be evaluated analytically [44,51]. A system of linear equations for the coefficients
fAAð0Þ; BAð0Þ;…; EAð0Þg can be obtained by contracting Eqs. (A9) and (A11) with δabδcd, δacδbd þ δbcδad, � � �,
sasbscsd. Thus, the expression of the zero order of the ORFs is obtained:

ΓA0
IJ;TDIðfÞ ¼

e
i
2
ðβ0−βÞ

32π

X
i;j

PI;iPJ;jfAAð0Þ þ 2BAð0Þðûi · û0jÞ2 þ CAð0Þððûi · ŝijÞ2 þ ðû0j · ŝijÞ2Þ

þ 4DAð0Þðûi · û0jÞðûi · ŝijÞðû0j · ŝijÞ þ EAð0Þðûi · ŝijÞ2ðû0j · ŝijÞ2g: ðA12Þ

Following the similar ideas, ΓAð2Þ
abcd can be constructed as

ΓAð2Þ
abcdðα; β; û; ŝÞ ¼ AAð2Þδabδcd þ BAð2Þðδacδbd þ δbcδadÞ þ CAð2Þ

1 ðδabscsd þ δcdsasbÞ
þ CAð2Þ

2 ðδabucud þ δcduaubÞ þDAð2Þ
1 ðδacsbsd þ δadsbsc þ δbcsasd þ δbdsascÞ

þDAð2Þ
2 ðδacubud þ δadubuc þ δbcuaud þ δbduaucÞ þ EAð2Þ

1 sasbscsd þ EAð2Þ
2 uaubucud

þ EAð2Þ
3 ðuaubscsd þ sasbucudÞ þ EAð2Þ

4 ðuaucsbsd þ uaudsbsc þ ubucsasd þ ubudsascÞ: ðA13Þ

The coefficients fAAð2Þ; BAð2Þ;…; EAð2Þ
4 g can be solved in similar way [54]. Combining Eqs. (A6), (A8), (A11), and (A13),

we get the second-order expansion of ORFs, namely,

ΓA2
IJ ðfÞ ¼

e
i
2
ðβ0−βÞ

32π

X
i;j

PI;iPJ;jfAAð0Þ þ AAð2Þ þ A0Að2Þ þ 2ðBAð0Þ þ BAð2Þ þ B0Að2ÞÞðûi · û0jÞ2

þ ðCAð0Þ þ CAð2Þ
1 þ C0Að2Þ

1 Þððûi · ŝijÞ2 þ ðû0j · ŝijÞ2Þ þ ðCAð2Þ
2 þ C0Að2Þ

2 Þððûi · û0jÞ2 þ 1Þ
þ 4ðDAð0Þ þDAð2Þ

1 þD0Að2Þ
1 Þðûi · û0jÞðûi · ŝijÞðû0j · ŝijÞ þ 4ðDAð2Þ

2 þD0Að2Þ
2 Þðûi · û0jÞ2

þ ðEAð0Þ þ EAð2Þ
1 þ E0Að2Þ

1 Þðûi · ŝijÞ2ðû0j · ŝijÞ2 þ ðEAð2Þ
2 þ E0Að2Þ

2 Þðûi · û0jÞ2

þ EAð2Þ
3 ððû0j · ŝijÞ2 þ ðûi · ŝijÞ2ðûi · û0jÞ2Þ þ E0Að2Þ

3 ððûi · ŝijÞ2 þ ðû0j · ŝijÞ2ðûi · û0jÞ2Þ
þ 4ðEAð2Þ

4 þ E0Að2Þ
4 Þðûi · û0jÞðûi · ŝijÞðû0j · ŝijÞg: ðA14Þ

APPENDIX B: PARAMETER ESTIMATION FOR SGWB WITH MIXED POLARIZATION

In the figures in this Appendix, we show the parametric posterior distribution of the SGWB with mixture of tensor and
other polarization.
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FIG. 10. The posteriors for a simulation of a background with mixed tensor and vector polarizations (case 3). The colored histograms
along the diagonal show the marginalized one-dimensional posteriors for the amplitudes and slopes of the tensor, vector, scalar-
breathing, and scalar-longitudinal polarizations (blue, green, orange, and red, respectively). The rest of the subplots show the joint two-
dimensional posteriors between each pair of parameters. The parameters of tensor and vector polarizations are peak around their true
values.
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FIG. 11. The posteriors for a simulation of a background with mixed tensor and scalar-breathing polarizations (case 4). The parameters
of the tensor polarization agree with the true value within the error range. However, the injected scalar-breathing component was
incorrectly identified as a mixture of scalar-breathing and scalar-longitudinal modes.
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