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Multimessenger observations of binary neutron-star mergers provide a unique opportunity to constrain
the dense-matter equation of state. Although it is known from quantum chromodynamics that hadronic
matter will undergo a phase transition to exotic forms of matter—e.g., quark matter—the onset density of
such a phase transition cannot be computed from first principles. Hence, it remains an open question if such
phase transitions occur inside isolated neutron stars or during binary neutron-star mergers, or if they appear
at even higher densities that are not realized in the cosmos. In this article, we perform numerical relativity
simulations of neutron-star mergers and investigate scenarios in which the onset density of such a phase
transition is exceeded in at least one inspiraling binary component. Our simulations reveal that shortly
before the merger, it is possible that such stars undergo a “reverse phase transition”—i.e., densities decrease
and the quark core inside the star disappears, leaving a purely hadronic star at merger. After the merger,
when densities increase once more, the phase transition occurs again and leads, in the cases considered in
this work, to the rapid formation of a black hole. We compute the gravitational-wave signal and the mass
ejection for our simulations of such scenarios and find clear signatures that are related to the postmerger
phase transition—e.g., smaller ejecta masses due to the softening of the equation of state through the quark
core formation. Unfortunately, we do not find measurable imprints of the reverse phase transition.

DOI: 10.1103/PhysRevD.107.024025

I. INTRODUCTION

Constraining the properties of cold dense nuclear matter
and its equation of state (EOS) remains an open problem in
modern physics. Systematic calculations of matter proper-
ties at densities that exceed 1–2 times the nuclear saturation
density, nsat, based on quantum chromodynamics (QCD),
are not feasible at the moment. Similarly, heavy-ion
collision (HIC) experiments constrain the EOS but are
currently limited to the density range below ∼2nsat [1]. To
probe dense matter beyond the densities that can be reached
in HIC experiments or in nuclear theory calculation, one
has to use astrophysical observations of neutron stars (NSs)
and their mergers. The multimessenger detection of
GW170817 [2,3] via gravitational waves (GWs) and
electromagnetic (EM) signatures has been a breakthrough
that has produced a wealth of information [4]. Overall,
the extreme densities, temperatures, fluid velocities, and
stronger gravitational fields achieved during the collision of

two NSs are unmatched in the Universe and provide a
perfect laboratory to probe physical principles under
extreme conditions.
At merger, when gravitational fields are strongest, only

numerical relativity (NR) simulations can reliably describe
the spacetime and matter fields. This makes NR simulations
an essential tool to characterize the imprint of the
binary parameters or microphysical processes; see, e.g.,
Refs. [5–8] for recent reviews. Over the years, the NR
community has made tremendous progress by performing
high-precision simulations [9–12], including microphysical
aspects such as neutrino radiation or magnetic fields
(e.g., Refs. [13–24]), as well as investigating the impact
of phase transitions on the merger dynamics [25–30].
In fact, QCD predicts that cold matter undergoes a

transition from hadronic matter at low densities to quark
matter at very high energies. However, the onset density of
such a phase transition is unknown. Therefore, it is an open
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question whether isolated NSs explore such phase tran-
sitions to exotic forms of matter in their cores (e.g.,
Refs. [31–34]), which could affect the binary neutron-
star (BNS) system dynamics already during the inspiral
[35–37], if the phase transition sets in during the
postmerger phase when matter exists at higher densities
[25–30], or if the phase transition appears only beyond
the density regime probed in NSs.
Revealing the presence of a possible phase transition is

one of the science goals of next-generation GW detectors.
This could happen either due to precise measurements of
the tidal deformability of the stars during the inspiral,
which is altered due to the presence of a strong first-
order quark-hadron phase transition [38–41] if the onset
density is sufficiently low, or through postmerger GW
measurements [42–46]. Regarding the latter, numerous
previous studies have investigated possible shifts in the
peak frequency of the postmerger GW signal when a quark-
hadron phase transition is present—e.g., Refs. [25–30].
Finally, the EM signatures might also be altered due to
different postmerger dynamics [45].
Recently, Liebling et al. [46] studied the effect of phase

transitions in BNS systems for hadronic NSs, where a
phase transition to a higher-density core is found at merger
time triggered by accreting matter, and a “reverse phase
transition” is encountered in the postmerger phase due to
oscillations of the central density. In contrast, in this article,
we perform new NR simulations evolving BNS systems
of hybrid NSs composed of a quark-matter core and a
hadronic mantle. Furthermore, our simulations reveal that a
“reverse phase transition” can happen during the inspiral
shortly before the NS merger. This transition is caused by a
decrease in the central mass density due to the strong
deformation of the stars, which causes a change from a
quark-matter core to only hadronic material before the stars
come into contact.
The article is structured as follows: We shortly review the

employed methods in Sec. II before we present our main
results in Sec. III and conclude in Sec. IV. Unless otherwise
stated, we use units in which G ¼ c ¼ M⊙ ¼ 1.

II. METHODS AND SETUPS

A. Simulated configurations

We investigate a total of four different binary configu-
rations labeled noPT1, noPT2, PT1, and PT2. The con-
figurations noPT1 and noPT2 employ EOSs without phase
transitions, while PT1 and PT2 have phase transitions.
The two sets 1 and 2 differ in the employed mass ratios;
i.e., PT1 and noPT1 represent equal-mass systems with
q ¼ MA=MB ¼ 1.0, while PT2 and noPT2 are unequal-
mass systems with a mass ratio of q ¼ 1.17. The EOSs and
system parameters are picked such that they all have the
same dimensionless binary tidal deformabilities, Λ̃ ¼ 250.
All simulations begin 14 to 15 orbits before the merger at

an initial distance between the stars’ centers of about
75 km, which leads to a dimensionless initial GW fre-
quency of Mω0

2;2 ≈ 0.032. Employing the eccentricity
reduction procedure of Refs. [47,48], we achieve initial
eccentricities of Oð10−3Þ. Details about the initial configu-
rations are listed in Table I.

B. Equation of state construction

The EOS describes the relation between the energy
density e, pressure p, and temperature T of dense matter
and additionally depends on the composition of the system.
Given that the thermal energies are much smaller than
typical Fermi energies of the particles, we can neglect
temperature effects during the construction of the baseline
EOSs that we use for the computation of the initial
configuration, and hence the EOS simply relates e and p.
The EOSs used here are constrained at low densities by
quantum Monte Carlo calculations using interactions
derived from chiral effective field theory (EFT) [49,50].
In particular, we employ the VE1 interaction to constrain the
EOS up to nuclear saturation density [49]. Beyond nsat, we
extrapolate the EOS using a piecewise-linear speed-of-sound
extension to larger densities. Additionally, for two EOSs we
impose a first-order phase transition by setting the speed of
sound within one piece to zero, with the exotic matter
beyond the phase transition still being described by the
speed-of-sound parametrization. We have tuned the param-
eters of this extension such that the binary tidal deform-
abilities for all EOSs are Λ̃ ¼ 250 for the mass ratios chosen
here. For the EOSs with phase transition, the onset density
and density jump have been tuned to additionally ensure
that at least one of the binary NSs explores the phase
transition during the inspiral. The phase transition for PT1
(PT2) sets in at baryon number density nb ¼ 0.64 fm−3
(nb ¼ 0.74 fm−3), corresponding to a NS in isolation with
gravitational mass M ¼ 1.32M⊙ (M ¼ 1.33M⊙).
Because BAM and SGRID (see the description

below) did not support full tabulated EOSs at the start

TABLE I. Properties of the individual stars and BNS simu-
lations. The columns contain the configuration name, the em-
ployed mass ratio q ¼ MA=MB ≥ 1, the gravitational masses of
the individual stars MA;B, the residual eccentricity e of the BNS,
the initial GW frequency Mω0

2;2 of the (2,2) mode, the Arnowitt-
Deser-Misner (ADM) mass MADM, and the corresponding
angular momentum JADM. All configurations were evolved with
the resolutions of Table II.

Name q MA MB e [10−3]
Mω0

2;2

[10−2] MADM JADM

noPT1 1.00 1.394 1.394 1.0026 3.2816 2.7671 8.5150
PT1 1.00 1.394 1.394 3.4902 3.2830 2.7671 8.5093
noPT2 1.17 1.501 1.287 1.2720 3.2814 2.7672 8.4643
PT2 1.17 1.501 1.287 3.7002 3.2805 2.7672 8.4585
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of this project, we have employed a piecewise-polytropic
representation of the previously constructed EOSs using
between 9 and 15 pieces; cf. Appendix C for more details.
Our piecewise polytropes are parametrized by the rest-mass
density ρ ¼ mbnb, where mb ¼ 1.66 × 10−24 g. Following
the methods of Ref. [51], we have constructed the zero-
temperature part of the EOSs used in our simulations
such that the pressure p ¼ pðρÞ, the specific internal
energy per baryon ϵ ¼ ϵðρÞ, and the energy density eðρÞ ¼
ρð1þ ϵðρÞÞ are continuous everywhere.
The final EOSs are represented in Fig. 1 (upper panel),

and we mark the initial central density of the individual
stars simulated in this work. The lower panel of Fig. 1
shows the corresponding mass-radius curves in which we

mark the radii and masses of the individual stars. During
the dynamical simulations, we extend the zero-temperature
EOS by adding a thermal contribution following Ref. [52].

C. Numerical methods

For the construction of the initial configuration, we
employ the pseudospectral code SGRID [48,53–55], which
uses the conformal thin-sandwich approach [56–58] to
solve the constraint equations.
For the dynamical evolution,we employBAM[12,59–61].

BAM is based on the method of lines using a fourth-order
explicit Runge-Kutta-type integrator, Cartesian grids, and
finite differencing.BAM’s grid is based on a hierarchyof cell-
centered, nested Cartesian boxes consisting of L refinement
levels. Each level’s resolution increases by a factor of 2,
leading to a resolution of hl ¼ 2−lh0, while l ¼ 0 is the
coarsest level. The outer levels remain fixed and employ n3=2
grid points, where the factor 1=2 arrives for the employed
bitant symmetry. The inner levels employ nmv points per
direction and move with the star’s center. For the time-
stepping of the refinement level,we employ theBerger-Oliger
scheme [62]. The equations of general-relativistic hydro-
dynamics are solved with high-resolution-shock-capturing
schemes based on primitive reconstruction and the local
Lax-Friedrich central scheme for the numerical fluxes; see
Refs. [60,63] for more details. The exact grid configurations
are given explicitly in Table II.

III. REVERSE PHASE TRANSITION

A. Dynamical evolution

We start our discussion by presenting the evolution of the
baryon number density for the noPT1 scenario inside the
orbital plane (upper panels of Fig. 2). In the lower panels,
we show the corresponding density-pressure region that is
covered in our simulation using the same data as shown in
the respective upper panels. We mark the zero-temperature
EOS as a solid black line. We find that during the evolution,
despite the fact that the system is in principle symmetric,
slight differences that are present during the construction of
the initial data lead to an evolution that shows a different
behavior for both stars, with one star being more deformed

FIG. 1. EOSs represented by the pressure vs baryon number
density curves (upper panel) and mass-radius curves (bottom
panel). The marked points in the top panel identify the central
rest-mass density of the stars in the models of Table I: PT1 (black
circle), noPT1 (black diamond), PT2 star A (blue ×), PT2 star B
(blue circle), noPT2 star A (blue up triangle), noPT2 star B (blue
down triangle). Masses and radii for the corresponding stars in
isolation are marked accordingly in the bottom panel.

TABLE II. Grid configurations. The columns refer to the
resolution name, the number of levels L, the number of moving
box levels Lmv, the number of points in the nonmoving boxes n,
the number of points in the moving boxes nmv, the grid spacing in
the finest level h6 covering the neutron star, and the grid spacing
in the coarsest level h0.

Name L Lmv n nmv h6 h0

R1 7 4 192 96 0.152 9.728
R2 7 4 256 128 0.114 7.296
R3 7 4 320 160 0.0912 5.8368
R4 7 4 384 192 0.076 4.864
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and developing a low-density tail. As expected, and as
shown in the bottom panels, temperature effects are not
significant before the merger of the two stars, and the total
pressure remains close to the zero-temperature EOS.
Around the time of merger, though (third column), the
increasing temperature leads to a pressure that lies above
the zero-temperature curve. This becomes even more
pronounced in the postmerger phase (fourth column). In
this phase, the densities and pressures increase signifi-
cantly, while the range of pressures and densities stays
almost constant during the inspiral. The increase of the
central density leads to a prompt gravitational collapse of
the remnant and to black hole formation. Indeed, during the
collapse, the simulation reaches maximum baryon number
densities of nb ≥ 5 fm−3. As is visible in the last column of
Fig. 2, most of the mass ejection happens during the early
postmerger phase.
For the PT1 setup, where q ¼ 1, the maximum density

reached inside the two individual stars in the binary lies
above the onset density of the phase transition; see Fig. 1.
Hence, during the inspiral, both stars contain an exotic-
matter core; cf. Fig. 3. In the following, we will assume
that this core is made from quark matter. When the stars
come closer and tidal interactions become important, the

deformation of the star leads to a decrease of the central
density. While such a decrease is also present for the noPT1
scenario and has also been seen in previous works (e.g.,
Fig. 2 of Ref. [27]), the presence of a phase transition
increases this drop in density noticeably; cf. Fig. 4, where
the time evolution of the maximum baryon density is
shown. In our case, no quark matter is present shortly
before the merger (third column)—i.e., the stars undergo a
“reverse phase transition.” Once the stars merge, the central
densities rapidly increase, and the remnant again has a
sizeable quark-matter core until the central region quickly
collapses to a black hole (not shown in the figure).
Compared to the PT1 scenario, significantly less mass is
ejected at this time; compare the color bar of nb;u.
We note that a similar reverse phase transition is also

observable in the PT2 setup, for which we present the
corresponding figures in Appendix B, together with the
evolution of noPT2. Furthermore, it is worth pointing out
that the presence of the reverse phase transition is indepen-
dent of the employed resolution; i.e., all our setups for
various resolutions (Table II) show similar features. We have
also tested different resolutions of the initial data to verify
our findings and have found consistent results. Overall, this
leads to the suggestion that the observed feature is robust

FIG. 2. Snapshots of the baryon number density on the equatorial plane (upper panels) and the respective baryon number density–
pressure phase diagram (lower panels), together with the zero-temperature EOS (black line) and color-coded specific internal energy ϵ,
are depicted for the noPT1 setup employing the highest resolution. Also, we represent the hadronic matter density nb in the upper-left
color bar and the density nb;u of matter identified as ejecta in the upper-right color bar.
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and not a numerical artifact. Nevertheless, we want to
present a few words of caution: we model the microphysical
EOS simply through a pressure vs energy density relation,
while the thermal contributions to thermodynamical quan-
tities are introduced ad hoc by an additional ideal gas
contribution. As a consequence, temperature effects due to a
change of the degrees of freedom around the reverse phase
transition are not taken into account.
As mentioned in Sec. I, the reverse phase transition

described in this section is different in nature from the one
presented in Ref. [46], where the change in composition
inside the star is encountered in the postmerger phase due to
oscillations of the central mass density.

B. GW emission

Given the particular setup of our configurations, in which
we picked the same total masses, mass ratios, and tidal

deformabilties for PT1/noPT1 and PT2/noPT2, respec-
tively, one would expect that differences in the extracted
GW signals, if present, will mainly1 arise from the presence
or absence of a phase transition. A comparison for PT1 and
noPT1 is shown in Fig. 5 for the highest resolutions (R4).
Overall, we find a visible dephasing between the two
setups, but these differences are not significant compared to
the large uncertainty of our simulations. The uncertainty
itself is constructed using Richardson extrapolation assum-
ing first-order convergence for the PT1 setups and second-
order convergence for noPT1, and it includes an additional
uncertainty that is incorporated because of uncertainties in

FIG. 3. Snapshots of the baryon number density in the equatorial plane (upper panels) and the respective baryon number density–
pressure phase diagram (lower panels) for the PT1 case employing the highest resolution. We represent the hadronic matter density in the
upper-left color bar, the quark matter density in the upper-middle color bar, and the ejecta density in the upper-right color bar. The lower
color bar refers to the specific internal energy. Upper panels, first column: in this instance, the inner core contains quarks at
log10ðnb ½fm−3�Þ ∼ −0.1. Upper panels, second column: the stars are tidally deformed, decreasing the core densities. The inner cores no
longer contain quarks, since they reach maximum densities of log10ðnb ½fm−3�Þ ∼ −0.3, below the threshold value at which quarks are
present. Upper panels, third column: moment of merger, where we remark on the complete absence of quarks in the coalescing material.
Upper panels, fourth column: in less than 1 ms after the merger, a sizeable quark-matter core is formed, which then quickly collapses to a
BH. Lower panels: The zero-temperature PT1 EOS is depicted (black line) along with the color-coded specific internal energies for the
respective snapshots; from this plot it is clear that at late stages of the inspiral, the quarks in the cores of both stars vanish, marking “the
reverse phase transition”.

1Our setups do not ensure that higher-order tidal effects are
identical, which in principle could also lead to small differences.
These are, however, much smaller than the differences that we
find in our simulations.
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the initial configurations (cf. Appendix A). Overall, the
uncertainty is dominated by finite resolution effects for the
PT cases. Such behavior was already observed before [36]
and is caused by the nondifferentiability of pðρÞ inside the

star. Independent of the large uncertainty and the fact that
we cannot robustly distinguish the twowaveforms, wewant
to highlight the fact that close to the moment of merger,
when the reverse phase transition sets in, no surprising or
artificial feature is present in the PT1 case (or, similarly, the
PT2). Hence, we suggest that, given the current accuracy of
our simulations, we are not able to find a clear imprint of
the reverse phase transition on the observable GW signal.

C. Mass ejection

In addition to the emission of GWs, BNS mergers emit
EM signatures such as the kilonova that is created by the
outflowing neutron-rich material released during and after
the collision of the two stars. To estimate the effect on the
EM signal, we present the mass of the ejected material in
Table III for the two highest resolutions. Interestingly, we
see that the PT setups eject significantly less material (by
about an order of magnitude) than noPT setups, despite the
almost identical time interval to the gravitational collapse
of the remnants and to prompt black hole formation. Hence,
these setups would generally create much dimmer kilo-
novae. For both the PT1 and noPT1 setups, the ejecta are
produced within the first millisecond after the merger,
which suggests that the main ejection mechanism is related
to the core bounce. Hence, we assume that the reverse
phase transition has no observable impact on the ejecta.
In fact, looking at baryon densities above 1.5 fm−3,

presented in the nb-p-ϵ diagrams of Figs. 2 and 3 (lower
panels, fourth column), we see that the PT1 setup is less
populated than the noPT1 setup. Also, for higher densities
≈1.9=2.0 fm−3, which correspond to the core of the
neutron stars, the noPT1 case reaches higher pressures
due to a higher thermal contribution. This suggests that the
noPT1 remnant core exerts larger pressures on the outer
layers, which could explain the larger amount of core-
bounce ejecta.

IV. CONCLUSION

Binary NS mergers are an exciting class of astrophysical
transients that provide us with important information about
the behavior of dense matter at supranuclear densities. With
the help of new numerical relativity simulations, we have
investigated the merger dynamics of systems in which the

FIG. 4. Maximum baryon number density evolution of all
simulations for the highest resolution R4. The red-filled region
corresponds to the density interval spanning the phase transition
for the PT1 EOS. The blue-filled region spans the range of
densities of the phase transition for the PT2 EOS. Herewe note that
all runs exhibit almost no density oscillations before the merger.
The thick lines representing PT1 (black) and PT2 (blue) stay above
their respective onset densities during the inspiral, which indicates
the presence of quarks. Around 1 ms before the merger, the PT1
and PT2 maximum densities drop noticeably to values below the
onset of the phase transition, evidencing the reverse phase
transition. Comparatively, noPT1 and noPT2 (dashed lines)
experience a smaller decrease of maximum density. Finally, all
setups show the characteristic increase of maximum density within
1 ms after the merger, signaling the prompt BH formation.

FIG. 5. Top panel: (2;−2) mode of the highest-resolution (R4)
waveform for the PT1 (blue) and noPT1 (orange) scenarios.
Bottom panel: The black line shows the phase difference between
the Richardson extrapolated waveforms for PT1 and noPT1. The
red-shaded area shows the error on the GW phase ϕ for noPT1
due to the finite-resolution effects computed with Eq. (A1), while
the gray-shaded area shows the error coming from the ID
resolution for PT1, Eq. (A2). Finally, the blue-shaded area shows
the total error on PT1 computed following Eq. (A3).

TABLE III. Maximum value of ejecta mass Mmax
ej for the two

highest resolutions of Table II. The left column refers to the name
of the run, and the right columns correspond to the maximum
ejecta masses for resolutions R4 and R3, respectively.

Name R4M
max
ej ½×10−3M⊙� R3M

max
ej ½×10−3M⊙�

PT1 0.159 0.158
noPT1 1.62 2.22
PT2 0.692 0.434
noPT2 10.1 12.0
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stars undergo a reverse phase transition before the merger;
i.e., the simulated quark core vanishes for the last millisec-
onds before the collision of the stars. After the collision, a
quark core is quickly formed again and, for the particular
EOSs that we employed, the remnant collapses promptly to a
black hole. We verified that the presence of the reverse phase
transition happened independently of the simulated setup as
long as the onset density was close to the central density of
the individual stars, the resolution of the initial data, and the
resolution employed during the dynamical evolution.
Despite the fact that the reverse phase transition is

certainly of academic interest, we did not find an imprint
on the gravitational-wave signal or on the mass ejection that
is noticeable given the numerical precision of our simu-
lations. However, should future high-precision simulations
show that the reverse phase transition is indeed leading to
an observable phase difference, additional follow-up stud-
ies may be warranted. Due to the prompt BH formation
of the remnant, we were not able to verify any imprints of
the phase transition (to quark matter at merger) in the
postmerger gravitational-wave signals, as found in
Refs. [25–30]. Nevertheless, our simulations verified, in
agreement with previous works, that the presence of a
phase transition can noticeably soften the EOS at merger
time [25,26,28,29,45] and can alter the electromagnetic
signals from a BNS merger [45] due to different ejecta
properties. Hence, the joined observation of gravitational
waves and electromagnetic signals from a binary NS
merger will enable a better understanding of the EOS of
supranuclear dense matter.
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APPENDIX A: WAVEFORM ANALYSIS

To compute GWs, we follow the formalism of Ref. [64]
and extract the Newman-Penrose invariant Ψ4 on a sphere
of radius r ≃ 1200 km. We then reconstruct the strain h
using the scheme depicted in Ref. [65].
As a first check, we perform a self-convergence analysis

of the GW phase of the (2,2) mode for every configuration
using all four resolutions; cf. Fig. 6. We obtain second-
order convergence for the noPT configurations, in agree-
ment with our previous findings [12,66], and first-order
convergence for the PT configurations [36].
Phase errors due to finite resolution effects are

computed as

Δϕres ¼ jϕRic − ϕR4j; ðA1Þ

where ϕRic is the phase obtained by Richardson extrapo-
lation [12] from R3 and R4.
Since the presence of a phase transition also complicates

the computational of the initial data—due to the presence of
nonsmooth fields inside the star—we find generally higher
constraint violations when we employ our standard SGRID
resolution. To investigate this effect, we perform one
simulation for which we increase the SGRID resolution
from typically 263 points per individual grid towards 383

points; cf. Fig. 2 of Ref. [55]. We evolve this setup with

FIG. 6. Convergence of the (2,2) mode for all the setups. We
show the GW phase differences between consecutive resolutions
and the rescaled phase differences assuming second-order con-
vergence for the noPT cases and first-order convergence for the
PT cases. The black vertical line marks the merger time.
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resolution R3 and compute the difference for the different
SGRID resolutions:

ΔϕID ¼ jϕID − ϕR3j; ðA2Þ

with ϕID being the phase in the simulation with high-
resolution ID. This difference is added in quadrature to the
PT1 and noPT1 finite resolution error shown in Fig. 5:

Δϕtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δϕ2
res þ Δϕ2

ID

q

: ðA3Þ

Similarly to the results shown for PT1 and noPT1, we
also present the dephasing between PT2 and noPT2 in
Fig. 7 and find, as before, that the phase difference is
smaller than the uncertainty of the simulations. This is
mostly due to the large phase error connected to the PT
simulations.

APPENDIX B: PT2 AND NOPT2 SIMULATIONS

In Figs. 8 and 9, we present snapshots of the baryon
number density in the orbital plane (upper panels) and the
corresponding nb-p-ϵ diagrams (lower panels) for the
noPT2 and PT2 highest-resolution simulation. Overall,
the conclusions drawn from the PT1 setup regarding the
reverse phase transition are also verified on the unequal-
mass PT2 setup, whose EOS is also different from that
of the PT1 setup. Likewise, we notice the vanishing of the
quark-matter core of the more massive star soon before the

FIG. 7. Top panel: (2,2) mode of the highest-resolution wave-
form for PT2 (blue) and noPT2 (orange) scenarios. Bottom panel:
The black line shows the GW phase difference between the
Richardson extrapolated waveforms for PT2 and noPT2. Shaded
areas show the error on the GW ϕ for each system computed
with Eq. (A1). In contrast to Fig. 5, we do not incorporate an
additional phase difference based on simulations with different
ID resolutions.

FIG. 8. Snapshots of the baryon number density on the equatorial plane (upper panels) and the respective baryon number density-
pressure phase diagram (lower panels), together with the zero-temperature EOS (black line) and color-coded specific internal energy, are
depicted for the noPT2 setup employing the highest resolution. Hadronic matter is represented by the upper-left color bar, and matter is
identified as ejecta by the upper-right color bar.
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merger and its reappearance rapidly after the merger. In
both noPT2 and PT2 cases, the remnant collapses to a black
hole for all resolutions. Similarly to the lower panels (fourth
column) of Figs. 2 and 3, we see that larger pressures are
achieved by the core of the noPT2 setup due to thermal
contributions. For the mass ratio q ¼ 1.17 considered,
shock-driven outflows dominate the ejection for soft
EOSs [67], which reasonably suggests that its larger ejecta
can be explained by a stronger core bounce during merger.
Furthermore, the difference between the ejecta masses of
the noPT2 and PT2 cases when compared to the noPT1 and
PT1 cases can be explained as a consequence of larger tidal
tails close to the merger.

Finally, it is worth pointing out that in the lower
panels of Fig. 9 (the first, second and third columns),
one can see two branches in the nb-p-ϵ diagram. The
curve that is closer to the cold EOS refers to the hadronic
star, while the curve that lies well above the cold EOS
refers to points within the more massive star containing a
quark-matter core. This shows, and we verified, that the
thermal pressure is larger in this star, which is probably
caused by shock heating of the matter around the
discontinuity surface that separates the phases. This
effect appears also in the PT1 simulations, although it
is not visible in the nb-p-ϵ diagrams due to the mass
symmetry of the binary.

FIG. 9. Snapshots of the baryon number density on the equatorial plane (upper panels) and the respective baryon number density–
pressure phase diagram (lower panels) for the PT2 case are depicted employing the highest resolution. Similarly to Fig. 3, we represent
hadronic matter in the upper-left color bar, the quark matter using the upper-middle colorbar, and the ejecta using the color bar on the
upper right. The lower color bar refers to the specific internal energy.Upper panels, first column: in this instance, we notice that the inner
core of one of the stars contains quarks at log10ðnb ½fm−3�Þ ∼ −0.1. Upper panels, second column: the densest portions of the stars are
found to be tidally deformed. The inner core containing quarks is smaller and less dense, with log10ðnb ½fm−3�Þ < −0.1. Upper panels,
third column: the moment of merger, where we note the complete absence of quarks in the coalescing material. Upper panels, fourth
column: in less than 1 ms after the merger, a sizeable quark-matter core is formed, which then quickly collapses to a BH. Lower panels:
The zero-temperature PT2 EOS is depicted (black line) along with the color-coded specific internal energies for the respective snapshots;
similarly to the PT1 case, we see the decrease of the quark’s content within the star towards the merger and its subsequent increase
rapidly after the merger.
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APPENDIX C: PIECEWISE POLYTROPIC REPRESENTATION
OF THE EMPLOYED EQUATIONS OF STATE

In Tables IV and V, we present the piecewise polytrope parameters of the EOSs used during the article.

TABLE IV. EOS PT1 and EOS PT2. Piecewise polytrope of the
EOSs with the phase transition used in the simulations. The units
are chosen so that the rest-mass density ρ is in g=cm3, Γ is
dimensionless, and K is such that the pressure p is in g=cm3. The
ith row refers to the polytrope p ¼ Kiρ

Γi , for ρi ≤ ρ ≤ ρiþ1.

EOS PT1

ρ K Γ

0.0000 1.0830 × 10−9 1.7392
6.5038 × 105 4.4916 × 10−8 1.4609
7.7322 × 107 8.7621 × 10−7 1.2974
2.2207 × 1010 2.3406 × 10−6 1.2561
3.3450 × 1011 1.1756 × 101 0.6747
2.6359 × 1012 3.0547 × 10−7 1.2854
1.3459 × 1013 1.9894 × 10−9 1.4519
5.9323 × 1013 6.5167 × 10−13 1.7049
1.4646 × 1014 3.5779 × 10−22 2.3586
2.5283 × 1014 1.6287 × 10−34 3.2155
7.4119 × 1014 3.3732 × 1012 0.1007
1.0555 × 1015 5.0936 × 10−102 7.6770
1.1872 × 1015 3.2385 × 10−49 4.1742
1.4553 × 1015 1.3742 × 10−27 2.7478
2.0038 × 1015 2.4168 × 10−18 2.1436

EOS PT2

ρ K Γ

0.0000 1.0830 × 10−9 1.7392
6.5038 × 105 4.4916 × 10−8 1.4609
7.9642 × 107 9.1355 × 10−7 1.2953
3.9667 × 1010 3.5047 × 10−6 1.2402
3.0603 × 1011 4.2083 0.7109
3.0664 × 1012 2.3870 × 10−8 1.3713
4.3127 × 1013 2.5616 × 10−12 1.6625
1.4409 × 1014 1.8923 × 10−22 2.3780
2.7367 × 1014 1.8769 × 10−37 3.4173
4.9468 × 1014 1.7564 × 10−23 2.4665
8.9714 × 1014 1.7878 × 1013 0.0584
1.2303 × 1015 1.4283 × 10−84 6.4929
1.5285 × 1015 5.0642 × 10−45 3.8883
1.7041 × 1015 5.5642 × 10−34 3.1634
2.0354 × 1015 1.1130 × 10−25 2.6212
2.6666 × 1015 1.5627 × 10−21 2.3523

TABLE V. EOS noPT1 and EOS noPT2. Piecewise polytrope
of the EOSs without phase transition used in the simulations. The
units are chosen so that the rest-mass density ρ is in g=cm3, Γ is
dimensionless, and K is such that the pressure p is in g=cm3. The
ith row refers to the polytrope p ¼ Kiρ

Γi , for ρi ≤ ρ ≤ ρiþ1.

EOS noPT1

ρ K Γ

0.0000 1.2847 × 10−9 1.7209
1.2372 × 106 8.2700 × 10−8 1.4241
1.6870 × 108 1.2124 × 10−6 1.2823
2.7977 × 1011 4.2083 0.7109
3.4214 × 1012 4.9666 × 10−9 1.4232
7.8043 × 1013 5.5345 × 10−16 1.9237
2.0594 × 1014 1.4908 × 10−28 2.8019
5.9849 × 1014 4.2137 × 10−38 3.4481
1.0962 × 1015 8.8935 × 10−26 2.6286
1.8879 × 1015 1.7047 × 10−20 2.2828

EOS noPT2

ρ K Γ

0.0000 1.2847 × 10−9 1.7209
1.2372 × 106 8.2700 × 10−8 1.4241
1.6870 × 108 1.2124 × 10−6 1.2823
2.7977 × 1011 4.2083 0.7109
3.4044 × 1012 5.3155 × 10−9 1.4210
7.6502 × 1013 8.0820 × 10−16 1.9121
2.0379 × 1014 2.0848 × 10−28 2.7918
6.0794 × 1014 5.1814 × 10−38 3.4415
1.0994 × 1015 5.0414 × 10−26 2.6445
1.8898 × 1015 1.4171 × 10−20 2.2878
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