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We estimate the accuracy in the measurement of the tidal Love number of a supermassive compact object
through the detection of an extreme mass ratio inspiral (EMRI) by the future LISA mission. A nonzero
Love number would be a smoking gun for departures from the classical black hole prediction of general
relativity. We find that an EMRI detection by LISA could set constraints on the tidal Love number of a
spinning central object with dimensionless spin â ¼ 0.9 (â ¼ 0.99), which are approximately four (six)
orders of magnitude more stringent than what achievable with current ground-based detectors for stellar-
mass binaries. Our approach is based on the stationary phase approximation to obtain approximate but
accurate semianalytical EMRI waveforms in the frequency domain, which greatly speeds up high-precision
Fisher-information matrix computations. This approach can be easily extended to several other tests of
gravity with EMRIs and to efficiently account for multiple deviations in the waveform at the same time.
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I. INTRODUCTION

During a binary inspiral, the tidal interactions between
two compact objects become increasingly more relevant.
The gravitational field of each object produces a tidal field
on its companion, deforming its shape and multipolar
structure. This effect can be quantified in terms of tidal-
induced multipole moments, more commonly known as the
tidal Love numbers (TLNs) [1].
A remarkable result in general relativity (GR) is that

the TLNs of black holes (BHs) are precisely zero. This was
first demonstrated for nonrotating BHs [2–5] and then
extended for slowly rotating BHs [6–8], and more recently
it has been proved for Kerr BHs1 without any approxima-
tions [17–19]. This is generically not the case for BHs
in modified gravity and for dark ultracompact objects
without a horizon [20], such as boson stars [20–22],
gravastars [20,23,24], anisotropic stars [25] and other
simple exotic compact objects [26] with stiff equation
of state at the surface [20]. In some cases it was found that
the TLNs vanish only logarithmically as a function of the
compactness in the BH limit [20], providing a “magnifying
glass” for near-horizon physics [12,27].

Beside posing an intriguing problem of “naturalness” in
Einstein’s theory [28] and being associated with special
emerging symmetries [29–32], the precise cancellation of
the TLNs for BHs in GR also provides an opportunity to
test the prediction that all compact objects above a certain
mass must be BHs: measuring a nonvanishing TLN would
provide a smoking gun for GR deviations or for the
existence of new species of ultracompact massive objects.
The latter possibility is particularly relevant for super-
massive objects which, in the standard paradigm, can only
be BHs.
It has been recognized that, for extreme mass-ratio

inspirals (EMRIs), the TLNs of the central object affect
the gravitational waveform at the leading order in the mass
ratio [33]. This property was used to estimate very stringent
constraints on the TLNs through an EMRI detection, as
achievable by the future space mission LISA [34–36]
and also by third-generation detectors such as the
Einstein Telescope [37–39]. However, the estimates in
Ref. [33] were based on a Newtonian computation and a
hand-waiving gravitational wave (GW) dephasing argu-
ment which neglects correlations among different wave-
form parameters. The latter can jeopardize the detectability
of a given effect even when the corresponding dephasing
is significant [40].
The scope of this paper is to perform a proper estimate

of the measurability of the TLNs in an EMRI signal.
We shall focus on circular equatorial orbits but include the
spin of both binary components (henceforth the primary

1We refer here to the conservative tidal response which is
directly related to the TLNs. For a BH the dissipative response is
nonzero and directly connected to the tidal heating [1,9], whose
phenomenological consequences in our context have been
recently studied in details [10–16].
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and the secondary). Beside being unavoidably present in
the waveform, including the spin of the secondary in our
context is also useful to understand whether a putatively
small effect such as that induced by the tidal deformability
of the primary can be confused by other small effects like
those induced by the secondary spin.
We shall use the Fisher informationmatrix, which requires

us to efficiently compute numerical derivatives of the
waveform in terms of some of its parameters. For EMRIs,
this task is highly delicate and time consuming [40–43]. To
overcome known difficulties related with the inversion of the
Fisher matrix and with the numerical derivatives, here we
implement a semianalytical approximation of the waveform
using the stationary phase approximation (SPA) [44–46],
which provides an accurate description in the frequency
domain. Although we apply this method to the estimate of
the TLNs, we envisage that the same approach (with all its
benefits) can be directly used for the many other tests of
gravity with EMRIs [35,36,41,47].
Our main result is to confirm LISA’s unique power

in constraining the TLNs of a supermassive objects [33].
Although our projected bounds are, as expected, less
optimistic than those naively derived in Ref. [33], they
remain remarkable: as detailed below we find that an EMRI
detection with LISA at signal-to-noise ratio (SNR) equal 30
could constrain the TLNs of a highly spinning super-
massive object up to six orders of magnitude better than
what currently achievable with LIGO/Virgo for stellar-mass
binaries [48].
We use G ¼ c ¼ 1 units throughout and the notation

follows that of Ref. [49].

II. SETUP

Before providing the details of our model, it is useful to
recall the general argument presented in Ref. [33]. Therein,
it was recognized that, at leading post-Newtonian (PN)
order and in the small mass-ratio limit (q ≪ 1), the tidal
correction to the instantaneous GW phase reads

ϕtidalðfÞ ∝
k1
q
v5; ð1Þ

where k1 is the (quadrupolar, electric) TLN of the primary,
f is the GW frequency, v ¼ ðπMfÞ1=3, and M is the mass
of the primary. Thus, this correction enters at the same
(adiabatic) order in the mass ratio as the ordinary radiation-
reaction term, ϕNðfÞ ∝ v−5=q, while being suppressed
relative to the latter by a relative 5PN (v10) factor. If
k1 ≫ q, then the tidal contribution is larger that the first-
order correction due to the conservative part of the self
force [50,51], which is instead suppressed by a factorOðqÞ
relative to ϕN .
This hand-waiving argument is based on a PN expan-

sion, which is known to converge poorly in the extreme
mass-ratio limit [52–54]. On the other hand, it is intriguing

that the 5PN suppression of the tidal term might not
be relevant for an EMRI, since most of the signal is
accumulated at the innermost stable circular orbit (ISCO),
when v ¼ Oð1Þ and the orbital distance r ¼ OðMÞ.
With this motivation in mind, below we provide a more

detailed model to incorporate tidal effects in EMRIs.

A. A model for a Kerr-like deformable object

The vacuum region outside a spinning object is not
necessarily described by a Kerr geometry due to the
absence of Birkhoff’s theorem beyond spherical symmetry.
However, in the BH limit, any deviation from the multi-
polar structure of a Kerr BH dies off sufficiently fast [55]
within GR or in modified theories of gravity whose effects
are confined near the radius of the compact object.2 Explicit
examples of this “hair-conditioner theorem” [55] within
GR are given in Refs. [23,24,58–61], whereas examples in
low-energy effective string theory were recently studied in
the context of BH microstate geometries in Refs. [62–64].
In this regime, we assume that the background geometry
of the primary is described by the Kerr metric (see,
e.g., [65,66] for similar models), which is given in
Boyer-Lindquist coordinates by

ds2 ¼ −dt2 þ ΣðΔ−1dr2 þ dθ2Þ þ ðr2 þ a2Þ sin2 θdϕ2

þ 2Mr
Σ

ða sin2 θdϕ − dtÞ2; ð2Þ

where Δ ¼ r2 − 2Mrþ a2, Σ ¼ r2 þ a2 cos2 θ, and a is
the spin parameter such that jaj ≤ M. Without loss of
generality, we consider the spin of the primary to be aligned
with the z axis, namely a ≥ 0. However, at variance with
the standard BH picture, we will allow the object to be
deformable when immersed in an external tidal field, in the
sense that its TLNs are nonzero.3

Note that this model is conservative since, besides
including a nonzero TLN, the rest of the geometry is
identical to that of a Kerr BH. In specific models of
deformable supermassive objects one would generically

2For EMRIs, assuming that the central object is described by
the Kerr metric is also well justified for gravity theories with
higher curvature corrections to GR [56]. In that case, the
corrections to the metric are suppressed by powers of
lP=M ≪ 1, where lP is the Planck length or the length scale
of new physics [49,57].

3Note that, in certain modified theories of gravity, unperturbed
stationary vacuum solutions can be described by GR BHs, even if
the dynamics of their perturbations is different and hence the
TLNs are generically nonzero. Two notable examples are these:
(i) static BHs in dynamical Chern-Simons gravity [67], which are
described by the Schwarzschild metric but have nonzero mag-
netic TLNs [20]; (ii) BHs in Einstein-scalar-Gauss-Bonnet
gravity featuring a scalarization mechanism [68], because in
these theories GR Kerr BHs are still stationary solutions but their
perturbations are not described by the Teukolsky equation [69].
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expect also other deviations, such as tidal heating and
deformed multipole moments (see [26] for a review).

B. Orbital dynamics and radiation reaction effects

We focus on circular, equatorial, and prograde orbits, for
which the initial angular momentum Lz is positive and
parallel to the z axis. To avoid the complications induced by
spin precession, we assume that also the secondary spin is
(anti)aligned with the primary spin.
The EMRI orbital evolution is driven by adiabatic

Teukolsky fluxes [70], including linear corrections due
to the secondary spin. The radiation reaction equations for
the evolution of the orbital parameters are expanded in the
mass ratio, and include the contributions due to the TLN of
the primary. As explained below, the latter are included in a
PN fashion. Although this hybrid model combines ele-
ments of BH perturbation theory with PN terms, it allows
us to describe the EMRI dynamics in the strong field
regime near the primary, which is at variance with a fully
PN description of the orbital dynamics that instead breaks
down near the ISCO.
The orbital motion of a spinning point particle in Kerr

spacetime features two integrals of motion: the normalized
energy Ẽ¼E=μ and angular momentum J̃z¼Jz=ðμMÞ [71],
where μ ¼ qM ≪ M is the secondary mass. To characterize
the intrinsic angular momentum of the secondary, we
introduce the dimensionless parameter

σ ¼ S
μM

¼ χq; ð3Þ

where χ ¼ S=μ2 is the reduced spin of the secondary.
For EMRIs, jχj ≪ 1=q, which implies jσj ≪ 1. This allows
us to expand both Ẽ and J̃z in terms of the spin parameter,
considering linear corrections only,

Ẽ ¼ Ẽ0 þ σẼ1; J̃z ¼ J̃0z þ σJ̃1z : ð4Þ

The explicit expressions of Ẽ and J̃z are given in [40]. We
add to the binding energy Ẽ the PN contribution ẼTLN due to
the TLN of the primary (k1) in Boyer-Linquist coordinates,
i.e., in the limit q ≪ 1,[33,72],4

ẼTLN ≃ −ẼPN

�
6

r̂5
þ 88

3

1

r̂6

�
k1; ð5Þ

with ẼPN ¼ −q=ð2r̂Þ being the leading-order binding
energy in the PN expansion. In the above expression, we
included both 5PN and 6PN tidal terms [73]. Note that the

secondary TLN (k2) would contribute Eq. (5) with terms
scaling as q4 [33], thus being largely subdominant for the
EMRI case. The orbital frequency Ω̂ is given by

Ω̂ðr̂Þ ¼ Ω̂0ðr̂Þ þ σΩ̂1ðr̂Þ; ð6Þ

where Ω̂0ðr̂Þ ¼ 1=ðâ� r̂3=2Þ is the Keplerian frequency for
a nonspinning particle, and

Ω̂1ðr̂Þ ¼ −
3

2

ffiffiffî
r

p ∓ âffiffiffî
r

p ðr̂3=2 � aÞ2 : ð7Þ

Once the orbital radius r̂ and the parameters â and σ are
specified, the orbital dynamics is completely determined
by Ẽ; J̃z, and Ω̂.
At the adiabatic level, the rate of change of the constants

of motion Ẽ and J̃z is balanced by the emitted GW fluxes,
in which postadiabatic corrections induced by the
secondary spin are included as described in Ref. [40].
These balance laws hold at first order in σ for a spinning
particle [74]. The energy fluxes can also be expanded in σ
at fixed spins â and orbital radius r̂ [40]:

F ðr̂; Ω̂Þ ¼ F 0ðr̂; Ω̂0Þ þ σF 1ðr̂; Ω̂0; Ω̂1Þ þ FTLNðr̂Þ; ð8Þ

where

F 0 þ σF 1 ¼ 1

q

��
dẼ
dt̂

�
H

GW
þ
�
dẼ
dt̂

�
∞

GW

�
; ð9Þ

with ðdẼ=dt̂ÞH;∞
GW being the energy flux across the

horizon and at infinity, respectively, as computed solving
Teukolsky’s equations. The tidal contribution to the flux in
Boyer-Linquist coordinates reads

FTLNðr̂Þ ¼
128

5

k1
r̂10

�
1 −

22

21

1

r̂

�
; ð10Þ

where again we have included both 5PN and 6PN correc-
tions. Equation (10) shows that the TLN of the primary
contributes to the GW fluxes at the leading, adiabatic, order
in q [33].
By defining

Gðr̂; Ω̂Þ ≔
�
dẼ
dr̂

�
−1
F ðr̂; Ω̂Þ; ð11Þ

then, at first order in the mass ratio,

Gðr̂; Ω̂Þ ¼ G0ðr̂; Ω̂0Þ þ σG1ðr̂; Ω̂0; Ω̂1Þ þ GTLN; ð12Þ

G0 ¼
�
dẼ0

dr̂

�
−1
ðF 0 þ FTLNÞ; ð13Þ

4Hereafter hatted quantities refer to dimensionless variables
normalized to the primary mass, e.g., r̂ ¼ r=M, â ¼ a=M,
Ω̂ ¼ MΩ, and so on.

CONSTRAINING THE TIDAL DEFORMABILITY OF … PHYS. REV. D 107, 024021 (2023)

024021-3



G1¼
�
dẼ0

dr̂

�
−1
F 1−

�
dẼ0

dr̂

�
−2
�
dẼ1

dr̂

�
ðF 0þFTLNÞ; ð14Þ

GTLN ¼ −
�
dẼ0

dr̂

�
−2
�
dẼTLN

dr̂

�
ðF 0 þ FTLNÞ; ð15Þ

which yield for the time evolution of the orbital radius

dr̂
dt̂

¼ −q½G0ðr̂; Ω̂0Þ þ σG1ðr̂; Ω̂0; Ω̂1Þ�: ð16Þ

Likewise, at first order in σ the orbital phase is given by

dϕ
dt̂

¼ Ω̂0ðr̂Þ þ σΩ̂1ðr̂Þ: ð17Þ

Solving Eqs. (16) and (17) and linearizing them in σ yields
the time evolution of r̂ðt̂Þ and ϕðt̂Þ, which provide the
basic ingredients to compute the GW signal emitted by
the binary. We compute the Teukolsky fluxes (9) using the
same setup and procedure detailed in Refs. [40,49,75].
Likewise, the time evolution of r̂ðt̂Þ and ϕðt̂Þ is performed
as detailed in Ref. [40].

C. Time-domain waveform

We use the quadrupole approximation for the GW
strain [70]:

hαðtÞ ¼
2μ

D
Ω̂ðtÞ2=3½Aþ

α ðtÞ cosð2ϕðtÞ þ 2ϕ0Þ
þ A×

α ðtÞ sinð2ϕðtÞ þ 2ϕ0Þ�; ð18Þ

where α ¼ I; II identifies two independent Michelson-like
detectors that constitute LISA’s response [76],

Aþ
α ðtÞ ¼ ð1þ cos2 ϑÞFþ

α ðtÞ; ð19Þ

A×
α ðtÞ ¼ −2 cosϑF×

α ðtÞ; ð20Þ

where ϕ0 is the initial orbital phase, D is the source’s
luminosity distance from the detector, and ðϑ;φÞ identify
the direction, in Boyer-Lindquist coordinates, of the latter
in a reference frame centered at the source. Our assumption
for the emitted GW signal is expected to become less
accurate as the binary approaches highly relativistic orbits
near the plunge [77]. However, as shown in Ref. [40], the
errors on the intrinsic parameters are not significantly
affected by choosing the quadrupole formula (18). Use
of fully Teukolsky waveforms, and the inclusion of higher
multipole moments improves in general the errors on the
source parameters, and in particular on the luminosity
distance D and on the angle ΔΩK , which are therefore
overestimated in Table II. The antenna pattern functions
Fþ
α ðtÞ and F×

α ðtÞ depend on the angles ðϑS;φSÞ and
ðϑK;φKÞ that provide the direction of the source and of

the orbital angular momentum [78] in a heliocentric
reference frame attached with the ecliptic5 [79]. The polar
angle ϑ can be recast in terms of ðϑS;φSÞ and ðϑK;φKÞ as

cosϑ ¼ cos ϑS cosϑK þ sinϑS sinϑK cosðφS − φKÞ: ð21Þ

It is convenient to rewrite Eq. (18) in a more compact form:

hαðtÞ ¼
2μ

D
Ω̂ðtÞ2=3AαðtÞ cosðΦαðtÞÞ; ð22Þ

ΦαðtÞ ¼ 2ϕðtÞ þ 2ϕ0 þ ϕsh
α ðtÞ; ð23Þ

ϕsh
α ðtÞ ¼ arctan

�
−
A×
α ðtÞ

Aþ
α ðtÞ

�
; ð24Þ

AαðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþ

α ðtÞÞ2 þ ðA×
α ðtÞÞ2

q
: ð25Þ

Finally, we include the effect of the Doppler modulation
induced by the LISA orbital motion by introducing a shift
in the GW phase:

ΦαðtÞ → ΦαðtÞ þ ϕDopðtÞ; ð26Þ

ϕDopðtÞ ¼ 2ΩðtÞR sin ϑS cos½2πðt=TLISAÞ − φS�; ð27Þ

where R ¼ 1 AU and TLISA ¼ 1 yr is LISA’s orbital
period [78].

D. Frequency-domain waveform in the SPA

We employ the SPA to obtain an approximate but
accurate semianalytical representation of the waveform
templates in the frequency domain [44–46]. The Fourier
transform of our time-domain waveform (22) is given as

h̃αðfÞ ¼
μ

D

Z∞

−∞

dtΩ̂ðtÞ2=3AαðtÞe−2πiftðeiΦαðtÞ þ e−iΦαðtÞÞ;

ð28Þ
and we assume that Φα is strictly monotonic in time, i.e.,
_ΦαðtÞ > 0. We can rewrite Eq. (28) as

h̃αðfÞ ¼ h̃þα ðfÞ þ h̃−α ðfÞ; ð29Þ

h̃−α ðfÞ ¼
μ

D

Z∞

−∞

dtΩ̂ðtÞ2=3AαðtÞe−ið2πft−ΦαðtÞÞ; ð30Þ

h̃þα ðfÞ ¼
μ

D

Z∞

−∞

dtΩ̂ðtÞ2=3AαðtÞe−ið2πftþΦαðtÞÞ: ð31Þ

5For equatorial orbits, ðϑK;φKÞ coincide with the direction of
the primary spin.
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It is sufficient to compute the Fourier transform only for
positive frequencies f, since our chirp signal is real. The
integral h̃αðfÞ rapidly oscillates, and the contributions due
to the complex exponential cancel out except near the times
interval t̃ where the Fourier phase Ψα ≡ 2πft −ΦαðtÞ is
stationary:

dΨα

dt

����
t¼t̃

¼ 0 ⇒ 2πf ¼ _Φαðt̃Þ: ð32Þ

In this case, h̃þα is negligible [45], thus h̃α ≈ h̃−α . It is
possible then to expand in Taylor series Ψα near t̃:

ΨαðtÞ ¼ Ψαðt̃Þ þ
1

2

d2Ψα

dt2

����
t¼t̃

ðt − t̃Þ2 þ oððt − t̃Þ3Þ: ð33Þ

By plugging the above expansion in h̃−α ðfÞ, we obtain the
following approximation of h̃αðfÞ:

h̃αðfÞ ≃
μ

D
e−ið2πft̃−Φαðt̃ÞÞ

Z∞

−∞

dtΩ̂ðtÞ2=3AαðtÞe−i12Φ̈αðt−t̃Þ2 :

ð34Þ

Before proceeding, we notice that Φα includes the terms
_ϕshðtÞ and _ϕDopðtÞ, which are suppressed by a factor
2π=ðΩðtÞTLISAÞ ≪ 1. Thus, we can safely neglect these
terms, approximating _ΦαðtÞ ≈ 2ΩðtÞ. Further assuming that
AαðtÞ is slowly varying with time, we can write (after a
change of variables)

h̃αðfÞ ≃
μ

D
e−ið2πft̃−Φαðt̃ÞÞðπMfÞ2=3Aαðt̃Þ

Z∞

−∞

dse−i _Ωðt̃Þs2 :

ð35Þ

The integral in the previous expression can be computed by
standard techniques, leading to the SPA for the signal (22)

h̃αðfÞ ¼
μ

D
ðπfMÞ2=3Aα½t̃ðfÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

j _Ωðt̃ðfÞÞj
r

e−iΦ̃α½t̃ðfÞ�; ð36Þ

Φ̃α½t̃ðfÞ� ¼ 2πfðt̃ðfÞ þ t0Þ − 2ðϕðt̃ðfÞÞ þ ϕ0Þ
− ϕDopðt̃ðfÞÞ − ϕsh

α ðt̃ðfÞÞ � π=4: ð37Þ

The sign in Eq. (37) is fixed by the sign of the frequency
sweep _Ω, given by

_Ω ¼ dr̂
dt

dΩ
dr̂

; ð38Þ

while t̃ðfÞ is the time at which the equation

ΩðtÞ ¼ πf ð39Þ

holds for any given Fourier frequency f. The SPA is
accurate as long as the amplitude AðtÞ and orbital fre-
quency ΩðtÞ are slowly varying:

���� 1

AαðtÞ
dAαðtÞ
dt

����∼Oð10Þ
TLISA

≪ jΩðtÞj;
����
_ΩðtÞ
ΩðtÞ2

����≪1: ð40Þ

The first condition is always satisfied since for a typical
EMRI ΩðtÞTLISA ≫ Oð10Þ, while we have verified that the
second criterion is met for all the binary configurations we
analyzed. Moreover, the SPA requires ΩðtÞ to be strictly
monotonic during the orbital evolution. We have checked
that this condition is also satisfied in our case (whereas it is
not necessarily the case for more general orbits). As a final
remark, we note that the frequency-domain waveform is
known fully analytically except for the orbital phase ϕðtÞ,
the time t̃ðfÞ, and the frequency sweep _ΩðtÞ, which have
implicit and explicit dependence on the parameters, and
needs to be computed numerically.

III. ACCURATE FISHER MATRIX ANALYSIS
FOR EMRI WAVEFORMS

The GW signal emitted by a circular, equatorial EMRI
with a spinning secondary, moving on the equatorial plane
with spin (anti)aligned to the z axis, and including the tidal
deformability of the primary, is completely specified by
12 parameters y⃗ ¼ fy⃗I; y⃗Eg: (i) six intrinsic parameters
y⃗I ¼ ðln μ; ln M; â; χ; t0; k1Þ and (ii) six extrinsic param-
eters y⃗E ¼ ðϕ0; ϑS;φS; ϑK;φK; lnD). We remind the reader
that ðM; μÞ are the mass components with q ¼ μ=M ≪ 1,
ðâ; χÞ being the primary and secondary spin parameters,
k1 is the dimensionless TLN of the primary, ðϕ0; t̂0Þ define
the binary initial phase and starting time, and D is the
source luminosity distance. The four angles ðϑS;φSÞ and
ðϑK;φKÞ correspond to the colatitude and the azimuth of
the source sky position and of the orbital angular momen-
tum, respectively [79]. Since the orbit is circular and
equatorial, the orbital angular momentum has no precession
around the primary spin, and all angular momenta are
parallel to each other.
In the limit of large SNR, the errors on the source

parameters inferred by a given EMRI observation can be
determined using the Fisher information matrix:

Γij ¼
X
α¼I;II

�
dh̃α
dyi

���� dh̃αdyj

�
y⃗¼y⃗0

; ð41Þ

where y⃗0 corresponds to the true set of binary parameters,
and we have introduced the noise-weighted scalar product

CONSTRAINING THE TIDAL DEFORMABILITY OF … PHYS. REV. D 107, 024021 (2023)

024021-5



between two waveforms pα and qα in the frequency
domain:

ðpαjqαÞ¼2

Z
fmax

fmin

df
SnðfÞ

½p̃�
αðfÞq̃αðfÞþ p̃αðfÞq̃�αðfÞ�; ð42Þ

where SnðfÞ corresponds to the noise spectral density of
the detector, and the star identifies complex conjugation.
The scalar product was computed using the Simpson’s
integration method. In our computations we choose fmax
and fmin as

fmin ¼
2

2π

1

M
½Ω̂0ðr̂0Þ þ σΩ̂1ðr̂0Þ�; ð43Þ

fmax ¼
2

2π

1

M
½Ω̂0ðr̂ISCOÞ þ σΩ̂1ðr̂ISCOÞ�; ð44Þ

where r̂ISCO is location of the ISCO for a nonspinning test
particle around a spinning central object, and r̂0 is the initial
orbital radius. The waveform scalar product allows us to
define the optimal SNR for a given signal h:

SNR ¼ ðhjhÞ1=2; ð45Þ

which scales linearly with the inverse of the luminosity
distance. The inverse of Γij is the covariance matrix Σij,
whose diagonal elements correspond to the statistical
uncertainties of the waveform parameters,

σ2xi ¼ ðΓ−1Þii; ð46Þ

whereas the off-diagonal elements correspond to the
correlation coefficients. In the large-SNR limit the covari-
ance matrix scales inversely with the SNR. For a given set
of parameters, it is therefore straightforward to rescale
the errors by varying the luminosity distance D, and hence
the SNR.
In addition to the standard deviations on the 12 param-

eters defined above, we also analyze the error box on the
solid angle spanned by the unit vector associated to
ðϑS;φSÞ and ðϑK;φKÞ:

ΔΩi ¼ 2πj sinϑij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ϑiσ

2
φi
− Σ2

ϑiφi

q
: ð47Þ

where i ¼ ðS; KÞ.
As discussed in [40], the inclusion of the secondary spin

can severely deteriorate the accuracy with which the other
intrinsic parameters are recovered. For this reason, we
consider three alternative scenarios in our data analysis:
(i) the secondary spin χ is an unbounded parameter, (ii) the
secondary spin is integrated out from the posterior dis-
tribution by simply removing the corresponding row and
column from the Fisher matrix, and (iii) a suitable prior is
applied to χ.

For case (ii) we assume a wide prior given by a Gaussian
probability distribution with standard deviation σ0 ¼ 1 and
zero mean. In this configuration the errors on the source
parameters are given by

σ2xi ¼ Σii ¼ ½ðΓþ Γ0Þ−1�ii; ð48Þ

where ðΓ0Þij ¼ 1=σ0δiχδχj is the Fisher matrix correspond-
ing to the prior distribution [40].
We have computed the numerical integral in Eq. (42)

assuming the LISA sensitivity curve, including the con-
tribution of the confusion noise from the unresolved
Galactic binaries [80]. The numerical derivatives of the
waveform with respect to the parameters required to
compute the Fisher matrix are computed as explained in
Appendix A, whereas the numerical stability of the Fisher
and covariance matrices is discussed in Appendix B.
We consider T ¼ 1 yr observation time, with the orbital

evolution actually ending not exactly at the r̂ISCO, but at
the onset of the transition region as defined in [81], i.e.,
rplunge ¼ r̂ISCO þ δr̂ with δr̂ ¼ 4q2=5. We fix the injected
angles to the fiducial values ϑS ¼ π=4;ϕS ¼ 0; ϑK ¼ π=8;
ϕK ¼ 0. We focus on binaries with component masses
M ¼ 106 M⊙ and μ ¼ 10 M⊙, secondary spin χ ¼ 0,
setting the primary TLN to k1 ¼ 0. Finally, the luminosity
distance is scaled such that the binary has SNR ¼ 30 for
any spin.

IV. RESULTS AND DISCUSSION

A. Comparison between the fast Fourier transform
and the SPA

We have checked the validity of the SPA by computing
the faithfulness between EMRI waveforms in the frequency
domain obtained in two different ways: (i) with a fast
Fourier transform (FFT) of the time signal (22), and (ii) with
the SPA presented above. Specifically, we compute

FðhSPAα ; hFFTα Þ ¼ max
t0;ϕ0

ðhSPAα jhFFTα Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhSPAα jhSPAα ÞðhFFTjhFFTÞ

p : ð49Þ

TABLE I. Faithfulness FðhSPAα ; hFFTα Þ between frequency-
domain waveforms obtained with the SPA, and by applying
the FFT to the time domain signal, for different values of the
primary spin parameter â and for our reference binary system.
The second column identifies the independent channels of the
LISA interferometer. We consider EMRIs evolving for one-year
up to the plunge.

â Channel F

0.9 I 0.9931
II 0.9970

0.99 I 0.9942
II 0.9971
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Following the Shannon theorem, for the FFT we use a
sampling time Δts ¼ b1=ð2fmaxÞ − 1c, with ns ¼ T=Δts
being the total number of samples, T ¼ 1 yr, and fmax
given by Eq. (44). Before applying the FFT6 we have
tapered the time domain signal to reduce spectral leakage,
using a Tukey window with window size β ¼ 0.001.
Table I provides the values of the faithfulness computed

for two configurations of the primary spin, and for each
LISA channel.7 In agreement with [44], our results show
that the SPA waveform model matches well with the FFT
waveform: FðhSPAα ; hFFTα Þ ≳ 0.993 even for a highly spin-
ning primary with â ¼ 0.99. As a useful rule of thumb,
values ofF smaller thanF ∼ 1 − D

2SNR2, withD dimension
of the waveform model, highlights that two templates differ
significantly among each other [82,83]. For D ¼ 12 as
in our case, this threshold translates into F ∼ 0.993 for
SNR ¼ 30, so the SPA is sufficiently accurate for a typical
EMRI SNR.
As a further assessment of the validity of the SPA, we

have compared the standard deviations (46), obtained with
the SPA and with the frequency-domain waveforms com-
puted through a FFT. In the last case derivatives of the
template with respect to the binary parameters have been
numerically determined using a five-point stencil formula
(see Ref. [40] for details), except for the luminosity
distance D, since ∂h̃ðfÞ=∂D can be computed analytically.

In the worst case scenario we find that the maximum
relative difference between the standard deviations pro-
vided by the Fisher matrix are (i) ∼15% when χ is
unbounded, (ii) ∼3% when the secondary spin is excluded,
(iii) ∼2% when a prior on χ is imposed. Overall, these
results confirm that the SPA provides a reliable and
accurate analytic approximation of the purely numerically
frequency-domain waveforms employed for EMRIs.

B. Measurability of the TLN

We now present our main results for the measurability of
the primary TLN, k1. In Table II, we provide the statistical
errors on the waveform parameters when both the 5PN and
the 6PN tidal corrections are included in the waveform. We
first notice that k1 can be detected with high accuracy even
when the secondary spin χ is considered as an unbounded
parameter (first row of Table II). The marginalization of χ
(second row) or the inclusion of a Gaussian prior on χ
(third row) improves the statistical error on all intrinsic
parameters (ln M; ln μ; â, and k1).
We have also checked that including only the leading PN

order (5PN) tidal term does not affect significantly the
standard deviations on the parameters. This fact provides a
good consistency check of our hybrid waveform (mixing
BH perturbation theory with PN corrections), since the PN
series is not supposed to converge near the ISCO of a
highly spinning BH. We can therefore expect that higher-
order tidal terms (or a resummation thereof) would not
change our results significantly.
We find that the TLN of the primary k1 can be con-

strained with the astonishing accuracy of above 3 × 10−2

and 8 × 10−4 for â ¼ 0.9 and â ¼ 0.99, respectively. As a
figure of merit, it is interesting to note that so far the only
measurement of the tidal deformability of a compact object
is that coming from GW170817 [48], which set a constraint

TABLE II. Top: Fisher-matrix errors on the intrinsic source parameters, on the luminosity distance, and on the solid angles which
define the orientation and the orbital angular momentum of the binary for our model. The primary has spin â ¼ 0.9 while the secondary
is nonspinning, withM ¼ 106 M⊙, μ ¼ 10 M⊙, and k1 ¼ 0. For clarity, we present the log10 of the errors on ln M, ln μ, â, χ, t̂0, k1, ϕ0,
and ln D. We include both the 5PN and 6PN TLN terms. Bottom: same as the top but with â ¼ 0.99. The SNR for a source at
D ¼ 1 Gpc is SNR ¼ 111 (top) and SNR ¼ 125 (bottom), but the errors are all normalized to the fiducial value SNR ¼ 30.

5PN and 6PN TLN terms âinjected ¼ 0.9

Prior ln M ln μ â χ t̂0 k1 ϕ0 ln D ΔΩS ΔΩK

No −4.9 −4.1 −3.8 1.6 0.48 −1.5 0.74 −0.069 6.2 × 10−4 7.5
No −5.8 −4.2 −4.1 � � � 0.48 −1.6 0.74 −0.069 5.9 × 10−4 2.9
Yes −5.7 −4.2 −4.1 0.57 0.48 −1.6 0.74 −0.069 5.9 × 10−4 7.5

5PN and 6PN TLN terms âinjected ¼ 0.99

Prior ln M ln μ â χ t̂0 k1 ϕ0 ln D ΔΩS ΔΩK

No −5.2 −4.6 −4.4 1.2 0.21 −2.7 0.74 −0.071 2.7 × 10−4 6.7
No −5.8 −4.9 −5.0 � � � 0.21 −3.1 0.74 −0.071 2.7 × 10−4 2.6
Yes −5.7 −4.8 −4.9 0.61 0.21 −3.1 0.74 −0.071 2.7 × 10−4 6.7

6After the tapering we have also padded the waveform with 2n
zeros in order to boost the computational speed of the FFT.

7The numerical computation of Eq. (49) can be sensitive to the
precision adopted in the scalar product. For instance, the frac-
tional difference between FðhSPAα ; hFFTα Þ obtained assuming
machine precision and 40 digits is at the level of Oð1Þ%. We
have checked the stability of the faithfulness under round-off
errors by increasing the precision adopted in our calculations,
finding no changes in the results.
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on the TLN of a neutron star at the level of σk1 ≲ 103, i.e.,
several orders of magnitude less stringent than what is
achievable with EMRIs. It is also interesting to note that,
for all models of compact objects in which the TLNs scale
logarithmically with the compactness [20], σk1 ∼ 10−3

would allow us to probe putative structure at Planckian
distance from the horizon and to distinguish between
different proposals of exotic compact objects motivated
by quantum gravity [11,12,84].
Finally, Fig. 1 shows the statistical error on k1 for different

values of the primary spin â and different assumptions for
the secondary spin. We observe that the error decreases very
rapidly as the primary spin increases, because the majority of
the signal comes from the ISCO of the highly spinning
primary, where tidal effects are more relevant. As stressed
above, since the PN series poorly converges near the ISCO, it
is important that the results shown in Fig. 1 (which includes
the 6PN tidal corrections) are very similar to those onewould
obtain by including only the 5PN terms. Furthermore, Fig. 1
confirms that neglecting the secondary spin or including it
with a very conservative prior gives almost identical results.
Thus, the secondary spin does not hamper the ability of
measuring a nonstandard small effect such as the primary
tidal deformability.

V. CONCLUSION

Measuring a nonzero TLN for a supermassive object
would be a robust smoking gun for new physics beyond the

standard BH prediction in GR. EMRIs detectable by LISA
are unique sources for tests of gravity and allow for
unparalleled measurements of beyond-GR effects. With
these motivations in mind, we have estimated the accuracy
in the measurement of the tidal deformability of a super-
massive compact object through an EMRI detection by
LISA. Confirming back-of-the-envelope estimates [33], we
found the TLN of the central supermassive object can be
measured at the level of 10−3 if the central object is highly
spinning. This is about six orders of magnitude better than
current accuracy in measuring the TLNs of a NS with
ground-based detectors.
We included the secondary spin as a possible source of

confusion, showing that its inclusion does not affect the
bounds on the primary TLN. On the other hand, we have
focused on simplified (circular, equatorial, nonprecessing)
orbits. It would be important to extend our analysis by
including eccentricity, inclined orbits [44,85,86], and
possible spin precession [87,88]. On the one hand these
extensions will increase the dimensionality of the param-
eter space, rendering parameter estimation more demand-
ing, but on the other hand they might also help in
disentangling possible parameter correlations. Another
possible extension would be the inclusion of important
postadiabatic corrections to the waveforms [89–92].
Finally, we have adopted a hybrid “Teukolsky+PN” wave-
form, where tidal corrections were introduced with their
corresponding (leading and next-to-leading order) PN
terms. An interesting extension would be to compute the
tidal deformability contribution in the point-particle limit
but without PN expansion by evaluating the tidal tensor of
the secondary along its worldline.
As a byproduct of our analysis, we have assessed the

accuracy of the SPA to perform efficient tests of gravity with
EMRI waveforms in the frequency domain. One great
advantage of the SPA is that it reduces the number of
numerical derivatives required to compute and invert the
Fisher matrix, making the error estimate extremely more
efficient from a numerical perspective. Although we have
applied this approach to the specific case of constraining the
TLNs, we expect the same method can be applied to several
other tests of gravity. In a future work [93] we will use this
approach to constrain a comprehensive parametrized wave-
form accounting for multiple deviations at the same time.
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APPENDIX A: SEMIANALYTIC DERIVATIVES
OF THE WAVEFORMS

The frequency-domain waveform (36) has an implicit
dependence on the intrinsic parameters x⃗≡ y⃗I ¼ ðln M;
ln μ; â; χ; k1Þ through the functions t̃ðf; x⃗Þ, ϕðt̃ðf; x⃗Þ; x⃗Þ,
and _Ωðt̃ðf; x⃗Þ; x⃗Þ. In this appendix we show how to
compute the derivatives of the waveforms with respect
to the intrinsic parameters x⃗ in a semianalytic fashion.
By the theorem of the implicit functions, the derivatives

∂t̃ðf; x⃗Þ=∂xi are given as

∂t̃ðf; x⃗Þ
∂xi

¼ −
1

_Ωðt; x⃗Þ
∂Ωðt; x⃗Þ
∂xi

����
t¼t̃ðf;x⃗Þ

: ðA1Þ

The derivatives ∂ϕðt; x⃗Þ=∂xi are instead given as solutions
of the following ordinary differential equation with initial
condition ∂ϕð0; x⃗Þ=∂xi ¼ 0:

d
dt

�
∂ϕðt; x⃗Þ
∂xi

�
¼ ∂Ωðr̂ðt; x⃗Þ; x⃗Þ

∂xi
þ ∂Ωðr̂ðt; x⃗Þ; x⃗Þ

∂r̂
∂r̂ðt; x⃗Þ
∂xi

;

ðA2Þ

where ∂r̂ðt; x⃗Þ=∂xi can be computed from

d
dt

�
∂r̂ðt; x⃗Þ
∂xi

�
¼ ∂

∂xi

�
dr̂
dt

ðr̂ðt; x⃗Þ; x⃗Þ
�

þ ∂

∂r̂

�
dr̂
dt

ðr̂ðt; x⃗Þ; x⃗Þ
�
∂r̂ðt; x⃗Þ
∂xi

; ðA3Þ

with initial condition ∂r̂ð0; x⃗Þ=∂xi ¼ 0. Finally, the deriv-
atives ∂ϕðt̃ðf; x⃗Þ; x⃗Þ=∂xi can be written as

∂ϕðt̃ðf; x⃗Þ; x⃗Þ
∂xi

¼ ∂ϕðt; x⃗Þ
∂xi

����
t¼t̃ðf;x⃗Þ

þ dϕðt; x⃗Þ
dt

∂t̃ðf; x⃗Þ
∂xi

;

¼ ∂ϕðt; x⃗Þ
∂xi

����
t¼t̃ðf;x⃗Þ

þ πf
∂t̃ðf; x⃗Þ
∂xi

: ðA4Þ

Therefore, the derivatives ∂Φαðt̃ðf; x⃗ÞÞ=∂xi of the SPA
phase (37) are

∂Φ̃αðt̃ðf; x⃗Þ; x⃗Þ
∂xi

¼ −2
∂ϕðt; x⃗Þ
∂xi

����
t¼t̃ðf;x⃗Þ

: ðA5Þ

Note that the contribution to ∂Φ̃αðt̃ðf; x⃗ÞÞ=∂xi, given
by ∂ϕsh

α ðt̃ðf; x⃗ÞÞ=∂xi and ∂ϕDop
α ðt̃ðf; x⃗ÞÞ=∂xi, is negligible

since ΩðtÞTLISA ≫ 2π for a typical EMRI detectable
by LISA.
Finally, the derivatives of the frequency sweep

∂ _Ωðt̃ðf; x⃗Þ; x⃗Þ=∂xi are given by

∂ _Ωðt̃ðf; x⃗Þ; x⃗Þ
∂xi

¼
�
∂ _Ωðt; x⃗Þ
∂xi

þ Ω̈ðt; x⃗Þ ∂t̃ðf; x⃗Þ
∂xi

�����
t¼t̃ðf;x⃗Þ

:

ðA6Þ

Once ∂t̃ðf; x⃗ÞÞ=∂xi, ∂Φαðt̃ðf; x⃗ÞÞ=∂xi and ∂ _Ωðt̃ðf; x⃗Þ; x⃗Þ are
known, the semianalytic derivatives of the frequency
domain template (36) with respect to the binary parameters
can be constructed straightforwardly.

APPENDIX B: STABILITY OF THE
FISHER MATRIX

In this appendix we provide further details on the
accuracy of the calculations we performed, assessing the
numerical stability of the covariance matrix for the wave-
form parameters. This is particularly relevant in the case
of EMRIs, for which Fisher matrices are known to be ill
conditioned [94], and small numerical or systematic errors
are amplified after computing the inverse. As a rule of
thumb, for a condition number κ ¼ 10n, one may lose up
to n figures of accuracy, which should be added to the
numerical errors.
This problem is exacerbated when finite-difference

methods are employed for the waveform derivatives
[40,42], since the covariance matrix can be sensitive
to the choice in the parameter shifts adopted for the
differentiation. However, the semianalytic approach
described in Appendix A, combined with the SPA, avoids
such issues.
Inverting the Fisher matrices still remains a delicate task,

which can depend on the numerical precision used for the
calculation due to the large condition number. Indeed, for
the binary configurations we considered, we find κ ∼ 1025

and κ ∼ 1018 for a primary with â ¼ 0.1 and â ¼ 0.99,
respectively.
We have first tested the stability of the Fisher inversion

against changes in the numerical precision. In the worst
case, which occurs when the secondary spin is included, we
find that a stable covariance matrix requires at least 35
digits of precision in input.
Moreover, we have checked the sensitivity of both Fisher

and covariance matrices to small variations of their com-
ponents, by perturbing them with a deviation matrix Fij.
We draw all elements of Fij from a uniform distribution
U ∈ ½a; b�, and then compute

δstability ≡max
ij

�ððΓþ FÞ−1 − Γ−1Þij
ðΓ−1Þij

�
: ðB1Þ
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For the most problematic configurations we analyzed the
following:

(i) The inverse without priors is stable with
δstability ¼ 5% with perturbations U ∈ ½−10−9; 10−9�.

(ii) The inverse without secondary spin χ is stable with
δstability ¼ 2% with perturbations U ∈ ½−10−5; 10−5�.

(iii) The inverse with priors is stable with δstability ¼ 6%

with perturbations U ∈ ½−10−6; 10−6�.
The stability of the Fisher matrices drastically improves

as the spin of the primary increases. For â ¼ 0.99, the
inverse is stable with δstability ≲ 2% and perturbations
U ∈ ½−10−5; 10−5� for all cases we considered.
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