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I. INTRODUCTION

Teleparallelism is defined by D2 ¼ 0, where we may
consider D as the exterior covariant derivative of any
general linear group GLðnÞ in any n dimensions. It has
been argued that spacetime is a priori described by such a
trivial algebra [1] and that the resulting theory of gravity
improves general relativity (GR) by introducing a principle
of relativity with the properly defined (equivalence classes
of) inertial frames [2]. Besides the freedom to use arbitrary
coordinates, the dynamics of the theory are equivalent in
arbitrary gravitational frames.1 In particular, in an inertial
frame [3], the field equations read Dha ¼̂ tMa , where ha is
the excitation and tMa is the material energy current [4].
Recently, h0 was found to emerge as the Noether-Wald
potential of the theory2 [6–8]. However, the relation of

H
h0

to the Hamiltonian charge was not yet rigorously clarified.
A related issue is the integrability of the charges and,

more generally, the consistency of the action principle in
the presence of boundaries. This is the source of major
technical complications in the conventional formulations
of GR [9]. To wit, the Einstein field equations do not
guarantee the stationarity of the Einstein-Hilbert action.
Therefore, the action is amended, without clear physical
interpretation, by a somewhat ambiguous piece which is
confined to the boundary hypersurface. The issue is not
avoided simply by turning to a first-order formulation,
since the on-shell action should be stationary also when
variations may not vanish at the boundary. If the density

L ¼ 0 at the boundary, the variation δ
R
L is unproblemat-

ical. However, the conventional method is to cancel some
of the unwanted terms by inserting a surface term to the
action and to eliminate the remaining unwanted terms by
restricting only to transformations adapted to the particular
boundary geometry [10,11]. The possible new method we
propose is based on the frame dependence of the density L
in symmetric teleparallelism. We may adjust the frame
according to quite arbitrary boundaries, such that the
bounded action is manifestly differentiable with respect
to arbitrary transformations.
In Sec. II, some basics of the covariant phase space

formalism are introduced and extended to incorporate the
frame transformations. In Sec. III, the formalism is adapted
to symmetric teleparallelism and applied to both the gauge
and the frame transformations. A simple example is worked
out explicitly in Sec. IV, and Sec. V is the brief conclusion.

II. COVARIANT PHASE SPACE

Let us be given some generic boundary B. (For con-
creteness, say we have a manifold M whose boundary
∂M ¼ I− ∪ B ∪ Iþ consists of a spatial part B that we are
interested in and some past and future boundaries I�.)
Consider an action

I ¼
Z
M

Lþ
Z
∂M

l; ð1Þ

where L is a ðn; 0Þ-form and l is a (n − 1, 0)-form. The
variation of L can always be written as

δL ¼ EAδϕ
A þ dΘ; ð2Þ

where EA ¼ 0 are the equations of motion for the fields
ϕAðxÞ and the (n − 1, 1)-form Θ is the presymplectic
potential. Stationarity of the action δI ¼ 0 (up to the future
and past boundary terms) requires

*tomi.koivisto@ut.ee
1The dynamical or frame symmetry requires only that the

action I in Eq. (1) is a scalar, whereas the redundancy or gauge
symmetry implies an ðn; 1Þ-form identity obtained from Eq. (2)
and stating the covariance of the density L.

2And, furthermore, it was shown to be the local and covariant
generalization (obtained by minimal coupling) of a variety of
energy complexes, introduced by Bergmann-Thomson, von
Freud, Landau-Lifshitz, Papapetrou, and Weinberg [5].
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EAδϕ
A ¼ 0; ð3aÞ

ðΘþ δlÞjB ¼ dC; ð3bÞ

where C is a (n − 2, 1)-form (which we can arbitrarily
choose due to the so-called y ambiguity) [12]. Then the
presymplectic form Ω0 is defined as an integral of the
presymplectic (n − 1, 2)-current as

Ω0 ¼
Z
C
δðΘ − dCÞ; ð4Þ

over a Cauchy slice C.
A symplectic manifold is defined as the pair of an

abstract space P and a closed and nondegenerate symplec-
tic form Ω. In a covariant Hamiltonian approach, one
considers the phase space P of field configurations, such
that the TP is spanned by the differentials δϕA. The idea is
that the space of solutions (wherein one usually works in
the noncovariant Dirac-Bergmann Hamiltonian formalism)
should be isomorphic to the space of all valid initial data on
a given C and can, therefore, be considered in a covariant
fashion in terms of the P. The space of stationary field
configurations is called the prephase space P0, and the
phase space is obtained by quotienting by the gauge
symmetry. It is for this reason the Ω0 in Eq. (4) was called
the presymplectic form. A nondegenerate Ω is obtained as
its quotient.
However, here we intend only to suggest some first steps

toward the covariant phase space analysis of teleparallel
theories, and instead of Eq. (4) we focus on the stationarity
conditions in Eq. (3).

A. Gauge transformation

Next, consider a DiffðnÞ generated by ξ. Define, for an
arbitrary ði; jÞ-form X½δϕ;…�, the two contractions, the
usual ξ ⌟X, which results in an ði − 1; jÞ-form, and
ξ · X½δϕ;…� ¼ X½£ξϕ;…�, which results in an ði; j − 1Þ-
form. The latter contraction can be understood in terms of
the vector Vξ defined in the configuration space such that

Vξ ¼
Z

dnx£ξϕAðxÞ δ

δϕA ⇒ dðξ · XÞ ¼ ξ · dX;

δðξ ⌟XÞ ¼ ξ ⌟ δX; δξδϕ
AðxÞ ¼ δðδξϕðxÞÞ: ð5Þ

In this notation, the familiar Noether current (n − 1, 0)-
form can be expressed as

Jξ ¼ ξ ·Θ − ξ ⌟L: ð6Þ

A central result in the covariant phase space formalism is
the formula for the Hamiltonian [12] (up to an irrelevant
constant) that generates the family of Diffs:

Hξ ¼
Z
∂C
ð jξ þ ξ ⌟l − ξ · CÞ; ð7Þ

where the (n − 2, 0)-form jξ is the Noether-Wald potential
which can always be locally found such that Jξ ¼ djξ [6].
Using Eq. (3b), one can check that the Hamiltonian is
independent of the choice of C.
The DiffðnÞ gauge transformation could be called a

total covariance,3 since the passive operation in
M is made tautologically active, and we may write,
e.g., δξϕ

AðxÞ¼ £ξϕAðxÞ¼ fD;ξ⌟gϕAðxÞ¼Vξ
⌟δϕAðxÞ¼

£Vξ
ϕAðxÞ¼ fδ;ξ·gϕAðxÞ.

B. Frame transformation

Previous works on Hamiltonian analysis of ½∇;∇� ¼ 0
gravity have proven that the P for actions (1) can be well
defined [15,16]. [Since, by fixing the GLðnÞ invariance of
the density LQ we shall introduce Eq. (10) to the coordinate
frame ea ¼ δa in Eq. (20), it becomes the density of the
coincident GR [17], and, by fixing further the gravitational
frame imposing the coincident gauge, this density LQ

becomes the same LADM used in the standard Arnowitt-
Deser-Misner (ADM) Hamiltonian treatment, it is clear that
the Cauchy problem can be well posed and that we recover
the P of GR.]
Here, our approach is completely different, since the aim

is to take into account the frame dependence of the
symplectic structure, the Hamiltonian, and other charges,
etc. In the case that an I involves background fields, some
of the nice identities at the end of Sec. II A are violated.
We have demanded the covariance of each ϕA under a
gauge-DiffðnÞ, but this will not be the case under a
frame- ˜DiffðnÞ. The latter can indeed be interpreted as
transformations which leave some of the fields frozen into
the role of background fields. It is convenient to realize a
frame transformation as the reconfiguration of the affine
structure on M.
The suggested construction of P proceeds as follows.
(i) Assume an invariant functional I of torsor connec-

tion.4 The symmetry is then GLðnÞ × ˜DiffðnÞ.

3General coordinate invariance has been regarded an
“improper” symmetry (Noether) and coordinatizations, in gen-
eral, “a formal scaffolding” (Weyl) to be discarded at a later
stage. We will arrive at the result that the Diff (n) is a trivial
symmetry according to Freidel, Geiller, and Pranzetti’s [13]
definition Hξ ¼ 0; i.e., not even a surface Hamiltonian survives
on shell. [In this particular case, the Diff (n) may be technically
regarded a “fake symmetry” achieved via Stückelbergization or
Kretchmannization [14].]

4This means that we can freely translate the connection.
The translation invariance can be straightforwardly generalized
to full connection independence, extending the symmetry to
GLðnÞ × G̃LðnÞ [18].
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(ii) Imposing EA ¼ 0 and, in particular, symmetric
teleparallelism,5 the symmetry is reduced to
DiffðnÞ× ˜DiffðnÞ. We are then looking at some
metaphase space P00, accommodating physically
distinct classes of theories and their gauge-
degenerate field configurations. The same configu-
ration fϕAðxÞg can represent many different theories,
since the mappings from a configuration to the
observables are frame dependent.

(iii) Imposing LjB ¼ 0, the frame is fixed such that the
action principle is well defined in the presence of the
given boundary B. If these boundary conditions
determine the frame completely, the remaining
symmetry is DiffðnÞ. This is the prephase space P0.

(iv) The nondegenerate phase space P ¼ P0=DiffðnÞ is
well defined, though, in general, inequivalent to the
P of GR.

The application of this schema will be illustrated, after
setting up the general formalism in Sec. III, with a simple
example in Sec. IV.

III. SYMMETRIC TELEPARALLELISM

The fields ϕA listed in Table I are conventional in metric-
affine gravity. If we set symmetric Ta ¼ 0 teleparallelism
Ra

b ¼ 0 with (n − 2, 0)-form multipliers, those formally
count as yet additional fields. The action would be

I ¼
Z

L ¼
Z

ðLQ þ λab ∧ Ra
b þ λa ∧ TaÞ; ð8Þ

wherein the LQ is responsible for the dynamics of non-
metricity. It is useful to also define

the nonmetricity conjugate∶ qab ¼
∂LQ

∂Qab ; ð9aÞ

the metric energy current∶ Gab ¼ −
∂L
∂gab

− Qa
c ∧ qcb;

ð9bÞ

the n-bein energy current∶ ta ¼ −
∂L
∂ea

: ð9cÞ

Thus, we have the density

LQ ¼ 1

2
Qab ∧ qab; ð10Þ

with some generic qab. Variations then yield us

EAδϕ
A ¼ δgabðgacDqcb − GabÞ þ δea ∧ ðDλa − taÞ

þ δAa
b ∧ ð2qab − ea ∧ λb þ DλabÞ

þ δλab ∧ Ra
b þ δλa ∧ Ta ð11aÞ

and the symplectic current

Θ ¼ −δgabqab þ δea ∧ λa þ δAa
b ∧ λab: ð11bÞ

The equations of motion EAδϕ
A ¼ 0 imply the three

equations

2Ga
b ¼ −ea ∧ tb ⇒ ta ¼ −2əb ⌟Gb

a; ð12aÞ

Dðəa ⌟DqabÞ ¼ 0 ⇒ D
∘ � tMa ¼ 0; ð12bÞ

2Dqab ¼ −ea ∧ Dλb ⇒ λa ¼ ha þDza: ð12cÞ

The first equation shows that the metric and the n-bein
inertiality criterions, Gab ¼̂ 0 and ta ¼̂ 0, respectively, are
equivalent. The second equation is the Bianchi identity of
the frame invariance.6 The third equation can be used to
determine the excitation ha, and we have parametrized the
arbitrariness of the solution with a (n − 3, 0)-form za.
In the end, the full dynamics, taking into account the

possible material current tMa , are described by the gauge-
covariant and frame-invariant field equationDha ¼ tMa þ ta.

TABLE I. The generic set of gravitational fields ϕA.

The metric (0,0)-form gab ⇒ nonmetricity Qab ¼ Dgab ¼ dgab þ 2Aab
The n-bein (1,0)-form ea ⇒ torsion Ta ¼ Dea ¼ dea − Ab

a ∧ eb

The connection (1,0)-form Aa
b ⇒ curvature Ra

b ¼ ðDAÞab ¼ dAa
b þ Aa

c ∧ Ac
b

5D2 ¼ 0 is the dynamical consequence of mP being the mass
of the connection [4], as the density LQ clearly suggests.
However, restricting here to sub-Planckian scales, we need not
consider an explicit kinetic term for the connection but will set
D2 ¼ 0 using multipliers.

6This would generically be broken by modifications of GR
introducing new degrees of freedom. Such could render Eq. (12b)
only an on-shell identity, potentially spoiling the isomorphism of
the space of solutions and the space P. The question whether
there exists a “properly parallelized” frame [19] (wherein the rank
of Ω would be a constant) is outside our scope here, since the
starting point (1) as stated in Sec. II B excludes the modifications
of GR.
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A. Gauge transformation

The presymplectic potential of a Diff ξ is

ξ ·Θ¼ðξ⌟QabÞqabþðξ⌟TaþDξaÞ∧λaþξ⌟Ra
b∧λab

¼djξþξ⌟L−ξaEaþTa∧ ξ⌟λaþRa
b∧ ξ⌟λab; ð13Þ

where

ξ ⌟L ¼ −ξata þ ðξ ⌟QabÞqab þ ξ ⌟ ðTa ∧ λa þ Ra
b ∧ λabÞ;

ð14aÞ

jξ ¼ ξaha: ð14bÞ

In the above, the z ambiguity is eliminated from
Eq. (12c), since the integral of an exact form over a closed
surface ¼ 0 and, therefore, the z does not contribute to the
observable charges.7 We see that the stationarity condition
(3b) holds (neglecting an irrelevant y-type and z-type
ambiguity in C) if

ξ ⌟LjB ¼ 0; ð15aÞ

ξ · CjB ¼ ξaha: ð15bÞ

We can satisfy Eq. (15a) with an arbitrary ξ by adjusting the
frame of a configuration such that the density L vanishes at
the given B. This condition boils down to setting one scalar
function Lðx ∈ BÞ ¼ 0 to vanish, and, thus, we can safely
assume a solution to exist. At least locally, the density-free
frame can also be an inertial frame (pointwise, one can
simply find a freely falling coordinate system in the coinci-
dent gauge). The density-free boundary condition agrees
with the intuition extrapolated from the case which is best
understood in GR, a flat B at spatial infinity. It is clear that,
asymptotically far from the material sources, the density L
may grow instead of decay only with respect to some kind
of noninertial reference frame, and this has indeed been
considered in the context of teleparallel gravity as a criterion
for regularized energy expressions and actions [20,21]. The
no-density consistency condition (15a) applies to a generic
boundary and, thus, provides the local and covariant gener-
alization of the physically acceptable boundary conditions
for a flat B at infinity. Finally, we note that the identification
(15b) vanishes the Hamiltonian (7), Hξ ¼ 0.

B. Frame transformation

A transformation which leaves the density L invariant
only up to an exact form is sometimes called a pseudo-
symmetry. A remarkable property of coincident GR is the

pseudosymmetry with respect to independent translations
of the connection [17]:

ΔL ¼ dð2ΔAa
b ∧ qabÞ: ð16Þ

On the other hand, by adapting Eq. (11), we obtain, in the
variation (2)

ξ ⌟ΔL ¼ ΔAa
b ∧ ð2qab − ea ∧ λb þDλabÞ

þ dðΔAa
b ∧ λabÞ ð17aÞ

and the presymplectic potential

Θ ¼ Dðəa ⌟DξbÞ ∧ λab

¼ əa ⌟Dξb ∧ ðea ∧ hb − 2qabÞ; ð17bÞ

where the second form follows by discarding a term that
does not contribute to the variation (17a). We now find the
Noether current

Jξ ¼ Dξa ∧ ha ¼̂ dðξahaÞ: ð18aÞ

The hatted equality assumed an inertial frame, ta ¼̂ 0.
Thus, the Noether charges of the frame (pseudo)symmetry
and the gauge symmetry are the same in an inertial frame
but not otherwise. Furthermore, the quasilocal Noether
charge is also the Hamiltonian generator of the frame
transformation:

Hξ ¼ −
Z
C
Dξa ∧ ta þ

Z
∂C
ξaha ¼̂

Z
∂C
ξaha: ð18bÞ

Transition into a noninertial frame ta ≠ 0 can generate a
bulk Hamiltonian.

IV. COINCIDENT GENERAL RELATIVITY

We shall make explicit the relation between the sym-
metric D2 ¼ 0 version of GR originally suggested by
Nester and Yo [22,23] and the ½∇;∇� ¼ 0 version of GR
introduced by Beltrán Jiménez et al. [17,24]. To make
contact with the Palatini (tensor) formulation, we define the
contravariant vectors

Q ¼ gabQab; ð19aÞ

Q̃ ¼ ðəa ⌟Qa
bÞeb: ð19bÞ

The special case of a density (10) we consider in this
section is

7This does not quite account for the difference of the Noether-
Wald potentials obtained in the Palatini [8] and in the GLðnÞ [7]
formulations, since it is not exact but instead Δjξ ¼ m2

P � d♭ξ [5].
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m−2
P LQ ¼ −

1

8
Qab ∧ �Qab þ 1

4
Qac ∧ ea ∧ �ðQbc ∧ ebÞ

−
1

8
Q ∧ �Qþ 1

4
Q ∧ �Q̃

¼ 1

2

�
−
1

4
QabcQabc þ 1

2
QabcQbac þ 1

4
QaQa

−
1

2
QaQ̃

a

�
ð�1Þ: ð20Þ

The nonmetricity conjugate (n − 1, 0)-form (9) derived
for Eq. (20) is

m−2
P qab¼−

1

4
�Qabþ

1

2
eða∧�ðQbÞc∧ecÞ

−
1

4
gabð�Q−�Q̃Þþ1

4
Qðað�ebÞÞ

¼−
1

4
½−Qc

abþ2QðabÞc

þgabðQc−Q̃cÞ−QðaδcbÞ�ð�ecÞ:
¼−m−2

P �Pab: ð21aÞ
In the last step, we borrowed a notation for the 1-form
Pab ¼ �qab from the tensor formalism. Now we solve the
excitation from Eq. (12c):

ha ¼ m2
P � ½Qab ∧ eb þ ea ∧ ðQ − Q̃Þ�: ð21bÞ

The n-bein energy current (9c) is

ta ¼−əa ⌟LQþm4
p

4
½əa ⌟Qbcð2eb ∧ �ðQc

d ∧ edÞ
þ əðb ⌟Q � ecÞ − �QbcÞþ əa ⌟Qðəb ⌟ Q̃ � eb − �QÞ�

¼
�
−
1

2
δbaQcdePcdeþQa

cdPb
cd

�
ð�ebÞ: ð21cÞ

We compute also the metric energy current (9b) and as a
cross-check verify the identity (12a):

2Ga
b ¼ δabLQ − əb ⌟QcdPcd ∧ �ea

¼
�
1

2
δabQcdePcde −Qb

cdPa
cd

�
ð�1Þ

¼ −ea ∧ tb: ð21dÞ
The results of the analysis are summarized in Table II.

A. Example

It can be useful to illustrate the role of the two types of
transformations with a simple example. Set n ¼ 4 and take
the cosmological solution

ds2 ¼ −n2ðtÞdt2 þ a2ðtÞδijdxidxj: ð22Þ

One may want to consider this in an M bounded by
the cosmological horizon or maybe to have an action
bounded by a given event’s past light cone. Such could
be consistently described by a theory wherein the density L
vanishes at the boundary. Given the line element (22),
the choice of frame simply corresponds to the choice
of connection. Hohmann has constructed the most
general homogeneous and isotropic symmetric teleparallel
geometry [25], and we adopt his first solution8 character-
ized by one free function, KðtÞ. The LQ depends upon this
function as

LQ¼3m2
P

2
ð2H2þ3HKþ _KÞð�1Þ; whereH¼ _a

a
;
df
dt

¼n _f:

ð23Þ

Given the dynamics encoded in aðtÞ, from LQ ¼ 0 we
obtain an inhomogeneous, first-order ordinary differential
equation to determine the function KðtÞ. To find an explicit
solution, let us add a matter source, in the simplest case
a Λ term:

L ¼ LQ þ LΛ ¼ m2
P

2
ð6H2 þ 9HK þ 3 _K þ 2ΛÞa3nd4x

¼n¼1m2
P

2
ð4Λþ 3

ffiffiffiffiffiffi
3Λ

p
K þ 3 _KÞe

ffiffiffiffiffi
3Λ

p
ta30d

4x: ð24Þ

Both the choice of the cosmological connection and the
choice of the lapse are irrelevant to the dynamics, even
though the former will recalibrate the energy units and the
latter will change the interpretation of the coordinate time t.
More generally, time-space intervals are varied in a gauge-

TABLE II. Summary of our conclusions and the well-known results in GR.

Form GR: gauge CGR: gauge CGR: frame

Density L Einstein-Hilbert LQ ¼ Qab ∧ qab=2 , cf. Eq. (20)
Surface density l Gibbons-Hawking-York � � �
Noether charge

H
j Komar

H
h , cf. Eq. (21b) ¼̂ H

h
Hamiltonian H Brown-York 0 ¼̂ R

∂C h
Conditions @B ξ is tangential Killing L ¼ 0

8Hohmann reported three branches of solutions for the con-
nection [25], but our conclusions would be similar in the two
other branches. The most general case of spherically symmetric
geometry has also been nicely explored [26–28].
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Diff, while the differences in the gauge-invariant energy-
momentum charges

H
ha are varied in a frame- ˜Diff.

Let us now walk through the steps we recall from
Sec. II B. (i) We have an invariant L such that it changes
by an exact form when translating the connection.
(ii) The metaphase spaceP00 corresponds to all the available
solutions, including now two arbitrary functions nðtÞ and
KðtÞ. (iii) By imposing the density-free boundary con-
dition, we are given from the space P00 the slice P0 wherein
K is fixed such that on the nðtÞ ¼ 1 hyperslice of P0 it is the
constant K ¼ −4=3

ffiffiffiffiffiffiffiffiffi
Λ=3

p
(a one-parameter family of

solutions is found iff for some C ⊃ B). (iv) In the phase
space P ¼ P0=Diff also the degeneracy due to nðtÞ is
eliminated, since we mod out the time-reparametrization
gauge invariance.

V. CONCLUSION

Symmetric teleparallel gravity features the so-called
frame pseudosymmetry. Recovering the standard ADM
formulation of GR is one way to the fix the frame, but in a
manifold with a boundary B, the well posedness of the
action principle can provide the more appropriate criterion.
By the consistent choice of frame one may incorporate
arbitrary gauge transformations in arbitrary geometry.

(i) We see from Eq. (15) that the ξ⊥’s normal to B are
automatically integrable, avoiding artificial restric-
tions to diffeomorph the total M with boundaries.

(ii) The ξk’s tangential to B require the no-density
boundary condition. We emphasize the viewpoint
that Eq. (15) is imposed in P00; i.e., the boundary
condition is a restriction upon the resulting covariant
phase space P.

An example in Sec. IVA demonstrated that the no-density
boundary condition determines the gravitational frame at
cosmological scales. It remains to be explored whether this
could shed light on the initial conditions required for a
viable inflation. At very high energies, we can no longer
justify the approximation D2 ¼ 0, and it seems possible
that the frame is settled in a dynamical fashion.
Intuitively, the density-free boundary condition

expresses the continuity of the action principle. It is a
natural requirement also outside the context of teleparallel-
ism and could, in principle, be used to reduce the number of
free parameters in a consistent theory. In particular, in the
context of a pregeometric gauge theory [29], the boundaries
of spacetime are by construction described by L ¼ 0, since
spacetime emerges via the spontaneous breaking of the
symmetric phase characterized by ea ¼ 0.
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[17] J. Beltrán Jiménez, L. Heisenberg, and T. Koivisto, Phys.
Rev. D 98, 044048 (2018).
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