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We develop a new nonlinear method to model structure formation in general relativity from a
generalization of the relativistic Lagrangian perturbation schemes, controlled by Szekeres (and LTB) exact
solutions. The overall approach can be interpreted as the evolution of a deformation field on an
inhomogeneous reference model, obeying locally Friedmann-like equations. In the special case of locally
one-dimensional deformations, the new model contains the entire Szekeres family of exact solutions. As
thus formulated, this approach paraphrases the Newtonian and relativistic Zel’dovich approximations,
having a large potential for applications in contexts where relativistic degrees of freedom are relevant.
Numerical simulations are implemented to illustrate the capabilities and accuracy of the model.
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I. INTRODUCTION

The problem of cosmological structure formation has
been approached by a variety of methods. The exact,
inhomogeneous solutions of Einstein’s equations provide
valuable hints on relativistic effects, absent in Newtonian
theory, however, their applications remain limited as the
actual cosmic web is much more complex than the scope
covered by the exact solutions. Alternatively, the standard
cosmological perturbation theory can be used in an attempt
to trace the evolution of the density inhomogeneities in the
linear regime, the obvious limit being the overdensities or
second derivatives of metric perturbations reaching relative
values of around unity. These limitations could in principle
be overcome with the use of relativistic numerical simu-
lations (see [1] for a recent comparison of performance
among the most popular codes currently being developed).
There are, however, several drawbacks of these numerical
methods with a hard to estimate influence on the outcomes,
e.g., global weak field assumption, noncovariance of con-
formal decomposition, all-time fixed toroidal topology or
current computational capacity limitations, to name a few.
In light of recently revealed, as well as long known but
persistent, tensions haunting modern cosmology, it is very
important to improve on the analyticalmethods providing an
essential counterpart to the numerical efforts. In this spirit,
the so-called silent universe model ([2,3]) was proposed and

is believed to be able to describe structure formation in the
nonlinear regime, from a wide variety of initial data, by an
exact method. The silent universe model is based on the
specific restriction on the 1þ 3 decomposition of Einstein’s
equations for dust, i.e., the gravitomagnetic part of the
projected Weyl tensor is put to zero. Unfortunately, this
model turned out to be insufficient to access the nonlinear
regime (because of the absence of rotation and the require-
ment for the shear to be diagonalizable and have two
identical eigenvalues) and, although as desired, it contains
several known inhomogeneous exact solutions as subcases,
the span of admissible initial data is very restricted.
In this context, the recent investigation [4] consolidated

and generalized an earlier insight by Kasai [5] on the
correspondence between Szekeres class II solutions and the
first-order Lagrangian perturbation solutions in relativistic
cosmology. The relativistic Lagrangian perturbation
schemes have been developed in the series of papers
[4,6–10]. One aspect of this generalization is furnished
by the result that an extrapolated version of the first-order
solution scheme, in the spirit of the original proposal by
Zel’dovich in Newtonian cosmology [11], allows to extend
this correspondence to nonlinear functional expressions of
the first-order scheme, not only for the density but also for
the bilinear metric form, the extrinsic and intrinsic curva-
tures including their tracefree parts, and other variables.
The exact body of the functionally extrapolated perturba-
tions is obtained by setting the second and third principal
scalar invariants of the deformation field to zero (for details
the reader is referred to [4]). In the relativistic case, this
corresponds to Szekeres class II solutions, while in the
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Newtonian limit this corresponds to a class of 3D solutions
without symmetry obtained in [12] (with empty back-
ground), in [13] for backgrounds with zero cosmological
constant and in [14] including a cosmological constant.
A further insight concerns the way we write the

Szekeres class II solutions: in the so-called Goode-
Wainwright parametrization [15,16] this class can be
written in the form of deviations off a global FLRW
(Friedmann-Lemaître-Robertson-Walker) background sol-
ution. Looking at the spatial average properties of the
inhomogeneous deviations, we find admissible initial data
for deviations that average out on this background solution.
This can be realized, as in Newtonian cosmological
simulations, by setting periodic boundary conditions on
the deviation fields on some scale that is commonly
associated with a ‘scale of homogeneity’. The resulting
architecture of such a (relativistic) simulation has the
topological structure of a flat 3-torus [4,17], very similar
to Newtonian simulations, implying integrability of the
deformation fields and an on average zero intrinsic scalar
curvature (for the notion of integrability of deformations,
see [9,18]). The results on the correspondence with
Szekeres class II solutions carry over to average properties
known for constructions with 3-torus topology, in
Newtonian theory and in general relativity [19,20]. This
can be summarized by the property of zero cosmological
backreaction on the scale set by the size of the toroidal
space (for Szekeres class II solutions, see [4]). In general,
cosmological backreaction can be nonzero [21], and the
topology of spatial sections enjoys rich possibilities in
general relativity. For constant-curvature models, there are
relations to the topology of spatial sections, but in general
situations, the scalar curvature function is not tightly
constrained; it has a nonzero average and it can also
change its sign during the evolution [22,23]. A different
evolution of the scalar curvature compared with the FLRW
evolution of the constant curvature also furnishes an
explanation of the vividly discussed Hubble tension
[24,25] in the standard cosmological model.
In the present paper, we propose to generalize Lagrangian

perturbation schemes. In the example of the first-order
schemewe exploit the structure of Szekeres class I solutions
that can be written as deviations off a “local background”
obeying a Friedmann-type equation. These deviations can
still be modeled by the functional expressions developed in
relativistic Lagrangian perturbation theory. A “global back-
ground” can be defined through a spatial averaging oper-
ation of the full solution that leads to nonzero cosmological
backreaction, i.e., it allows not only for the impact of the
background evolution on the evolution of inhomogeneities
as in Newtonian cosmologies, relativistic Lagrangian
schemes and standard quasi-Newtonian perturbation theo-
ries, but also for the impact of inhomogeneities on the
evolution of this global background that is conceived as the
average model. A numerical implementation of this new

modelwill open the door to answeringmany of the questions
raised in the context of inhomogeneous relativistic cosmo-
logy, and it may provide a more general architectural setting
for relativistic numerical simulations.
We proceed as follows. In Sec. II we recall the Einstein

equations in terms of the Lagrangian coframe fields and the
definition of the relativistic Lagrangian Zel’dovich approxi-
mation (RZA). Section III is devoted to reviewing the
Szekeres models in the Goode and Wainwright parametriza-
tion and their relation with RZA. In Sec. IV, we develop the
proposed generalization of relativistic Lagrangian perturba-
tion schemes to include both classes of the Szekeres solutions.
Then, its most important subcases, namely the locally one-
dimensional solutions, LTB models and RZA, are discussed
inSec.V. InSec.VI,wepresent a family of simplemodels and
implement numerical simulations aimed at illustrating the
capability of the approach to model realistic cosmological
structures. Finally, in Sec. VII, we put all the elements of our
analysis together, discuss their physical motivation and
conclude with a summary of the paper and final remarks.
The text is complemented by five appendices.

Appendix A provides additional details about the Goode
and Wainwright parametrization. Then, in Appendix B, we
have a closer look at Szekeres class I solutions and discuss
the relationship between some of their common paramet-
rizations. The model equations are obtained in Appendix C.
Appendix D contains useful expressions to compute the
kinematical backreaction term and its evolution. Finally, in
Appendix E, we look at the family of models examined in
Sec. VI but from the perspective of exact solutions.

II. THE RELATIVISTIC LAGRANGIAN
FORMULATION

In the 3þ 1 relativistic Lagrangian framework, the
Einstein equations’ dynamical freedom is completely
encoded in the coframe functions ηai [6].1 Restricting
our attention to an irrotational dust source and considering
a fluid-flow orthogonal foliation of the spacetime leads to a
set of nine purely spatial coframes, in terms of which the
line-element reads:

ð4Þg ¼ −dt ⊗ dtþ ð3Þg with ð3Þg ¼ Gabηa ⊗ ηb: ð1Þ

Here, the initial metric coefficients are encoded in the
Gram’s matrix:

GijðXÞ≡ gijðtini;XÞ; ð2Þ

where tini denotes some arbitrary initial time.

1Indices i; j; k; � � � ¼ 1; 2; 3… denote coordinate indices,
while indices a; b; c… ¼ 1; 2; 3… are introduced as counters
of components, e.g., of vectors or differential forms. In this paper
we use units where the gravitational constant and the speed of
light are set to G ¼ c ¼ 1.
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A. The Lagrange-Einstein system

The Einstein equations are rewritten as a system of 9
evolution equations and 4 constraint equations [6,9],

Gab _η
a
½iη

b
j� ¼ 0; ð3aÞ

1

2J
ϵabcϵ

iklð_ηajηbkηclÞ• ¼ −Ri
j þ ð4πϱþ ΛÞδij; ð3bÞ

1

2J
ϵabcϵ

mjk _ηam _η
b
jη

c
k ¼ −

R
2
þ ð8πϱþ ΛÞ; ð3cÞ

�
1

J
ϵabcϵ

ikl _ηajη
b
kη

c
l

�
jji
¼

�
1

J
ϵabcϵ

ikl _ηaiη
b
kη

c
l

�
jj
: ð3dÞ

We call this system the Lagrange-Einstein system. In the
equations above, as throughout the text, the overdot
represents the partial time derivative (the covariant time-
derivative in the flow-orthogonal foliation), while the
single and the double vertical slashes stand for the partial
and covariant spatial derivatives, respectively. Rij denotes
the spatial Ricci tensor, R ¼ Ri

i the spatial scalar curva-
ture, and the determinant of the 3 × 3 coframe matrix is
defined as:

J ≡ detðηaiÞ: ð4Þ

The exact density field follows from the integration of the
continuity equation,

ϱ ¼ ϱiniJ−1; with J ¼ ffiffiffi
g

p
=

ffiffiffiffi
G

p
; ð5Þ

and ϱini ¼ ϱðtiniÞ.2 The expansion tensor can be computed
considering its relation to the extrinsic curvature, which in
the assumed foliation of the spacetime takes the following
form:

Θij ¼ −Kij ¼
1

2
_gij; ð6Þ

Θi
j ¼ eia _ηaj; with eia ¼

1

2J
ϵabcϵ

iklηbkη
c
l: ð7Þ

For irrotational dust, the expansion tensor consists of only
the expansion scalar (its trace part, Θ ¼ _J=J) and the shear
tensor (its tracefree symmetric part, σij),

Θi
j ¼ σij þ

1

3
Θδij: ð8Þ

The 3D intrinsic curvature and the gravitoelectric and
gravitomagnetic parts of the spatially projected Weyl

curvature tensor reduce to the following expressions in
terms of the coframes [9]:

−Ri
j ¼

1

2J
ϵabcϵ

iklð_ηajηbkηclÞ• − ð4πϱþ ΛÞδij; ð9aÞ

−
R
2
¼ 1

2J
ϵabcϵ

mjk _ηam _η
b
jη

c
k − ð8πϱþ ΛÞ; ð9bÞ

1

2J
ϵabcϵ

iklη̈aiη
b
kη

c
l ¼ Λ − 4πϱ; ð9cÞ

−Ei
j ¼

1

2J
ϵabcϵ

iklη̈ajη
b
kη

c
l þ

1

3
ð4πϱ − ΛÞδij; ð9dÞ

−Hi
j ¼

1

J
Gabϵ

iklð_ηajklηbk þ _ηajη
b
kklÞ: ð9eÞ

B. Relativistic Zel’dovich approximation (RZA)

The relativistic Lagrangian perturbation theory consists
of perturbing the trivial coframe set associated with a
homogeneous and isotropic spacetime ηai ¼ aðtÞδai, where
aðtÞ is the solution of the Friedmann equations. Then, RZA
emerges as the first-order perturbation of the deformation
field, Pa

i:

ηa ¼ ηaidXi ¼ aðtÞðδai þ Pa
iÞdXi: ð10Þ

In this approximation, the line-element (1) takes the
following quadratic bilinear form:

gij ¼ a2ðtÞ½Gij þ GabðδaiPb
j þ δbjPa

i þ Pa
iPb

jÞ�: ð11Þ

Consequently, any relevant field (the Ricci and Weyl
curvature tensors, rate of expansion, shear, etc.) is func-
tionally evaluated in terms of the coframe fields (10).

III. SZEKERES EXACT SOLUTIONS

The Szekeres models are the most general exact cos-
mological solution of Einstein’s equations [26,27].3 These
models lack symmetries, albeit their “quasisymmetries”
impose significant restrictions on the spacetime’s inhomo-
geneity and anisotropy. The source of the original solution

2In this paper we refer to the initial quantities (evaluated at tini)
with the subscript “ini.”

3This statement requires some justification. In the present
analysis we follow [26] and consider as cosmological models
those exact solutions of Einstein’s equations with at least a
nontrivial subclass of FLRW solutions as a limit. There are other
solutions that can be regarded as more general than Szekeres, for
example, the Lemaître model [28] (although it is spherically
symmetric the source is an inhomogeneous perfect fluid) and
other models containing heat-flow [17,29–31], viscosity [32,33]
or electromagnetic fields [34,35]. However, in cosmological
applications, the field source is usually simplified to a dust fluid
and the cosmological constant; then, Szekeres models arise as the
most general (exact) cosmological class of solutions.
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consists of irrotational dust [36], which was later genera-
lized by Szafron [37] to include a homogeneous perfect
fluid, furnishing the inclusion of the cosmological constant
(see [38] for a discussion of the Szekeres source). For a
detailed review of the properties of these solutions
see [27,39,40]. The general line-element is commonly
expressed as (see [41–43] for coordinate-independent
definitions of the Szekeres solution):

ds2 ¼ −dt2 þ e2αdz2 þ e2βðdx2 þ dy2Þ; ð12Þ

where α ¼ αðt; rÞ, β ¼ βðt; rÞ, and r ¼ ðx; y; zÞ are comov-
ing coordinates. The integration of the Einstein equations is
performed by splitting the model into two classes, namely
class I, when β;z ≠ 0, and class II, when β;z ¼ 0. However,
once the solution is obtained, the class II can be formulated
as a limit of class I [44].
In the Goode andWainwright (GW) parametrization [15]

the line-element (12) is rewritten as:

ds2 ¼ −dt2 þ S2ðG2W2dz2 þ e2νðdx2 þ dy2ÞÞ; ð13Þ

where the conformal scale factor, Sðt; zÞ, obeys a
Friedmann-like equation:

_S2 ¼ −k0 þ
2μ

S
þ Λ

3
S2: ð14Þ

Here, k0 is a constant taking the values 0;�1, and μðzÞ > 0
is an arbitrary scalar function. Furthermore,

G ¼ AðrÞ − F ðt; zÞ ¼ AðrÞ − βþfþ − β−f−; ð15Þ

where f� are the growing and decaying solutions of the
following equation:

F̈ þ 2
_S
S

_F −
3μ

S3
F ¼ 0: ð16Þ

The energy-density is given by:

8πϱðt; rÞ ¼ 6μ

S3

�
1þ F

G

�
; ð17Þ

which can be rewritten as:

4πϱðt; rÞ ¼ 3μA
S3G

≡MðrÞ
S3G

; ð18Þ

assigning to the term 3μA the meaning of a conserved
rest mass, M. The functions f� can be regarded as
the growing and decaying deviation “modes” at a “fictitious
background” (or reference model) with initial local
density 3μ ¼ 4πρ.
The form of the functions A, e2ν, W, βþðzÞ, β−ðzÞ,

fþ and f− vary depending on the class, and they satisfy:

Class I S ¼ Sðt; zÞ, μ ¼ μðzÞ and f� ¼ f�ðt; zÞ.
Class II S ¼ SðtÞ≡ aðtÞ, μ ¼ const and f� ¼ f�ðtÞ.

For better readability of the text, we display their full
expressions in Appendix A.
The quasispherical branch of the class I solutions has

been the most widely used subclass for modeling structure
formation, describing nontrivial networks of cosmic struc-
tures [45–59] or even the formation of primordial black
holes [60–62]. Due to its importance, the physical and
mathematical properties of this subclass have also been
explored in depth [63–70]. The other subclasses have
found applications in cosmology and astrophysics as well
[71–74], although they have received much less attention.

A. Szekeres class I models with
a normalized scale factor

In contrast to class II, the class I solution’s conformal
scale factor is a function of the spatial coordinates,
Sðtini; zÞ ¼ SiniðzÞ. To have a normalized initial function
in a given Szekeres model, we proceed as follows. First,
introduce the function χ ¼ S−1ðtini; rÞ > 0; then, the con-
formal scale factor and the spatial metric are redefined:

Aðt; rÞ≡ Sðt; zÞχ; ð19Þ

gij ¼ A2Diag

�
ðA − F Þ2

�
W
χ

�
2

;

�
eν

χ

�
2

;

�
eν

χ

�
2
�
; ð20Þ

where metric functions are displayed in Appendix A.
In terms of the rescaled scale factor, the Friedmann-like

equation reads:

�
_A
A

�2

¼ −
k̂ðrÞ
A2

þ 8π

3

ϱ̂bðrÞ
A3

þ Λ
3
; ð21Þ

where:

k̂ðrÞ ¼ k0 χ2;
4π

3
ϱ̂bðrÞ ¼ μðzÞχ3: ð22Þ

Note that the growing and decaying functions still refer to
the local reference background (14), and obey the same
equation as in (16):

F̈ þ 2
_A
A

_F −
4πϱ̂b
A3

F ¼ 0: ð23Þ

B. Relationship between RZA and exact solutions

In [4] we exploited such a splitting into “background”
and the growing and decaying “deviation modes” to
connect the Szekeres class II solution to RZA. The main
results of interest for the present article can be summarized
as follows:

GASPAR, BUCHERT, and OSTROWSKI PHYS. REV. D 107, 024018 (2023)

024018-4



(i) RZA contains the class II of the Szekeres exact
solutions as a particular case with the identifications:

Pa
i ¼ ð−F̃=ÃÞδa3δ3i; ð24aÞ

Gab ¼ Diag½Ã2; e2ν; e2ν�: ð24bÞ

In these equations, Ã≡A − F ini, F̃ ≡ F − F ini.
Also, aðtÞ is the scale factor of the global FLRW
background with 4πϱb=3 ¼ μ ¼ const.

(ii) The class I can be interpreted as a (constrained)
superposition of nonintersecting world lines, satis-
fying RZA’s evolution equations. As for the previous
class, the associated deformation field and Gram’s
matrix are given by the identifications:

P̂a
i ¼ ð−F̃=ÃÞδa3δ3i; ð25aÞ

Gab ¼ Diag

�
Ã2

�
W
χ

�
2

;

�
eν

χ

�
2

;

�
eν

χ

�
2
�
; ð25bÞ

with the proviso that these expressions need to be
evaluated for each world line independently. Given
an arbitrary world line with fixed comoving coor-
dinates ri ¼ ðxi; yi; ziÞ, AðtÞ≡ Aðt; ziÞ can be re-
garded as the scale function of an associated FLRW
“local background” or “reference model” with initial
constant density ϱbðtiniÞ ¼ ϱ̂bðziÞ and curvature
k0 ¼ k̂ðzÞ. Thus, f�ðtÞ≡ f�ðt; zÞjz¼zi are its asso-
ciated growing and decaying modes.

IV. GENERALIZED RELATIVISTIC ZEL’DOVICH
APPROXIMATION (GRZA)

Motivated by the mathematical connection between the
Szekeres class II solutions and RZA, we present a new
nonperturbative approach that generalizes RZA to contain
Szekeres class I. The approach retains the mathematical
structure of RZA but without pre-assuming a global
background. Instead, we consider a space-dependent con-
formal scale factor obeying a Friedmann-like equation (as
in Eq. (22) for Szekeres class I).
Restricting the analysis to an irrotational dust source, the

coframe set (10) finds its generalization in the following
expressions:

ηa ¼ ηaidXi ¼ Aðδai þ P̂a
iÞdXi; ð26aÞ

A ¼ Aðt; rÞ; P̂a
i ¼ P̂a

iðt; rÞ; ð26bÞ

where, as discussed above, A satisfies a Friedmanian
equation for a reference model with curvature and matter
density parameters k̂ ¼ k̂ðrÞ and ϱ̂bðrÞ, respectively:

2Ä=Aþ _A2=A2 − Λþ k̂=A2 ¼ 0; ð27aÞ

�
_A
A

�2

¼ −
k̂
A2

þ 8π

3

ϱ̂b
A3

þ Λ
3
: ð27bÞ

The line-element keeps the bilinear quadratic mathematical
structure for the deformation field, as in Eq. (1):

gij ¼ Gabη
a
iη

b
j ð28aÞ

¼ A2½Gij þ GabðδaiP̂b
j þ δbjP̂

a
i þ P̂a

iP̂
b
jÞ�: ð28bÞ

Since at the initial time A is normalized and we assume
(without loss of generality) that the initial deformation field
vanishes (P̂a

iðtiniÞ ¼ 0), the Gram’s matrix is defined via
the initial spatial metric:

GijðrÞ ≔ gijðti; rÞ: ð29Þ

The subsequent approach consists of (i) obtaining
(Lagrange-)linear evolution equations for the deformation
field and, then, (ii) injecting the formal solution into the
exact nonlinear functional expressions. This scheme retains
the original Zel’dovich’s extrapolation idea and generalizes
RZA to include the whole family of Szekeres models
within its locally one-dimensional deformation field limit.
In light of this, we call the resulting approach generalized
relativistic Zel’dovich approximation (GRZA).

A. Functional evaluation

First, let us evaluate all relevant fields as exact func-
tionals of the local deformation and the conformal scale
factor. The exact determinant of the spatial coframe
coefficients is given by:

J ¼ A3J ¼ A3ðJ0 þ J1 þ J2 þ J3Þ; ð30Þ

where we have introduced the peculiar-determinant J, and
the quantities Jn ≡ ðnÞ Jkk are defined through:

ð0ÞJij ¼
1

6
ϵabcϵ

iklδajδ
b
kδ

c
l; ð31aÞ

ð1ÞJij ¼
1

6
ϵabcϵ

iklP̂a
jδ

b
kδ

c
l þ

1

3
ϵabcϵ

iklδajP̂
b
kδ

c
l; ð31bÞ

ð2ÞJij ¼
1

3
ϵabcϵ

iklP̂a
jP̂

b
kδ

c
l þ

1

6
ϵabcϵ

iklδajP̂
b
kP̂

c
l; ð31cÞ

ð3ÞJij ¼
1

6
ϵabcϵ

iklP̂a
jP̂

b
kP̂

c
l: ð31dÞ

From its definition, we can see that J0 ¼ 1, as expected.
Henceforth, the exact inhomogeneous density field follows
from injecting (30) and (31) into (5).
Next, we express the expansion tensor as a functional of

the deformation field. Writing out Eq. (7) yields:
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Θi
j ¼ 3Ĥ

P
n
ðnÞJij
J

þ 1

J
ðð1ÞĪij þ ð2ÞĪij þ ð3ÞĪijÞ: ð32Þ

To keep the above expression short, we have introduced the
shorthand notations:

Ĥ ¼ _A=A; ð33aÞ

ð1ÞĪij ¼
1

2
ϵabcϵ

ikl _̂P
a
jδ

b
kδ

c
l; ð33bÞ

ð2ÞĪij ¼ ϵabcϵ
ikl _̂P

a
jP̂

b
kδ

c
l; ð33cÞ

ð3ÞĪij ¼
1

2
ϵabcϵ

ikl _̂P
a
jP̂

b
kP̂

c
l: ð33dÞ

Taking the trace of the expansion tensor and using a similar
notation as before, Īn ≡ ðnÞĪkk, we obtain the functional for
the expansion scalar:

Θ ¼ 3Ĥ þ 1

J
ðĪ1 þ Ī2 þ Ī3Þ: ð34Þ

Then, the exact functional for the shear tensor can be
computed from (8), (32) and (34).
The gravitoelectric part of the spatially projected Weyl

tensor reads:

Ei
j ¼ −3

Ä
A

P
n
ðnÞJij
J

− 2Ĥ

P
n
ðnÞĪij
J

−
P

n
ðnÞÎij
J

−
1

3
ð4πϱ − ΛÞδij: ð35Þ

Above, the quantities ðnÞÎij are defined as ðnÞĪij in (33), but

replacing _̂P
a
j by

̈P̂a
j. The gravitomagnetic part is given by

Hi
j ¼ −

ϵikl

AJ

�� _Ajl
A

þ Ĥ
Ajl
A

�
hjk

þ ĤðGjaP̂
a
kjjl þ GkaP̂

a
jjjlÞ

þ 2
Ajl
A

ðGka
_̂P
a
j þ GabP̂

b
k
_̂P
a
jÞ þ Gka

_̂P
a
jjjl

þGab½HðP̂a
jP̂

b
kÞjjl þ ð _̂Pa

jP̂
b
kÞjjl�

�
: ð36Þ

In the first line of the above equation, hjk denotes the
conformal spatial metric hjk ¼ gij=A2, which coincides
with the Gram’s matrix at the initial time (recall that
Aini ¼ 1).
Notice that (36) is a complex expression that in general

does not identically vanish, except in special cases (like in
the Szekeres limit). This suggests a nonsilent character of
the GRZA solutions (unless special initial data are
imposed) and paves the way for applications to the physics

of gravitational waves, see [9] for a study of the Lagrangian
approach to gravitational waves.
Finally, the functional for the spatial Riemann curvature

tensor can be obtained from its well-known expression in
terms of partial derivatives of the metric tensor.

B. First-order perturbation scheme

To determine the first-order scheme, we consider the
linearized Lagrange-Einstein system at a local (Lagrangian)
background solution. Linearizing only in the deformation
field, i.e., neglecting the terms of second- or higher-order in
P̂a

i, we obtain in line with [9]:

�
_A
A

�2

¼ −
k̂
A2

þ 8π

3

ϱ̂b
A3

þ Λ
3
; ð37aÞ

_̂P½ij� ¼ 0; ð37bÞ

̈P̂i
j þ 3Ĥ _̂P

i
j ¼ −J

�
Ri

j −
1

4

�
Rþ 2

k̂
A2

�
δij

�
; ð37cÞ

Ĥ _̂Pþ 4πϱ̂b
A3

P̂ ¼ −
J

4

�
R − 6

k̂
A2

�
−
Ŵ
A3

; ð37dÞ

_Ajj
A

− Ĥ
Ajj
A

þ 1

J
_̂P
i
½ijj� þ ζj ¼ 0; ð37eÞ

where J≡ JA−3, Ĥ is the generalized Hubble function, and
Ŵ the trace of the relativistic analog of the Newtonian
peculiar-acceleration gradient, defined together with ζj as
follows:

Ŵ ≡ −4πϱ̂bδ̂ini; ζj ≡ 1

2J
ðΓi

lj
_̂P
l
i − Γi

il
_̂P
l
jÞ: ð38Þ

In the equation above, the Christoffel symbols should be of
zeroth-order in the deformation field; otherwise, ζj would
be of second or higher order. (See Appendix C 2 for the
explicit expression.) We have opted for keeping the
peculiar determinant in Eqs. (37)–(38). The importance
of this term will be examined elsewhere. Below we will
apply a strict linearization and assume that the curvature
terms on the right-hand side of (37c) and (37d) are small
and of the order of P̂.
Following the steps of [9], we decompose the deforma-

tion field into its trace, tracefree symmetric, and antisym-
metric parts:

P̂ij ¼ P̂ðijÞ þ P̂½ij� ¼
1

3
P̂Gij þ Π̂ij þ P̂ij; ð39aÞ

with the definitions:
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Π̂ij ≡ P̂ðijÞ −
1

3
P̂Gij; P̂ij ≡ P̂½ij�: ð39bÞ

The linearized system reads:

_̂Pij ¼ 0; ð40aÞ

̈P̂þ 3H _̂P ¼ −
1

4

�
R − 6

k̂
A2

�
; ð40bÞ

̈Π̂ij þ 3Ĥ _̂Πij ¼ −
τij
A2

; ð40cÞ

Ĥ _̂Pþ 4πϱ̂b
A3

P̂ ¼ −
1

4

�
R − 6

k̂
A2

�
−
Ŵ
A3

; ð40dÞ

_Ajj
A

− Ĥ
Ajj
A

þ 1

3
_̂Pjj −

1

2
_̂Π
i
jji ¼ −ζj; ð40eÞ

where τij denotes the tracefree part of the spatial Ricci
curvature,

τij ≡Rij −
1

3
Rgð0Þij ; with gð0Þij ¼ A2Gij: ð41Þ

Keeping only the terms linear in the deformation, Eq. (38)
simplifies to:

ζj ¼
1

2

�
Ajj
A

_̂P − 3
Ajl
A

_̂P
l
j

�
−
1

2
ðΓi

ilðGÞ _̂Pl
j − Γl

ijðGÞ _̂Pi
lÞ:

ð42Þ

In the above equation, Γi
jkðGÞ denotes the Christoffel

symbols for the initial spatial metric, see Eq. (C10).
Substituting (40d) into (40b), we obtain the master

equation for the trace part:

̈P̂þ 2Ĥ _̂P−
4πϱ̂b
A3

P̂ ¼ Ŵ
A3

; ð43Þ

while the traceless symmetric part obeys (40c). Both
coincide in form with their original RZA counterparts
(see Eqs. (41) and (24) of [9]).

C. General initial data setup

To prescribe the initial data, we will proceed as in the
standard RZA and identify the time-derivatives of the
deformation field with coefficients of the (nonintegrable)
generalizations of the Newtonian peculiar-velocity gradient,
Ûa

i, and peculiar-acceleration gradient, Ŵa
i, respectively:

P̂a
iðtiniÞ ¼ 0; ð44aÞ

_̂P
a
iðtiniÞ ¼ Ûa

i; ð44bÞ

̈P̂a
iðtiniÞ ¼ Ŵa

i − 2ĤiniÛ
a
i: ð44cÞ

The initial expansion rate and shear can be computed from
the trace of the generalization of the Newtonian peculiar-
velocity gradient, Û:

Hini ¼
Θini

3
¼ Ĥini þ

Û
3
; ð45Þ

σijðtiniÞ ¼ Ûi
j −

Û
3
δij; ð46Þ

where Ĥini ¼ _Aini=Aini ¼ _Aini since Aini ¼ 1. By construc-
tion Ĥini satisfies a Friedmann-like equation,

Ĥ2
ini ¼ _A2

ini ¼ −k̂ðrÞ þ 8π

3
ϱ̂bðrÞ þ

Λ
3
: ð47Þ

Here, ϱ̂b is an auxiliary function interpreted as the local
backgrounddensity; then, the physical density can be split as
follows:

4πϱini ¼ 4πϱ̂b þ 4πϱ̂bδ̂ini ¼ 4πϱ̂b − Ŵ: ð48Þ

The initial scalar curvature takes the following form:

Rini ¼ 6k̂ − 4ðŴ þ ĤiniÛÞ − IIðÛa
iÞ; ð49Þ

which obeys the exact energy constraint on the initial
time slice. The quantity IIðÛa

iÞ represents the second
principal scalar invariant of the generalized Newtonian
peculiar-velocity gradient field. See its definition in
Eq. (D3).
The initial gravitoelectric and -magnetic parts of the

(spatially projected) Weyl tensor are given by

Ei
jðtiniÞ ¼ −Ŵi

j þ
Ŵ
3
δij; ð50Þ

Hi
jðtiniÞ ¼ −ϵiklð _AinijlGjk þ GkaÛ

a
jjjlÞ: ð51Þ

It should be noticed that the splitting of the initial density
distribution, ϱini, into the associated background density
and its contrast is thus far arbitrary in our model, setting an
extra degree of freedom in the choice of ϱ̂b. This property is
inherited from the Szekeres solution, where μðzÞ (i.e., ϱ̂b) is
an arbitrary free function.

1. Setting the local background density ϱ̂b
We choose a physically motivated form of the local

background density, namely a constant function with value
ϱbðtiniÞ, the mass density of an FLRW solution at tini:

ϱ̂b ¼ ϱbðtiniÞ ¼ const: ð52Þ
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This condition removes the indeterminacy in the local
background density and uniquely defines the set of initial
conditions. The physical motivation behind this choice is
the almost-homogeneity that is expected at early cosmic
stages.
Note that Eq. (52) does not imply that μ is constant in the

exact Szekeres limit, which would suppress the growth
of structure. In fact, μ ¼ ð4π=3Þϱ̂bðtiniÞχ−3 ≠ const since
χðrÞ ≠ const.4

V. SPECIAL SUBCASES: LOCALLY
ONE-DIMENSIONAL DEFORMATIONS

So far, we have kept the approach as general as possible.
However, we can still introduce some additional assump-
tions to obtain simpler and more transparent physical
models. Let us consider the case of a locally one-
dimensional deformation field, namely

P̂a
iðt; rÞ ¼ P̂ðt; rÞδazδzi: ð53Þ

Hence, the linearized evolution equations turn out to be
exact and the functional expressions introduced in
Sec. IVA become linear,

Θ ¼ 3Ĥ þ
_̂P
J
; ð54aÞ

σij ¼
1

J

�
_̂P
i
j −

_̂P
3
δij

�
¼ Σ × Diagð1; 1;−2Þ; ð54bÞ

with Σ ≔ −
1

3

_̂
P̂
J
; ð54cÞ

R ¼ 6
k̂
A2

−
4

J
ð3Ĥ _̂Pþ ̈P̂Þ; ð54dÞ

Ei
j ¼ −

1

J
ð ̈P̂i

j þ 2Ĥ _Pi
jÞ þ

1

3J
ð ̈P̂þ 2Ĥ _̂PÞδij: ð54eÞ

The gravitomagnetic part of the Weyl tensor can be
obtained by inserting (53) into (36).
The presence of shear, Ricci, and spatially projected

gravitoelectric Weyl tensors with two equal eigenvalues
constitutes a characteristic feature of these solutions. The
importance of the present toy model is two-fold: first, it is
the simplest realization of GRZA and its particular case,
RZA, and second, it contains the Szekeres models and the
subfamily of exact solutions resulting from them.

A. Exact subcases and RZA limit

The architecture of GRZA allows us to reproduce the
class I of Szekeres solutions when the Gram’s matrix and
the deformation field take the form specified in Eq. (25),
furnishing a subset of the admissible initial data for the
locally one-dimensional models. Under these assumptions,
the constraints are identically satisfied, while Eqs. (27)
and (43) are the only nontrivial dynamical equations.
Equation (27) is nothing more than Eq. (21), or (14);
and (43) reduces to (23), or (16).
The well-known LTB models emerge as the spherically

symmetric limit of the quasispherical Szekeres models of
class I. This occurs when the unspecified Szekeres func-
tions in (25) (ν, A and W) are set as in (A1) with ϵ ¼ 1
and c0; c1; c2 ¼ const.5

RZA results from GRZA in the limit when the curvature
and density parameters of the reference model are constant:

GRZA → RZA∶ k̂ðrÞ → k0 ∧ ϱ̂bðrÞ → ϱbðtiÞ: ð55Þ

Then, the conformal scale factor is a function of time only,
Aðt; rÞ → aðtÞ. In this limit, Szekeres models of class II
follow from a simple specialization of the initial data,
Eq. (24) and (A2). Figure 1 provides a visual representation
of the relationship between these solutions; see Fig. 2.1 and
2.4 in [27] for a diagrammatic representation of the exact
solutions that can be deduced as a limit of the Szekeres
spacetimes.

VI. A NUMERICAL EXAMPLE

To illustrate the potential of GRZA, we explore the
numerical solutions of a family of locally one-dimensional
models, containing the quasispherical Szekeres solution
as a particular case.6 A key aspect of these models is that
they retain the spatial foliation of the hypersurfaces by

FIG. 1. Special subcases of GRZA. Other exact limits of
Szekeres class I (Sze-I) and Szekeres class II (Sze-II) are not
represented in the figure; see [27] for their classification.

4In the exact solution of class I, S;z ¼ 0 necessarily renders the
model an FLRW spacetime.

5The whole class of LTB models is obtained from the Szekeres
solution when the dipole vanishes, i.e., when X ¼ Y ¼ Z ¼ 0 in
Eq. (B7) or equivalently, S, P, and Q are constant in Eq. (B8).

6A jupyter notebook containing a pedagogical introduction to
the numerical example shown in this section is available at [75].
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nonconcentric 2-spheres, a characteristic feature of the
quasispherical Szekeres models, but generalize Szekeres in
the way the 2-spheres are arranged. Such a nontrivial
foliation leads to more general networks of structures than
the standard Szekeres dipolar mass distribution.

A. Szekeres-like initial data

The initial data is specified at the last scattering time.
First, we set the free parameters of the set of local
Friedmannian reference models. For simplicity, we take
for the density field a single global value (while we keep the
dependence on the radial coordinate of the curvature
parameter) of a conventional FLRW universe at the initial
time (ϱbðtiniÞ ≔ ϱbi):

ϱ̂bðrÞ ¼ ϱbi: ð56Þ

To work with dimensionless quantities, we take the
Hubble parameter at the initial time [H� ¼ HðtlsÞ] as the
timescale and l ¼ 2 × 10−2 Mpc as the characteristic
length of the inhomogeneous region. Next, we introduce
the following parameters and functions,7

τ ¼H�t; ξ¼ z
l
; μ¼ 4π

3

ϱ

H2�
; ϰ ¼ k̂

H2�
: ð57Þ

In these variables, μbi denotes the density value of the
equivalent FLRW model at the initial time, and the
remaining arbitrary free function of the Friedmann-like
reference model is given by

ϰ̂ðξÞ ¼ ϰ̂aðξÞξ2; ð58Þ

ϰ̂aðξÞ ¼ ϰ̂1 þ ϰ̂2ð1þ tanh 4ðξ − 1=2ÞÞ; ð59Þ

with ϰ̂1 ¼ 10−5 and ϰ̂2 ¼ 37 × 10−5. For our analysis, we
consider these functions in the interval 0 ≤ ξ ≤ 1,
−∞ < x; y < þ∞. In this model, ξ should be interpreted
as a radial comoving coordinate, while x and y are the
angular coordinates; see Sec. VI B and Appendix E below.
The Gram’s matrix (initial metric) is taken as

Gij ¼ Diag

�
ðA − F̂ iniÞ2

�
W
χ

�
2

; ξ2E−2; ξ2E−2
�
; ð60Þ

where χ ¼ ffiffiffî
ϰ

p
and the metric functions E, A and W are

chosen as in Szekeres models, Eqs. (B13a)–(B13b),
with SðξÞ ¼ 1, QðξÞ ¼ 0 and PðξÞ is a third order poly-
nomial function satisfying Pð0Þ ¼ P0ð0Þ ¼ P0ðξ1Þ ¼ 0 and
Pðξ1Þ ¼ −0.6. Moreover, F̂ ini is the initial value of the
function

F̂ ¼ F þ δF ; δF ¼ δβþfþ þ δβ−f−: ð61Þ

Here, F ¼ βþfþ þ β−f− is the Szekeres function intro-
duced in Sec. III, and δβ�ðξÞ are arbitrary functions of the
spatial coordinates, ξ ¼ ðξ; x; yÞ. In this simulation, we take

δβþðξÞ ¼ α sin3ðγπyÞ sin4ðπξÞ; ð62Þ

with γ ¼ 3, and vary α. Also, in order to have a model
where the voids compensate for the mass excess in the
overdensities (i.e., a mass-compensated array of structures),
δβ−ðξÞ satisfies

δβ−ðξÞ ¼ −
δβþfþðtini; ξÞ
f−ðtini; ξÞ

: ð63Þ

Then, the initial energy density is set to

μini ¼ μbi

�
A

A − F̂ ini

�
; ð64Þ

which determines the generalized Newtonian peculiar-
acceleration divergence,

Ŵ ¼ −3μbi
F̂ ini

A − F̂ ini

: ð65Þ

The whole set is completed by the initial values of the
deformation, PðtiniÞ ¼ 0, and the generalized Newtonian
peculiar-velocity divergence,

Û ¼ −
_̂F ini

A − F̂ ini

: ð66Þ

B. Physical interpretation

This family of models corresponds to a solution with a
deformation field of the form (53) with

P̂ðt; ξÞ ¼ −
F̂ − F̂ ini

A − F̂ ini

; ð67Þ

containing the exact Szekeres solution in the case
δβþðξÞ ¼ 0. As the amplitude of δβþðξÞ increases, the
model deviates from Szekeres. At the same time, its
coupling to the growing mode leads to significantly differ-
ent evolutions, even for small values of δβþðξÞ, compared
to the exact solutions. The function δβþðξÞ, its derivatives
and the Szekeres dipole functions vanish at the boundary of
the domain considered in this simulation, ξ ¼ ξ1, indicating
that the solution is an exact LTB model at this shell. This
property allows matching the inhomogeneous region simu-
lated here to an external Szekeres, LTB, FLRW, or
Schwarzschild solution.

7With a slight abuse of notation, in this section we let μ denote
the dimensionless density.
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Writing out the line-element (28), one can check that the
metric of the surfaces ft ¼ const; ξ ¼ constg coincides
with its equivalent in the exact solution, and then it can
be transformed into that of a 2-sphere with radius
Aðt; ξÞχðξÞ [by the transformation (B5)]. The deviation
from the exact solution comes from the metric coefficient
gξξ, which is generalized to resemble the usual approxi-
mation where the growing (decaying) mode is coupled to a
nontrivial function of the spatial coordinates. In this way,
the models retain the characteristic foliation by noncon-
centric 2-spheres of Szekeres; the term δβþfþ leads to
more general arrangements of the 2-spheres. This feature
will be examined in detail in Sec. VI E.

C. Estimation of the accuracy

The GRZA model, although containing exact solutions
as special subcases, is in general an approximation.
The Hamiltonian constraint, or more specifically its
violation, can be used to estimate the error generated by
this approach. Taking into account that the fluid flow
4-velocity is the vector normal to our spatial hypersurfaces,
we define

H ≔ ðGμν − 8πTμνÞuμuν ¼ G00 − 8πT00: ð68Þ

Then, the function H vanishes when the solution is exact,
and it is nontrivial for approximate models. In general, we
can tolerate small violations of the constraints as long as
they remain below a certain threshold value. Non-
negligible values of Hðξ; tÞ can be attributed to either an
increase of the numerical error or to the natural failure of
the approximate approach as the solution goes deep into the
nonlinear regime.
We exploit the relationship between the present models

and the exact solutions to work out a closed-form expres-
sion for H. The final result is Eq. (E4), displayed in
Appendix E (where we rewrite this section in the language
of exact solutions). Note that the error does not grow
linearly in time but exhibits a nontrivial dependence on the
“perturbation,” reinforcing the nonlinear nature of the
current approach.
We note in this context that a self-consistency test,

proposed by Doroshkevich et al. for the Newtonian
Zel’dovich approximation in [76], see also [13], would
return a vanishing error, since the comparison of the density
field (i) as a solution of the field equation and (ii) as a
solution of the continuity equation, leads to an exact
agreement in the case considered here: this error depends
on second and third principal scalar invariants of the
generalized deformation gradient that both vanish in the
class of models considered here.

D. Numerical results

The GRZA model equations are solved in the comoving
domain specified above,Di∶ 0 ≤ ξ ≤ 1. The inhomogeneous

solution is contrasted by a theoretical FLRW model with the
standard cosmological constant and energy density values.
Our choice of the initial data ensures that themass in the initial
domain is the same as it would be in an FLRW model
(ϱbðtiniÞ ¼ hϱiniiDHi

)—this mass is subsequently conserved
through the continuity equation. Furthermore, the initial
curvature parameter of this FLRW model is taken as the
average initial curvature, kb ¼ hRiniiDHi

=6. In more realistic
cosmological simulations, such a background will emerge
from the averaging on a sufficiently large compact domain.
However, the scales considered here correspond to the size of a
typical supercluster, and the background is set by hand. For
merely pedagogical reasons, we have chosen to set k̂ as a
strictly positive function and assumed a background with
positive curvature as well.8

Figure 2 shows snapshots of the density contrast at the
present cosmic time for the different values of α, including
α ¼ 0, the exact Szekeres case. In all of these simulations,
the error remains small. Figure 3 shows H as a function
of z for different values of the polar angle for the case
α ¼ 4.5 × 10−3. While for the other cases the error remains
smaller, being negligible (purely numerical) in the exact
case (α ¼ 0).

E. Overdense structures and shell-crossings

In the presented models, as in other dust-sourced models,
structures emerge from the inhomogeneous expansion and
shear of the cosmic fluid. Portions of the fluid expanding
faster than the global average distribution with subdomi-
nant shear become voids (underdensities), whereas a
collapse, i.e., an expansion slower than the global average
distribution or a dominant shear leads to clustering (over-
densities) [26]. In the Szekeres solutions their complex
spatial matter distribution can be traced back to overdense
spatial patterns in angular directions of a foliation
of the constant time slices by nonconcentric 2-spheres,
see Fig. 4.
To gain a better insight into this property let us consider

first the LTB models, where the 2-spheres are concentric
and structures correspond to spherical dust shells. Szekeres
models can be thought of as a nonspherical generalization
of LTB via the dipole function (see Appendix B 2), where
the (topological) 2-spheres are no longer orthogonal to the
radial rays when they are plotted in terms of proper length
[57]. Similarly, the models developed in this section

8In the GW parametrization, the conformal scale factor has a
vertical asymptote at the points where k̂ðzÞ ¼ 0. Although the
rescaling of the solution removes this singular behavior, we took
a well-behaved model to illustrate how the initial data of Szekeres
can be set in Hellaby’s formulation, then reparametrized in the
language of GW, rescaled, rewritten in the language of GRZA,
and finally generalized to obtain the approximate solutions
discussed in this section. This is the approach followed in
Appendix E.
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constitute a generalization of Szekeres through the func-
tion δβþ, furnishing a more general foliation into topo-
logical 2-spheres (with “less quasisymmetries”), and in
turn, leading to a more generic network of structures.

Figure 4 shows the spatial foliation by 2-spheres in terms of
the proper length; we also highlight the regions where the
proper distance between adjacent shells is minimal, giving
rise to local density maxima, i.e., overdensities. Eventually,
this distance will go to zero resulting in shell-crossing
singularities [40].
It is important to emphasize that the models examined

here (and displayed in Fig. 2) inevitably lead to shell-
crossings, simply because any inhomogeneous physical
source that would allow to counteract gravity (such as
velocity dispersion, pressure or vorticity) is absent in the
basic system of Eqs. (3) studied. Although these shell-
crossing singularities will emerge in the future, i.e., t > t0,
their spatial locations coincide with regions where the
three overdensities in our example model are located.
Once singularities in the density field emerge, the sim-
ulation would ask for regularization of these singularities.
We remark here that, in any realization of dust models and
their shell-crossings at finite resolution, these singularities
are smoothed out, so that the distribution of caustics in the
density field is indicative for the network of high-density
structures, see the methods of realization and illustrations
at high resolution in Newtonian models [13,77,78], and
for further discussions on shell-crossing singularities in
the literature and their morphological classification in
generic Lagrangian-to-Eulerian maps, see [Sec. V B] [6],

(a) (b) (c)

(d) (e) (f)

FIG. 2. Equatorial projection of the density contrast δ ¼ ϱ=ϱb − 1 at the present cosmic time, t0. Coordinates are defined as X ¼
Aðt0; zÞz cosϕ and Y ¼ Aðt0; zÞz sinϕ, where Aðt0; zÞz is the areal radius. The plots correspond to different values of α. For α ¼ 0, the
solution is exact, exhibiting the distinctive dipolar matter distribution of Szekeres models.

FIG. 3. Estimation of the error from the violation of the
Hamiltonian constraint at the present cosmic time. Equation (68)
is evaluated along the radial rays defined by θ ¼ π=2 and

ϕ ¼ ½ϕð1Þ
� ;ϕð2Þ

� ; 0; π=4; π=2; π; 3π=2� for the solution with

α ¼ 4.8 × 10−3. ϕð1Þ
� and ϕð2Þ

� denote the azimuthal angles of
the two largest overdensities in the order seen by he reader in
Fig. 2f.
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as well as the recent review [79] for related discussions
and a list of recent work on shell-crossing singularities in
Newtonian models.9

In the mathematical literature, the singularity morphol-
ogies are classified topologically. The geometry of caustics
emanates from local germs of classified stable caustic
patterns, while their global geometry depends on the
large-scale distribution of the density field. Locally, the
degeneracies of directional scale factors can be used to
locate these singularities in the density field [corresponding
to degeneracies of the determinant of the coframe defor-
mation field, detðηaiÞ ¼ 0, cf. Eq. (5)]. They can be
identified as the eigendirections of the expansion tensor
[15]: _li=li ¼ Θii (no summation implied). Then, for the
models examined in this section we simply have:

l3 ¼ Að1þ PÞ; l1 ¼ l2 ¼ A: ð69Þ

In general, shell-crossings arise due to the vanishing
of the term 1þ P (i.e., l3 → 0) while l1 ¼ l2 > l3 > 0;
resulting in what in cosmology is called a “pancake
singularity,” i.e., a 2-surface of infinite density in the case
of a 3-space.

VII. GENERAL DISCUSSION
AND CONCLUDING REMARKS

This section brings together the steps and procedure
followed to develop GRZA and discusses their physical
interpretation. Our analysis is put in perspective with well-
established features of exact solutions and the Lagrangian
perturbation theory. Finally, we summarize the main points
of this article and provide final remarks.

A. Physical motivation

The relativistic Lagrangian perturbation schemes and
exact solutions of Einstein’s equations provide comple-
mentary approaches to analytically model the large-scale
structure formation in the Universe. On the one hand, the
Lagrangian description is known for its high accuracy; its
first-order solution (known as the Zel’dovich approxima-
tion in Newtonian theory for initial data where peculiar-
velocity and peculiar-acceleration are assumed to be
parallel, so-called ‘slaving’) remains valid beyond the
linear regime [79]. On the other hand, exact solutions
are a fundamental tool to understand inhomogeneous
cosmology, describing the structure formation in idealized
scenarios with symmetries or quasisymmetries but other-
wise not tied to any particular regime [27,40].
Motivated by our recent results on the correspondence

between the relativistic Lagrangian theory of structure
formation and the Szekeres family of exact solutions
(the first-order Lagrangian perturbation solutions (RZA)
contain the entire class II of Szekeres solutions) [4], in this
paper, we proposed a generalization of the Lagrangian
theory, controlled by Szekeres models of class I. This
furnishes a new method for structure formation in

(a) (b) (c)

FIG. 4. Foliation by 2-spheres plotted in terms of the radial proper length. Time slices of LTB and Szekeres solutions and of our
numerical example model are leaves of a foliation by topological 2-spheres. Only in the LTB case, the 2-spheres are geometric and
concentric. Overdense structures (or density maxima) arise at the loci of points where the proper distance between shells is minimal and
becomes zero at shell-crossing. In the Szekeres and more general GRZA cases, these degeneracies also arise along the angular variables
but have well-localized spatial positions at points of degeneracy of the deformation field, detðηaiÞ ¼ 0. The regions marked in the figure
are prone to forming shell-crossings.

9Most of the literature on shell-crossing singularities draws
conclusions from Newtonian models. While indicative for shell-
crossings in the general-relativistic context, care has to be taken
as to whether these studies are applicable. Singularities in the
density field have deeper implications in general relativity, since
these will in general come with singularities in the geometry, see
the discussion in [Sec. V B] [6]. Questions of extendability of
solutions beyond caustics are addressed in e.g., [80,81].
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relativistic cosmology: the generalized relativistic
Zel’dovich approximation (GRZA).
The GRZA architecture relies on a combination of

standard elements from the Lagrangian theory and exact
solutions. Firstly, we retain the essence of RZA and consider
the spatial coframe coefficients as the only variables of the
3þ 1 Lagrange-Einstein system (3) for irrotational dust in
the comoving frame [6]. Next, the coframes are split into the
expansion of a trivial background model and a deformation
field. In this splitting, we introduce a space-dependent scale
factor, which obeys a Friedmann-like evolution equation
with in general space-dependent density and curvature
parameters, Eqs. (26) and (27). Still, the overall model
consists of a deformation field evolving on this inhomo-
geneous Friedmann-like reference model. As in RZA, the
evolution equations are linearized for the deformation,
Eq. (37) [or (40)], while the functional evaluation of the
physical quantities is kept exact, Sec. IVA.
The inclusion of such an inhomogeneous Friedmann-like

reference model is motivated by the structure of Szekeres
class I solutions. However, it can be related to a character-
istic feature of the silent solutions of Einstein’s equations,
where some Bianchi and local rotational symmetric sol-
utions, LTB and Szekeres models are governed by a
common set of evolution equations. Their discrimination
is reflected in the constraint equations [82]. In this way, our
space-dependent scale factor allows for fulfilling the
constraints associated with more general solutions, includ-
ing the Szekeres class I exact case.
To put it differently, GRZA is obtained as a generali-

zation of RZA, where the constant curvature and
density of the Friedmann background are extended to
be space-dependent functions (leading to a space-
dependent scale factor): k0 → k̂ðrÞ and ϱbðtiÞ → ϱ̂ðrÞ.
This procedure constitutes the most direct extension of
RZA that allows reproducing the entire Szekeres class as
an exact limit. When the solution is not exact we can
control its overall error by estimating the violation of the
constraints.

B. Backreaction in cosmological models

Let us now turn to the backreaction problem in cosmo-
logy, i.e., how small-scale structures can back-react and
change the Universe’s average expansion rate on large
scales. We here refer to the scalar volume-averaging
scheme [83], reviewed in [18,84,85]. As inherited from
Szekeres models, GRZA solutions present a nontrivial
global backreaction term, which can be computed by
inserting (8), (32), and (34) into (D2). However, proper
physical models should be compatible with the current
observational probes, and the backreaction calculated from
classes of exact solutions might be sensitive to these
constraints. This is the case of the LTB void models used
to fit the observations without dark energy, which have

been ruled out by the constraints imposed by the kinematic
Sunyaev Zel’dovich effect [86–89].
The situation will be different when considering a

generic model: with GRZA we keep control of approxi-
mations made since its construction contains the exact
subcases while going beyond the restricted space of initial
data. Foremost we emphasize the role of higher scalar
invariants contained in GRZA but required to strictly
vanish in the exact subcases. Especially for a discussion
of cosmological backreaction, a nonvanishing second
invariant implies the possibility of a sign change in the
backreaction functional: a positive backreaction contributes
to acceleration. This generic feature of backreaction is
otherwise suppressed, but it is a consequence of the
volume-dominance of void regions. Expressed in geometric
terms, given a large generic simulation that includes large-
volume voids, the average scalar curvature obtains negative
contributions mimicking a dark energy-like effect. These
remarks show that the implementation of GRZA for generic
initial data is key to the future development of the proposed
simulations. They will help to quantify cosmological
backreaction globally.
In this context, we think of two questions to be answered.

First, does a generic GRZA simulation change the con-
clusions drawn from LTB models when compared with
observational constraints, i.e., what are the quantitative
changes by including more degrees of freedom? Second,
how backreaction or the emergence of an average negative
curvature can solve the tension in the estimation of H0,
given the controlled quantification proposed in this paper.
How does this compare with silent universe simulations
[24,82,90]?
These and further questions will be addressed in a

forthcoming paper.

C. Source of the gravitational field

The present study has been restricted to models sourced
by an irrotational dust fluid, dictated by the basic system of
equations (3), and aiming at applications in the theory of
large-scale structure formation in relativistic cosmology.
Both, RZA and GRZA schemes can be extended to include
more general sources (isotropic and anisotropic) pressure,
velocity dispersion and heat-flow terms, and further sources
in the energy-momentum tensor. In these more general
cases of a single-fluid model, other nontrivial components
should be included in the metric (28) and a more general
four-velocity should be assumed to assure the compatibility
of the overall system of equations for the deformation field,
e.g., if a nonzero vorticity of the fluid is to be included.
In concrete terms, the basic system (3) can be genera-

lized by including lapse and shift degrees of freedom, as
well as a four-velocity that is tilted with respect to the
normals to the spatial hypersurface foliation, or if hyper-
surfaces do not exist, a threading of spacetime can be
implemented by using threading lapse and shift functions,
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see e.g., [91] for the general foliation and threading
formalisms. Writing such a general foliated or threaded
geometry of spacetime in terms of coframe fields will
determine the added geometrical degrees of freedom
through the energy-momentum tensor via Einstein’s equa-
tions, e.g., a pressure gradient will require a nonconstant
lapse function, a rotational flow or a nondiagonal energy-
momentum tensor will require shift functions and a tilted
four-velocity. For the RZA model an extension of the
general-relativistic Lagrangian perturbation theory to irro-
tational perfect fluid models with a barotropic equation of
state has been investigated [10] using an inhomogeneous
lapse function [92].

D. Summary and concluding remarks

We have presented a new nonlinear method to model
large-scale structure formation in the Universe (GRZA). In
its development, we merged elements of the Lagrangian
perturbation theory and exact solutions; consequently,
GRZA contains Szekeres (then LTB) models and RZA
as particular limits. This new approach retains the essence
of the Lagrangian perturbation theory: the dynamics is
described in terms of a deformation field evolving on a
cosmological background. But, it generalizes the global
FLRW background to an inhomogeneous Friedmann-like
reference model.
The evolution of the GRZA models is formally governed

by the same system of equations as the one defining RZA;
in this sense, their difference is reflected by the constraints.
This similarity in the evolution allows to translate
the approach into the Newtonian language, which can
be exploited to examine relativistic corrections to the
current N-body numerical simulations. Through their non-
perturbative nature, GRZA models are well-suited to
explore the impact of the inhomogeneities on the prediction
ofH0 or the Universe’ large-scale average evolution (i.e., to
address the Hubble tension and the backreaction problem),
to mention a few examples.
To illustrate the method’s potential, we provided a family

of numerical examples developed as a generalization of the
quasispherical Szekeres models. To a certain extent, the
path followed in this examination remains pedagogical and
explorative. More general sets of initial data will open the
door to realistic simulations, complementing the current
relativistic numerical approaches. We highlight the sim-
plified initial conditions employed to run simulations based
on the silent universes approach [24,82,90,93] as a “must-
explore” set.
The fact that GRZA contains the entire family of

Szekeres (and thus LTB) models is a remarkable theoretical
feature. However, this does not necessarily justify its use
over RZA, since GRZA has a more complex mathematical
structure. Physical applications will ultimately reveal the
quality of the approach and whether or not its use is
justified.
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APPENDIX A: THE GOODE
AND WAINWRIGHT PARAMETRIZATION

OF SZEKERES MODELS

We start by giving the relevant functions for class I
(β;z ≠ 0):

S ¼ Sðt; zÞ; with S;z ≠ 0; ðA1aÞ

f� ¼ f�ðt; zÞ; tB ¼ tBðzÞ; μ ¼ μðzÞ; ðA1bÞ

and

eν ¼ fðzÞE−1; ðA1cÞ

E ¼ ½c0ðzÞðx2 þ y2Þ þ 2c1ðzÞxþ 2c2ðzÞyþ c3ðzÞ�−1;
ðA1dÞ

c0c3 − c21 − c22 ¼ ϵ=4; ϵ ¼ 0;�1; ðA1eÞ

A ¼ fν;z − k0βþ; W2 ¼ ðϵ − k0f2Þ−1; ðA1fÞ

βþ ¼ −k0fμ;z=ð3μÞ; β− ¼ ftB;z: ðA1gÞ

The arbitrary function tBðzÞ is the inhomogeneous “big
bang time.”
Correspondingly, for class II (β;z ¼ 0):

S ¼ SðtÞ; f� ¼ f�ðtÞ; tB; μ ¼ const; ðA2aÞ

k0 ¼ 0;�1; W ¼ 1; ðA2bÞ

eν ¼
�
1þ k0

4
ðx2 þ y2Þ

�
−1
; ðA2cÞ

and
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A¼
8<
:
eν
h
c0ðzÞ

	
1− k0

4
ðx2þy2Þ



þc1ðzÞxþc2ðzÞy

i
−k0βþ; for k0¼�1;

c0ðzÞþc1ðzÞxþc2ðzÞy−βþðzÞðx2þy2Þ=2; for k0¼0;
ðA2dÞ

ciðzÞ and β�ðzÞ arbitrary and μ, tB ¼ const.

APPENDIX B: A DEEPER INSIGHT INTO
SZEKERES MODELS OF CLASS I

Szekeres models of class I are traditionally examined in
an LTB-like parametrization introduced by Hellaby [44]. In
this representation, the line-element is given by

ds2 ¼ −dt2 þ ðΦ;z −ΦE;z=EÞ2
ϵ − kðzÞ dz2 þΦ2

E2
ðdx2 þ dy2Þ;

ðB1Þ

with

E ¼ SðzÞ
2

��
x − PðzÞ
SðzÞ

�
2

þ
�
y −QðzÞ
SðzÞ

�
2

þ ϵ

�
; ðB2Þ

where the latter expression is just a reparametrization
of (A1d). Here, Φ ¼ Φðt; zÞ, ϵ ¼ �1, 0 (for quasi-
spherical, quasihyperbolic and quasiplane models, respec-
tively), and kðzÞ, PðzÞ, QðzÞ and SðzÞ are arbitrary
functions.
The function Φ obeys a Friedmann-like equation,

_Φ2 ¼ −kðzÞ þ 2MðzÞ
Φ

þ 1

3
ΛΦ2; ðB3aÞ

which can be integrated to give

t − tBðzÞ ¼
Z

Φ

0

dΦ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kþ 2M=Φ̃þ 1

3
ΛΦ̃2

q : ðB3bÞ

MðzÞ and tBðzÞ are arbitrary integration functions, identi-
fied as the effective gravitational mass and the time of the
initial singularity (the big bang time).
In these variables the density reads:

4πϱ ¼ M;z − 3ME;z=E
Φ2ðΦ;z −ΦE;z=EÞ

; ðB4Þ

while the expressions for the expansion, shear and curva-
ture tensors can be seen in Sec. 2.3.2 of Ref. [39].

1. Coordinate system

The coordinate system of the standard representation of
Szekeres models has the physical interpretation of a
stereographic projection of a sphere (ϵ ¼ 1), plane

(ϵ ¼ 0), or hyperboloid (ϵ ¼ −1) [27,40,45]. In the quasi-
spherical case, the transformation

x ¼ Pþ S cot ðϑ=2Þ cosðϕÞ; ðB5aÞ

y ¼ Qþ S cot ðϑ=2Þ sinðϕÞ; ðB5bÞ

turns the metric of the surfaces ft ¼ const; z ¼ constg into
that of a 2-sphere,

Φ2

E2
ðdx2 þ dy2Þ ¼ Φ2ðdϑ2 þ sin2 ϑdϕ2Þ: ðB6Þ

2. Modeling of the cosmic network

It is often convenient to employ spherical coordinates to
examine the dynamics of the quasispherical models.
Performing the stereographic transformation of coordinates
(B5) and z ¼ r, one finds that all the information about the
departure from spherical symmetry is contained in the
“Szekeres dipole” function,

W ≔
rE0

E
¼ −X sin ϑ cosϕ − Y sinϑ sinϕ − Z cosϑ;

ðB7Þ

where we have defined X , Y and Z as

X ¼ rP0

S
; Y ¼ rQ0

S
; Z ¼ rS0

S
; ðB8Þ

which in terms of the GW free functions take the form,

X ¼ 2z

�
c1c00
c0

− c01

�
; Y ¼ 2z

�
c2c00
c0

− c02

�
;

Z ¼ −z
c00
c0

: ðB9Þ

For more details see Ref. [94], where Sussman and Bolejko
introduced a description of this subclass employing
weighed proper volume averages of the local scalars (so-
called q-scalars) and their fluctuations. The advantages of
this notation were exploited in Ref. [57] to obtain sufficient
conditions for the existence of extrema of the Szekeres
scalars. In particular, the functions X , Y and Z (and in turn
S, P and Q) set the angular position of the extrema in the
curve defined by W;ϑ ¼ W;ϕ ¼ 0:
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B�ðrÞ ¼ ½r; ϑ�ðrÞ;ϕ�ðrÞ�; ðB10Þ

where ϑ� and ϕ� denote two antipodal positions for each
value of r,

ϕ− ¼ arctan

�
Y
X

�
; ϑ− ¼ arccos

�
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2 þ Z2
p

�
;

ðB11aÞ

ϕþ ¼ π þ ϕ−; ϑþ ¼ π − ϑ−: ðB11bÞ

The extrema of all the scalars lie along the curve Bþ. And
we have overdensities (/voids) in a given interval of r, if
M;r > 0 (/M;r < 0). Section VI D considers S ¼ 1 and
Q ¼ 0; thus, the extremum of the exact case is located on
the equatorial plane and along the x-axis.
The limitW ¼ 0 defines a unique spherically symmetric

LTB model, where the 2-spheres foliating the time slices
become concentric (see Sec. VI E). This idea was exploited
in [57] to introduce the term “LTB seed model”; then, every
Szekeres model can be developed from an “LTB seed
model” by specifying the dipole parameters.

3. Relationship between the LTB-like and
GW parametrizations

To obtain the GW parametrization, firstly, we introduce
the constant k0 ¼ jkðzÞj=kðzÞ, and define the metric func-
tion fðzÞ as

k0f2ðzÞ ¼ kðzÞ when k0 ≠ 0: ðB12Þ

Otherwise, f is arbitrary.
The remaining functions relate to those in the LTB-like

representation as follows [74]10:

c0 ¼ 1=ð2SÞ; c1 ¼ −P=ð2SÞ; c2 ¼ −Q=ð2SÞ;
ðB13aÞ

c3 ¼ ðP2 þQ2 þ ϵS2Þ=ð2SÞ; ðB13bÞ

S ¼ Φ=f; μ ¼ M=f3; W ¼ ðϵ − kÞ−1
2; ðB13cÞ

G ¼ f

�
Φ;z

Φ
−
E;z

E

�
: ðB13dÞ

To complete the analysis, we recall some results of [4].
Focusing on the case k ≠ 0, Eq. (B13d) gives

G¼ f

�
Φ;z

Φ
−
E;z

E

�
¼
�
f
S;z

S
þ f;z − f

E;z

E

�
¼ f

S;z

S
þ fν;z;

ðB14Þ

with eν ≔ f=E. Under the parametrization (B13), Eq. (B3)
transforms into (14), which has the following formal
integral [similar to (14)]:

t − tBðzÞ ¼
Z

S

0

dŜ

ð−k0 þ 2μ
Ŝ
þ Λ

3
Ŝ2Þ1=2 ; ðB15aÞ

where, as before, tBðzÞ is the big bang time and

_S ¼
�
−k0 þ

2μ

S
þ Λ

3
S2

�
1=2

: ðB15bÞ

Differentiating (B15a) [and substituting (B15b)] yields

S;z

_S
− μ;z

Z
S

0

dŜ

Ŝð _̂SÞ3
¼ −tB;z: ðB15cÞ

The integral above can be rewritten as

Z
S

0

dŜ

Ŝð _̂SÞ3
¼ 1

3μ

�
k0

Z
S

0

dŜ

ð _̂SÞ3
þ
� _S
S

�−1�
: ðB15dÞ

Then, from (B15c) and (B15d), we obtain:

S;z

S
¼ −tB;z

� _S
S

�
þ k0

μ;z
3μ

� _S
S

Z
S

0

dŜ

ð _̂SÞ3
�
þ μ;z

3μ
; ðB15eÞ

where we can identify the growing and decaying modes on
the local background described by Eq. (14) [95]:

f− ¼
_S
S
; fþ ¼

_S
S

Z
S

0

dŜ

ð _̂SÞ3
: ðB15fÞ

In addition to Eq. (16), these functions satisfy

S _S _f� −
�
k0 −

3μ

S

�
f� ¼ α�; ðB15gÞ

with αþ ¼ 1 and α− ¼ 0.
Finally, the metric coefficient G can be cast into

G ¼ f
S;z

S
þ fν;z ¼ A − ðβþfþ þ β−f−Þ; ðB16Þ

where

βþ ≡ −f
k0μ;z
3μ

; β− ≡ ftB;z; ðB17aÞ10When k ¼ 0, the scale factor is defined by S ¼ Φ=μ1=3 ⇒
μ ¼ 1 [27,40].
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A ¼ fν;z − k0βþ ¼ f;z − f
E;z

E
− k0βþ: ðB17bÞ

Note that our definition of β− differs from the Goode and
Wainwright choice by a multiplicative function constant in
time, 6μ.

APPENDIX C: GRZA MODEL EQUATIONS

Let us obtain the evolution equations for the deformation
field. By direct substitution, we find that

1

2J
ϵabcϵ

iklð_ηajηbkηclÞ•¼
1

J
ð ̈̂Pi

jþ3Ĥ _̂P
i
jÞ

þ
�
Ĥ _̂P
J

þ2Ĥ2þ Ä
A

�
δijþOðP̂2Þ;

ðC1Þ

1

2J
ϵabcϵ

iklη̈aiη
b
kη

c
l ¼ 1

J
ð ̈P̂þ 2Ĥ _̂PÞ þ 3

Ä
A
þOðP̂2Þ:

ðC2Þ

Using (9a) and (9c) and keeping only the linear terms we
obtain:

−Ri
j ¼

1

J
ð ̈P̂i

j þ 3Ĥ _̂P
i
jÞ

þ
�
1

J
ð ̈P̂þ 3Ĥ _̂PÞ þ 4

Ä
A
þ 2

�
_A
A

�2

− 2Λ
�
δij

¼ 1

J
ð ̈P̂i

j þ 3Ĥ _̂P
i
jÞ þ

�
1

J
ð ̈P̂þ 3Ĥ _̂PÞ − 2

k̂
A2

�
δij:

ðC3Þ

Taking the trace leads to the evolution equation for P̂:

̈P̂þ 3Ĥ _̂P ¼ −
J

4

�
R − 6

k̂
A2

�
≃ −

1

4

�
R − 6

k̂
A2

�
: ðC4Þ

Note that R − 6 k̂
A2 is of the order of P̂. From now on (as in

the main text), we will also assume that the Ricci tensor and
k̂=A2 are of the order of the deformation field as well.
Substituting the above relation into Eq. (C3) yields (37c).
Multiplying this equation by the metric tensor gð1Þ, con-
tracting indices and neglecting the nonlinear terms, we get

ð ̈P̂ij þ 3Ĥ _̂PijÞ ¼ −
�
Rij

A2
−
1

4

�
Rþ 2

k̂
A2

�
Gij

�
; ðC5Þ

Next, we decompose the deformation field into the trace,
tracefree symmetric, and antisymmetric parts, Eq. (39a).

Since _Pij ¼ 0, _̂Pij ¼ 1
3
_̂PGij þ _̂Πij and

̈P̂ij ¼ 1
3
̈P̂Gij þ ̈Π̂ij,

the evolution for the tracefree part simplifies to (40c). For
Szekeres models, this equation is equivalent to (C4).

1. Hamiltonian constraint

Let us turn now to the Hamiltonian constraint; the left-
hand term of Eq. (3c) can be expanded to give

1

2J
ϵabcϵ

mjk _ηam _η
b
jη

c
k ¼ 3

�
_A
A

�2

þ 2Ĥ
_̂P
J
þOðP̂2Þ: ðC6Þ

The density can be rewritten as

ϱ ¼ ϱini
J

¼ ϱ̂b
A3J

þ ϱ̂bδ̂

A3J
¼ ϱ̂b

A3J
−

Ŵ
4πA3J

; ðC7Þ

with Ŵ ¼ −4πϱ̂bδ̂. Finally, Eq. (37d) results from sub-
stituting the previous expressions into (3c) and using (22).

2. Connection coefficients

Since in this paper we only use the zero-order spatial
Christoffel symbols, we will not compute the higher
order quantities. Injecting the zero-order spatial metric
(gð0Þij ¼ A2Gij) and its inverse (gð0Þij ¼ A−2Gij), into the
definition of the Christoffel symbols,we obtain:

ð0ÞΓi
kl ¼ ð0ÞΓ̄i

kl þ ð0ÞΓ̃i
kl; with ðC8Þ

ð0ÞΓ̄i
kl ¼

Ajl
A

δik þ
Ajk
A

δil −
Ajm
A

GimGkl; ðC9Þ

ð0ÞΓ̃i
kl ¼

Gim

2
ðGmkjl þ Glmjk −GkljmÞ: ðC10Þ

Note that ð0ÞΓ̃i
kl are the Christoffel symbols for Gij:

ð0ÞΓ̃i
kl ¼ Γi

jkðGÞ: ðC11Þ

In the context of large-scale structure formation, it is
convenient to assume that the initial metric is close to the
flat FLRW line-element in Cartesian coordinates:

Gij ≃ δij þ δGij; ðC12Þ

where the quantities δGij are small and of the order of
magnitude of the deformation field. Note that, in general,
the Szekeres metric does not admit a splitting of the
form (C12). This is due to the fact that, in Szekeres
models, FLRW emerges in an unfamiliar coordinate sys-
tem. In this work, we have adopted a general Gram’s matrix
to represent the initial metric, which allows for recovering
the complete Szekeres family under a proper selection of
the initial data.
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3. Momentum constraints

Let us consider the momentum constraints, Eq. (3d), and
note that

λij ≡ 1

J
ϵabcϵ

ikl _ηajη
b
kη

c
l ¼ 2ðĤδij þ _̂P

i
j=JÞ þOðP̂2Þ;

ðC13Þ

λ̂≡ 1

J
ϵabcϵ

ikl _ηaiη
b
kη

c
l ¼ 6Ĥ þ 2 _̂P=JþOðP̂2Þ: ðC14Þ

Then, let us compute each term of the covariant derivative
(λijjji ¼ λijji þ Γi

ilλ
l
j − Γl

ijλ
i
l) on the left-hand side of

Eqs. (3d),

λijji ¼ 2
_Ajj
A

− 2Ĥ
Ajj
A

þ 2

_̂P
i
jji
J

þOðP̂2Þ; ðC15Þ

Γi
ilλ

l
j − Γl

ijλ
i
l

¼ 2ĤðΓi
ilδ

l
j − Γl

ijδ
i
lÞ þ

2

J
ðΓi

il
_̂P
l
j − Γl

ij
_̂P
i
lÞ

¼ 2

J
ðð0ÞΓi

il
_̂P
l
j − ð0ÞΓl

ij
_̂P
i
lÞ þOðP̂2Þ: ðC16Þ

Putting all these results together, we obtain:

�
1

J
ϵabcϵ

ikl _ηajη
b
kη

c
l

�
jji
¼ 2

_Ajj
A

− 2Ĥ
Ajj
A

þ 2

_̂P
i
jji
J

− 4ζj þOðP̂2Þ; ðC17Þ
�
1

J
ϵabcϵ

ikl _ηaiη
b
kη

c
l

�
jj
¼ 6

_Ajj
A

− 6Ĥ
Ajj
A

þ 2

_̂P
i
ijj
J

þOðP̂2Þ;

ðC18Þ

where ζj ≡ − 1
2J ðð0ÞΓi

il
_̂P
l
j − ð0ÞΓl

ij
_̂P
i
lÞ; then, we obtain

(37e), where ζj can be written out to give Eq. (42).
Using (39a), the term _̂P

i
½ijj� can be rewritten as follows:

_̂P
i
½ijj� ¼

1

2
ð _̂Pi

ijj −
_̂P
i
jjiÞ ¼

1

2
ð _̂Pjj −

_̂P
i
jjiÞ ðC19Þ

¼1

2

�
_̂Pjj−

�
1

3
_̂Pδijþ _̂Π

i
j

�
ji

�
¼1

3
_̂Pjj−

1

2
_̂Π
i
jji: ðC20Þ

Finally, we obtain the linear expression for the momentum
constraints, Eq. (40e). Under the assumption (C12), ζj
simplifies to

ζj ¼
1

2

�
Ajj
A

_̂P − 3
Ajl
A

_̂P
l
j

�
: ðC21Þ

APPENDIX D: BACKREACTION AND
EMERGENCE OF SPATIAL CURVATURE

Consider a compact domain D, the volume scale factor
of which being defined as follows:

aDðtÞ ¼ ðVD=VDi
Þ13; VDi

¼ VDðtiÞ: ðD1Þ

Then, HD ¼ _aD=aD represents the volume Hubble expan-
sion rate.
In a general spacetime, the volume expansion and

volume acceleration generalize the kinematic laws of a
homogeneous and isotropic FLRW spacetime. In this
framework, emerging curvature is a result of its coupling
to the kinematical backreaction term (involving the first
two principal scalar invariants of the expansion tensor) via
Eq. (D4d) below [18,83]:

QD ≡ 2hIIiD −
2

3
hIi2D ðD2aÞ

¼ 2

3
ðhΘ2iD − hΘi2DÞ − 2hσ2iD: ðD2bÞ

In these equations, σ2 ≡ 1
2
σabσ

b
a while I and II (and III)

represent the principal scalars invariant of the expansion
tensor, I ¼ Θi

i ¼ Θ and II ¼ 1
2
ðΘ2 − Θi

jΘj
iÞ ¼ 1

3
Θ2 − σ2,

which are defined as follows for an arbitrary matrix Bi
j

IðBi
jÞ ¼

1

2
ϵabcϵ

iklBa
iδ

b
jδ

c
k; ðD3aÞ

IIðBi
jÞ ¼

1

2
ϵabcϵ

iklBa
iBb

jδ
c
k; ðD3bÞ

IIIðBi
jÞ ¼

1

6
ϵabcϵ

iklBa
iBb

jBc
k: ðD3cÞ

Introducing the deviation from a (scale-dependent)
constant curvature model as a new backreaction variable,
WD ≔ hRiD − 6kDi

=a2D, the volume-averaged set of equa-
tions reads [83]:

�
_aD
aD

�
2

−
Λ
3
−
8π

3
hϱiD þ kDi

a2D
¼ −

1

6
ðQD þWDÞ; ðD4aÞ

äD
aD

−
Λ
3
þ 4π

3
hϱiD ¼ 1

3
QD; ðD4bÞ

hϱi•D þ 3
_aD
aD

hϱiD ¼ 0; ðD4cÞ

1

a6D
ðQDa6DÞ• þ

1

a2D
ðWDa2DÞ• ¼ 0; ðD4dÞ

where (D4b), (D4c) and (D4c) correspond to the
averaged energy constraint, Raychaudhuri’s and rest mass
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conservation equations, respectively. Equation (D4d) is not
independent; it emerges as a condition of integrability in
order to obtain (D4b) through the time-derivative of (D4a).

APPENDIX E: NUMERICAL EXAMPLE IN THE
LANGUAGE OF EXACT SOLUTIONS

The initial data of the family of models examined in
Sec. VI is set up in the Hellaby’s parametrization, where
the physical interpretation of the variables is clearer than in
the GW’s. The initial areal distance is taken equal to the
“radial” comoving coordinate

Φðtini; zÞ ¼ z: ðE1Þ

The solution of interest is contained in the domain
D∶0 ≤ z ≤ z1;−∞ < x; y < þ∞. Here, z1 sets the length
scale of the initial configuration.
The free function MðzÞ is chosen as

MðzÞ ¼ 4π

3
ϱbiz3; ðE2Þ

where ϱbi is the density of the homogeneous universe at the
initial time (i.e., the last scattering time) and k̂ðzÞ is
specified as in Eq. (58).
Then, we introduce the dimensionless variables (57)

using the Hubble parameter at the last scattering time as the
timescale and the characteristic length l ¼ 2 × 10−2. (This

characteristic length expands to supercluster scales at
present time.) This solution is rewritten in the GW language
using the results of Appendix B 3, and then rescaled as
sketched in Sec. III A. In terms of the Szekeres functions
and the perturbation, the line-element reads:

ds2 ¼ −dt2 þ A2

�
ðA − F̂ Þ2

�
W
χ

�
2

dξ2

þ ξ2E−2ðdx2 þ dy2Þ
�
; ðE3Þ

where we have used that E was defined in (A1d).
Inserting Eq. (E3) into (68), taking back the rescaling of

the solution and using the Szekeres exact relations, we
obtain the following expression for the violation of the
Hamiltonian constraint:

Hðr; tÞ ≔ 2

A2ξ2W2

�
−
1

2

�
1þ G

Ĝ

�
−
1

Ĝ
fν;ξ þ ϵf;ξ þ

fG;ξ

Ĝ2

�

×
�
1 −

G

Ĝ

�
−

E2

A2ξ2Ĝ
½ðk0 þ fþÞðδβþ;xx þ δβþ;yyÞ

þ f−ðδβ−;xx þ δβ−;yyÞ�

þ 2f

A2ξ2W2Ĝ2

�
G

Ĝ

�
½δβþðk0 þ fþÞ þ δβ−f−�;ξ:

ðE4Þ
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