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We study the nonlinear dynamics of binary black hole systems with scalar charge by numerically
evolving the full equations of motion for shift-symmetric Einstein scalar Gauss-Bonnet gravity. We
consider quasicircular binaries with different mass-ratios, varying the Gauss-Bonnet coupling and
quantifying its impact on the emitted scalar and gravitational waves. We compare our numerical results
to post-Newtonian calculations of the radiation emitted during the inspiral. We demonstrate the accuracy
of the leading-order terms in post-Newtonian theory in modeling the amplitude of the scalar waveform,
but find that, at least for the last few orbits before merger, the currently available post-Newtonian theory is
not sufficient to model the dephasing of the gravitational wave signal in this theory. We further find that
there is non-negligible nonlinear enhancement in the scalar field at merger, but that the effect on the peak
gravitational wave emission is small.
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I. INTRODUCTION

In recent years, the gravitational waves (GW) observed
from the inspiral, merger, and ringdown of black hole
binaries have greatly constrained the landscape of potential
deviations from General Relativity (GR) [1–11]. However,
in order to seek physics beyond GR, or to place the most
stringent constraints on deformations of GR, one needs
accurate predictions for specific modified gravity theories,
in particular in the strong field and dynamical regime
[12–15]. This has been a major theoretical and technical
challenge for many theories of interest [16–25]. As a result,
most tests of GR performed so far are model-independent
or null tests, more commonly classified as consistency and
parametrized tests [4,26–29]. Parametrized tests introduce
deviations from GR to the gravitational waveform in a
theory-agnostic way, and use the data to constrain the
beyond GR parameters. Most current approaches, however,
usually only constrain the deviations by considering one
specific modification at a time and thus the interpretation of
these constraints remains limited.
An interesting class of theories to test against GR

is Einstein-scalar-Gauss-Bonnet (ESGB) gravity, which

introduces modifications to GR at small curvature length
scales. Variants of ESGB gravity allow for scalar-charged
black holes [30–33], and hence can differ qualitatively from
GR in the strong field regime, while still passing weak field
tests. Because of this, much recent work has gone into
modeling compact object mergers in ESGB gravity in both
post-Newtonian (PN) theory [34–37] and numerical rela-
tivity [19,22,23,38–40]. In Ref. [22], two of us introduced
a computational methodology to solve the equations of
motion for binary black hole system in ESGB gravity
without approximation (beyond that of numerical truncation
error), by making use of the modified generalized harmonic
(MGH) formulation [41,42].1 Here we follow up on that
work, and study the dynamics of the last stages of the inspiral
phase of quasicircular, nonspinning black holes in shift-
symmetric ESGB (sGB) gravity, and investigate the accu-
racy of PN approximations [34–37].
In general, the equations of motion for ESGB gravity

can only be stably evolved in time for weakly-coupled
solutions [22,23,41,42,44]. Weak coupling roughly means
that the Gauss-Bonnet corrections to the spacetime geom-
etry remain sufficiently small compared to the smallest
curvature length scale in the solution. A binary black hole
system in ESGB gravity can evolve from an initially
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1These methods were recently extended to a modified version
of the CCZ4 formulation in Ref. [43].
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weakly coupled state to a strongly coupled state, as the
black holes become closer and eventually merge [45,46].
We find that in a significant portion of the parameter space,
our evolution breaks down as the black holes become
closer, although approaching this limit does not appear to
be preceded by dramatically different spacetime or scalar
field dynamics compared to the weakly-coupled regime.
Maintaining a weakly-coupled solution exterior to the black
hole horizons through merger remains a major challenge in
the numerical evolution of binary black holes in numerical
relativity. While better addressing this issue remains an
important issue for future work, for many cases here we
focus on the properties of the late inspiral phase of binary
evolution. Even when restricting to the inspiral phase, we
show that the deviations from GR are significant in terms of
the imprint on the resulting gravitational waves. One of our
main results is that leading-order PN approximations are
not sufficient to model the gravitational signal in the late
stages of the inspiral. For the cases we were able to evolve
through merger, we find that the effects of ESGB gravity
show up primarily in an nonlinear enhancement of the
scalar field at merger, and in the dephasing of the
gravitational waves, while the effect on the peak amplitude
of the gravitational wave signal is small. This work also
demonstrates the efficacy of the numerical relativity tech-
niques utilized here—which should be applicable to any
scalar-tensor theory with second-order equations of
motion—to quantify the impact on the gravitational wave
signal of modified gravity in regimes where other approx-
imations break down.
The remainder of the paper is as follows. In Sec. II, we

review shift-symmetric ESGB gravity. In Sec. III, we
describe our numerical methods for evolving this theory
and analyzing the results. Results from our study of
quasicircular binary black holes in sGB are presented
in Sec. IV. We discuss these results and conclude in
Sec. V. We discuss the accuracy of our simulations in
Appendix A, collect PN results in sGB in Sec. B, outline
our initial-data setup in Appendix C, and review the
accuracy of the perturbative approach to solving the
equations of motion in Appendix D. We use geometric
units: G ¼ c ¼ 1, a metric sign convention of −þþþ,
lower case Latin letters to index spacetime indices, and
lower case Greek letters to index spatial indices. The
Riemann tensor is Ra

bcd ¼ ∂cΓa
db − � � �.

II. SHIFT-SYMMETRIC ESGB GRAVITY

We briefly review shift-symmetric ESGB (sGB) gravity.
The action is

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − ð∇ϕÞ2 þ 2λϕGÞ; ð1Þ

where G is the Gauss-Bonnet scalar

G≡ R2 − 4RabRab þ RabcdRabcd: ð2Þ
Here, λ is a constant coupling parameter that, in geometric
units, has dimensions of length squared. As the Gauss-
Bonnet scalar G is a total derivative in four dimensions,
we see that the action of sGB gravity is preserved up to
total derivatives under constant shifts in the scalar field:
ϕ → ϕþ constant. Schwarzschild and Kerr black holes are
not stationary solutions in this theory; if one begins with
such vacuum initial data, the black holes will dynamically
develop stable scalar clouds (hair). The end state then is a
scalar-charged black hole, so long as the coupling normal-
ized by the black hole mass m, λ=m2, is sufficiently small
[22,32,33,47]. In particular, regularity of black hole sol-
utions and hyperbolicity of the theory sets λ=m2 ≲ 0.23 for
nonspinning black holes, [33,47]. In contrast to stars, where
the scalar field around them falls of more rapidly than 1=r,
black holes have a scalar charge, and thus black hole
binaries emit scalar radiation, which increases the speed at
which the binary inspirals and merges [34,48]. The most
stringent observational bounds on the theory come from
unequal mass, or black hole-star binaries, as those emit
scalar dipole radiation, which leads to a more rapid
dephasing of the gravitational waveform than would be
observed in GR. In PN theory, the scalar dipole radiation
enters as a−1PN effect and can dominate over gravitational
radiation at sufficiently wide separations (low frequencies).
In this study, we will focus on late inspiral, where the
gravitational waves are strongest and the scalar radiation is
subdominant (the quadrupolar driven inspiral regime).
Another feature of these solutions is that the scalar charge
is inversely proportional to the square of the smallest mass
black hole in the system. This suggests that the best way to
probe EsGB gravity is by observing the smallest compact
objects. We therefore expect stronger constraints on the
theory will come from observing the merger of stellar mass
black holes with ground-based detectors, as opposed to
observations of supermassive black hole mergers with
LISA (although long-duration observations of extreme
mass-ratio insipirals with LISA may provide meaningful
constraints [49]). Restoring dimensions, comparisons of
gravitational wave observations from the LIGO-Virgo-
KAGRA catalogue to PN results place constraints offfiffiffi
λ

p ≲ 2.5 km, see Refs. [50,51].

III. METHODS

A. Evolution equations and code overview

The covariant equations of motion for sGB gravity are

□ϕþ λG ¼ 0; ð3Þ

Rab −
1

2
gabR −∇aϕ∇bϕþ 1

2
ð∇ϕÞ2gab

þ 2λδefcdijgðagbÞdR
ij
ef∇g∇cϕ ¼ 0; ð4Þ
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where δabcdefgh is the generalized Kronecker delta tensor.
We numerically evolve the full sGB equations of motion
using the MGH formulation [41,42]. We use similar
choices for the gauge and numerical parameters as in
Ref. [22]. We worked with box-in-box adaptive mesh
refinement as provided by the PAMR library [52]. We
typically worked with eight levels of mesh refinement in
our simulations, unless otherwise noted. We provide details
on numerical resolution and convergence in Appendix A.

B. Puncture binary black hole initial data

On our initial time slice, we must satisfy the general-
izations of the Hamiltonian and momentum constraint
equations to sGB. Here, we do not implement a method
to solve the equations for general ϕ, but instead consider
initial data for which ϕ ¼ ∂tϕ ¼ 0. With this choice of ϕ,
the constraint equations of sGB gravity reduce to those of
vacuum GR [22,23]. Even though ϕ ¼ ∂tϕ ¼ 0 on the
initial time slice, scalar field clouds subsequently form on a
timescale that is short compared with the orbital binary
timescale (within ∼100M0). We construct quasicircular
binary black hole initial data via the black hole puncture
method [53], using the TwoPunctures code [54,55]
(footnote 3).
For puncture binary black hole initial data, we need to

specify the initial black hole positions, and their approxi-
mate initial masses m1;2 (with the convention that
m1 ≤ m2), linear momenta Pγ

1;2, and spins Sγ1;2 (which
we set to zero in this study). Given m1;2 and the initial
puncture (black hole) locations, we use the dynamics for a
circular binary to 2PN order to determine the tangential
components to Pγ

1;2, and the 2.5PN radiation reaction term
to determine the initial radial component of Pγ

1;2 [56]. We
review our initial data setup in more detail in Appendix C.
For the first t ¼ 50M0 (where M0 ≡m1 þm2) of evo-

lution, we evolve the black holes purely in GR. We found
this allowed for the junk radiation from the puncture initial
data to disperse away from the black holes. After that initial
evolution time, we turn on the Gauss-Bonnet coupling λ to
a nonzero value. The constraints are satisfied in this
procedure, as we can think of our initial data as starting
at t ¼ 50M0 instead, with ϕ ¼ ∂tϕ ¼ 0 and a metric field
that satisfies the constraints such that the initial data
satisfies the constraint equations for sGB gravity [22,23].
While we use quasicircular initial data based on PN
approximations for the initial orbital velocities from GR,
we found that the scalarization process does not appreci-
ably impact the eccentricity of our runs, and instead the
eccentricity of our runs is dominated by the truncation error
of the simulations. For more discussion, see Appendix A.

C. Diagnostic quantities

We use many of the same diagnostics as in Ref. [22],
which we briefly review here. We measure the scalar and

gravitational radiation by extracting the scalar field ϕ
and Newman-Penrose scalar Ψ4 on finite-radius coordinate
spheres. Due to the coupling between the scalar field and
metric through the Gauss-Bonnet coupling, in general
scalar and gravitational radiation will couple together
through the term δ × Riemm × ∇∇ϕ. For asymptotically
flat spacetimes that have an asymptotically flat future null
infinity (that is spacetimes for which the peeling theorem
holds, so the Weyl scalar fall of sufficiently fast [57]), this
coupling falls off as 1=r4 as r → ∞. For those spacetimes,
in the wave zone, we can treat the gravitational and scalar
radiation as two uncoupled quantities (for related discus-
sions, see [22,58]). We discuss how we estimate the finite-
radius extraction error of our waveforms in Appendix A.
We decompose Ψ4 and ϕ into their spin-weighted

spherical harmonic components

Ψ4;lmðt; rÞ≡
Z
S2

−2Ȳlmðϑ;φÞΨ4ðt; r; ϑ;φÞ; ð5aÞ

ϕlmðt; rÞ≡
Z
S2

0Ȳlmðϑ;φÞϕðt; r; ϑ;φÞ: ð5bÞ

The gravitational wave luminosity is

PGWðtÞ ¼ lim
r→∞

r2

16π

Z
S2

����
Z

t

−∞
Ψ4

����2: ð6Þ

The scalar wave luminosity is PSF

PSF ≡ − lim
r→∞

r2
Z
S2

NtaðTSFÞbadAb; ð7Þ

where N ¼ 1=
ffiffiffiffiffiffiffiffi
−gtt

p
is the lapse and ta is the asymptotic

timelike Killing vector, the integral is over a sphere, and

TSF
ab ≡ 1

8π

�
∇aϕ∇bϕ −

1

2
gab∇cϕ∇cϕ

�
: ð8Þ

We assume the scalar radiation is outgoing, so that Eq. (7)
reduces to

PSFðtÞ ¼ lim
r→∞

r2

8π

Z
S2

ð∂tϕÞ2: ð9Þ

To compare our numerical waveforms, we must estimate
the orbital frequency of the binary Ω. We do so using the
approximate relation [59–61]

Ω ≈
1

2

dΦ22ðtÞ
dt

; ð10Þ

where Φ22=2 is the definition of orbital phase computed
from half the complex phase of Ψ4;22. We track the apparent
horizons (AHs) associated with the black holes, and measure
their areas and associated angular momentum JBH.
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From this, we compute the black hole mass mBH via the
Christodoulou formula [62]

mBH ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

A þ J2AH
4M2

A

s
; ð11Þ

where MA ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð16πÞp

is the areal mass. We note that
while the areal mass always increases in vacuum GR [63], it
can decrease in sGB gravity as the theory can violate the null
convergence condition (which is Rabkakb ≥ 0 for all null ka)
[44,47]. In our simulations, JAH ≈ 0 to numerical precision
for the constituents of the binary black hole. We measure
the average value of the scalar field on the black hole
apparent horizons

hϕiAH ≡ 1

A

Z
AH

ϕ: ð12Þ

D. Cases considered

We focus on quasicircular black hole binaries with no
spin. We classify our runs by two dimensionless numbers;
their mass ratio q and by the relative Gauss-Bonnet scalar
coupling strength ζ1 (compare to Refs. [34,50,51])

q≡m1

m2

≤ 1; ζ1 ≡ λ

m2
1

: ð13Þ

As m1 is the smaller black hole mass, it roughly quantifies
the smallest curvature scale in our simulations. We consider
the mass ratios q ¼ 1, 2=3, and 1=2, with an initial
separation of 10M0, approximately 8 orbits before merger
in GR. For the equal mass ratios, we consider ESGB
coupling parameters ζ1 ¼ 0, 0.01, 0.05, and 0.1; while
for the mass ratios q ¼ 2=3 and q ¼ 1=2, we consider
smaller values of ζ1 ¼ 0, 0.025, 0.05, and 0.075; and
ζ1 ¼ 0, 0.05, and 0.075, respectively. When comparing
waveforms (Ψ4;lm or ϕlm) with different values of the
coupling, we compute the time talign at which the gravita-
tional wave frequency is 0.01M0, and apply this as a time
offset. This alleviates the effect of any dephasing or shift
in frequency due to the scalarization process. We then
rotate the waveforms by a constant, complex phase so that
their initial phases align. For comparisons with other
works, our coupling λ corresponds to αGB ≡ λ=

ffiffiffiffiffiffi
8π

p
used

in, e.g., [50,51].2 Restoring physical units, we have

ffiffiffiffiffiffiffiffi
αGB

p
≈ 3.97 km

� ffiffiffi
λ

p

m1

��
m1

6M⊙

�
; ð14Þ

where 6M⊙ is approximately thevalue of smallest black hole
observed in the LIGO-Virgo-Kagra third observing run [67].

For reference, Ref. [51] sets a constraint of
ffiffiffiffiffiffiffiffi
αGB

p ≲ 1.2 km
by comparing gravitationalwave observations of black hole-
neutron star binaries to PN results of ESGB. In comparison,
the largest coupling we consider in our simulations (our
equal-mass ζ ¼ 0.1 run) corresponds to

ffiffiffiffiffiffiffiffi
αGB

p ∼ 1.25 km
for a 6M⊙ black hole, which is roughly within observational
bounds.

E. Challenges in modeling the merger phase
of black hole evolution

As we discuss in Sec. IV, we are unable to evolve the
binaries through merger for many of our simulations. For
some of our runs, we turned off the scalar Gauss-Bonnet
coupling inside a compact ellipsoidal region centered at the
black hole binaries center of mass at a finite time before
merger. This allowed us to evolve through merger, and
extract gravitational and scalar radiation from the inspiral
up until the causal future of the excised region intersected
where we measured the radiation (typically at r=M0 ¼ 90).
For one case, namely q ¼ 1 and ζ1 ¼ 0.05, we only turn

off the Gauss-Bonnet coupling slightly before finding a
common apparent horizon, and only in a localized region
that is encompassed by the final black hole. We have
verified that varying the size of this region has no
appreciable impact on the resulting radiation, and so we
include the full results from this case, though a careful
tracking of the propagation of information along character-
istics would be needed to more rigorously justify this.
We believe the main difficulty with evolving through

merger in our simulations may be elliptic regions that form
around merger. These regions may possibly be hidden
behind the final event horizon, and so could possibly be
excised from the computational domain if an apparent
horizon is located quickly enough. Higher-resolution runs,
with excision surfaces that lie closer to the apparent
horizons of the inspiraling black holes or a different choice
of the auxiliary metrics in the modified generalized
harmonic formulation, may allow for the successful merger
of black holes in sGB gravity with unequal mass ratios. We
leave a further investigation of this to future work.

IV. RESULTS

We present results for binary black holes with several
mass ratios, beginning roughly eight orbits before merger,
focusing on how the orbital dynamics and radiation
changes as a function of the sGB coupling. We compare
both the scalar radiation, and the modified gravity induced
dephasing of the orbit and gravitational wave signal to the
PN prediction.

A. Scalar radiation and dynamics

In Fig. 1, we compare the leading-order scalar wave-
forms ϕlm from our numerical evolution to the PN
formulas given in Eq. (B1). The PN formulas are accurate

2However, several other studies (e.g., [38,64–66]) take con-
ventions leading to a value of αGB that is 16

ffiffiffi
π

p
× times larger.
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to 0.5PN order for the mode ϕ11, and to leading PN order
for the remaining modes. As in the comparisons of scalar
waveforms computed in Refs. [36–38], the frequency we
use in the PN expressions are obtained from our numerical
evolutions using Eq. (10), so our comparison is measuring
the accuracy of the PN approximation in determining the
amplitude of the scalar field, given its frequency. We see
that the fractional difference between the 0.5PN order PN
theory for the l ¼ 1,m ¼ 1mode, and the numerical scalar
waveform is about 30% initially, and grows as the binary
inspirals. We also note that the inclusion of higher PN terms

increases the overall amplitude of the scalar waveforms,
making the agreement between the PN and numerical
waveforms worse than at leading order at the frequencies
we consider. This result holds for all three mass ratios we
considered. Comparing other values of the coupling con-
stant shows similar behavior and thus, we do not show the
plots here.
Comparing our results to Fig. 7 of Ref. [38], where the

leading-order PN scalar waveforms were compared to
numerical waveforms obtained in a test field approxima-
tion (valid to first order in the coupling parameter ζ1),

FIG. 1. Scalar waveforms as a function of retarded time, t� − r ¼ t − talign − r, rescaled by the extraction radius Rex ¼ r=M0 ¼ 90,
sourced by nonspinning BH binaries of mass ratio q ¼ f1; 2=3; 1=2g (clockwise from the top left). The corresponding waveform Ψ4;22

is displayed in the bottom for comparison. We show the ðl; mÞ ¼ ð2; 2Þ and (4, 4) spherical harmonic components for the equal mass
ratio and the ðl; mÞ ¼ ð1; 1Þ, (2, 2), and (3, 3) components for unequal mass ratios. During the inspiral, we also display the PN
waveform (brown dashed lines), derived to 0.5PN order, and the leading-order waveform at −0.5PN for the ðl; mÞ ¼ ð1; 1Þ mode (red
dash-dotted lines). We also show the relative difference between the amplitude of the PN and numerical waveform Δlm for the leading-
order mode.
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we find close agreement between our waveforms, sug-
gesting the test field scalar waveform computed from
a prescribed orbital evolution is fairly accurate at
least during the early inspiral phase. This is further
emphasized in Fig. 2, where we plot the scalar wave-
forms, rescaled by ζ1. In the decoupling limit, the
amplitude of the emitted waveforms is directly propor-
tional to ζ1 [34,38]. From Fig. 2, we see that, at least
during the inspiral phase of binary black hole evolution,
this relation holds up well for the full theory. This is to be

expected, as nonlinear corrections to ϕ only enter at order
ζ31 in sGB gravity; see Appendix D.
In Fig. 3, we plot the average value of ϕ on the black

hole apparent horizon for the two initial black holes,
and the final remnant black hole, for runs with ðq ¼ 1;
ζ1 ¼ 0.01 and 0.05) and ðq ¼ 1=2; ζ1 ¼ 0.05Þ. We see that
after the black holes have acquired a scalar charge, the
average value of the scalar field on the two black hole
horizons increases as they inspiral towards each other, in
general qualitative agreement with the predictions of

FIG. 2. Scalar waveforms as a function of retarded time, t� − r ¼ t − talign − r, rescaled by the extraction radius Rex ¼ r=M0 ¼ 90 and
test field dependence on coupling constant λ, sourced by nonspinning binary black holes of mass ratio q ¼ f1; 2=3; 1=2g (clockwise
from top left) and different coupling constants ζ1. The corresponding gravitational waveforms Ψ4;22 are displayed in the bottom of each
panel for comparison. We show the leading-order ðl; mÞ mode for each mass ratio.
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Refs. [45,46]. The remnant black hole for the equal mass
runs (BH3 in the left panel) has a smaller average scalar
field value on its horizon than the two original black holes,
as it has a larger mass (so λ=m2

3 < λ=m2
1;2), and it is

spinning [22]. As we discuss in Sec. III E, we are unable to
evolve through merger for any of the unequal mass ratio
cases we consider, so there is no remnant apparent horizon
in the right panel.

B. Gravitational waves

We next estimate the relative dephasing of the gravi-
tational waveforms, taking into account various sources
of numerical error in our simulations. Accurately com-
puting the phase of a gravitational signal is crucial, given
this will be the most salient effect of sGB gravity that
current gravitational wave detectors are able to measure
[2,14,51]. Due to the presence of scalar charge around
each black hole in sGB gravity, black holes will emit
scalar radiation as they inspiral each other, so they will
inspiral faster as compared to what would be the case in
GR. In Fig. 4, we plot the gravitational waveforms Ψ4;22,
after matching their frequency at a time talign, and
applying a rotation in the complex plane, so that their
phases align initially. We see that there is a noticeable
dephasing of binaries with different values of ζ1. In Fig. 5,
we quantify the dephasing for the l ¼ 2, m ¼ 2 mode of
Ψ4 [see Eq. (A3)]

δΦðfÞ≡ΦsGBðfÞ −ΦGRðfÞ; ð15Þ

by comparing the orbital phase [computed from Eq. (A3)]
of the waveforms at a given frequency smaller than

M0f < 0.018 which corresponds to the empirically found
transition from the inspiral to merger-ringdown phase in
GR [68,69], along with the corresponding PN predictions
for a quadrupolar driven inspiral [35,51] (see also
Appendix B). We find δΦ < 0, and the dephasing grows
as we increase the coupling λ, which is in general
qualitative agreement with PN predictions for sGB
gravity. This being said, at least for the last few orbits
of the inspiral that we study, we find that our results do
not agree quantitatively with PN predictions. A possible
reason for this is because we are comparing to PN theory
close to the merger phase of binary evolution, where more
orders of the PN expansion are needed to match to
numerical relativity simulations even in GR. These
differences also need to be compared to the various
sources of numerical error in the simulations, which in
some cases exceed the small phase differences, as we
discuss below. In Fig. 6, we show the dephasing at
consecutive orders up to 2PN for a range of gravitational
wave frequencies we sample in our simulations (the last
few orbits before merger), yet within the regime where the
PN approximation should be valid in GR, M0f < 0.018
[68,69]. The PN formulas we plot were first presented
including terms of up to 2PN order in Ref. [51]; we review
their computation in Appendix B. As noted in Ref. [51],
we mention that the dephasing for ESGB gravity has only
been computed to 2PN order, with only partial results at
0.5PN order onwards. We see that there are still notice-
able differences in the PN approximation with the
addition of the highest-order terms in the near-merger
regime studied here, and thus the expansion will likely
have to be continued to higher order to achieve a highly
accurate prediction in that regime, although we cannot
rule out that the inclusion of the currently missing terms

FIG. 3. Average value of the scalar field, rescaled by the test field dependence, over the black hole horizons for different mass ratios.
For the equal mass ratio binary (left panel), we were able to evolve through merger, and thus determine the average value of the scalar
field on the third, remnant black hole. While we were unable to evolve through merger for the unequal mass ratio binaries, on the right
panel we show the average scalar field for a q ¼ 1=2 run. The dips in the average scalar field near the end of the evolution for that run are
due to numerical error.
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to the 0.5PN through 2PN contributions in the phase may
lead to a faster convergence in the PN expansion than
observed here.

Finally, we compare the orbital dephasing to the numeri-
cal errors in the simulations. A detailed error analysis is
given in Appendix A, which we briefly summarize here.

FIG. 5. Difference between the orbital phase of gravitational waveform in sGB and GR, δΦ [see Eq. (B3)], accumulated as the binary
evolves from a frequency f0 ¼ 0.01=M0 to a frequency f. The left, middle, and right panels display results for the q ¼ 1, 2=3, and 1=2
mass ratio binaries, respectively, with M0f ¼ 0.014, 0.016, and 0.017. We plot the PN predictions for orders −1PN through 2PN (with
each curve including all terms up to that order).

FIG. 4. The radially rescaled value of Ψ4;22 as a function of retarded time, t� − r ¼ t − talign − r, for different values of ζ1. The top,
middle, and bottom panels show the waveforms for the q ¼ 1, 2=3, and 1=2 mass ratio binaries. Here we measure Ψ4;22 at a radius of
Rex ¼ r=M0 ¼ 90.
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The error in the Richardson extrapolated phase is ∼0.25
radians, which is comparable to the ESGB dephasing, and
larger than the relative error in the 2PN computation.
However, if the dominant truncation error in our simula-
tions does not depend strongly on the value of ζ1, and thus
partially cancels out when calculating the difference δΦ in
the phase between the sGB and GR simulations using the
same resolution, this will lead to noticeable smaller
truncation error in this quantity compared to the overall
phase. We see evidence that this is the case, for example, by
comparing a measure of the truncation error in δΦ,
computed by comparing a q ¼ 1=2 GR simulation to an
equivalent sGB simulation with ζ1 ¼ 0.075 at two different
resolutions, to an estimate of the overall truncation error
in Φ for the same sGB case. We find the former to be
∼50× smaller than the latter (see Appendix A). We also
find similar results for the GW amplitude. Thus, for a
number of cases (see Fig. 5), the difference in errors is
smaller than the dephasing δΦ we measure.
Lastly, we note that the dephasing between the sGB and

GR simulations may be caused by small differences in the
eccentricity of our simulations, which would be caused by
the orbit being slightly perturbed by the rapid development
of the scalar field around the black holes at early times, as
an artifact of using initial conditions with ϕ ¼ ∂tϕ ¼ 0. If
this were the case, one would expect the eccentricity of the
modified waveforms to increase with coupling. We esti-
mate the orbital eccentricity in our simulations to be≲0.01,
and we find that it decreases with increasing resolution,
with only a mild dependence on coupling. This suggests
that residual eccentricity from the initial data is subdomi-
nant to finite-resolution numerical errors, and does not
significantly affect the dephasing of the binary. The
eccentricity of the binary system is not much affected by
the value of the Gauss-Bonnet coupling, as even for the

largest couplings we consider the energy contained in the
scalar cloud is only a small fraction of the total binary
binding energy, and an even smaller fraction of that energy
is radiated away during the scalarization process.

C. Merger dynamics

Lastly, we mention the effects of ESGB on the merger
dynamics of equal mass binaries with couplings ζ1 ¼ 0.01
and 0.05, compared to GR. Figure 7 shows the gravitational
wave emission starting slightly before merger, and includ-
ing the ringdown, for different values of ζ1. We find that
while the ESGB waveforms have a noticeable dephasing
relative to GR, consistent with the fact that ESGB binaries
should merge faster due to the additional energy loss
through scalar radiation, the peak amplitude of the gravi-
tational wave at merger depends only very weakly on ζ1.
The effect of modified gravity on the frequency and decay
rate of the quasinormal modes is also too small to reliably
quantify with our current numerical data, so we defer a
more detailed study of the ringdown to future work.
In the right panel of Fig. 7 we show the leading

l ¼ m ¼ 2 mode of the scalar waveform after rescaling
for the test-field dependence on the coupling, which
implies that the amplitude of ϕ scales linearly with ζ1.
For the ζ1 ¼ 0.05 case, we find an additional nonlinear
enhancement in the scalar field amplitude at merger, with
jϕj=λ roughly 5% higher compared to the ζ1 ¼ 0.01 case.
The negligible effect on the GW amplitude with varying

ESGB coupling that we find here contrasts with the large
effect found in order-reduced simulations. In particular, the
correction to Ψ4, which scales quadratically with ζ1 in the
perturbative approach taken in Ref. [19], gives an order-one
correction to the amplitude for the highest couplings used
here (see Fig. 2 of Ref. [19]); though we note that Ref. [19]
also uses a slightly different mass-ratio (q ¼ 0.82) and

FIG. 6. The shift in the gravitational wave phase for the orbital phase, summed to each PN order up to 2PN. In the left, middle, and
right panels we set ζ1 ¼ 0.05, 0.075, and 0.075, respectively. As in Fig. 4, the left panel is for a q ¼ 1 binary, the middle panel is for a
q ¼ 2=3 binary, and the right panel is for a q ¼ 1=2 binary.
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nonzero spins for the constituent black holes. We speculate
that this qualitative difference behavior in the waveform is
due to the presence of secularly growing errors terms,
which are known to be present in such a perturbative
approach to evolving modifications to GR. For more
discussion of this phenomena, see Refs. [18,19,70].

V. DISCUSSION AND CONCLUSION

In this work, we have performed the first systematic
study of the nonlinear dynamics of binary black hole
inspiral and merger in sGB gravity. We considered several
values of the sGB coupling and the binary mass ratio, and
compared our results to PN theory. Solving the full
equations of motion allowed us to directly measure the
increased dephasing of the inspiral due to the emission of
scalar radiation, and to determine the relative effects of
nonlinearity on the scalar and gravitational waveforms. We
argue that, at least in the last few orbits of the inspiral phase
before merger, PN theory is currently not accurate enough
to determine the dephasing of the binary due to the
modified gravity, even taken as a correction to a more
accurate to GR waveform.
In addition to measuring the dephasing of binary black

holes, we find that leading-order PN theory (in the GB
coupling λ) does well in matching the amplitude of scalar
radiation emitted during the inspiral phase, given the
frequency of observed gravitational radiation. This is in
general qualitative agreement with earlier numerical rela-
tivity work that compared simulations of sGB gravity in the
decoupling limit to PN predictions [38]. The success of
leading order PN theory in matching the scalar waveform
can be partially explained by the fact that corrections to the
scalar field amplitude in the GB coupling enter at order ζ31
for sGB gravity (see Appendix D).

We have studied the dynamics of the merger for a limited
number of cases, where we found that when the black holes
merge the effect due to the ESGBmodifications on the peak
amplitude of the gravitational wave signal is small, in
contrast to what results using perturbative treatments of the
merger would suggest. We leave a detailed study of the
detectability of these effects and their degeneracy with
different intrinsic parameters to future work.
In this first study, for computational expediency, and

given that the ESGB equations of motion are more
complicated to solve than the GR ones, we have focused
on the roughly last 8 orbits before merger. However, an
obvious direction for future work is to consider binaries that
start at wider separations (and hence lower orbital and
gravitational wave frequencies), in order to determine at
what point leading-order PN theory becomes accurate.
Modeling the merger is arguably the most important
contribution numerical relativity can make to our under-
standing of binary black hole evolution. As we were unable
to evolve through merger for larger coupling values under-
standing this limitation of our code/methods remains an
important task for future work. Different choices of gauge
or auxiliary metrics, as well developing better diagnostics
for monitoring the breakdown of hyperbolicity may help
address this. As mentioned above, we believe one of the
main difficulties lie in being able to excise elliptic regions
near merger, around the time the final remnant black hole
forms from the merger. Our algorithm may be improved by
implementing a more complicated excision surface (cur-
rently we only excise an ellipsoidal region), and working
with higher resolution, to more stably excise closer to
the surface of the apparent horizons. We note that recent
work [43] reports evolutions of nonspinning, equal mass
ratio black hole binaries through merger using a modified

FIG. 7. Gravitational wave radiation (left) and scalar radiation (right) for equal mass ratio binaries with coupling ζ1 ¼ 0, 0.01, and
0.05. We show the real part of the l ¼ m ¼ 2 spherical harmonics of the Newman-Penrose scalar Ψ4 and ϕ. Time is measured with
respect to the time where the complex amplitude ofΨ4;22=ϕ22 peaks. We add an overall phase so that the waveforms are real and positive
at t ¼ tpeak.
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CCZ4 formulation of the equations of motion with punc-
turelike coordinates, for ζ1 values as large as ζ1 ¼
0.1=

ffiffiffi
2

p
∼ 0.07 (converting to our conventions). In that

work, the authors make use of an effective excision
algorithm by letting the modified gravity coupling go to
zero at small values of the spatial metric conformal factor,
as in Refs. [71,72]; such a method may be useful in
conjunction with our direct excision method to stabilize the
evolution near the excision boundary.
In this work, we only considered binary black hole

systems where the individual black holes were initially
nonspinning. As black hole spin can significantly impact
the dynamics of binaries in GR, a natural next step to this
work would be to consider black hole spin. Furthermore,
introducing spin may lead to novel gravitational wave
signatures as, for example, in black hole spin-induced
spontaneous scalarization [73–75].
We have only simulated the dynamics of arguably the

simplest of the ESGB gravity theories that gives scalar hairy
black holes. Other kinds of scalar Gauss-Bonnet couplings
[i.e., more general terms of the form βðϕÞG in the action] can
allow for a rich range of phenomena, most notably the effect
of spontaneous (de)scalarization, which so far has only been
studied either perturbatively [39,76], or in symmetry-
reduced settings [73–75,77–81]. As well, including a term
of the form fðϕÞX2 in the action is also “natural” from an
effective-field theoretic point of view, as this is another four
derivative term that is also parity-invariant [41,82], and may
have some effect on the binary evolution. Simulating non-
linear effects such as spontaneous black hole scalarization
requires understanding the backreaction of the scalar field on
the background geometry, as that affects the saturation of
the instability and end state black hole, and determines
which effects occur in the regime where the theory remains
hyperbolic [81]. Accurately simulating theories with high
precision that exhibit spontaneous black hole scalarization
will additionally require the development of initial data
solvers that solve the constraint equations in sGB gravity
that have an initially nontrivial scalar field profile [23,83]. It
would also be interesting to extend recent work on binary
neutron star mergers [40] to study black hole–neutron star
binaries in ESGB gravity (earlier work on spontaneous
scalarization in ESGB gravity for single neutron star
solutions include Ref. [84]).

The particular version of the initial data code we use can
be accessed at Standalone TwoPunctures.3
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APPENDIX A: CONVERGENCE TESTS AND
ACCURACY OF OUR SIMULATIONS

Here we quantify the main sources of error in our simula-
tions, which include the numerical truncation error, finite
radius extraction effects, and residual orbital eccentricity.

1. Truncation error and convergence

We first consider the truncation error, which is due to the
finite resolution of the simulations. The simulations of
the binary black hole systems with mass ratio q ¼ 1 and
q ¼ 2=3 presented in this work use eight levels of adaptive
mesh refinement with a refinement ratio of 2∶1, and have a
linear grid spacing of dx ¼ 0.012M0 on the finest level
containing the smallest back hole. The results for the mass
ratio q ¼ 1=2 use nine levels of adaptive mesh refinement
and a grid spacing of dx ¼ 0.006M0 around the smallest
black hole. In Fig. 8, we plot the integrated constraint
violation for a q ¼ 2=3, ζ1 ¼ 0.075 binary with grid
spacing that is 4=3 and ×2=3 as large as default resolution.
We also perform a resolution study of a q ¼ 1=2,
ζ1 ¼ 0.075 binary, where the linear spacing of the medium
resolution is dx ¼ 0.005M0 and covers the smallest black
hole. The integrated constraints shown in Fig. 8 have grid
spacing 4=3 and ×2=3 as large as medium resolution.
We see roughly third-order convergence in the constraint
violation. Though we use fourth-order finite difference

3https://github.com/JLRipley314/Standalone-TwoPunctures-
C-Cpp
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FIG. 8. Volume integrated norm of the constraint violation as a function of time for a nonspinning q ¼ 2=3 and q ¼ 1=2 binary black
hole merger with ζ1 ¼ 0.075 at three resolutions. The medium and high resolutions have 1.5× and 2× the resolution of the low
resolution on the coarsest grid. We observe roughly third-order convergence of our runs, which is consistent with the third order in time
interpolation used on the boundaries of adaptive mesh refinement grids [52,88].

FIG. 9. We show the absolute differences between the low, medium, and high resolutions of the amplitude and phase of the scalar (left)
and tensor (right) waveforms for a nonspinning BH binary with mass ratios q ¼ 1=2 and coupling ζ1 ¼ 0.075. We see that the waveform
converges at between fourth order and fifth order (corresponding to the scaling used for the dashed and the dashed-dotted lines,
respectively). Note that we only show the scalar waveform from 50M onwards as the scalar field is zero before then.
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stencils and Runge-Kutta time integration, this level of
convergence is consistent with the third-order interpolation
in time used to set values on the boundaries of adaptive
mesh refinement levels.
In Fig. 9, we plot the self-convergence of the amplitude

and phase for Ψ4;22 and ϕ11 for the q ¼ 1=2, ζ1 ¼ 0.075
run. Unlike the integrated constraint violation, we find
that Ψ4;22 and ϕ11 converge at roughly fourth order for
q ¼ 1=2. For the same run, we show the Richardson
extrapolated error in the phase and amplitude for Ψ4;22 and
ϕ11 (Fig. 10).
As discussed in Sec. IV, because we use the same

numerical resolution for carrying out the GR and sGB
simulations, which we then compare to compute the
dephasing δΦ, there is a cancellation which leads to a
smaller truncation error in this quantity compared to the
overall truncation error in Φ. This is illustrated in Fig. 11,

where we estimate the truncation error in δΦ by comparing
a q ¼ 1=2 GR simulation to an equivalent sGB simulation
with ζ1 ¼ 0.075 at two different resolutions. We compare
this to an estimate of the overall truncation error inΦ for the
same sGB case, and carry out a similar comparison for the
GW amplitude.

2. Extraction error of waveforms

We next consider the extraction error, that is, the errors in
our waveforms due to extracting them at a finite radius. To
estimate the extraction error we compute the complex
amplitude and phase of the ðl ¼ 2; m ¼ 2Þ multipole of
Ψ4 defined in Eq. (A3) and the ðl ¼ 1; m ¼ 1Þ multipole
of ϕ defined in Eq. (5b) at several extraction radii, and
extrapolate the quantities to infinity by fitting them to
polynomials in 1=r

FIG. 10. Truncation error estimate of the medium resolution obtained from the Richardson extrapolation of the phase ΦðtÞ and
amplitude AðtÞ of the scalar (left) and tensor (right) waveform extracted at 100M0 for a nonspinning BH binary with mass ratio q ¼ 1=2
and coupling ζ1 ¼ 0.075.
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Aðr; tretÞ ¼
XN
n¼0

Aðn;NÞðtretÞ
rn

; ðA1aÞ

χðr; tretÞ ¼
XN
n¼0

χðn;NÞðtretÞ
rn

: ðA1bÞ

where tret ¼ t − r refers to the retarded time, A is the
amplitude of the waveform, and χ is the phase. The time-
dependent n ¼ 0 coefficients are then used as the amplitude
and phase of the asymptotic waveform. The error from
computing a field quantityuðtret; rÞ at a finite radius ri is then

ϵðu; ri; NÞ ¼ juðtret; riÞ − uð0;NÞðtretÞj: ðA2Þ

In Figs. 12 and 13, we plot our estimates for the error due
to the extraction of the gravitational and scalar waveforms
at a finite radius. Comparing these to the estimate of the
truncation error in Fig. 10 we conclude that the finite
resolution of the code is the dominant source of error.

3. Orbital eccentricity

To estimate the orbital eccentricity of the binary
system, introduced by imperfect initial data, we use the

FIG. 12. Deviation of the phase, ϵðΦ22; ri; 1Þ (left) and relative deviation of the amplitude, ϵðA; ri; 1Þ=A0;1 (right) of the waveform
rΨ4;22ðt; rÞM0 ¼ Aðt; rÞeiΦ22ðt;rÞ obtained at finite extraction radius from the values extrapolated according to Eq. (A1) for a
nonspinning BH binary with mass ratio q ¼ 1=2 and coupling ζ1 ¼ 0.075.

FIG. 11. We show the difference between the low and medium resolutions of the amplitude (left) and phase (right) of the gravitational
waveform for a nonspinning BH binary with mass ratio q ¼ 1=2 and coupling ζ1 ¼ 0.075 (solid purple) and the difference of the
difference between the sGB and GR amplitude and phase at low and medium resolutions (dashed-brown line). This provides evidence
that the truncation error roughly cancels between the sGB and GR runs.
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gravitational wave phase [89]. We write the ðl; mÞ ¼ ð2; 2Þ
component of Ψ4 in the wave zone as

rM0 ×Ψ4;22 ≡ A22ðt; rÞe−iΦ22 þO
�
1

r

�
: ðA3Þ

We fit a fifth-order polynomial to the orbit-averaged Φ to
obtain Φfit, and define the eccentricity to be the amplitude
of the oscillating function

eΦðtÞ≡Φ22ðtÞ −Φfit;22ðtÞ
4

: ðA4Þ

We plot the eccentricity [see Eq. (A4)] of our simulations
in Fig. 14 for different values of ζ1 and resolution. Ideally,
an eccentricity estimator will plot a sinusoidal wave as a
function of time [89]. Our eccentricity measurements have
higher harmonics, which we attribute to the junk radiation
from the choice of puncture initial data, and from the black
hole scalarization process, and from the fact that we only
measure the eccentricity over a relatively short inspiral
time (t=M0 < 1000). While the eccentricity does slightly
increase with increasing ζ1, we find that our eccentricity is
mostly limited by resolution, and not from perturbations
caused by our initial data. This suggests that the dephasing
between the sGB and GR simulations is not dominated by
small differences in the eccentricity of our simulations
caused by the rapid development of the scalar field around
the black holes at early times.

APPENDIX B: POST-NEWTONIAN RESULTS
IN SGB GRAVITY

Due to the presence of monopole scalar charge around
each black hole in sGB gravity, black hole inspirals can

emit scalar radiation, which enters at −1PN order as dipole
emission for unequal mass black hole binaries. The
calculation of the leading PN correction to the gravitational
and scalar radiation for binary black holes in sGB gravity
was carried out in Ref. [34]. In the limit of an exactly equal
mass, nonspinning binary, the dipole radiation vanishes.
More generally it is straightforward to see that any odd
multipole of a scalar is zero in this case as the spherical
harmonics are odd under parity inversion (r⃗ → −r⃗), but the
spacetime in this case is even under this transformation.
Thus, for equal mass black hole binaries, the scalar
waveform enters at higher PN order [34,36,37].
The PN calculations initiated in Ref. [34] were recently

extended to higher PN order in Refs. [36,37]. In those
works, the authors additionally considered more general
Gauss-Bonnet couplings fðϕÞG. Here we only present the
leading-order PN results. To leading order in ζ1, spherical
harmonic components of the scalar radiation of the binary
system go as [34,36–38])

ϕ00 ≈
�
2λ

r

�
ð8πÞ1=2 M0

m1m2

; ðB1aÞ

ϕ11 ≈ −
�
2λ

r

��
2π

3

�
1=2

�
1þ 3m2

1 þ 3m2
2 þ 4m1m2

M2
0

x

�

×
ΔM0

m1m2

x1=2; ðB1bÞ

ϕ22 ≈ −
�
2λ

r

��
8π

15

�
1=2m2

1 −m1m2 þm2
2

M0m1m2

x; ðB1cÞ

ϕ33 ≈
�
2λ

r

��
1296π

35

�
1=2ΔMðm2

1 þm2
2Þ

8M2
0m1m2

x3=2; ðB1dÞ

FIG. 13. Deviation of the phase, ϵðΦ; ri; 1Þ (left) and relative deviation of the amplitude, ϵðA; ri; 1Þ=A0;1 (right) of the waveform
ðr=M0Þϕ11ðt; rÞ ¼ Aðt; rÞeiΦðr;tÞ obtained at finite extraction radius from the values extrapolated according to Eq. (A1) for a
nonspinning BH binary with mass ratio q ¼ 1=2 and coupling ζ1 ¼ 0.075.
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ϕ44 ≈
�
2λ

r

��
2048π

315

�
1=2

×
m4

1 −m3
1m2 þm2

1m
2
2 −m1m3

2 þm4
2

3m1m2M3
0

x2; ðB1eÞ

where m1;2 are the masses of the two black holes, with the
convention m1 ≤ m2 (see Sec. III B), Ω is the angular
velocity of the binary in the center of mass frame, and

ϕlm ≡ lim
r→∞

Z
S2

Ȳlmϕ; ðB2aÞ

M0 ≡m1 þm2; ðB2bÞ

ΔM≡m2 −m1; ðB2cÞ

x≡ ðM0ΩÞ2=3: ðB2dÞ

Note that the second terms inEq. (B1),which are raised to the
1=2 power, come from the integral over the sphere of Ȳlm.
The scalar waveforms Eq. (B1) are presented to leading
order in the PN expansion, except for the l ¼ m ¼ 1
waveform,which has been computed to 0.5PNorder [36,37].
We next consider the dephasing of gravitational waves in

PN theory. We write the orbital phase in the time domain as
a function of the PN parameter x,

ΦðxÞ ¼ ΦGRðxÞ þ δΦðxÞ: ðB3Þ

Here, ΦGR is the orbital phase when setting λ ¼ 0, and δΦ
is the additional phase shift that comes from the emission of

FIG. 14. Eccentricity estimator of the q ¼ 1, q ¼ 2=3, and q ¼ 1=2 mass ratio inspirals for several different values of ζ1, and for the
q ¼ 2=3mass ratio at different resolutions. We see that the eccentricity of the binaries we study is affected by both the form of our initial
data (the formation of scalar charge from vacuum initial conditions), and, to a greater extent, from the resolution of our runs. We measure
the eccentricity using the radially extrapolated Weyl scalar Ψ4;22. The low and high resolution have 2=3 and 4=3× the resolution of the
medium resolution which has a linear grid spacing of dx ¼ 0.006M0 on finest level.
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scalar radiation. In the PN expansion of scalarized compact
objects, there are two limits considered in the literature;
the dipole driven regime and the quadrupole driven regime
[35,37]. In the dipole driven regime, the dipole scalar
emission is the dominant source of radiated energy, while in
the quadrupole driven regime, the dominant source of
radiated energy is the gravitational wave emission. The
system is in the quadrupole driven regime when

x≳ 5

24
S−

2; ðB4Þ

where we introduced the scalar dipole

S� ≡ α2 � α1
2

ffiffiffī
α

p ; ðB5Þ

where ᾱ≡ ð1þ α1α2Þ, and αi are the black hole sensitiv-
ities for sGB gravity [45,46] [ for their explicit values, see
Eq. (B6) below]. Notice, for equal mass ratio binaries, the
system is always in the quadrupole driven regime as there is
no dipole radiation (S− ¼ 0). We see that the system is in
the dipole driven regime only for unequal mass ratio
binaries that are far apart (that is, when x is small).
Given the experimental constraints on ζ1 ≪ 1 and S−,
the binary systems of interest for ground- and space-based
GW detectors are driven by the quadrupolar driven regime
for sGB gravity. We thus compare our numerical wave-
forms to gravitational waveforms for systems in which
quadrupolar radiation is dominant.
The leading-order contribution to the GW phase in

ESGB gravity was computed in Refs. [34,90] using the
stationary-phase approximation [61], and later extended to
higher orders in PN theory in Refs. [36,37,51]. The highest-
order PN corrections to the phase so far have been
computed by Lyu et al. [51], who mapped results obtained
partially to 2PN order in scalar-tensor theories [35] to sGB
gravity. Here, we review their calculation, and present
results for the time-domain orbital phase δΦ as a function
of the PN parameter x.
The results of Ref. [35] were presented in the Jordan

frame, and ESGB gravity is written in the Einstein frame.
Thus, the first step Lyu et al. took was to transform the
results of Ref. [35] to the Einstein frame. After this trans-
formation, Lyu et al. noticed that the results ofRef. [35]were
expressed in terms of the black hole sensitivities αi, and their
derivatives βi. These were computed for black holes in
ESGB gravity by Julié et al. [45,46], and for nonspinning
black holes are given by (here we used the conversion
φ → ϕ=

ffiffiffi
2

p
, fðφÞ → 2

ffiffiffiffiffiffiffiffi
16π

p
φ, and αGB → λ=

ffiffiffiffiffiffi
8π

p
)

αi ≡ −
αGBf0ðφ0Þ

2mi
2

¼ −
ffiffiffi
2

p
λ

mi
2
; ðB6Þ

βi ≡ dαi
dφ

����
φ0

¼ −
αGB

2f0ðφ0Þ2
2mi

2
¼ −

4λ2

mi
2
; ðB7Þ

where φ0 is the asymptotic value of scalar field at infinity
(we set φ0 ¼ 0). We see that βi ∝ λ2, so it is negligible
compared to αi. Using these expressions, and keeping terms
up to Oðλ2Þ, sGB corrections to the orbital phase in the
quadrupolar driven regime can be expressed as

δΦðxÞ ¼
X
i

δΦi;PN ¼ λ2

8πm4
1m

4
2η

X
i

cixð−5þ2iÞ=2; ðB8Þ

where

c−1 ¼
25π

1344
ðm2

2 −m2
1Þ2 ðB9Þ

c0 ¼
5π

32256
½ð659þ728ηÞðm2

2−m2
1Þ2�þ

5π

12
m2

2m
2
1 ðB10Þ

c0.5 ¼ −
25π

384
ðm2

2 −m2
1Þ2ð3π þ fST3 Þ ðB11Þ

c1 ¼
5π

585252864
½55883520ðm3

2m1þm2m3
1Þ

þ25ð1640783þ2621304ηþ2095632η2Þðm4
2þm4

1Þ
−2m2

1m
2
2ð83960375þ43179192ηþ52390800η2Þ�

−
25π

288
ðm2

2−m2
1Þ2fST4 ðB12Þ

c1.5 ¼ −
5π2

12
ðm4

2 − 14m2
1m

2
2 þm4

1Þ

−
5π

96
ðm4

2 − 6m2
1m

2
2 þm4

1ÞfST3 þ 1

λ2
5π

8
m4

1m
4
2f

ST
3

ðB13Þ

c2 ¼
5π

48771072
½−24385536ðm3

2m1 þm2m3
1Þ

þ ð4341025 − 65553264ηþ 684432η2Þðm4
1 þm4

2Þ
þ 54m2

1m
2
2ð−12500965þ 19310256ηþ 366128η2Þ�

ðB14Þ

−
5π

48
ðm4

2 − 14m2
1m

2
2 þm4

1ÞfST4 þ 1

λ2
5π

4
m4

1m
4
2f

ST
4 ; ðB15Þ

and η≡m1m2=M2
0 is the symmetric mass ratio. Our

calculation of these coefficients are presented in an ancillary
Mathematica notebook [91]. As noted in Ref. [51], the
leading −1PN term here agrees with the one found in
Refs. [34,90]. We note that we have not included black
hole spin dependence here (in the notation of Ref. [51], we
have set si ¼ 1, although the notebook presents results for
general si. The terms at 0.5PN onwards contain currently
unknown coefficients fST2n , which represent our ignorance of
the new scalar contributions at relativen ¼ 1.5 andn ¼ 2PN
order in the nondipolar flux (part of the flux that does not
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vanish for an equal mass binary) beyond 1PN order [35]; we
see that fST2n must scale as λ2þn; n > 0 in order for these terms
to not be important as λ → 0. In the quadrupolar-driven
regime, experimental constraints on the weak-field param-
eters of scalar-tensor gravity suggest that these contributions
should be much smaller than the 2PNGR terms [35], so fST2n
is set to zero in Ref. [51] and in this work.

APPENDIX C: PUNCTURE INITIAL DATA FOR
SGB BINARY BLACK HOLE EVOLUTION

As we discuss in Sec. III B, the Hamiltonian and
momentum constraint equations in sGB gravity reduce
to those of GR when ϕ ¼ ∂tϕ ¼ 0 on the initial data
hypersurface [22,23], and we make use of GR puncture
initial data in our simulations. While puncture initial data is
well known [92] and the TwoPunctures implementation
of that formalism is widely used [54], to our knowledge it
has never been implemented in conjunction with black hole
excision and a (modified) generalized harmonic formu-
lation. Here, we review puncture initial data, and how we
incorporated the TwoPunctures initial data in our
MGH code.
First we write the metric in ADM variables,

ds2 ¼ −N2dt2 þ hαβðdxα þ NαdtÞðdxβ þ NβdtÞ: ðC1Þ

The extrinsic curvature is

Kαβ ¼ −
1

2N
ð∂thαβ −DαNβ −DβNαÞ; ðC2Þ

where Dα is the extrinsic curvature with respect to the
spatial slice.
Puncture initial data is spatially conformally flat and

maximally sliced (K ¼ 0), and sets hαβ ¼ ψ4δαβ, that is
the initial spatial metric is conformally flat. The extrinsic
curvature is specified by choosing a set of effective black
hole masses mðnÞ, spins S

γ
ðnÞ, momenta Pγ

ðnÞ, and locations.
One then solves the Hamiltonian constraint for ψ, which
then gives us hαβ (the momentum constraint is solved
using an analytic formula). Puncture initial data does not
specify the lapse N and shift Nγ . We set Nα ¼ 0,
and choose N to be (we set the initial-lapse
parameter to twopunctures-averaged in the
TwoPunctures code [54])

N ¼
�
1þ m1

2r1
þ m2

2r2

�
−1
; ðC3Þ

where ri is the radial (Euclidean) distance from the ith
puncture. To recover the metric initial data from the ADM
variables, we invert the definitions to get

gtt ¼ −N2; gtα ¼ 0;

gαβ ¼ hαβ; ∂tgtt ¼ −2N∂tN;

∂tgtα ¼ 0; ∂tgαβ ¼ −2NKαβ: ðC4Þ

In puncture coordinates, the black hole apparent
horizon is located at r ¼ m=2. We then initially excise
an ellipsoid inside that surface on our t ¼ 0 slice after the
TwoPunctures code has solved for the conformal factor
and interpolated the result on the initial Cartesian grid we
use. The MGH parameters ĝab, g̃ab, and Ha determine ∂tN
and ∂tNα.
We set Sγð1;2Þ ¼ 0, so that the black holes are initially

nonspinning. We choose quasicircular initial data for the
momenta Pγ

ð1;2Þ. In particular, given r andmðnÞ, we set (here
using spherical polar coordinates)

Pγ
ðnÞ∂γ ¼ mðnÞ × ð_r∂r þ rΩ∂ϕÞ: ðC5Þ

We choose _r to be accurate to 2.5PN order for a
quasicircular binary, that is it incorporates the leading-
order radiation reaction term, and we choose Ω to be
accurate to 2 PN order for a quasicircular binary [56,93,94].
We note that Kovacs [83] has recently constructed a

more general set of puncture initial data for black holes in
sGB gravity, which reduces to the original puncture data for
GR that we use here when one chooses the initial values
of ϕ ¼ ∂tϕ ¼ 0.

APPENDIX D: PERTURBATIVE SOLUTIONS
TO SGB GRAVITY

Here, we briefly review the perturbative approach to
solving the equations of motion in shift-symmetric ESGB
(sGB) gravity. While we do not employ the perturbative
method in this work (instead, we solve the full sGB
equations of motion), all previous numerical relativity work
comparing to PN theory has [36–38]. As in those earlier
results, we find that at a given frequency, the amplitude of
our scalar waveforms are very similar to the scalar wave-
forms produced in the decoupling limit; however, here we
are able to directlymeasure the extra dephasing of the binary
black holes due to the emission of scalar radiation. This can
be traced to the fact that corrections to the scalar amplitude
beyond the leading-order decoupling limit scale as the
coupling to the third power, which we show here.
In the perturbative approach, the scalar field and tensor

field are expanded order by order in a small parameter ϵ,

gab ¼
X∞
k¼0

ϵkgðkÞab ; ðD1aÞ

ϕ ¼
X∞
k¼0

ϵkϕðkÞ: ðD1bÞ
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We assume ϵ ∼ λ=m2
1 ¼ ζ1, and set ϕð0Þ ¼ 0, so that the

“background” spacetime is vacuum GR. To zeroth order in
the coupling, the tensor and scalar equations of motion are

Gð0Þ
ab −∇aϕ

ð0Þ∇bϕ
ð0Þ þ 1

2
gð0Þab ð∇ϕð0ÞÞ2 ¼ 0; ðD2aÞ

□ð0Þϕð0Þ ¼ 0; ðD2bÞ

where Gab is the Einstein tensor. We see that if for initial
data we set ϕð0Þ ¼ ∂tϕ

ð0Þ ¼ 0, then ϕð0Þ ¼ 0 for all time,
and the metric field satisfies the Einstein equations. From
now on we assume ϕð0Þ ¼ 0. To linear order in ϵ, the
equations of motion are

Gð1Þ
ab ¼ 0; ðD3aÞ

□
ð0Þϕð1Þ þ λGð0Þ ¼ 0: ðD3bÞ

We see that the equation of motion for gð1Þab is also the
vacuum Einstein equations. We can then consistently set

gð1Þab ¼ 0. The scalar field ϕð1Þ is no longer zero, even if one
initially sets ϕð1Þ ¼ ∂tϕ

ð1Þ ¼ 0 for initial data, as generi-
cally Gð0Þ ≠ 0. Solving for ϕð1Þ to this order, while solving

for gð0Þab from the Einstein equations, is called the decou-
pling approximation [38]. To second order in ϵ, we have

Gð2Þ
ab −∇aϕ

ð1Þ∇bϕ
ð1Þ þ 1

2
gð0Þab ð∇ϕð1ÞÞ2

þ 2λδefcdijgðagbÞdðRij
efÞð0Þ∇g∇cϕ

ð1Þ ¼ 0; ðD4aÞ

□ð0Þϕð2Þ ¼ 0: ðD4bÞ

The scalar equation follows from gð1Þab ¼ 0. Note that the
scalar equation for ϕð2Þ would have corrections if the
Gauss-Bonnet coupling was nonlinear in ϕ; for more
discussion see for example Sec II. B. 5 in [38]. We see
that we can consistently set ϕð2Þ ¼ 0. To third order in
perturbation theory, we have

Gð3Þ
ab ¼ 0; ðD5aÞ

□
ð0Þϕð3Þ þ□

ð2Þϕð1Þ þ λGð2Þ ¼ 0: ðD5bÞ

We can set gð3Þab ¼ 0, but there is a nontrivial correction

to ϕð3Þ [there would be corrections to gð3Þab if the scalar
Gauss-Bonnet coupling was nonlinear in ϕ, due to correc-
tions in ϕð2Þ; see the discussion below Eq. (D4)]. Thus,
once one can computed ϕð1Þ, corrections to the scalar
waveform do not appear until ϕð3Þ. We considered ζ1 ∼ 0.1
at the largest, so the largest correction due to nonlinear
effects to the amplitude would be of relative order
ζ31=ζ1 ¼ ζ21 ∼ 0.01, a 1% effect. This is consistent with
what we see in Figs. 1 and 2.
While nonlinear effects in ζ1 are not expected to

dramatically change the amplitude of the scalar field during
inspiral for sGB gravity, nonlinear effects must be incorpo-
rated to determine the long-time dephasing of the binary
due to the emission of scalar radiation. Nonlinear effects
may additionally change the spacetime geometry of the
merger in ways not captured in the perturbative approach.
Finally, if the scalar Gauss-Bonnet coupling is not linear
in ϕ, higher-order corrections in the coupling can enter in
the scalar waveform at order ζ21, and so could be more
important in determining the properties of black hole
binaries.

[1] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 116, 221101 (2016); 121, 129902(E) (2018).

[2] N. Yunes, K. Yagi, and F. Pretorius, Phys. Rev. D 94,
084002 (2016),

[3] T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and
I. Sawicki, Phys. Rev. Lett. 119, 251301 (2017).

[4] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 123, 011102 (2019).

[5] M. Isi, M. Giesler, W.M. Farr, M. A. Scheel, and S. A.
Teukolsky, Phys. Rev. Lett. 123, 111102 (2019).

[6] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
arXiv:2010.14529.

[7] M. Isi, W. M. Farr, M. Giesler, M. A. Scheel, and S. A.
Teukolsky, Phys. Rev. Lett. 127, 011103 (2021).

[8] D. Psaltis et al. (Event Horizon Telescope Collaboration),
Phys. Rev. Lett. 125, 141104 (2020).

[9] S. H. Völkel, E. Barausse, N. Franchini, and A. E.
Broderick, Classical Quantum Gravity 38, 21LT01 (2021).

[10] P. Kocherlakota et al. (Event Horizon Telescope Collabo-
ration), Phys. Rev. D 103, 104047 (2021).

[11] M. Okounkova, W.M. Farr, M. Isi, and L. C. Stein, Phys.
Rev. D 106, 044067 (2022).

[12] N. Yunes and X. Siemens, Living Rev. Relativity 16, 9
(2013).

[13] E. Berti et al., Classical Quantum Gravity 32, 243001
(2015).

[14] E. Berti, K. Yagi, and N. Yunes, Gen. Relativ. Gravit. 50, 46
(2018).

[15] E. Berti, K. Yagi, H. Yang, and N. Yunes, Gen. Relativ.
Gravit. 50, 49 (2018).

[16] E.W. Hirschmann, L. Lehner, S. L. Liebling, and C.
Palenzuela, Phys. Rev. D 97, 064032 (2018).

NONLINEAR STUDIES OF BINARY BLACK HOLE MERGERS IN … PHYS. REV. D 107, 024014 (2023)

024014-19

https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1103/PhysRevLett.119.251301
https://doi.org/10.1103/PhysRevLett.123.011102
https://doi.org/10.1103/PhysRevLett.123.111102
https://arXiv.org/abs/2010.14529
https://doi.org/10.1103/PhysRevLett.127.011103
https://doi.org/10.1103/PhysRevLett.125.141104
https://doi.org/10.1088/1361-6382/ac27ed
https://doi.org/10.1103/PhysRevD.103.104047
https://doi.org/10.1103/PhysRevD.106.044067
https://doi.org/10.1103/PhysRevD.106.044067
https://doi.org/10.12942/lrr-2013-9
https://doi.org/10.12942/lrr-2013-9
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1007/s10714-018-2362-8
https://doi.org/10.1007/s10714-018-2362-8
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1103/PhysRevD.97.064032


[17] M. Okounkova, L. C. Stein, M. A. Scheel, and D. A.
Hemberger, Phys. Rev. D 96, 044020 (2017).

[18] M. Okounkova, L. C. Stein, M. A. Scheel, and S. A.
Teukolsky, Phys. Rev. D 100, 104026 (2019).

[19] M. Okounkova, Phys. Rev. D 102, 084046 (2020).
[20] J. Cayuso, N. Ortiz, and L. Lehner, Phys. Rev. D 96, 084043

(2017).
[21] R. Cayuso and L. Lehner, Phys. Rev. D 102, 084008 (2020).
[22] W. E. East and J. L. Ripley, Phys. Rev. D 103, 044040

(2021).
[23] J. L. Ripley, Int. J. Mod. Phys. D 31, 2230017 (2022).
[24] N. Franchini, M. Bezares, E. Barausse, and L. Lehner,

Phys. Rev. D 106, 064061 (2022).
[25] M. Bezares, R. Aguilera-Miret, L. ter Haar, M. Crisostomi,

C. Palenzuela, and E. Barausse, Phys. Rev. Lett. 128,
091103 (2022).

[26] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. D 100, 104036 (2019).

[27] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. D 103, 122002 (2021).

[28] R. Abbott et al. (LIGO Scientific, Virgo, KAGRA Collab-
orations), arXiv:2112.06861.

[29] A. Ghosh (LIGO Scientific–Virgo–Kagra Collaborations),
in 56th Rencontres de Moriond on Gravitation (2022),
arXiv:2204.00662.

[30] P. Kanti, N. Mavromatos, J. Rizos, K. Tamvakis, and E.
Winstanley, Phys. Rev. D 57, 6255 (1998).

[31] N. Yunes and L. C. Stein, Phys. Rev. D 83, 104002 (2011).
[32] T. P. Sotiriou and S.-Y. Zhou, Phys. Rev. Lett. 112, 251102

(2014).
[33] T. P. Sotiriou and S.-Y. Zhou, Phys. Rev. D 90, 124063

(2014).
[34] K. Yagi, L. C. Stein, N. Yunes, and T. Tanaka, Phys. Rev. D

85, 064022 (2012); 93, 029902(E) (2016).
[35] N. Sennett, S. Marsat, and A. Buonanno, Phys. Rev. D 94,

084003 (2016).
[36] B. Shiralilou, T. Hinderer, S. Nissanke, N. Ortiz, and H.

Witek, Phys. Rev. D 103, L121503 (2021).
[37] B. Shiralilou, T. Hinderer, S. Nissanke, N. Ortiz, and H.

Witek, Classical Quantum Gravity 39, 035002 (2022).
[38] H. Witek, L. Gualtieri, P. Pani, and T. P. Sotiriou, Phys. Rev.

D 99, 064035 (2019).
[39] H. O. Silva, H. Witek, M. Elley, and N. Yunes, Phys. Rev.

Lett. 127, 031101 (2021).
[40] W. E. East and F. Pretorius, Phys. Rev. D 106, 104055

(2022).
[41] A. D. Kovacs and H. S. Reall, Phys. Rev. Lett. 124, 221101

(2020).
[42] A. D. Kovacs and H. S. Reall, Phys. Rev. D 101, 124003

(2020).
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