
Fifth forces and frame invariance

Jamie Bamber *

Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom

(Received 3 November 2022; accepted 14 December 2022; published 13 January 2023)

I discuss how one can apply the covariant formalism developed by Vilkovisky and DeWitt to obtain
frame invariant fifth force calculations for scalar-tensor theories. Fifth forces are severely constrained by
astrophysical measurements. It was shown previously that for scale-invariant Higgs-dilaton gravity, in a
particular choice of frame, the dilaton fifth force is dramatically suppressed, evading the observational
constraints. Using a geometric approach I extend this result to all frames, and show that the usual
dichotomy of “Jordan frame” versus “Einstein frame” is better understood as a continuum of frames:
submanifold slices of a more general field space.
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I. INTRODUCTION

Since Einstein formulated his theory of general relativity
over a century ago [1] there has been much theoretical
interest in the possibility that it is merely an approximation
to a more general theory of gravity. One of the most popular
classes of theories of modified gravity are the so-called
“scalar-tensor” theories [2], where the Einstein-Hilbert
action1

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ Lm

�
; ð1Þ

is modified by the addition of one or more scalar fields. Lm

is the matter part of the Lagrangian.2 Instead of a fixed
Planck massMPl (or alternatively a fixed Newton’s constant
G) we introduce a nontrivial coupling to R, giving an action
of the form

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
FðφÞR−

1

2
∂μφ ·∂μφ−WðφÞþLm

�
; ð2Þ

where the effective Planck mass is now a function of the
scalar field(s) φ ¼ fϕig. The first and arguably simplest
theory of this type is that of Brans-Dicke from 1961 [3]
where FðϕÞ ¼ − α

12
ϕ2, W ¼ 0 for a single scalar field ϕ

and constant α. A modern formulation which encompasses
all possible scalar-tensor theories with second order

equations of motion was first given by Horndeski [2,4],
and subsequently extended to Beyond Horndeski and
then degenerate higher-order scalar-tensor (DHOST)
theories [5] which have higher order equations of
motion but maintain the same number of scalar degrees
of freedom.
One feature of these theories is that they can be

expressed in different guises or “frames” via field redefi-
nitions. Equation (2) describes a “Jordan” frame if FðφÞ
depends on φ. With a suitable Weyl transformation gμν →

Ω2ðφÞg̃μν we can obtain a new action S¼ R
d4x

ffiffiffiffiffiffi
−g̃

p ½M2

2
R̃þ

�� �þLmðΩðφÞ; g̃μν;matterÞ�, where the gravity sector is
now as in GR, but the matter sector picks up additional
couplings to φ. This is termed the “Einstein frame.”
Despite the theoretical attractions (Paul Dirac argued for

a dynamical G on the basis of his large number hypothesis)
generic scalar-tensor theories are severely constrained by
solar system and lab observations. This is because the
introduction of an additional field with a nontrivial cou-
pling to gravity or matter can in general mediate long-range
“fifth forces” [3,6,7].3 The exchange of a new particle of
mass m coupling to matter gives a Yukawa [8] potential

VfifthðrÞ ¼ −
ϵ2M1M2

4πr
e−mr; ð3Þ

for coupling ϵ and masses M1, M2. For small enough m
(m ¼ 0 for Brans-Dicke) this can be probed via solar
system tests, which put extremely tight bounds on ϵ [9–11].
In other words if a theory predicts a significant long-range
fifth force, like standard Brans-Dicke, it is probably
ruled out.

*james.bamber@physics.ox.ac.uk
1note that throughout we assume a mostly plus signature

ð−;þ;þ;þÞ.
2There is sometimes ambiguity as to whether the Lagrangian is

defined with or without the
ffiffiffiffiffiffi−gp

term. I will be using curly L to
refer to Lagrangian including the

ffiffiffiffiffiffi−gp
metric factor, and upright

L when not including the
ffiffiffiffiffiffi−gp

.

3So-called because they act in addition to the standard four
fundamental forces of nature.
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Various screening mechanisms have been proposed
to evade these constraints, whereby the fifth force is
suppressed in the vicinity of matter [12]. These include
chameleon mechanisms [13] where, for a suitable choice
of ΩðφÞ and Einstein frame potential, the effective mass
of the scalar changes depending on the local matter
density, so near large masses the fifth force becomes
short range. There is also the Vainshtein mechanism and
its variations [14,15], where additional nonlinear terms in
the action result in a suppression of the scalar field within
some radius around a matter source.
One particularly interesting type of scalar-tensor

theory is one that is scale-invariant (including “Higgs-
dilaton” theories where one of the scalar fields is a
nonminimally coupled SM Higgs boson) [16–37], where
the action, including the matter sector, has a global
Weyl symmetry [38] such that there is no a priori
lengthscale. Instead the symmetry is broken dynamically
as the scalar field(s) tend toward fixed equilibrium
values under the influence of an expanding cosmology.
This has been proposed as one element of a solution to
the so-called hierarchy problem [21,35,39], and the
phenomenological implications of such a theory have
also generated substantial interest [40–47]. There is a
massless Goldstone boson associated with the sponta-
neously broken symmetry, termed the “dilaton,” σ, and
as such we might be worried about fifth-force con-
straints. However, it has been shown that in the Einstein
frame (Garcia-Bellido et al. [23]) the dilaton only
couples via terms which do not produce a long range
1=r fifth force potential, avoiding the need for screening
mechanisms. Ferreira, Hill, and Ross [48] go further and
show that, in a particular choice of Jordan frame, the
dilaton completely decouples from the matter sector, and
therefore contributes no fifth force at all.
This leads to the question: how can we relate these

results in different choices of frame? Are there frames in
which we can recover a long range fifth force? Indeed,
to what extent are generic scalar-tensor theories of this
type really physically equivalent in different frames?
While on a classical level one should not expect a
redefinition of variables to change the physics or physical
results, once you include quantum corrections this
becomes no longer obvious (this is sometimes called
the “cosmological frame problem” [49]). Copeland et al.
[50] and Burrage et al. [51] explicitly calculated the fifth
forces for a three-scalar-field toy model, which becomes
a Higgs-dilaton theory for a certain choice of parameters,
in first the Einstein frame [50] and a Jordan frame [51],
and showed that at lowest perturbative order the results
are the same. There has also been extensive work
examining the general question of frame (in)equivalence
from numerous points of view, mostly focused on
cosmological applications [52–74].

In particular, Falls & Herrero-Valea [74–76] and
Finn et al. [77,78] developed a formalism to characterise
exactly how the quantum effective action must trans-
form nontrivially between frames. Finn et al. [77,78]
adopts the covariant approach [79–81], pioneered by
Vilkovisky and DeWitt [82–84], whereby frame trans-
formations are described in terms of a coordinate changes
on a field-space manifold, and constructs a fully covariant
quantum effective action, extending the Vilkovisky-DeWitt
unique effective action to theories with fermion fields.
In this paper I show how this formalism, and the

covariant geometric approach, can be applied to the
problem of computing fifth forces, and to scale-invariant
scalar-tensor theories in particular. I extend the geometric
approach to show how choices of frame can be charac-
terized in a geometric manner: as choices of submanifold
in a higher dimensional general field space. Frame
invariance becomes manifest, and we see how the choice
of frame is better thought of not as a dichotomy between
“Jordan” and “Einstein,” but as a continuum one can
smoothly traverse. We also see how scale-invariant scalar-
tensor gravity evades fifth force constraints in all possible
frames.
The structure of this paper is as follows. Section II lays

out the background theory. Section III describes the new
geometric approach to frame fixing, and in Sec. IV I apply
it to calculations of fifth forces. I focus on the scale-
invariant theory in Sec. V, and briefly discuss one-loop
corrections from the choice of physical spacetime in
Sec. VI. Finally I conclude with a discussion of my results
and future directions.

II. BACKGROUND

A. The dilaton and scale-invariant gravity

Under the Weyl transformation gμν ¼ Ω2g̃μν the Jordan
frame action (2) for some integer number of scalar fields
φ ¼ fϕig becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
FðφÞΩ2ðR̃ − 6ð∇̃ lnΩÞ2 − 6□̃ lnΩÞ

− Ω2
1

2

X
i

∂μϕi∂
μϕi − Ω4WðφÞ þ Ω4Lm

�
; ð4Þ

where ð∇̃vÞ2 ≔ ð∇̃μvÞð∇̃μvÞ. Let

Ω¼ expðσÞ; F̃ðσ; φ̃Þ¼Ω2FðφÞ; ϕ̃i ¼Ωϕi;

K̃¼ 1

2

X
i

ϕ̃2þ6F̃; W̃ðσ; φ̃Þ¼Ω4WðφÞ; L̃m¼Ω4Lm;

ð5Þ

Then we obtain
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
F̃ðσ; φ̃ÞðR̃ − 6ð∇̃σÞ2 − 6□̃σÞ

−
1

2

X
i

ϕ̃i
2ð∇̃σÞ2 þ ð∇̃μσÞ

X
i

ϕ̃i∇̃μϕ̃i

−
1

2

X
i

∂μϕ̃i∂
μϕ̃i − W̃ðσ; φ̃Þ þ L̃m

�
: ð6Þ

Integrating by parts gives

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
F̃ðσ; φ̃ÞR̃ − K̃ðσ; φ̃Þð∇̃σÞ2

þ ∇̃μσ∇̃μK̃ðσ; φ̃Þ − 1

2

X
i

∂μϕ̃i∂
μϕ̃i − W̃ðσ; φ̃Þ þ L̃m

�
:

ð7Þ

The Euler-Lagrange equation for the dilaton σ gives

□̃ K̃ −2ðK̃ − ∂σK̃Þ□̃σ − 2∇̃μðK̃ − ∂σK̃Þ∇̃μσ

¼ −∂σW̃ − R̃∂σF̃; ð8Þ

where ∂σ ≔ ∂

∂σ
. We can see from the transformation rules (5)

that if we choose FðφÞ to be quadratic in ϕi, the potential
WðφÞ to be quartic in ϕi, and the Lm to also rescale
appropriately, then the action becomes scale-invariant and
∂σF̃ ¼ ∂σW̃ ¼ 0. The dilaton is then massless, and appears
in the action only via its derivatives.

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
F̃ðφ̃ÞR̃ − K̃ðφ̃Þð∇̃σÞ2

þ ∇̃μσ∇̃μK̃ðφ̃Þ − 1

2

X
i

∂μϕ̃i∂
μϕ̃i − W̃ðφ̃Þ þ L̃m

�
: ð9Þ

If we then choose Ω such that K̃ ¼ const we obtain the
particular Jordan frame described in [48] and we see that
the dilaton completely decouples from the other scalar
fields and the other matter terms in L̃m. The equation of
motion for the dilaton reduces to a wave equation □̃σ ¼ 0,
and it can be set to zero. As a result there are no fifth forces
from the dilaton.4 Although scale invariance requires that
there cannot be a cosmological constant in the action, it can
be shown that under the influence of an expanding universe
the background values of the ϕi tend to constants [18,48],
producing an effective Planck mass

ffiffiffiffiffiffiffiffiffiffi
h2F̃i

p
, and an

effective cosmological constant hW̃=ð2F̃Þi, where h…i
denotes setting the fields to their background value.

B. The covariant formalism

Start by considering the path integral

Z½J� ¼
Z

½DNΦ�e−S½φ�−JaΦa
; ð10Þ

where ½DNΦ� is an appropriate measure over the function
space for fields Φ ¼ fΦig, Ja is a source term. I use i; j…
indices to denote field species and a; b… to denote DeWitt
indices spanning both field species and position or momen-
tum [75]. A frame transformation is a field reparametriza-
tion Φi → Φ̃iðΦÞ. In the covariant formalism we describe
this as a transformation of coordinates on a “configuration
space” or “field space” manifold [78]. This has an asso-
ciated line element ds2 ¼ CabdΦadΦb where a, b. We
would like our path integral, action and measure to be
frame/reparametrization invariant, which leads us to define

½DNΦ� ¼ V−1
gauge

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCabÞ

p
Πa

dΦaffiffiffiffiffiffi
2π

p ; ð11Þ

where Vgauge ¼
R
Πa

dξaffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðσabðΦÞÞp

accounts for the

volume of the gauge group, where dξa are the generators of
the Lie algebra and σab is another metric. For the moment I
assume all the fields are bosonic, however this formalism
has also been extended to include fermionic fields [78] as I
discuss later. To ensure diffeomorphism invariance of the
free action, the preferred field space metric for four
dimensions is [77,78]

Cab ¼
ḡμν
4

δ2S
δð∂μΦaÞδð∂μΦbÞ ¼ Cijδ̄

ð4Þðxa − xbÞ; ð12Þ

where the delta function enforces locality. We assume
σab ¼ σμνδ̄

ð4Þðxa − xbÞ is also ultralocal [75]. The ḡμν is the
physical, or preferred, spacetime metric which satisfies
dimensionless line element ds̄2 ¼ ḡμνdxμdxν. Defining ḡμν
is important to overcome the ambiguity between the
physical space time metric and the gravity quantum field
gμν [75,77,78]. The two are related by

ḡμν ¼ l−2ðΦÞgμν; ð13Þ

¼ e−2σphysgμν; ð14Þ

¼ e2ðσ−σphysÞg̃μν; ð15Þ

where lðΦÞ is an effective Planck length [78], and the
functional derivatives are defined using the barred metric,
and δ̄ð4ÞðxÞ is defined such that R d4x

ffiffiffī
g

p
δ̄ð4ÞðxÞ ¼ 1. For an

action with kinetic term

S ¼
Z

d4x½−Nijg̃μν∂μΦi
∂νΦj þ…�; ð16Þ

4There is still a coupling between gravity and the dilaton via its
contribution to the stress energy tensor Tμν, and thus sourcing
curvature according to standard general relativity, however this
contribution also vanishes for σ ¼ 0.
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(summation implied) the associated field space metric is

Cij ¼ e2ðσ−σphysÞNij: ð17Þ
In theories without gravity we can take σphys ¼ σ and
canonically normalize the kinetic term so that Nij ¼ const,
allowing us to neglect the field space metric entirely as it
only contributes a overall constant to the path integral.
However, in theories with gravity the choice of σphys is
important, and Cij can have nontrivial dependence on the
fields Φi. In order to obtain perturbative scattering ampli-
tudes we expand about a flat Minkowski background
gμν ≈ ημν þ hμν. With a trivial field space metric we can
use the background field approach to obtain Feynman rules
with vertex coefficients and propagators given by

λab…c ¼ ih∂ða∂b…∂cÞSi; ð18Þ

Δab ¼ ih∂a∂bSi−1; ð19Þ

where a; b… are once again DeWitt indices in either
position or momentum space, the factors of i come from
the Wick rotation and h…i denotes ð…ÞjΦ¼Φ0

setting the
fields to their background or equilibrium values Φ0. The
ða; b…cÞ denotes symmetrization over the indices. To
incorporate the field space determinant we can take either
of two approaches. The first is to work out the contribution
of the field space metric to the effective Lagrangian via

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCabÞ

p
¼ exp

�
1

2
TrðlnðCabÞÞ

�
; ð20Þ

¼ exp

�
1

2
δ̄ð4Þð0Þ

Z
d4x

ffiffiffī
g

p
Trðln ðCijðxÞÞÞ

�
;

ð21Þ

then expand in powers of the coupling constants [76], with
suitable regularization for the delta function divergence
[85]. Alternatively one can modify the Feynman rules by
promoting partial derivatives to covariant field space
derivatives [77,78]

λab…c → ih∇ða∇b…∇cÞSi; ð22Þ
Δab → ih∇a∇bSi−1: ð23Þ

As S is a field space scalar, the n-vertex λab…c is a ð0nÞ rank
field space tensor, and the propagator Δab is ð2

0
Þ tensor. For

Feynman diagrams with external legs we also need to
define the external factor

Xa ¼
�
∂Φa

∂χ

�
; ð24Þ

where χ is the physical external field connected to that leg,
a field space scalar. This makes Xa a field space vector.

The contribution to a matrix element for a particular
diagram shape will involve putting combinations of these
together, and summing over the field indices. As these are
all tensors the resulting object will be a field space scalar,
and hence frame invariant. In subsequent sections I will
demonstrate how this works for computations of fifth
forces, and extend the no-fifth-force result for the scale-
invariant theory to all frames.

III. SELECTING A FRAME:
A GEOMETRIC APPROACH

We can make an observation from Sec. II A: choosing a
frame for a theory with N fields fϕi; gμνg is equivalent to
taking the N þ 1 field action then imposing a constraint
qðφ̃Þ ¼ qðσ; ϕ̃iÞ ¼ 0 on the dilaton and rescaled fields. In
terms of the covariant formalism, this means we can
consider the field space of the theory in a particular frame
as a N dimensional submanifold of the appropriate generic
N þ 1 dimensional manifold, the field space of a more
general theory.5

Adapting the technique usually applied for gauge fixing,
in terms of the path integral we can impose this constraint
using delta functions

Z½0� ¼
Z

DNΦ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCabÞ

p
e−S½φ�;

¼
Z

DNþ1Φ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGabÞ

p
×
Y
x

½j∂iqðφ̃Þjxδðqðφ̃ðxÞÞÞ�e−S½φ̃�; ð25Þ

where Gab ¼ Gijδ̄
ð4Þðxi − xjÞ is the metric on the N þ 1

field space, j∂iqðφ̃Þjx denotes the magnitude of the field
space gradiant of q at space-time location x, we count the
dilaton σ as an additional Φ̃ field and we omit the Vgauge

factor for clarity. We may express

GijdΦ̃idΦ̃j ¼ α2dq2 þ 2βidqdΦi þ CijdΦidΦj: ð26Þ

where α ¼ j∂iqj−1. For βi ¼ 0 (we are free to choose this),
we have

GijdΦ̃idΦ̃j ¼ ½α2∂Φ̃iq∂Φ̃jqþ C̃ij�dΦ̃idΦ̃j: ð27Þ

where C̃ij ¼ Ckl
∂Φk

∂Φ̃i
∂Φl

∂Φ̃j. Then detðGabÞ ¼ detðC̃abÞ×Q
x½αðxÞ2�, so

5Strictly speaking the field space manifolds are infinite dimen-
sional, as they haveN or N þ 1 degrees of freedom at each spatial
point. However for clarity I shall just refer to them as “N” or
“N þ 1 dimensional,” counting the number of field species.
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Z½0� ¼
Z

DNþ1Φ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðC̃abÞ

q Y
x

½δðqðφ̃ðxÞÞÞ�e−S½φ̃�: ð28Þ

Wemay note that C̃ab is then the metric one would derive from simply considering the Lagrangian expressed in terms of the
N þ 1 Φ̃i fields. We can express the delta functions via the limit

Z½0� ¼ lim
ξ→0

Z
DNþ1Φ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðC̃abÞ

q Y
x

�
1ffiffiffiffiffiffiffiffi
2πξ

p e−
1
2ξqðφ̃ðxÞÞ2

�
e−S½φ̃�; ð29Þ

¼ lim
ξ→0

�	
1ffiffiffiffiffiffiffiffi
2πξ

p



V
Z

DNþ1Φ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðC̃abÞ

q
exp

�
−
Z

d4x
ffiffiffiffiffiffi
−g̃

p 	
L̃ −

1

2ξ
q2

��

; ð30Þ

where V is an (infinite) measure of the space-time volume.
We then have propagator

Δab ¼ ih∇a∇bSi−1;

¼ ilim
ξ→0

��
∇̃a∇̃b

Z
d4x

ffiffiffiffiffiffi
−g̃

p 	
L̃ −

1

2ξ
q2

��

−1
: ð31Þ

The DeWitt indices are somewhat unwieldy, as
they span an infinite number of dimensions. As our
theory is local, if DeWitt index a corresponds to posi-
tion x and field species i, then the derivative of the action
with respect to a corresponds to a derivative of the
Lagrangian at x with respect to field i, ∇̃aS ¼ ∇̃iLjx
where ∇̃i is the covariant field derivative for metric C̃ij,
allowing us to convert between the two. Assuming a flat
background spacetime this gives the finite dimensional
propagator

Δij ¼ lim
ξ→0

�
Δ̃−1

ij −
1

iξ
qiqj

�
−1
; ð32Þ

where Δ̃ij is the unconstrained propagator in the N þ 1
field space and qi ≔ h∂iqi the normal covector to the
submanifold at Φ̃ ¼ Φ̃0. Now consider rotating coordi-
nates in field space such that the direction qi lies along one
axis, call it axis n. Then

Δ−1
ij ¼ Δ̃−1

ij − jqj2 i
ξ
δinδjn; ð33Þ

¼
� Δ̃−1

pq Δ̃−1
pn

Δ̃−1
np Δ̃−1

nn þ jqj2iξ−1;

�
: ð34Þ

where p, q range across all indices other than n and jqj is
the magnitude of qi. Let ζ−1 ¼ Δ̃−1

nn þ jqj2iξ−1 (with no
summation implied by repeated n). Then

Δij ¼
"

ðΔ̃−1
pq − ζΔ̃−1

nq Δ̃−1
pnÞ−1 −ζðΔ̃−1

pq − ζΔ̃−1
nq Δ̃−1

pnÞ−1Δ̃−1
pn

−ζΔ̃−1
nq ðΔ̃−1

pq − ζΔ̃−1
nq Δ̃−1

pnÞ−1 ζ þ ζ2Δ̃−1
nqðΔ̃−1

pq − ζΔ̃−1
nq Δ̃−1

pnÞ−1Δ̃−1
pn

#
ij

: ð35Þ

To lowest order in ζ this is

Δij ¼
� ðΔ̃−1

pqÞ−1 −ζðΔ̃−1
pqÞ−1Δ̃−1

pn

−ζΔ̃−1
nqðΔ̃−1

pqÞ−1 ζ

�ij
: ð36Þ

where summation is implied over repeated indices p, q.
We can then see that taking ξ → 0 and therefore ζ → 0
gives

Δij ¼
� ðΔ̃−1

pqÞ−1 0

0 0

�ij
: ð37Þ

This means that taking the limit ξ → 0 effectively zeros out
the contribution from variations in the fields in the direction

of qi, which makes sense as we can interpret this as taking
the mass of field qiϕ̃i to infinity. We can write this as

Δ−1
ij ¼ ðδki − nkniÞðδlj − nlnjÞΔ̃−1

kl ¼ Pk
i P

l
jΔ̃

−1
kl ; ð38Þ

where Pk
i is the projection operator onto the submanifold.

This means that we have

Δ−1
ab ¼ −iPc

aPd
bh∇̃c∇̃dSi ¼ −ih∇a∇bSi; ð39Þ

where Pb
a ¼ Pj

i δ̄
ð4Þðxa − xbÞ is the DeWitt-indexed projec-

tion operator, ∇̃a is the covariant derivative on the N þ 1
field manifold, and ∇a the covariant derivative on the N
field manifold, confirming that this new geometric ap-
proach is consistent with the covariant formalism.
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IV. COMPUTING FIFTH FORCES WITH THE
GEOMETRIC APPROACH

Let us now see how this geometric approach affects the
computation of fifth forces. Our generic Lagrangian is of
the form

L ¼ ffiffiffiffiffiffi
−g

p �
FðφÞR −

1

2
∂μϕi∂

μϕi −WðφÞ þ Lm þ Lgauge

�
:

ð40Þ

with some integer number of scalar fields. I include a gauge
fixing term of the form

ffiffiffiffiffiffi−gp
Lgauge ¼ 1

2
σμνΞμΞν, which I

choose to be the scalar-tensor gauge term used by Copeland
et al. [50]

Lgauge ¼
1

2
FðφÞgμν½Γμ −∇μ lnF�½Γν −∇ν lnF�; ð41Þ

where Γμ ¼ gνρΓμ
νρ is the contraction of the space-

time connection, σμν ¼ FðφÞgμν and Ξμ ¼ Γμ −∇μ lnF.
In place of V−1

gauge we have the appropriate Fadeev-
Popov determinant VFP ¼ detðδΞμ=δξνÞ ≔ detðQμ

νÞ where
ξμ are the degrees of gauge freedom [75,78]. This will
in turn contribute a ghost term Lgh ¼ −c̄μQ

μ
νcν [75], but

as this only contributes at loop order I shall neglect
it here. For the matter terms we include a single
fermion field ψ , standing in for (e.g.) the standard model
electron,

Lm ¼ −ψ̄ ½i=∇↔ þ yðφÞ�ψ ; ð42Þ

where the Higgs-like term ψ̄yðφÞψ gives the fermion a mass

with yðφÞ ¼ yiϕi (with implied summation). The operator=∇↔

is defined as =∇↔ ¼ 1
2
ð=⃗∇ − =⃖∇Þ where =∇ ¼ Eaμγa∂μ is the

covariant Dirac operator with Eaμ the vierbein such that
gμν ¼ EμaEνbηab [48]. As we now have fermions in our
theory, to account for the fermion anticommutation we need
to promote the field space to a supermanifold [83,86], the
field space metric to a supermatrix, and replace the detðCabÞ
in the path integral with sdetðCabÞ, a superdeterminant. We
also redefine λab…c ¼ ih∇fa∇b…∇cgSi, where fa; b;…cg
denotes supersymmetrization, where we add a factor of −1
every time we swap fermion indices. Apart from the need to
keep track of minus signs from fermion permutations this
does not change the results from the previous sections (more
details of the supermanifold construction can be found
in [78]).
Let the total number of field species, including the scalar

fields, fermions and graviton, be N. Linearizing around a
background Minkowski metric gives

L ¼ −
F
2

1

2
Pαβ;τρ

∂μhαβ∂νhτρ þ
1

2
ð∂iFÞηαβ∂μϕi∂

μhαβ

−
1

2

	
δij −

∂iF∂jF

F



∂μϕi∂

μϕj

−WðφÞ − ψ̄ ½i=∂
↔
þ yðφÞ�ψ

þ 1

2
hαβPαβ;τρiψ̄γτ ∂

↔

ρψ þ 1

2
hψ̄yðϕÞψ þ… ð43Þ

where Pαβ;τρ ≔ 1
2
½ηατηβρ þ ηαρηβτ − ηαβητρ�, h ≔ hμμ, here i,

j index scalar field species and ∂i derivatives with respect to
the scalar fields, and μ, ν, α, β, τ, ρ are all spacetime indices.
Introducing the general Weyl transformation we obtain6

L̃ ¼ −
F̃
2

1

2
Pαβ;τρ

∂μh̃αβ∂μh̃τρ þ
1

2
ð∂iF̃Þηαβ∂μϕ̃i∂

μh̃αβ þ
1

2
ð∂σF̃Þηαβ∂μσ∂μh̃αβ −

1

2

	
δij −

∂iF̃∂jF̃

F̃



∂μϕ̃i∂

μϕ̃j

− W̃ðφ̃; σÞ þ ∂μσ

	
∂iK̃ −

∂σF̃∂iF̃

2F̃



∂
μϕ̃i −

	
K̃ − ∂σK̃ þ ð∂σF̃Þ2

2F̃



∂μσ∂

μσ

− ψ̄ 0½i=∂
↔
− yiϕ̃i�ψ 0 þ 1

2
h̃αβPαβ;τρiψ̄ 0γτ ∂

↔

ρψ
0 þ 1

2
h̃ψ̄ 0yðϕ̃Þψ 0 þ… ð44Þ

with an additional field and degree of freedom, and where the fermion field is rescaled as ψ 0 ¼ e3σ=2ψ . By adding σ we now
have N þ 1 field species in the Lagrangian. The equilibrium or background field values define a point in the field space.
Expanding around these expected field values, and this point, we have

6The ghost terms also rescale such that σμν → σ̃μν ¼ F̃ðφ̃Þg̃μν andΞμ → Ξ̃μ ¼ Γ̃μ − ∇̃μ ln F̃where Γ̃μ and ∇̃μ are constructed using g̃μν.
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L̃ ¼ −
M2

Pl

4

1

2
Pαβ;τρ

∂μh̃αβ∂μh̃τρ þ
1

2
ð∂iF̃Þ∂μΦ̃i

∂
μh̃αβ

−
1

2
Nij∂

μΦ̃i
∂μΦ̃j −

1

2
MijΦ̃iΦ̃j

− ψ̄ 0½i=∂
↔
−mΨ − yiΦ̃i�ψ 0 þ 1

2
h̃αβPαβ;τρiψ̄ 0γτ ∂

↔

ρψ
0

þ 1

2
h̃ψ̄ 0mψψ

0 þ…; ð45Þ

where I use Φ̃i to denote deviations from the background
values in all the scalar fields, including the dilaton σ and ϕ̃i.
The mass term Mij ¼ ∂i∂jW̃. We may further simplify this
by including the graviton field(s) in fΦ̃ig as well, giving

L̃ ¼ −
1

2
Nij∂

μΦ̃i
∂μΦ̃j −

1

2
MijΦ̃iΦ̃j

− ψ̄ 0½i=∂
↔
−mΨ − ϕ̃iyi�ψ 0 þ…; ð46Þ

where

yhαβ ¼
1

2
½iPαβ;τργτ ∂

↔

ρ þ ηαβmψ �: ð47Þ

and we take the ∂

↔

ρ operator as only acting on the fermion
fields. The lowest order contribution to fermion-fermion
scattering is from tree diagrams of the form of Fig. 1. This
contributes a matrix element of the form

iM ¼ Xcðψ̄ ; p⃗1; s1ÞλcdaXdðψ ; q⃗1; r1ÞΔab…

Xeðψ̄ ; p⃗2; s2ÞλefbXfðψ ; q⃗2; r2Þ; ð48Þ

where here a, b, c, d, e, f are all DeWitt indices. If hσi ¼ 0,
then

Xaðψ̄ ; p⃗1; s1Þ ¼ δaψ̄ 0ðp⃗1;s1Þūðp⃗1; s1Þ; ð49Þ

and

Xcðψ̄ ; p⃗1; s1ÞλcdaXdðψ ; q⃗1; r1Þ ¼ …

iūðp⃗1; s1Þh∂fψ̄ðp⃗1;s1Þ∂ψðq⃗1;r1Þg∇aSiuðq⃗1; r1Þ;
¼ iūðp⃗1; s1Þh∂fψ̄ðp⃗1;s1Þ∂ψðq⃗1;r1Þg∂aSiuðq⃗1; r1Þ ≔ λa: ð50Þ

Note that this is a field space covector. The matrix element
is then

iM ¼ λaΔabλb ð51Þ
The contribution to the effective potential from this matrix
element is given by

VeffðrÞ ¼ −
1

4πr
1

2m2
ψ

X
j

resk¼kjðkeikrMðkÞÞ; ð52Þ

where k⃗ ¼ p⃗1 − q⃗1 is the exchange momentum between the
fermions, and kj are the poles of the enclosed expression in
the upper complex half plane. Veff includes both the
standard gravitational potential (from graviton exchange)
and any fifth force terms.
To evaluate this in a particular frame we need to impose a

constraint to go from the N þ 1 fields to the physical N
fields. The standard approach is to do this at Lagrangian
level. In the Einstein frame F̃ ¼ const, so if we impose this
the explicit coupling between the graviton and the scalar
fields disappears, however there can be a kinetic coupling
between the scalar ϕ̃i fields and the dilaton due to the
ð∂iK̃Þ∂μϕ̃i∂

μσ term. Conversely, if we choose the special
Jordan frame where K̃ ¼ const then we have a nontrivial
kinetic coupling between the graviton and the scalar fields
due to 1

2
ð∂iF̃Þηαβ∂μϕ̃i∂

μh̃αβ þ 1
2
ð∂σF̃Þηαβ∂μσ∂μh̃αβ, but

remove the kinetic dilaton-ϕ̃i couplings. Hence we can
think of the frame transformation as a simple exchange
between different bosonic degrees of freedom.
This disadvantage of this approach is that it requires

you to redo the entire calculation for each choice of frame,
even at tree level, as you need to work out the correct
dynamical fields, potential, couplings, and propagator. In
the geometric approach from Sec. III we start by calculating
everything in the general N þ 1 space. Let λ̃i denote the
couplings to the external fermion legs in this space for field
species i, then explicitly we have

λ̃ϕ̃i
¼ iyiūðp⃗; sÞuðq⃗; rÞ; ð53Þ

λ̃σ ¼ 0; ð54Þ

λ̃h̃αβ ¼
i
4
ūðp⃗; sÞ½−Pαβ;τργτðpþqÞρþ 2mψη

αβ�uðq⃗; rÞ: ð55Þ

The boson propagator with DeWitt indices is given by

Δ̃ab ¼ ih∇̃a∇̃bSi−1 ¼ i½h∂a∂bSi þ hΓc
abih∂cSi�−1;

¼ ih∂a∂bSi−1; ð56ÞFIG. 1. t-channel tree diagram for fermion-fermion scattering.
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as the equilibrium field values satisfy ∂aS ¼ 0, which gives
field index propagator

Δ̃ij ¼ i½−Nijðp − qÞ2 −Mij�−1 ¼ i½Nijt −Mij�−1: ð57Þ

The Mandelstam variable t ¼ −ðq1 − p1Þ2. Then to obtain
the matrix element in the frame defined by constraint
qðΦ̃Þ ¼ 0weproject the tensors onto the submanifold, giving

iM ¼ ðλ̃jPj
iÞlim

ξ→0

�
Δ̃−1

ij þ i
ξ
qiqj

�
−1
ðPk

j λ̃kÞ;

¼ ðλ̃jPj
iÞ½Pl

iΔ̃
−1
lmP

m
j �−1ðPk

j λ̃kÞ;
¼ ðλ̃jPj

iÞ½Pl
iðNlmt −MlmÞPm

j �−1ðPk
j λ̃kÞ: ð58Þ

All that is needed to evaluate this in different frames is to
change the choice of normal vector qi. It may not seem
immediately apparent that taking projections of N þ 1 space
tensors on different submanifolds should necessarily produce
the desired invariant result.However the important point is that
only the N field space is really “physical.” The N þ 1 field
space is constructed in such a way as to ensure that each
submanifold is really just a representation of the N dimen-
sional field space in a different frame, i.e., different field
“coordinates.”Hence provided that the underlying objects are
tensors, which they are, frame invariance is guaranteed. Also
note that at tree level there are no effects from a nontrivial field
space metric C̃ab. These effects can only manifest at 1-loop
order or higher.

V. SCALE-INVARIANT THEORY

We can see how this works in the particular case of a
scale-invariant theory. To make it scale-invariant we make
FðφÞ quadratic in ϕi and WðφÞ quartic in ϕi, such that

F̃ðφÞ ≔ −
1

12

X
i

αiϕ̃i
2; ð59Þ

K̃ðφÞ ¼ 1

2

X
i

ð1 − αiÞϕ̃i
2; ð60Þ

W̃ðφÞ ≔
X
ij

Wijϕ̃i
2ϕ̃2

j : ð61Þ

For nontrivial values of αi the Einstein frame, F̃ ¼ const,
and the particularly interesting Jordan frame, K̃ ¼ const,
describe surfaces, typically ellipsoids, in the N þ 1 dimen-
sional field space. The associated constraints are q ¼ F̃ −
M2

Pl=2 and q ¼ K̃ − K0 for the Einstein and special Jordan
frame respectively. We can also recover the starting action
with the constraint q ¼ σ, which fixes the dilaton to be
zero. For an especially simple example consider a theory
with two scalar fields, ϕ1, ϕ2 and α1 ¼ −1, α2 ¼ 0, y1 ¼ 0,
y2 ¼ 1=

ffiffiffi
6

p
. In the generalized theory we have three scalar

fields plus the graviton ϕ̃i ¼ fσ; ϕ̃1; ϕ̃2; h̃μνg and

h∂iF̃i ∝ ð0; 1; 0; 0Þ; ð62Þ

h∂iK̃i ∝ ð0; 2hϕ̃1i; hϕ̃2i; 0Þ; ð63Þ

h∂iσi ¼ ð1; 0; 0; 0Þ; ð64Þ

as normal vectors to the submanifold for each of the three
cases. The fermion mass is mψ ¼ hϕ̃2i=

ffiffiffi
6

p
and effective

Planck mass MPl ¼ hϕ̃1i=
ffiffiffi
6

p
, which can be used to fix the

equilibrium field values hϕ̃ii in terms of the masses. The
requirement that h∂iW̃i ¼ 0 in turn fixes Wij and the mass
matrix Mij up to an overall constant.7 Thinking about this
theory in terms of the geometric picture outlined in Sec. III,
we can immediately see that there is no simple dichotomy
between the Einstein frame and the Jordan frame. Instead
there is a continuum of frames, characterized by different
choices of constraint q and normal vectors qi. Indeed, if we
choose a normal vectorqi ¼ ðsin θ; cos θ; 0; 0Þ aswe rotate in
generalized field space from θ ¼ 0 to θ ¼ 1we can smoothly
transform from a completely-Einstein frame to a completely-
Jordan frame, encompassing everything in between. Provided
one adopts the fully covariant formalismdescribed above, one
can be confident of obtaining the same physical results,
including the lack of fifth forces, for all frames.

VI. THE FIELD SPACE METRIC AND
HIGHER ORDER CORRECTIONS

At one-loop order and higher we need to consider the
effect of the nontrivial field space metric. One can use the
quantum effective action formalism to include quantum
corrections nonperturbatively, and much work has gone into
developing a frame and/or gauge invariant effective action
following the model of DeWitt and Vilkovisky [82,84,87–
94]. Here however I will examine how corrections from the
nontrivial metric arise perturbatively purely from the level of
the Feynman rules and the geometric approach. As described
above, because our theory now includes fermions we need to
extend the formalism in Sec. II B following the method in
Finn et al. [78], promoting the metric to a supermatrix on a
supermanifold. To obtain this metric for our theory we first
express the Lagrangian (44) as

L ¼ −
1

2
NABðΦ̃Þημν∂μΦ̃A

∂νΦ̃B − H̃ðΦ̃Þμνiψ̄ 0γμ ∂
↔

νψ
0 þ…;

ð65Þ

where Φ̃A includes all the bosonic fields, this time we have
not expanded NAB around the background field values, and
H̃μν ¼ ðημν − 1

2
h̃αβPαβ;μν þ…Þ to first order in fields. Let

H̃ ≔ 1
4
H̃μ

μ ¼ ð1þ 1
8
h̃þ…Þ then we find

7Mij ¼ g½ m2
ψ

mψMPl

mψMPl
M2

Pl
� for i, j covering fϕ̃1; ϕ̃2g, for some

dimensionless constant g.
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C̃ij ¼ −

2
664
NAB − ∂AH̃∂BH̃

2H̃
ψ̄ 0ψ 0 − 1

2
∂BH̃ψ̄ 0 1

2
∂BH̃ψ 0

1
2
∂AH̃ψ̄ 0 0 H̃

− 1
2
∂AH̃ψ 0 −H̃ 0

3
775; ð66Þ

for fields fΦ̃A;ψ 0; ψ̄ 0g and where I have suppressed the fermion spinor indices throughout. The inverse metric is given by

C̃ij ¼ −

2
664

ðN−1ÞAB − 1
2H̃

ðN−1ÞAC∂CH̃ψ 0 − 1
2H̃

ðN−1ÞAC∂CH̃ψ̄ 0

1
2H̃

∂CH̃ðN−1ÞCBψ 0 0 −H̃−1

1
2H̃

∂CH̃ðN−1ÞCBψ̄ H̃−1 0

3
775: ð67Þ

The nonzero Christoffel symbols are then

ΓA
BC ¼ 1

2
ðN−1ÞADð∂BNDC þ ∂CNDB − ∂DNBCÞ; ð68Þ

Γψ 0
BC ¼

�
∂BH̃∂CH̃

4H̃2
þ ∂B∂CH̃ − 1

2
∂DH̃ðN−1ÞDEð∂BNEC þ ∂CNEB − ∂ENBCÞ

2H̃

�
ψ 0; ð69Þ

Γψ 0
Bψ 0 ¼ 1

2H̃
∂BH̃; ð70Þ

plus the appropriate conjugates. However we need to
include the correction from the choice of physical space-
time metric as discussed in Sec. II B giving

C̃ij½correct� ¼ e2ðσ−σphysÞC̃ij½from g̃ frame�: ð71Þ

Let Δσ ≔ σ − σphys. If our physical or preferred frame
(where g̃μν ¼ ḡμν) is the Einstein frame, then Δσ ¼
lnð2F̃=M2

PlÞ, if it is the K̃ ¼ K0 ¼ const Jordan frame
we need Δσ ¼ lnðK̃=K0Þ, and if it is the original σ ¼ 0
Jordan frame we have Δσ ¼ σ. Note that in all cases
∂iΔσ ∝ qi. A nonzero Δσ gives corrections to the field
space Christoffel symbols of

δΓa
bc ¼

1

2
ðδac∂bΔσ þ δab∂cΔσ − C̃bcC̃

ad
∂dΔσÞ; ð72Þ

and thus corrections to the vertex factors λ̃ab…c.
8 Can

changing Δσ, and thus the physical spacetime metric,
recover a fifth force for the scale-invariant theory? At
one-loop order we consider three-point and four point
vertices. For a three-point vertex connected to three bosonic
internal fields we have

λ̃abc ¼ ih∇fa∇b∇cgSi
¼ ih∇fa∇b∂cgSi
¼ ih∂fa∂b∂cgS − ðΓd

bc∂a∂dSþ Γd
ab∂c∂dSþ Γd

ac∂b∂dSÞi;
ð73Þ

so the contribution from Δσ is

δλ̃abcðΔσÞ ¼ −i
1

2
hδdc∂bΔσ þ δdb∂cΔσ − C̃bcC̃

ed
∂eΔσi

× h∂a∂dSi þ permutations: ð74Þ

Let us choose to do the calculation in the preferred frame
(remember we are free to choose the frame as the covariant
formalism guarantees us frame invariance). Recall that
when we apply the frame fixing the propagator will remove
any contributions in the direction of qi, so as the terms
∂bΔσ and ∂cΔσ only couple to that field direction those
terms do not contribute, leaving

δλ̃abc ¼ i
1

2
hC̃bcC̃

de
∂eΔσih∂a∂dSi þ permutations; ð75Þ

which simplifies to

δλ̃abc ¼ −i
1

2
hNbcMadðN−1Þde∂eΔσi þ perms: ð76Þ

To get a long-range fifth force potential at loop order we
need a a, b, c to correspond to massless fields (the dilaton

8If DeWitt index a corresponds to field species i and position x
then ∂aΔσ ¼ ∂iΔσjx.
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and the graviton). However if a, b, c are massless, then
Mad ¼ 0 so δλ̃abc ¼ 0 regardless of Δσ.
The other three point vertex we need to consider is one

connected to one external fermion leg, one internal fermion
field, and one internal massless boson, given by

λ̃aψ 0 ¼ ih∇fa∇ψ 0gðXb
∂bSÞi

¼ ih∂fa∂ψ 0gðXb
∂bSÞi − ihΓc

faψ 0gX
bð∂c∂bSÞi; ð77Þ

whereXa is again the field space vector defining the external,
physical, field (note that this means the vertex factor is only a
rank-2 field space tensor). Then from the same argument as
before we get the contribution from Δσ as

δλ̃aψ 0 ¼ −i
1

2
hC̃faψ 0gC̃cd

∂dΔσihXbð∂c∂bSÞi: ð78Þ

For an additional fifth forcewe need the internal a field to be
the dilaton, but H̃ is independent of σ so C̃fσψ 0g ¼ δλ̃aψ 0 ¼ 0

regardless of Δσ. While I do not consider the four-point
vertex diagrams here, one can in principle calculate correc-
tions fromΔσ for those in a similar manner. The ghost fields
do contribute at one-loop order, however by construction the
ghost part of the field space metric is trivial, and thus the
ghost vertices do not pick up corrections fromΔσ (reflecting
the fact they are artificial fields).
These results suggest that even changing Δσ, which

corresponds to changing the physical spacetime ḡμν (or if
you prefer Planck length lðΦÞ), not merely the choice of
frame, still does not break the suppression of dilaton fifth
forces for scale-invariant gravity, at least to one-loop order.

VII. DISCUSSION

In this paper I have shown how one can apply the
covariant, geometric formalism to show how scale-invari-
ant scalar-tensor theories evade fifth force constraints in all
frames. By considering the choice of frame in a fully
geometric manner—as a selection of a submanifold, or
normal direction, in the field space of a generalized theory
—we can see that not only is the usual dichotomy of
“Jordan frame” versus “Einstein frame” really a continuum
of frame slices, but that the results of fifth force calculations
for any scalar-tensor theory can be made manifestly frame
invariant, up to all perturbative orders. Indeed to a large
extent we should consider fixing the frame to be directly
analogous to fixing the gauge: the frame choice is merely a
redundancy of our mathematics.9

I have neglected vector gauge fields from the matter
Lagrangian, however these can be straightforwardly

included. A covector field Aμ is Weyl invariant and trans-
forms simply as Aμ → Ãμ, and the canonical gauge kinetic
term L ⊃ − ffiffiffiffiffiffi−gp 1

4
gμρgνσFμνFρσ is likewise Weyl invariant.

Hence adding vector bosons to the scale-invariant theory
does not break the scale-invariance, and we conclude that
they too decouple from the dilaton [48]. The addition of
vector bosons also does not change our conclusions about
general frame invariance: they can simply be included as
additional degrees of freedom in our field space, much like
the graviton or scalar fields (with appropriate gauge
fixing terms).
While here I have assumed a flat background spacetime,

this approach can be extended to include background space-
times which are only conformally flat, such as flat FRW.
Instead of working on the curved spacetime background, we
can change to a frame with a flat background via conformal
factorΩ ¼ aðηÞ. The background curvature in one frame can
instead be interpreted as a nonzero background value of the
dilaton, hσi ¼ lnðaðηÞÞ in another. Scalar-tensor theories of
this form are of cosmological interest as models of inflation
[16,17,25,33,95,96], hence itwouldbeworth investigating to
see how a similar maximally geometric approach might aid
calculations in inflationary background and give confidence
when transforming between frames.
I have also neglected discussion of regularization and

renormalization, focusing on the results at tree level and
lowest perturbative order most relevant for fifth force
constraints. Any dimensionful renormalization scale μmust
transform appropriately between frames [75]. For the scale-
invariant theory one can avoid introducing external length
scales by making this a function of the scalar fields μ ¼
μðφÞ such that it acquires a stable value in the same manner
as the effective Planck mass, and μðφÞ then transforms
between frames analogous to FðφÞ [48,97–102]. This
“internal” or scale-invariant renormalization also avoids
the scale or trace anomalies that can arise from renorm-
alization with an external mass scale [48,74].
Usually one would need to specify a frame before

renormalizing, however it would be interesting to inves-
tigate if instead one could first implement a perturbative
renormalization to arbitrary order in the general N þ 1 field
theory, as described above, then merely project onto your
desired submanifold to extract results for a particular frame,
and whether one would then naturally obtain the necessary
frame dependence for the renormalization mass scale and
other parameters. It would also be interesting to examine
how this framework might be extended to higher order
derivative terms in a generic Horndeski or DHOST theory.
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9One could counter by pointing out that, unlike for the gauge,
there is always a “preferred” or “metric” frame, the one where
quantum field gμν ¼ ḡμν the metric of physical spacetime.
However, absent a full theory of quantum gravity, the extent
to which the two should be equal is an open question.
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