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We compute to high post-Newtonian accuracy the 4-momentum (linear momentum and energy), radiated
as gravitational waves in a two-body system undergoing gravitational scattering. We include, for the first
time, all the relevant time-asymmetric effects that arise when consistently going three post-Newtonian
orders beyond the leading post-Newtonian order. We find that the inclusion of time-asymmetric radiative
effects (both in tails and in the radiation-reacted hyperbolic motion) is crucial to ensure the mass
polynomiality of the post-Minkowskian expansion (G expansion) of the radiated 4-momentum. Imposing
the mass polynomiality of the corresponding individual impulses determines the conservativelike
radiative contributions at the fourth post-Minkowskian order and strongly constrains them at the fifth

post-Minkowskian order.
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I. INTRODUCTION

Gravitational scattering has attracted a renewed interest
in recent years, both for conservative and dissipative
(i.e., gravitational-radiation-related) effects. Various appro-
ximation methods (post-Newtonian, post-Minkowskian,
quantum perturbation theory, effective field theory, string
theory) have been applied to this problem. For a sample of
results on (classical or quantum) post-Minkowskian (PM)
gravitational scattering, see, e.g., Refs. [1-19]. For recent
PM results on radiative losses during gravitational scatter-
ing and related results, see, e.g., Refs. [20-25].

The state of the art for the PM scattering of spinless bodies
is O(G®) for radiation-reacted scattering [23,26-28], and
O(G*) for the conservative case [10,14]. The state of the art
for radiative losses during gravitational scattering is O(G?)
for radiated angular momentum [24] and O(G?) for radiated
4-momentum [9,20,21,23]. While finalizing this work, a
O(G*)-accurate computation of the (radiation-reacted)
individual 4-momentum changes (or “impulses”™) Ap,,
and of the loss of 4-momentum of the system appeared
on arXiv [25].

The relation between radiative losses of energy, linear
momentum, and angular momentum and the radiation-
reaction contribution to scattering has been worked out, to
linear order in radiation reaction, in Refs. [29,30]. One of
the aims of the present work is to go beyond the purely
linear-in-radiation-reaction treatment of Refs. [29,30]. This
will be done by focusing on the various “time-asymmetric”
effects arising in the radiative losses of energy and linear
momentum during hyperbolic encounters.
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The post-Newtonian (PN) approximation method has also
recently played a useful role in tackling gravitational
scattering. The state of the art for PN scattering (of spinless
bodies) in the conservative case is the fourth post-Newtonian
(4PN) accuracy [31]. This was generalized in Refs. [32-34]
to the SPN and 6PN accuracies (modulo the knowledge of a
few, yet undetermined, Hamiltonian coefficients). The state
of the art for the PN-expanded computation of the radiative
losses (to gravitational waves) of energy, angular momen-
tum, and linear momentum’ is as follows: the radiated
energy and angular momentum (for spinless bodies) have
been computed at the absolute 4.5PN order (corresponding
to a 2PN fractional accuracy) in Refs. [30,35,36]. Higher-
order terms (corresponding to, at least, the 3PN fractional
accuracy) have been computed in Refs. [37-39]. The
radiated linear momentum is currently known to the
(absolute) 5.5PN order [30,40] (corresponding to a 2PN
fractional accuracy). The state of the art for the PN-expanded
computation of the scattering of spinless bodies is the SPN
level, at which an inconsistency with the mass polynomiality
of the conservative G* (4PM) contribution was highlighted
in [30], and remains puzzling despite recent work on the
additional radiative contributions [41].

The aims of the present paper are:

(1) to complete the PN knowledge of the radiated

energy by including both the fractional 2.5PN
contribution (linked to the 2.5PN radiation-reaction

'"We recall that the leading PN orders of radiative losses is the
2.5PN order for energy and angular momentum, while it is the
3.5PN order for linear momentum.
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modification of the hyperbolic motion), which was
incorrectly argued to vanish in Ref. [37], and the
“instantaneous” 3PN-level contribution first derived
in Ref. [37] and rederived here;

(2) to improve the knowledge of the radiated angular
momentum by including both the fractional 2.5PN
contribution (computed here for the first time) and the
3PN-level contribution (obtained here by adding in-
stantaneous 3PN terms [37] and higher-order tails [36]);

(3) to raise the knowledge of the radiated linear mo-
mentum to the fractional 3PN accuracy (correspond-
ing to the absolute 6.5PN order);

(4) to bring new light on the mass-polynomiality struc-
ture of the scattering at the 4PM and 5PM orders.

The accuracy increase (from 2PN to 3PN fractional
accuracy) in the radiated linear momentum requires that
many new physical effects be taken into account; indeed, we
will need to take into account: (i) 2.5PN radiation-reaction
effects in the hyperbolic motion, (ii) 2.5PN instantaneous
contributions to the radiative multipole moments [42,43],
(iii) the 1PN fractional correction to the leading-order tail
contribution® to the radiated linear momentum (which was
first computed in Ref. [30]), (iv) 3PN accuracy in several
multipoles and in the hyperboliclike motion, and (v) higher-
order tails in the momentum loss [40].

To complete the so-obtained increased PN-expanded
knowledge of the radiated 4-momentum P’ ; = (Eq, PL,)
we will reexpress it in terms of Lorentz-invariant form
factors by decomposing it on the basis uf_, u5_, E’f 5, defined
by the initial four velocities of the bodies and the direction of
the vectorial impact parameter b12 = b 12/ b, with b12 =
b — I, More precisely, it will be useful to decompose it as
Prog = PRt (]

d dju
_tuh )+ PRG(uh_ —uh ) + PRSDY,.

rad

(1.1)

We will show below (generalizing considerations introduced
in Refs. [30,45]) that, at each order in G, the PM expansion
of the form factors P, PR, P! (expressed as functions
of b and of the relative Lorentz factor y = —u’{ 8 142_,,),3 have
a polynomial structure in the two masses m, m,, €.g.,

G3
Prlafz i mlmZPrlzfzv (1.2)
with
prad _ ZGn_3 SP1+2(m . ) (1 3)
1+2 = pi—3 O n=3 1, M2,7)- .
n>3

*We recall that tail contributions to gravitational radiation start
at the fractional 1.5PN order [42,44].
*We use a mostly plus signature.

Here and in the following, the notation SP)™(m,, m,;y)
denotes a homogeneous “symmetric polynomial” of order N
in the two masses, with coefficients depending on the
Lorentz factor y.

At the 3PM level [O(G?)], only one form factor of Pk, is

nonvanishing, namely, Pﬁasz , with
3 G3 E (}/)

The exact value of the function £(y) has been computed in
Refs. [9,23,24,46,47], while its PN expansion was com-
puted to order v'3 included in [30], see Eq. (5.19) there. For
illustration, let us display the beginning of the PN expan-

sion of £(y), when expressed in terms of po, = /7> — 1,

e = n( g+ 15T 5 21953
7V =7\ 15P= T ga0 P> " 100807
676273

354816 (1.5)

Pl + 0(1?20))
Using our newly acquired PN-expanded knowledge on the
values of E\y and P, (computed in the c.m. frame), we
will be able both to check the mass-polynomiality structure
of the form factors Py, PP, P¢ entering the decom-
position (1.1) and to compute their expansions in powers of
Po at the fractional 3PN accuracy.

Finally, we will use the so-acquired improved knowledge
of P!, to constrain the radiation-reaction-induced contri-
butlons to the individual changes A ph (also called
impulses) of the 4-momenta of the two bodies. As we
will recall in more detail below, Refs. [29,30] have derived
the effect of radiation reaction on the individual momentum
changes Ap/; only to linear order in radiation reaction and
within a restricted set of assumptions. Namely, writing the
equations of motion of each particle as a perturbed
“conservative” (Hamiltonian) system involving an addi-
tional “radiation-reaction force” F;, Refs. [29,30] worked
only to linear order in F};, and, furthermore, often assumed
that the latter radiation-reaction force was time antisym-
metric.* Under these assumptions, Refs. [29,30] derived an
expression for ApY of the form

Apy, = Apg + Apf™ + Apgrentt. (1.6)

Here the term A pyg, wlin denotes the contribution linear in the

radiation reaction derived in [30], while the term Apy, nonlin

denotes the missing remainder, due to nonlinear effects in
Fh. Reference [30] had illustrated the existence of

“The time-reversal operation is taken around the moment of
closest approach of the time-symmetric unperturbed conservative
dynamics, considered in the center-of-mass frame.
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nonlinear effects in 4 by computing (within the standard
PN approach) a contribution to Ap,,, quadratic in F7. It has
been known for a long time [48,49] that there are
hereditary, tail-related contributions to the equations of
motion. These contributions are time asymmetric, i.e.,
neither time even, nor time odd. At the 4PN level, they
can be uniquely decomposed in a time-even conservative
piece (contributing to the Hamiltonian) and a time-odd
piece, giving a nonlocal-in-time contribution to Fr (see
Sec. VI of [49]). However, this simple decomposition
becomes more tricky at the SPN level. This is indeed
the PN level where quadratic effects in F% enter and where
past-related tail effects contribute to the linear-response
results of [30] [via the presence of a “conservativelike,”
5PN-level, past-tail contribution to P%,; see Eq. (H3)
there]. [These 5SPN-level subtleties arise at the 4PM level
(O(G*)).] The new results presented here will complete the
results of [30] by fully taking into account time-asymmetric
effects in various observables. First, in Pfad (which we
compute here with higher PN accuracy than before,
including all needed hereditary tail effects), and second,
in the radiative contributions to the impulses Apy,. We will
improve below the results of [30] by completing the linear-
response term A p;{,}i" with the effect of the time-even part
of Fi on the relative scattering angle. In addition, our
strategy to scrutinize the mass polynomiality of the
impulses will allow us to obtain valuable information on
the remainder term A pfr°"™ in Eq. (1.6). This information
is enough to uniquely determine Apf™"i" at order G* to

strongly constrain its value at order G°.

II. FRAMEWORK

To set the stage for our computations below, let us
recall that the general expressions for the radiative fluxes
(at infinity) of energy, linear momentum, and angular

|

e

Here the “tail terms” are given by integrals extending over
the full past history of the source of the type

2G ©
+ ;Vl / dTI(LHZ) (t—1) <ln Ty const) . (2.5)
¢ 0 %o

Henceforth, we replace the argument #,, of the radiative
multipole moments simply by the dynamical time variable
t =t + cst describing the binary motion (in the center-of-mass
system).

G
(tail + semihered + instantaneous) + —
C

G
(tail + instantaneous) + — (instantaneous) + higher-order tails.

momentum in terms of the radiative multipole moments
U; and V; (defined at future null infinity) read [48,50-54]

(I+1)(1+2)

dErad 0 G
=F, = U
dt e, E ;cﬂﬂ [(l— D)I11(20 + 1)!!

4l +2) (1) ()
02(1—1)(1+1)z(2z+1)uVL Vi } (2.1)

dP =[G 2(1+2)(143) 2,0
di :f""_; [c2l+3l(z+ i@y Ve

G 8(I+3) @)

S (14 1)1214+3)1 Bk
s Dy e Ve Vo

1 1
Do

(2.2)
and
dJpe
dty 7
 Ciab cfﬂ ; {(1 (—l ;L)zl!)((zlzizl))n Uat-1Upi-
41 +2) Vo VIV 1 (23)

A=)+ )20+ 1N
Here, to =1—%— 2‘§—3M1n(é) + O(G?) is the retarded
time [with M denoting the total Arnowitt-Deser-Misner
(ADM) mass of the spacetime, and r, a constant length
scale], while U; and V are the mass- and current-type
radiative multipole moments, respectively (with L =
i1ip---i; being a multi-index consisting of [ spatial
indices). They are related to the source multispole moments
I; and J; by relations having the structure” [42]

(semihered + instantaneous) + higher-order tails,

(2.4)

I

with 7y = ry/c. The semihereditary (semihered.) terms
(also known as memory terms) are time antiderivatives
of products of multipole moments, whereas the instanta-
neous terms are polynomials in (time derivatives of) the
source multipole moments. Notice that there are no semi-
hereditary contributions to the radiative current moments.
In the case of radiative mass moments, instead, the O(C%)
semihereditary terms first appear for / = 4, while at the next
order 0(%) they are already present for / = 2. Furthermore,
both the energy and the linear-momentum fluxes (2.2) only
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contain time derivatives of the radiative moments (2.4), so
that all the semihereditary terms give instantaneous con-
tributions to both F(7) and Fp,(1).

The higher-order tail contributions (tail-squared, tails-
of-tails, etc.) start at fractional order (2%44)% i.e., 3PN.
We will take into account these fractional 3PN contri-
butions in all radiated quantities: energy, angular
momentum, and linear momentum. To reach the 3PN
accuracy, we also need to take into account all semi-
hereditary and instantaneous terms that contribute at the
fractional 2.5PN level. Among the 2.5PN effects, an
important, and subtle, one comes from the 2.5PN-level
correction to the hyperbolic motion induced by the
leading-order radiation-reaction force. It is the subject
of the next section.

III. 2.5PN CORRECTION TO THE
QUASI-KEPLERIAN PARAMETRIZATION FOR
HYPERBOLICLIKE ORBITS

In order to explicitly compute the 2.5PN correction to
hyperbolic motion® caused by the leading-order radiation-
reaction force (considered as a first-order perturbation of
the 2PN equations of motion), it is convenient to follow
Ref. [55] in using Lagrange’s method of variation of
constants. This is done by rewriting the hyperbolic version’
[56] of the solution of the 2PN-level equations of motion
[57-59] (which depends on four integration constants, say,
€1, €2, ¢y, €4) in terms of four time-dependent versions of
the integration constants, say, c;(),cy(1),c¢(t), c4(1).
Namely, one writes

r=38(lc, (1), cy(1)),

F=ii(ci(1), (1)) Gl Matz)’ . ’

= c,(t) + W(L ¢ (1), ex(1)).

OW (L, ¢1(1), 5 (1))
ol '

(3.1)

Here the functions S(/, ¢y, ¢,) and W(, ¢, ¢,) are defined
by eliminating the auxiliary variables v and V (by express-
ing them as functions of [, ¢; and ¢,) from the four
equations

®For our present purpose, it is enough to study the relative two-
body planar motion, considered in the center-of-mass system, and
in harmonic coordinates.

A straightforward analytic continuation to positive binding
energies of the ellipticlike 2PN quasi-Keplerian parametrization
would involve complex parameters.

S=a,(e,coshv—1),
W = K[V + f,sin2V + g, sin3V],
l=e,sinhv—v+ f,V+4gsinV,
1
V = 2arctan { ot tanhz]. (3.2)
€y -1 2

In these equations, the quasi-Keplerian orbital parameters
ap e e ep, K=1+k, fy,94,f: g, are functions of the
two (2PN) integrals of motion ¢, c,. Similar to S and W,
the auxiliary variable v can be considered as a function of
l,ci,¢0: v=1uv(l,cy,cy). One could choose as basic 2PN
constants, ¢y, ¢,, the energy E of the system [or the specific
binding energy E = (E — Mc?)/(uc?)] and the angular
momentum J of the system [or the dimensionless angular
momentum j = ¢J/(GMu); see, e.g., Table VI of
Ref. [33] for the harmonic-coordinates-case expressions
of the orbital parameters]. In the following, we find more
convenient to use ¢; = a4, and ¢, = e¢,. The harmonic-
coordinates expressions of the quasi-Keplerian orbital
parameters, as functions of a@, and e,, will be presented
below when discussing the generalization of this represen-
tation at the 3PN level. The auxiliary variable® v is then
considered as a function of the form v = v(/, a,, e,), with
the dependence on a, entering only beyond the leading
order (LO).

The perturbed motion is then expressed, besides
allowing ¢y, ¢,, ¢, to be functions of time, by describing
the time dependence of the basic angle / of the hyper-
boliclike planar motion in the following way:

(1) = /Iﬁ(cl(t),cz(t))dt-i- (). (3.3)

Here, ¢, is an arbitrary reference time, and the four former
“constants” ¢;(t),c,(t).c/(t), and cy(t) are now time
varying. Inserting Egs. (3.1) and (3.3) in the perturbed
equations of motion determines the system of four first-
order evolution equations that must be satisfied by the four
quantities ¢, (), c5(1), ¢/(t), cy(1), say,

dc,
dt

= F{l(l’ C/i)’ avﬁ =1,2,1, ¢’ (34)

where the functions F, are linear in the perturbing (relative)
acceleration. They generally read

The variable v is the hyperbolic analog of the usual
Kepler eccentric anomaly u [solution of Kepler’s equation
I =u~—essinu+O(L)] used in the description of elliptic
motions. See Appendix B for a discussion of the complex
analytic continuation relating elliptic and hyperbolic motions.
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d

dey _ 9¢,(x.v) A,

dt ov

dcy  0dcy(x,V)

e VAL,

dt ov T

de; __(05\"'[0S dey  0S des

dt \al dc, dt  dc, dt

dey __oWde, oWde, oW dc, (3.5)
dt 0l dt dc; dt dc, dt’ ’

where A™ denotes the (relative) radiation-reaction accel-
eration (which starts at 2.5 PN). When choosing ¢; = E
and ¢, = J, and when working in the Hamiltonian for-
malism, the first two varying-constant equations read

dE oH dJ
=—FF, —=F3,

— , 3.6
dt  dp; ! dt (3:6)

where 7" denotes the relative radiation-reaction force.
When choosing ¢; = a, and ¢, = e,, and when working
at the leading PN order, these two equations read

As we need to compute the time dependence of the source
multipole moments expressed in harmonic coordinates, we
shall use here the (leading order) value of A™ in harmonic
coordinates, namely (denoting v = u/M),

8 G>M?
AT=—-_v—— |- 30 +
5 ¢ r

GM
+(v2+3—>v]. (3.8)
r
Working at the leading 2.5PN order, denoting
X=e,coshv—1, (3.9)

[where the auxiliary variable » is the same as in
Eq. (3.2)] and decomposing the four varying constants
cq(t) as

d;—lr = —Zc_l%V AL, ca(t) = 62 + 5rrca(t)» (310)
t
de, e2—1_ e2—1 . 09 . . ..
o av-Ap+ " [x x Ay, (3.7) with constants c,, one finds the following explicit
di €r ervar ' (2.5 PN-accurate) evolution system'’ for the four §c,(1)’s:
|
d5”ar v 32 16(—49 +9¢2)  112(e2 - 1)
Ta| sa% 159(4 1543 30 ’
d5”e, B v(e% 1) 56(6, -1) 8(96% —-49) 136 8
dt 3x6 153 15X 53]
ds"c; vsmhv _56(e; = 1)* 8(ef —1)(9e; —14)  8(43e;—3) 327
dt  ale, 30 1545 1544 543
ds"c, wvsinhvy/e; —1[ 8 8 9¢2 - 14 56e2—1 (.11)
a at e, |5x* 15 3 A0 | '

Let us note in passing that we have checked these results on
the 2.5PN-level variation of the 2PN quasi-Keplerian
parameters of hyperboliclike motions by relating them to
the results of Ref. [55] on the 2.5PN-level, radiation-
reaction correction to the quasi-Keplerian parametrization
of ellipticlike motions. In order to relate the two types
of results, we used the fact that the latter 2.5PN-level,
radiation-reaction correction only depends on the
Newtonian-level Keplerian parametrization (which admits

°Below, we ease the notation by denoting 9 simply as c,,, while
the full quantity ¢, (¢) is always indicated with its time dependence.
Following usual practice, we often use scaled variables
(factoring out some appropriate powers of M or ) when studying
the relative motion.

|
a smooth analytic continuation when changing the sign of
the binding energy). We then had to go through two
different steps: (i) to relate the elliptic and hyperbolic
quasi-Keplerian parametrizations by a simple analytic
continuation (as used, e.g., at the 1PN level in Ref. [60])
and (ii) to take into account the fact that Ref. [55] worked
in a different coordinate system (namely, ADM coordi-
nates), corresponding to a different explicit expression for
the radiation-reaction force. Some partial results on the
comparison to the results of Ref. [55] are given in
Appendix B.

It is convenient to integrate perturbed quantities with
respect to the auxiliary variable » by using the unperturbed
relation d—i = a)*X. The explicit solution of the above-
evolution system then reads
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28¢, 4de,(36e2+49) 2e,(111e? +314)

5, (t
ar(1) 300 T AS(Z - DA T 45(e2 - 1) A7

v [4(37¢} +292¢} 4 96)

‘%ﬁ{ 15(e2 = 1)772
2e,(673¢2 +602)]  2(673¢2 + 602)
45(e2 - 1)°x } 45(e2 — 1) }

At(v) + sinh v [

5o () = L {_ 2¢,(121€2 4 304) 14(e; = 1) 2(36e; +49)  (291e; + 134)
! a/? 15(e2 —1)%2 3t 4573 45X%(e2 - 1)
(72e} + 1069¢2 + 134)\  (72e} + 1069¢2 + 134)
452 - 12X ) C45(2 = 1), }

At(v) + sinhv (—

&) v [14(e2 —1)? N 8(e2 —1)(9e? —14) 4(=3+43¢%2) 32
c =— - S—
! @2 3e2x 450213 15¢2X2 5X

VeZ—1[14(e2 -1 89e2—-14 4
ety =2 _;; 5 [ (;,3;(4 )+E e’X3 —5)(2], (3.12)
a, ey
where
At(v) = arctan [atanh (%)} + arctan a, (3.13)
with
e,+1
= g , 3.14
=\l (3.14)

and where the dependence of » on ¢ is the unperturbed one. Here we have assumed the boundary condi-
tions lim,_,_, 8¢, (1) = 0.

By looking at this solution, one sees that 6" c,(#) and 6" c(t) are even functions of 7, so that they tend to the same value
(here chosen to be zero both at t = —co and at 1 = +o00). By contrast, the two other quantities §"a,(¢) and e, (¢) vary

between t = —oco and t = 4oc0. More precisely, one gets total variations [f] = f(+o0) — f(—o0) given by
_ 4 v 673¢2 + 602  37e} +292¢% + 96 1
[0"a,] = — + os|——]1,
15 sz/z(e% —1)3 3 (e2 —1)1/2 e,
2 v 72e% +1069¢2 + 134 e2(121e2 + 304) 1
Tl B g e ()] e

with [§"a,] = (2a2/v)8"EN, as from Egs. (C7)—~(C9) of Ref. [30]. These total variations agree with the total scattering
changes in a, and e, obtained in Egs. (6.1) and (6.2) of Ref. [39] by assuming (to leading PN order) balance equations for
energy and angular momentum, between the system and radiation.

To complete the solution of the radiation-reacted motion, one needs to inject the results, Egs. (3.12), in the definitions of
I(t) and ¢(1). In other words, one must now evaluate the functions /(¢) = I°(¢) + §7I(t) and ¢(t) = ¢°(¢) + 5 ¢(t), where
(1) = (1 = 19), ¢°(t) = § + W(I°(1), ¢}, §), and where

5I(1) = / "Si(1)dt + 8¢, (1),

ow ow ow
8" p(t) = 0"cy(t) +—=-8"I(t) + =—38"c( (1) +=—30"c, (7). 3.16
D) = ey (1) + S0 + 55 (1) + 557 ) (3.16)
If we work only to the leading PN order (i.e., the 2.5PN order) we can (in the radiation-reacted contributions) use the

Newtonian-level approximation [notably 7 ~ (a,)™>/%, K ~ 1] so as to get
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14
5I(t) = ————
) 158 (e2 - 1)3
105(e2 —1)°  6(37¢} +292¢2 +96)
- X2 - e2—1
where

cz/UM@MMm<mm<9>,(m&

and where the integration constant can be chosen at will
[e.g., to make §™/(¢) vanish when v = 0, i.e., at the moment
of closest approach in the hyperbolic motion]. Changing
the integration variable as » = 2arctanh7 in the above
integral yields

e
1+T7 1-T

+@<OJTY+KLfnJ]mmmmn, (3.19)

which can be solved in terms of dilogarithms. Explicitly,

arctan (aT) a
1+T 2(1+a?)
X [2In(1 £7)— (1 +ia)
x In(1 4+ iaT) — (1 F ia)In(1 —iaT)],
(3.20)

arctan (aT)
T =
K a=zr? T

and

t T ] 1+T
/dT%_ii (S E DN 11 = o)
1+£T 2 Fita

—m<%%§§5hwy+mﬂ

C(i—aTl Cfi+aT
L L .
12<ij:a>+ 12<i:|:a>]

(3.21)

Finally, the solution for the orbit x'(¢) = x’,p\ (£)+
5"x'(t), obtained by varying [, ¢y, c», c, in the functions
r(l,cy.cy) and ¢(l, ¢y, ¢z, cpy) defined by Eqgs. (3.1) and
(3.2), reads

2
[—(673¢2 4 602)[X + 1 +e,sinhv—v] — (111e2 +314)(e2 — 1) In X +

[£ + (e, sinh v — v) arctan a]] + const,

(36€% +49)(e2 —1)2
X

(3.17)

1
5r(1) = 5 ave, sinh 08" I(1) + X5, (1)
a e —1
=1+ )6, (1),
8 (1 ety
Ver-1
8" (1) = ——55—38"1(1) + 8" c,(1)

sinh v ( e2—1 N 1
X Ver—1
Taking into account the time-even character of 5 ¢,;(¢) and

8"c, (1), the total change [6"¢] between —oo and +oo of the
value of 5"¢(z) is then easily seen' to be

)gwxg (3.22)

[0"e,]

eV -1

This agrees with the leading-PN-order result obtained in
Ref. [29] for the radiation-reaction contribution to the
(relative) scattering angle: 2PN = [§7¢]. As already
mentioned in Ref. [29], the general linear-response for-
mula, Eq. (5.99) there, for y,(E, j) is generally valid (to
linear order in radiation reaction) beyond the leading PN
order, under the two conditions that the unperturbed
conservative motion be time symmetric and that the
radiation-reaction force be time antisymmetric. (These

dﬁ;‘_” and % will
be time symmetric, while 2% and dﬁ;;”’ will be time
antisymmetric, so that [¢;] =0 and [cy4] = 0.) For com-
pleteness, we present in Appendix A the explicit expres-
sions of the 2.5PN, 3.5PN, and 4.5PN contributions to the

function y.(E, j).

[0"¢] = - (3.23)

two conditions generally ensure that

IV. CONTRIBUTION TO THE RADIATED LINEAR
MOMENTUM COMING FROM THE
RADIATION-REACTION CORRECTION TO
HYPERBOLIC MOTION

Having in hand the radiation-reaction correction to
hyperbolic motion, we can now come back to the analytical
determination of the linear-momentum loss at the fractional
3PN accuracy.

""The term proportional to 5"/(¢) in 5™ ¢(r) vanishes at infinity.
Furthermore, [6"c;] = 0 as from Eq. (3.12).
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Inserting in Eq. (2.2) the expressions (2.4) for the
radiative moments in terms of the source moments and
taking into account all instantaneous, semihereditary, and
hereditary terms contributing at the 3PN level, we get a
radiative linear-momentum flux of the form

FP' _fplinsll.JSSPN + AF jinsir _|_J':'P‘ " _‘_f'P'higher—ordertails

i —_— i PIIHS 5 iZIl 1 .
(4.1)

Here, the “leading-order instantaneous” term J p,nst/-/<3PN

is defined by replacing in Eq. (2.2) the radiative moments

U; and V; by the source ones, I; and J;; the “supple-
mentary instantaneous” contribution AF pn«s combines

contributions bilinear in (the derivatives of) I; and J;
coming both from the instantaneous terms and the semi-
hereditary ones in Eq. (2.4); finally the tail terms (both
linear tails and higher-order tails) F pur + JF p,Meherordertails

denote the contribution bilinear in /; and J; and in the
various hereditary contributions to U; and V.

The complete expression for the linear-momentum flux
at the 2.5PN fractional accuracy level is given in Eqgs. (2.3)—
(2.5) of Ref. [43]. The notation used there is

(flp) o fPiinStIJ + A]—'Pi_nsu,J,

inst

(flf’)hered = FP‘,’“‘”‘ (42)
In order to reach the 3PN accuracy, we need (i) to insert in
these expressions the 3PN-accurate expressions of the
source moments I (z),J;(f) considered as functions of
dynamical time ¢ and (ii) to add the higher-order tail
contribution to the hereditary term (F )eeq- When evalu-

ating 3PN-accurate values of the relevant kth time deriv-

. X)- k).
atives, Il(d)*“’N(t),Ji )*’“’N(t), of the source moments, one

needs to use the 3PN-level equations of motion (including
the 2.5PN radiation-reaction contribution), and then to
express these time-differentiated moments along radia-
tion-reacted hyperboliclike solutions of the equations of
motion. The latter are obtained by adding the 2.5PN-level,
radiation-reaction effects discussed in the previous section
to the conservative 3PN hyperboliclike solutions (which
will be discussed below).
Let us symbolically write the motions as

XSSPN(I) — x3PN,cons(t) + 5“)((1‘),

pS3PN(1) = p3PNeons (1) 4 §y(t). (4.3)

As a consequence, the first contribution, F p;"!//<3PN(f),
to the linear-momentum flux is naturally decomposed as a
sum of two terms,
]:'P_instI,J53PN(t) — ]:'P AinstZ,J 3PN,cons(t) + 5pr 'instl,J(t)
1 1 1 M
(4.4)

In these expressions, and below, the symbol 6" will
be used to denote the 2.5PN-level radiation-reaction-
generated contribution to some physical quantity, Q(z) =
O(x(t),v(z)), considered as a function of dynamical
time 7. In the previous section, we obtained (at leading
order) the various needed radiation-reaction contributions
8"x(1),8"v(t),8™Q(t) by using Lagrange’s method of
variation of constants.

Finally, integrating F p; over ¢ (from —oo to +o0) we get
the total linear momentum radiated in gravitational waves
during a full hyperbolic encounter,

+o0
P = / dtF pi(t). (4.5)

The 6.5PN-accurate value of P is then obtained as a sum
of various contributions, say,

rad __ pradinst/,J3PN,cons rr pradinst/,J
prd — pr + 6" P!

dinst],J i rad higher-order tails
+ APFASL y prduil . pRanE . (46

The resulting vectorial contributions will be projected on an
orthonormal basis e,, e, defined in terms of the vectorial

impact parameter b", = bb/,, the initial four velocities u//_
and u’Z’_ of the two bodies, and the conservative ' part of the
scattering angle, y..ns [see, e.g., Table X of Ref. [30], also
recalled at 2PN in Eqgs. (C5) and (C6) below for conven-
ience]. The basis e,, e, was already used in Ref. [30] [see
Eq. (3.49) there]. Its definition is recalled in Appendix A.
Let us only mention here that e, is in the direction of the
major axis of the hyperboliclike relative orbit (direction of
closest approach).

The 2PN-accurate value of the instantaneous contribu-
tion to linear-momentum loss has been evaluated in
Ref. [30], see Egs. (G6)—(GY9) there. We have extended
this result by including both the higher-order tail effects
(which were computed in Ref. [40]) and the 3PN-level
conservative effects. The technology (including a 3PN-
accurate quasi-Keplerian representation of hyperboliclike
motions) needed for computing 3PN-level conservative
instantaneous contribution will be discussed below.

Let us discuss here the evaluation of the radiation-
reaction-related contribution §™F p, "%/ To obtain it, it
is enough to evaluate the Newtonian flux

F pSULIN — ﬁ GM* my —m,

i 105 A a YAt B,

(4.7)

with

In our treatment below, the coordinate basis e,, e,, e enters
via the 2PN-accurate quasi-Keplerian representation of the
scattering motion.
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N_ (35, 45, 3GM taking then the time integral, retaining only linear

AT = r<§ v ET)’ corrections. [The magnitude of the relative velocity in

25 19 GM Eq. (4.8) above should not be confused with the auxiliary

BN = — (— VP-4 —> , (4.8) variable used to parametrize the orbit, denoted by the same
4 4 r letter v.]

The variations §"r(¢) and §"¢(¢) are given by Eq. (3.22).
The related variations 5" 7-(7) and 6" ¢(t) are obtained either
by taking the time derivatives of §"r(¢) and §"¢(¢) or by

r(t)=ra(0)+87r(t),  #(t)=in(1) + 5 (1), varying the functions i(l.c,,c;) and $(l.ci.crcy) in
BO=u+5B0. =) +h0), (@) I DN O ARRAR
|

along the radiation-reaction-perturbed orbit, i.e., by sub-
stituting in it

) e, le,sinhv ___ (e?—1)sinhov
5‘Tr(t) :W(er —coshv)é“l(t) _EW(S a,(t) —W(S er(t),
ei—1 3+y/e 2(e2 -1 21
(1) =— %smhvénl( s, (r)+ s 1+ (6; )(1-¢ §7e.(1).  (4.10)
x4 232 X2 a>x2\/e2 -1 e X X
We have checked that they satisfy % r( ) = §7i(r) and < ¢ = 5"(1).
We finally get the 2.5PN correctlon to the Newtonian ﬂux
fPiinSLIJN|x”:xﬁI + 5rrjc'Piinst,l,J’ (411)
which has to be integrated along the orbit to yield
51TP§adinst,I,J _ /dtérrfpiimt’l"]. (4]2)

The final exact results are given by the following functions of @, and e, (here and below, 7 is a place holder to indicate a half
PN order 1):

. 1
5HPrad1nst,l,.l = —(Mc 11/3 5
" (M) = e

oo 110416 132304 , 5134544 , 1363802 , 30331
675 135 a5 T Tas ¢ 1800 &
(2 —1)112 (8576 11644714 , 22762729 , 1623094259 . 159585499 , 15872 10)}
+ + €

ez 2005 7 33075 T 18375 T Tiogaso0 ¢ 1323000 ¢ 6125

. my —m 1 1 2479 22616 35416 48256

M 225 " 45 75 75
RGEL L. i 296 4 271966 ;  TSBI2 T2 , 1072
e, 25 675 " 675 T a5 T o7

(4.13)

e%—1(9352 3 8027 ¢ . 2686964 10084 &2 8576)]

2 \ 75 45 T o005 '~ 2005 ' T 2005

The first terms of their expansions in inverse powers of j (equivalent, remembering j « G~ to a PM expansion) read

G _ (30 2 s {15872 pS, 30331 pl 24234752 pS, (1 )}

M 6125 360 " j° | 165375 j' 7

3
. 148 2048 247 7 160406 pb 1
5HP;admst.l.J: (Mc) mZMml 3,75[ ”poo+ ( + 9ﬂ2>p_°°_|_ ,,p_°°_|_ 0<.—8>} (4.14)
J

J
25 15 900 j° 675 i’
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V. 2.5PN INSTANTANEOUS CONTRIBUTIONS TO
THE RADIATED LINEAR MOMENTUM

Let us now evaluate the third contribution to P% denoted
Aprdinst in Bq. (4.6). This contribution is obtained by
integrating over time the (2.5PN level) instantaneous part of

the linear-momentum flux as a function of the (relative)
position and velocity along the orbit, see Eq. (4.1)
there. For clarity, we reproduce here this explicit expres-
sion,

64 G*M* my —m, 2

the linear-momentum flux in terms of the source multipole A F pinsts = = (A2SPNp, 4 B2SPNy)
moments. Using the results of Ref. [61], Ref. [43] has / 105 47 M
explicated this instantaneous part as the O(Z) term in (5.1)
Eq. (2.3) there. Recently, Ref. [62] has provided an
explicit expression for this 2.5PN instantaneous part of = where
|
GM [701 51137 41611 49219 4 GM?  G*M? (1237 6607
A2sPN I 1Y 6 4:2 254 _ 6 _ T 2 _ 2
r05y{901] T T A T T S <90” 180r>
GM (4261 , 8397 ,., 3778 .,
r (120”+4o“ 5 "))
GM . [157787 39869 31913 GM (10773 99277 737 G*M?
p2seN _ IV 4 _ 2:2 4 I 2 _ 22 o7 52
rcsw{4801j 60 "o T r<4o” 360r> 36 r2] (52)

inst1.J

The integral along a hyperboliclike orbit of AFp;
defined in Eq. (A3), one finds

: my — ny e
AP;admstl.J — (MC) IJ37’]5 r

can be explicitly evaluated. After projection on the x and y axes

M [a,(e7 = 1)]P/?
y [amos (_ 1 ) (491447 o 4 123798 o 30800977 13714844 2125082)
e,) \ 33600 175 9450 4725 4725
(- 1)1/2 (797859313 i, 1556008631 o 4935155857 , 652923197 , 5266216)]
o2 3528000 " ' 3175200 1323000 " 661500 " 496125
_ (o) M s {491447 apl | 13272832 p%, 494871 zpl, | 1954525568 pS, < 1 >]
M 67200 j* 55125 ;5 ' 1280 ° 496125 j &)

AP;admstl,J —0.

In the last line of the first equation, we have also given the
first few terms of its large-j expansion. Let us note that this
contribution is (contrary to the other 2.5PN contribution
discussed in the previous section) purely oriented along the
X axis, i.e., along the vectorial distance of closest approach.

VI. NEW CONTRIBUTIONS TO THE
RADIATED ENERGY

Let us repeat for the radiated energy the above treatment
for the radiated linear momentum, namely,

ad __ ad inst /,J<3PN,cons rad inst /,J
E¢ = ET + 0"E

+ A Eradinst[,! + Eradlail + Eradhigher—ordertails. (61)

Here, we have indicated the (fractional) 3PN level of
accuracy for the instantaneous term Erdinst/./3PN.cons The

(5.3)

|

2PN-accurate instantaneous energy loss Erdinst/./2PN.cons
was first obtained in [30] [see Egs. (C7)-(C13)]; its
extension at the 3PN level was obtained in [37].
We have redone an independent 3PN-accurate computation
of the energy loss and found agreement with the final
results of Ref. [37] (after correcting several typos in the 3PN
quasi-Keplerian expressions of Ref. [56], see Appendix D).
The leading-PN-order contribution to the linear-tail
Ed@l has been obtained in [30] [see Eq. (D26)],
while its 1PN correction is given in Eq. (5.20) of
Ref. [39]; see also Ref. [35] for a Fourier space analysis.
The higher-order tail contribution Eradhigher-order tils hag heen
derived in Refs. [36,38]. As discussed in the text
below Eq. (3.1) of Ref. [39], the last contribution
AErdinstl.] yapishes (because of the time-odd character of
its integrand),
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AEradinstl.J _ () (62)
Reference [37] claimed [see below Eq. (42) there] that,
because of the time-odd character of radiation reaction, the
term 6™ E4inst1J wag similarly vanishing. We found that this
was not correct because of the time-asymmetric character of

result for 7 E®4inst/./ We further found that this nonvanish-
ing contribution plays a crucial role in obtaining a correct
mass-polynomiality behavior for the radiated (four)
momentum.

The exact expression of §7E™4nst/:/ in terms of @, and
e, reads

the motion perturbation §"x(¢), 5"v(¢). We got a nonzero
|

. 7696 53936 150272 14336
5rrErad1nst1,J M 4 2
(M - ( BN [amos< )(225 Ts T ;s T s )
592 465952 44176 1106464
+ (e = 1)!/% arccos ( > ( Ot s O T Ot s >
el —1 (44848 . 11056 313024 , 8576
o2 < 25 “ T s Ot s O 225)]‘ (63)
The beginning of its expansion in % (i.e., of its PM expansion in powers of G) reads
e 96 p 50176 1924 p% 56008 p3 pi
S Eradinstl.J — (prx © — 2 © 2+o0(=2)]. 6.4
( C)””[zs (225 225”) 7o s F O (6.4)

Adding this term to the 1PN corrections to the LO tails [36,38,39] then gives the following complete expression for the
2.5PN radiated energy:

1216 28480\ pd 296
E2d — (M2 oo -
25en = (McS)vn [(105 15 ) 7 +<<25 280 120 '3
n 71488 297450872 2898¢£(3)  1024x* 56708\ pS,
75 4725 5 135 105
56008 235147 6899857*  1313891572> 210176\ p2, 224
- + T— + 0] = .
225 i’ 7
Let us also exhibit the % expansion of the full 3PN-level contribution to the energy loss, which combines terms from several

135 7 3584 7392
sources: the (exact) instantaneous contribution linked to 3PN-level multipole moments [37] and the higher-order tails (tails-
of-tails and tail-squared) [36,38,39]

15291;:2) 2499372 9216) pL
_ s

30285714)
v

T (6.5)

. — (M [ <_ 14803 N 32117 2699y 676273>ﬂ P N <_ 23661° N 1642 1223594y 151854> PY
3PN 15 280 504  354816)° j? 9 3 33075 13475
182307 1226912 (76897 405972\ 10593 [p.\ 9972 29573617463\ pb,
+<_ 5 TR0 (480 640 )”_ 350 ln<_> T 310464000> 7
15089203 4201976, (875976284 21221672 18955264
- <— + < - > - In(2pe)
45 1575 297675 1575 23625
1771527> 36589282372\ pl,
673 11694375 )]6
13955°  1419153,° (68898691 51947\ 337906 (pe
- <_ VT < 36288 384 )”_ 315 n<7>
58957¢(3) 31587 37546579757\ pS, Pl
B 32( = 9 8467200 )ﬂj_7+0<j_8>]' (6.6)

An equivalent expression (and extended up to 1/'3), can be found in Ref. [38]. [Note that Eq. (B3) of the published version
(and of the arXiv version 1) uses a different parametrization, p # p.,, while Eq. (C3) of the arXiv version 2 has been
updated with the notation p = p,.]
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VII. NEW CONTRIBUTIONS TO THE RADIATED ANGULAR MOMENTUM

Similarly, for the angular momentum, we have

Jrad — jradinstl,J<3PN,cons +5rrjradinsll.1 +Jradmeml,l 4 A Jradinstl.J +Jradtail +Jradhigher—0rdertails_ (71)

The 2.5PN instantaneous term is also vanishing in this case [39]. Therefore, the only contributions at that order come from
the 1PN corrections to the LO tails, a memory term [36,39], and the radiation-reaction correction to hyperbolic motion. The
3,5

latter turns out to be
GM? 1 weco (L) (5264 4 , 1792 , , 8192
v - e e
c “Ta@-npr )\ 75 s s
1 752 59792 33248
+ (e2 = 1)"/% arccos (_e_,> (Ee‘,‘—i— 575 e2 + 5 )

Q21128 . 1328 , 23968 , 8576
-1 (18 - 72
. (25 T T I 225)]’ (7.2)

:
. . - . . . 1 . .
as an exact expression in terms of @, and e,. The beginning of its 7 expansion is

ST Jrad inst/,J _

. GM? 128 p& 376 p3 4352 1316 pr 52456 pl P
S jradinstI.J 3,5/ 2" 4, 777 o L, T2 e T 0 o £ 7.3
v [25]'3 25 " (75+75ﬂ>j5+225ﬂj6 (7” 7:3)
Adding all terms leads to the final result,
gl GM?* , ([ (1184 431936v é 7816 223277 13057T2+7488 @
2N T TN T s ) 525 35 12 25 )7
n 225536  201724x? 4116£(3)  1306887% 147064\ p%,
- - v - Feo
525 33075 5 6615 315 7
365392 570372 102619x* 163083z* 18227x% 32 3 2
2R d AL L 1 IS (7.4)
1575 21 448 1792 28 15) j Jj

New with this work is also the computation of the full 3PN-level contribution to the angular momentum loss. It is obtained
by combining the (exact) instantaneous contribution of Ref. [37] (which we independently recomputed) and higher-order
tails [36]. We got

rad __
J3PN -

GM? 2’76K 1602 2407  878v 3712) P (5531/3_|_92351/2 1469y 115769> pY
v - -

s P73 Taes) 24 672 ' 504 126720 >

+ 622413 + 6743212 + 1459694y 4955072 pZo
15 315 11025 121275 j3
n 8613 n 7469312 2048629 12372 4922 In Poo 4672 561803611 pgo
_ —_ —_ Foo —_ Pt
2 280 7560 32 175 2 5 10584000 j4
13697612 1332080812 85939786 3362z 931328 870472 7781823776 pgo
+ (= + - - ln(2poo) + + 5
45 4725 42525 75 1575 45 16372125 Jj

20272 4 22002900
0 U T 4533600

” 0

65170 79474912 (46277 861x%\ 21614 [p.\  45261¢(3)
+ (- + v— In( o) - 2= :
J

4 336 432 64 35 2
3
P
_I— 0( i >} .
,]7

VIII. 1IPN-ACCURATE TAIL CONTRIBUTION TO THE RADIATED LINEAR MOMENTUM

Let us now tackle the technically challenging (fractionally 1PN) tail contribution to the radiated linear momentum, namely,
the term P?‘d @il in Eq. (4.6). Itis the time integral of the following linear-momentum-flux integrand (see Eq. (2.5) of Ref. [43]):

5288341351) P

(7.5)

024012-12



RADIATED MOMENTUM AND RADIATION REACTION IN ...

PHYS. REV. D 107, 024012 (2023)

it = o - ) + B
8
63

1 Bl Y all
5 ( Fz;4>13 F ) (

where M = M(1 + vE) is the total ADM mass of the

system, and the definitions of the quantities F i () ) in
L M

terms of the source multipole moments are given in
Table 1.
Introducing the shorthand notation

i) = [ arrto (8.2

for the total time integral of an arbitrary function f(f) over
the full scattering process, we need to evaluate

Pgadtail = <f§3tail>‘ (83)
We found useful to evaluate this integral in the frequency
domain by wusing a quasi-Keplerian parametrization
of the motion in harmonic coordinates. We refer to

previous works for a review of all necessary tools (see,
e.g., Ref. [35]).

TABLE L.
tail part of the linear-momentum flux. Here We have introduced

Definition of the various terms F ) entering the

the following set of multipolar tail timescales: C;, = 27, e~11/12,
Cp, =250, C), =210e7/5,  Cyy =277, and
C, = 27e9/30,

F;g4)1;5> ,Jk 1) [¢ dtl 5)(1‘ -17) ln(ilz)
Floo (1) J§° el = ) In()
Fiow ukl,a ) fi el (1 = 2) In)
*Figwéﬁ ,JkJ (1) [ dr I<5 -1) ln(le)
F;ffjlg(’) ljkl(t I dTI]k%(t_T) ln(f)
Fig“zfj) jkl 1) Jo° dl ,,kz(t - 1) ln(c—Z)
*F;?)Jg") Uklja/?(t J derg,(t=1) ln(cf)
*F;§4)l§") ljk‘]kab ) J§° dTI/ab(t_T) ln(cf)
F ;;@ % J; ,k Ol er (1 —1) ln(Csz)
F;f)ff) OGN dT‘]ijk(t -7) ln(cﬁ)

[ * 0l 1 1 i i
%wﬁf&ﬂ+?ﬁﬂ%w+%w)

0 Fio J(G)H,

(8.1)

|
Expanding the various multipole moments as Fourier
integrals

%, (0) = / " dte X, (1) (8.4)

leads to (denoting [ = [

Figo+Fy )= [ o (ins;——sj ,

{ 0= 557)

L

Fiy o+ Fly o= [ o an——R,—),
< 1979 J§3)1§5)> /w ( i

(P + Pl ) = [ (ot = 4)

* i * 0 Ly,
(Pl + Fioge) = [0 (007 - 55%7),

<F’J(34)j;5) +F1M®> - / of(inZ; -2 Z).  (85)
where
St(@) = Tju(-) (o) £ Tj(@)I i (-0)
Rzi(a)) = eijk[i]a(w)‘]ka(_w) + I]a(_w)‘]ka( )]
uzi(w) :?ijkl(_w)ljkl( ):I:Iukl( )I/kz(—a))
V,i(w) = eijk[ijab( )Jkab<_w) + Ijab<_w)Jkab( )]
ZEH (o) = Tij(=0)T (@) £ T ()] 5 (-o) (8.6)

The leading-PN-order tail contribution (8.3) [i.e., the
first two lines in Eq. (8.5)] has been already computed in
Ref. [30]; see also Ref. [40] ]. We focus here on the next-to-
leading order (fractionally 1PN) tail contribution. We need
to take into account the fractional 1PN corrections to the
first two lines in Egs. (8.5), whereas the leading PN order is
enough for the remaining three lines in Egs. (8.5). The final
results for the large-j expansions of the (nonvanishing)
components P44l and prdtil gre
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1491 7 2(_ 9529 26757\ ,9 20608 6 2(12512 1143232 , 8
o m, —m, 300 Poo T11 ( 67200 ¥ seoo)poo 25 Po 11 (7875 V=385 > o
Prddtdl] — —(MC) 1/21/]3 T +
X
M

! 5
J J
267583 .5 2 (1711123 ,, 12566143 ,7 64576 4 2 (29244128 . 9920672 .6
2300 P 11 (57600 V= "800 )poo 75 Po T1 ( 70875 Y T 77875 )poo 1
+ 6 + 7 +0 3y .
J J
128 7 2(320, _ 192\ .9 15092 6 2(2721 2, 2432 | 75661 2\ .8
o ta my—my 5 5[773 N (3 v 175)1’00 120 Po 1 (80 TV =5 T a0 T )poo
Py =—(Mc) vn T + =
M
J J
8768 _ 52121622\ ;5 2| (43457024 2 | 37792\, _ 77389 | 42827264 2 _ 9489 7
( 45 4725 )poo+’7 [( 90225 T 753 )’/ 1050 T 1001475 20 (3)]poo
6
J
36885 4 _ 142391 2 4 2| (208525 4 | 8537719 . 2)),, _ 44900896 _ 328765 4 | 989879573 . 2| .6
(896 280 % )poo+’7 {( 1024 © T 3360 ) 55125 1792 %t 7530120 ”}pw
+7r
7
J

co(1)]. o

These tail contributions take into account the physical retarded-tail interaction between the bodies, so that they are
asymmetric under time reversal (they were called “past tails” in Refs. [30,36]). Let us note in passing that replacing the
retarded kernel in the time-domain tail integral by its time-symmetric projection would lead to the following integral:

rad sym tai G2 32 ® (] 4 o d 1 1 ©d
Piad‘y tail _ ;/(}/I{E”/O —ww7R;r(w)—|——iﬂ'/0 wa)gsi_(w)+?|: . /0 _a)g)loul._(w)

c 2 63 27 5677 )y 2z
1 © dw Oy 9+ 8 . © dw 8 ~—
1 dw oy o a® 82 , 8.8
+637T/) zﬂwvl (a))+63m/) 5@ ,(a))]} (8.8)
implying
P;adsymtail _ O, P;adsymtail _ P;adtail_ (89)

The complete 2.5PN radiated linear momentum is then obtained by summing up all contributions, Egs. (4.14), (5.3),
and (8.7). The final result is listed in Tables II and III as a double PM-PN expansion [see Eq. (10.1) below].

IX. 3PN-LEVEL CONTRIBUTION TO THE RADIATED LINEAR MOMENTUM

The radiated instantaneous linear momentum at the fractional 3PN accuracy can be obtained by integrating the 3PN
instantaneous linear-momentum flux,

. G 1 1 1 1
Fpim SN = = <f9 tafitafits P+ f?>, (9.1)
where

2 16

i :@ ijkjk T 45 j
11 = I+ i S+ oo e T
72 = 555 580+ 55 i + 3775 T ne e
13 = 3 ST+ 335 Moo + 53250 €t b e 9.2
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TABLEII. New terms at the 2.5PN and 3PN level of fractional accuracy improving the PN expansion given in Table IX of Ref. [30] of
the coefficients E,, J,,, and P,,, entering the PM expansion (10.1) of the radiated energy, angular momentum, and y component of the
linear momentum, respectively.

354816~ 504
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2974508 2 71488) _|_56708+1024 2+2898C( )

45 105 135

18955264 36589282372 177152 2 212216 2 875976284 4201976 2 150892
+|= 23625 ]n(2p°°)+ 11694375 + 675 +( 1575 + 297675 ) + 1575 :|p°°+0( )

E>2PN , . . ,
7 56008 _ 2351472 | 30285z 6899857 _ 131389152 | 210176] 5
T 135 A e v e L e 75 7302 - T o5 | Poo

358 72 _ 337906 (2g) 4 SIGSTOTST _ 58957 51947 12 | 68898691 14191532 _ 13955 3 | 6 7
*{ o — 33t In(5) + 2R {B) + (=5 m" + S W+ 6 V}poo+0(poo)}

SOPN (3712 | 878, 4 24,2 _ 16,3),9 10
J3 (35 T35V + 5 5V )P + 0(pe)

TN T is769 553 3 9235 2, 1469 8 9

’ ” (126720 5V 5V 5 V)Pe + 0(Ps)
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J3 55 VT2 )Poo + (=575 + s Y+ s v 5 V)pk + 0(p)
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TABLEIII. PN expansion of the coefficients P,,, of the x component of the radiated linear momentum through the
3PN fractional accuracy.

e |- L+ O+ P + Ol

sz 2(2)2(5)8 pgo + (10304 + 11;48372532)1750 ]960596 pgo + O(p}x())

Px6 77:|: 231833 poo + (257()29000971/ + 126576260]043)1710 2(3)719”2]7(8;0 + 0([720)

Px7 645576 péc + (381012295761/ + 99728076572)1720 + (_ 4257531927512”2 _ %) Zo + 0(17%0)
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with f9 (namely, 1;;, I, and J;;) to be evaluated at the 3PN level of accuracy, f! at 2PN, etc. The 2.5PN contribution f7-

has already been discussed in the previous sections.

Moreover, all multipoles are needed in modified harmonic coordinates and several of them already exist in the literature
(mainly from Ref. [63]), while for the others only the expression in harmonic coordinates is known, and one has to
transform their expression to modified harmonic coordinates, following Ref. [64], Sec. IV B. More precisely,

) I,

ij» needed at 3PN, see Egs. (3.1) and (3.2¢) of Ref. [64]; see also Egs. (3.19) and (3.20) of Ref. [63];

(2) I, needed at 3PN, see Egs. (4.9) and (4.10) of Ref. [65] for the expression in standard harmonic coordinates;

(3) Ijju, needed at 2PN, see Eq. (3.23a) of Ref. [63];
(4) Iijum. needed at 1PN, see Eq. (3.23b) of Ref. [63];
(5) Iijuimn> needed at N, see Eq. (3.23¢) of Ref. [63];

(6) J;j, needed at 3PN, see Eqgs. (3.6) and (3.7) of Ref. [66] for the expression in standard harmonic coordinates;

(7) Jiji> needed at 2PN, see Eq. (3.26a) of Ref. [63];

(8) Jiju» needed at 1PN, see Eq. (3.26b) of Ref. [63];

(9) Jijuim» needed at N, see Eq. (3.26¢) of Ref. [63].
The final 3PN instantaneous term for a generic orbit reads

G*M>1?
rtc’

fPiinst[,.lﬁiPN — (m2 _ ml);,lé(A3PN;.ni + B3PN1]i),

with
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(111525644752_42496 n (L) N (_61_57[2_67591807) 153157904 , 4165558 3> G*M? i
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9.5)

The integration along hyperboliclike orbits (see Appendix D) can be carried on exactly and the sought for 3PN
contribution reads

P;admst.l,JSPN — 0’

my — ny
26

| 1
PranstLI 3PN (e Tz
; M ea (1))

(04 + 0N A+ 0 A2 + Q' AY), (9.6)

with A = arccos(—1/e,) and
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7 7 72427 7 1104 4 7 o)
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20 112 420 2 5 5 7105) 5"
" ; J(311517 8490\ /1831y 6287443\  ,/3861u 61543\ 1640 15473
9 = er_l[“(zsoo B 20) e’( 5 a0 ) ( 5 105) 5 ° 525}
o o 41053¢8 318002268 4558096¢f 19581152¢2 9002752\ . (2a,(e? — 1)
O :e’<_ 1225 2205 735 3675 11025 )m( e, >
e <_ 370 244707 349061y 26726213>
"\ 48 T 448 T 20160 1 591360
+em<_351u3_4891u2 (5171197 9143ﬂ> 5601182987)
" 40 630 22400 1920 32928000
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15 453600 15360 17385984
s (471/3 4072581/ < 7006220329_6445617z2) 15212690520617)
U5 226800 960 244490400
L <szﬁ 1305494, < 772592833_5489%2) 326345642761>
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2 ( 704012 (24197; 127239209) 253937658533>
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¥\ 1225 2205 735 3675 11025 ) 2
e [<_79892213e§_153055244e9_42259956e¢_296405824&_3215456) (a,e,>
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" 48 11200 2116800 ' 186278400
214, 25449317 | (364880588983 102758377\ | 4811241578461
( 7200 ( 190512000 13440 ) 1629936000 )
e (21431/ 1039705492 (_ 2926723837 935846033712) 189910151942603>
180 37800 235200 1612800 4656960000
~ (143u 18824609, (_ 478614974947 41761 1363;#) 2221845272842369>
45 3780 7938000 806400 48898080000
, (41/3 77221540 (2537449712 ~ 154305135683) 6582692584319)
45 4725 67200 5953500 814963000
70376, <_ 395368697 143459;:2) 3690181 84091} 07
1575 992250 33600 6112260000
where
Ch(x) = 5 [Liz(e™) = Liz(e")] 9:8)

is the Clausen function of order 2.

As expected, these terms involve the arbitrary length scale r,, (entering the retarded time as well as the relation connecting
harmonic to modified harmonic coordinates), which disappears in the complete expression when all 3PN hereditary terms
are included, i.e.,
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Prad 3PN

Prad inst/,J 3PN + Prad higher-order talls

(9.9)

Indeed, this is exactly the case when using the results of Ref. [40] for the higher-order tail contributions. We list below the
final large-j expansion (including terms from 1/;* up to terms 1/;7) of both P! and P},

4273971272

Prad3PN:_ M
PN =~ (M)

1531643 27581 197

d3PN _ np—m; ;5 6
PR = (Me)——v1 {(‘

1218176 11 10
( 8176 118676 76y2_140y3>1_0_zl

72765 6615 © 15

mz—mlyz 6 196096 p2, 2071973 p8,
945 320 j°

1182720 10080° 560"

9226496\ pL S
55125 +4n5>7+0CFH’
74 3>”poo
57 )7

n 37806320227+50371’2 410531 poo 945563 4059 1761702 619943 p,
— — <)
| 790272000 70 2450 8064 1280 840 30 7
(393851925056  10424327> 85434368 815056834 85287 174074 3042227 pd,
+ + - In(2ps)+ - v v — -
| 191008125 4725 165375 297675 105 225 15 J
n [1006741665001549 907691x> 303491¢(3) 35125513ln P 2124695071 301708372
| 312947712000 2688 224 44100 2 725760 30720
1209467,2  30181.%] p! S
- Poio(B=) V. 9.10
o o)) 019

X. SUMMARY OF RESULTS FOR THE ENERGY,
ANGULAR MOMENTUM AND LINEAR-
MOMENTUM LOSSES IN THE C.M. FRAME

For the convenience of the reader, let us summarize here
the new results derived in this work concerning the losses
of energy, angular momentum, and linear momentum
(radiated as gravitational waves), as recorded in the (initial)
c.m. frame. In this section, we use the notation of our
previous work [30] for parametrizing the PM expansions of
the radiative losses by the coefficients of their power

expansion in ;, namely,

rad 5 iE
=412y =,
M n=3 ]n
Jrad g
=+ =
Jem. ;;;J”
chad _ m2 - ml 2 xn
M n=4 J
Prad

(10.1)

y o _ MmN
M + M u;jn.

Here the left-hand sides have been adimensionalized, and
we pulled out some powers of v on the right-hand sides, to
ensure that the expansion coefficients E,, J,,, Py,, P, are
dimensionless and that their LO PN contribution is v
independent. (We recall that J_,, = bup.,/h = GM*vj.)

[
Note that in Ref. [30] we focused on the PM expansion of
P4, because PP was subdominant and linked to time-
asymmetric hereditary tail effects. See Eq. (H3) there,
giving the LO contribution to P,

A. Energy loss in the c.m. frame

The radiated c.m. energy E™ has been evaluated at the
2PN fractional accuracy in our previous work Ref. [30].
The corresponding }—expansion PM coefficients were given

(up to j%) in the first five lines of Table IX there. In the

present work, we have computed the heretofore uneval-
uated fractional 2.5PN instantaneous contribution due the
radiation-reaction correction to hyperbolic motion (incor-
rectly argued to vanish in [37]), and we have used the
results of [36-38] when computing the fractional 3PN
contribution in the form of a% expansion [see Eqgs. (6.5) and

(6.6)]. In order to confirm the value of the fractional 3PN
contribution to the radiated energy, we have done an
independent computation of the instantaneous, 3PN-level
contribution. The technically most challenging part of the
latter computation comes from inserting the 3PN-accurate
hyperbolic motion in the 3PN-accurate quadrupole
moment. Following Ref. [56], the computation uses a
3PN-level, hyperbolic version of the quasi-Keplerian rep-
resentation of binary motion. In redoing the computation of
the latter hyperbolic quasi-Keplerian representation, we
found that there were several typos in the results displayed
in Ref. [56]. For the convenience of the reader, we give the
corresponding corrected results in Appendix D.
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Our results are displayed in Table II. Many of the
v-dependent terms can be directly checked by using the
polynomiality rule satisfied by the coefficients E,, namely,

W, = Pl (v):

(10.2)
where P} (v) denotes a polynomial of order N in v, having
y-dependent coefficients. This rule was pointed out in
Ref. [33] [see also Eq. (7.7) in Ref. [30]]. We shall give
below another simple proof of this polynomiality rule. Our
results on the coefficients E,, satisfy this polynomiality rule
after adding all separate contributions. For instance, at the
4PM order (n = 4), if one would consider separately the
3PN contribution [j% term on the second line of Eq. (6.6)], it

would violate the polynomiality rule (10.2) because of the
terms (— 260 4 16%) Tn fact, these terms precisely cancel

the rule-violating terms in 4°E, coming from lower PN
contributions in Ej,.

While writing up our results, a PN-exact computation of
the G* energy coefficient E, was made public [25]. Our
(fractionally 3PN-accurate) PN-expanded result listed in
Eq. (D27) of Ref. [30], and in Table II here, agrees (when
expressed in terms of E, = h’E,) with the 3PN expansion
of the curly bracket on the right-hand side of Eq. (8)
in Ref. [25].

Let us also note that we have included in Table II the
PN-acquired knowledge of the 3PM-level contribution E;,
though E5 has been determined as an exact function of p
[9,23]. It agrees with the corresponding term in Refs. [9,23]
and thereby provides an additional check of our PN
calculations.

B. Angular momentum loss in the c.m. frame

The fractionally 2PN-accurate expansion of the PM
coefficients J,, of the radiated c.m. angular momentum
J™4 can also be found in Table IX of Ref. [30],upton = 7.
In the present work, we have raised their accuracy to the
3PN order by computing the missing term in the instanta-
neous part of the radiated angular momentum at the 2.5PN
level due the radiation-reaction correction to hyperbolic
motion, thereby completing partial results available in the
literature for the various contributions through 3PN order
[36—-39]. The final result is given by Egs. (7.4) and (7.5) as
an expansion in inverse angular momentum. The post-2PN
coefficients are listed in Table II. The 2PM and 3PM
coefficients J, and J; are known exactly (see Refs. [28,24],
respectively), but are also shown in their PN-expanded
form for completeness.

Concerning the v structure of the coefficients J,, they
satisfy the polynomiality rule [30]

h"J, + h""'WE, = P! (v),

(=22 (10.3)

with n > 3, whereas h212 is independent of v.

C. Linear-momentum loss in the c.m. frame

Table IX of Ref. [30] listed the PN expansion of the
coefficients Py, of the PM expansion of the y component of
the radiated linear momentum J™ in the c.m. frame,
accurate to 2PN fractional order. The corresponding
post-2PN contributions up to 3PN order are listed in
Table II.

As pointed out in [30] (and as is further discussed
below), the coefficients P, must satisfy the polynomiality

property

P = Pl )

(10.4)
Our results on the coefficients Py, satisfy this polynomial-

ity rule after adding all separate contributions. For instance,

2320 P
3 54

fractionally 1PN tail term (8.7) would separately violate the
rule (10.4), but is needed to cancel corresponding rule-
violating terms in /P .

We recall that P53 is exactly known in PM sense, being
related to E5 by

at order n = 4 the term proportional to +# in the

La— (10.5)

The PN expansion of the coefficients P,, are instead
listed in Table III. These expansions include the leading-
order (past-tail) contribution computed in [30] and com-
plete them by two further terms in the PN expansion
(fractionally 2.5PN and 3PN).

The coefficients P,,, satisfy (see below) the polynomial-

ity property

WPy, =P, ).

(n=4)/2 (10.6)

Our results on the coefficients P,, were found to satisfy
this polynomiality rule after adding all separate contribu-
tions and, notably, the one linked to radiation-reaction
modifications of the orbital motion. For example, at order

2 9529 pd
" &7200

1PN tail term (8.7) would separately violate the rule (10.6),
but is needed to cancel corresponding rule-violating
terms in h*P,,, while, at order G°, the term

my—m; 3515872 pS - 1t pradinst,/,J .
—(Mc) v e Ee in S PE , Eq. 4.14), is

nonpolynomial by itself, but corrects the nonpolynomiality
of other contributions.

G* the term proportional to in the fractionally

XI. LORENTZ-INVARIANT FORM FACTORS FOR
Pl AND MASS-POLYNOMIALITY RULES

rad
In the sections above, we have discussed the values of the

losses of energy, angular momentum, and linear momen-
tum in the c.m. frame. This was motivated by the fact that
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the multipolar-post-Minkowskian approach [50-52] to
gravitational radiation is conveniently applied within the
c.m. frame of the binary system. Let us now reexpress these
c.m.-based and PN-expanded results in a Lorentz-
invariant way.

As was pointed out in previous works (e.g., [30,45]), if
one expresses the individual momentum changes (or
impulses) Ap/, Ap5 during gravitational scattering, and
therefore also the radiated 4-momentum P.; = —(Aph+
Aph), in terms of the incoming 4-velocities u_, u;_ and of
the vectorial impact parameter b, = b — b, their expan-
sion coefficients in powers of G must be polynomials in the
two masses m; and m,. Let us show here what information
we can thereby get from such mass polynomiality.

We can decompose P% ; as follows:

Prg = Prlafz(mla my,y, b)(uy_ +us_)
+ P! 2(’”1,’”2 7. b) (U =)

+ PR (my,my. v, b)bY,. (11.1)

The basis u_ + ub_, u|_ —u_, 13’1‘2 is orthogonal, though

not orthonormal. While (b;,)? = +1 we have

(Wi_+ub P ==2(r+1), (i_—us > =+2(y-1).
(11.2)

Taking into account the symmetry of P ; under the 1 <>
2 exchange, and the (anti)symmetry of u|_+ u_
W —ub_ b)), we see that the first form factor
PP, (my,my,y,b) must be 1<« 2 symmetric, while
PR, (my, my, y,b) and Pi4(my,my,y,b) must be 1 <> 2
antisymmetric. We can then use the further facts that
(i) radiative losses of energy and linear momentum being
quadratic in the retarded-time derivative of the waveform
must contain a factor (m;m,)%; and (ii) PP, (my, my, 7, b)
starts at order G3, while P, (m,my,y,b) and
P4(my, my,y, b) start at order G*. The mass polynomiality
of the PM expansion coefficients of P, then allows us to
write

3
prad

G
Prﬁqz(ml,mza% b) = e -3 m m2P1+2’

G* N
P (my,my,y, b) = W mim3(my —my) Py,
4
Pg‘g(ml, my,y,b) = Fm%m%(mz - ml)Pml‘i, (11.3)

where the dimensionless factors P, Pt Prbal‘i have PM

expansions of the form

X G
P, = ZFSP;ﬁ(mI, m;)
n>3
Gn—3Mn—3 142,67
=)~ Py (1),
~ b 3 (7]
- G- —4
Plia—z = Z b= 4 SPn 4<m17m2>
n>4
Gn—4Mn—4 2.6
= —— Py (150),
A rad G
Py = Z = SPn 2 (my,my)
n>4
Gn—3Mn 3 "
=Y Im—re ). (114)
n>4

Here, SPX(m;,m,) denotes a symmetric polynomial of
order N in the two masses. By scaling out the total mass
M = my + m,, each such polynomial can be rewritten as

SPy(my, my) =

MY p[] (y,y), (11.5)

where p “(y,v) is a polynomial in v of order 5] (the

integer part of 2), with y-dependent coefficients. In order to
keep track of the PM order n, we add a label G", and we

also sometimes keep the notation [5], with N =n —3 or

N =n—4 (e.g., we write [3] instead replacing it by its

numerical value 0).

We thereby see that, while at order G* (3PM order), Prad
was described by only one function of y, namely [see
Eq. (1.4)],

&)

142,G° —
) y+1’

SP(1)+2<m1’ m2) = P[%]

(11.6)

it will involve three functions of y at order G*, namely,

d, 4
Py = P Tm3SPL* (my, my)
4
b4 mzmz(nﬁ + mz)P[szG (]’),
rad,G* G* 2,2 -2
P = O ions — m )P )
G4 4
= e mim3(my = m)p > (1),
b 5]
s G b
leczl'G = Fm%m%(mz —my)SPg= (my, my)
G4

g mym3(my — ml)Pif < (7). (11.7)

b

At order G°, we have four functions of 7,
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5
Pffzc =75 m2m3SPY 2 (my, m,)
5
5
Prad,65 _ G 2,2 spl-2
= ﬁmlmz(’"z —my)SP™*(my, my)
G’ 2.2 1-2,G°
= ﬁmlmz(mz —my)(m; + mz)P[%] 1),
s G
f]iG ﬁm%m%(mz - ml)SPlflz (my.my)
G 2.2 b1.G
= lem2(m2 —my)(m; + mz)PH (v). (11.8)
where p[]]ﬂG (7,v), being linear in v, involves two inde-

pendent functions of y. At order G", P’ ; generally involves

& n—1 n-—2
NI

functions of y.
Let us now discuss how to relate the Lorentz-invariant

building blocks p[lntz]ﬂ”( V), p[l;f]’c”( V), pff,;;f” (y,v)
parametrizing the PM expansion of P% ; to our previous
c.m.-frame, PN-expanded results on E™, prad, Prad

A first step in this direction consists in computmg the
projections of P~ ; on the three unit vectors U¥, n*, and by,
where U* is the c.m. time axis, such that

(11.9)

MhU* = m|_ + mydy_, (11.10)
and where n* is the unit vector in the c¢.m.-frame direction
of _, such that

Mhpnt (11.11)

= (my +ymy)u{_ = (my 4 ymy)u_.

The definition of £, namely, E™! = —U* P then yields
MRE™ = (myu_ +myd )P, (11.12)

From the definition (A3) of e, and e, we deduce that

Ppd = pr prd = sin®eoms prad 4 og¥eons PRd (11.13)
while
prad = l;ﬂ prad — COS)(COHS Prdd si )(COHS Prdd (11 14)
b — Y125 p :

Inserting the parametrization (12.24) into these results then
yields the following links between E™, P4, P [remem-
bering the definitions (11.13) and (11.14)] and the form
factors of Pf:

MhE™ = M(y + 1)P, + (my —my)(y = )P,
MhPrad = (m2 - ml)pooPradZ + MpoopladZ’

Ppd = pyd. (11.15)

These simple links can be easily inverted to express Prf{ﬁz
and P9, as linear combinations of hE™ and 7P?4, and we
have used them to extract the values of P, and P,
Before exhibiting our results, several remarks are in
order.

Let us first note that, while the mass polynomiality of the
form factor Prad immediately implies the mass polyno-
miality of P”ld = bA,P™, the mass polynomiality of the
two other form factors, P!, and P, implies the mass
polynomiality of the combinations MhE™ and MhP™. In
these combinations, it is crucial to include the factor
Mh=M\/1+2v(y —1) = E*™ (including the extra
mass factor M, which cannot be, generally, factored out
on the right-hand sides).

In more detail, we have

G3 ra
MhE™ = b—mlsz(y + 1P,

G* N
+-7 b mm3(my —my)*(y — 1) PP,
MhPrad G% (m2 _ m])p Prad
b3 col 142
G4
+-7 X m%mz( ml)MpooPI 25 (11.16)

where we recall that the various dimensionless factors Prad
have the more explicit structure

GM\N
Prdd — Z SPN mlymz) Z(T) P@](l/)

N>0 N>0
(11.17)

These expressions give a direct proof of the v structures
pointed out in our previous works, notably,13

RERIN\ST  /GM\ "
( M > B <b> VPl () (1118)
and also
hPrdd b" GM n m2—m1
(5 ) = (5 2 P (1119

“Here we use the expansion in powers of (b; When using the

expansion ind GM h one must add an extra factor 42" at order - T
as used in Eq (10. 2)
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Note also that, while in MAE™ the dimensionless form
factor P9, is multiplied by the small PN factor
y—1=0(p%), in MhP™ the two form factors P79,
and P™, contribute with the same PN weight (at any given
order in G).

Inserting the mass-polynomiality structures of P;fd and
MhP9 in the expressions of P24 and P! in terms of P}
and P74, and using the mass polynomiality of the magni-
tude of the conservative momentum transfer,

Q  Xeons Gmmy [277-1 G
EZPC.m.Sln 2 = bl : |:7/2_1 +ESP1(mlvm2)
G2

+ﬁSP2(ml,m2)+"':|, (1120)
which yields
. Xcon GMh 2)/2—1 G
sin Czos: 5 {yz—l —I—ZSPl(ml,mz)

G2
+ﬁSP2(ml,Wl2)+"‘:|, (]]21)

one can easily derive the following mass-polynomiality
structures:
P”‘d—G4 2m3 SP GSP

x —ﬁ"ﬁmz(’"z—ml) 0(m1,m2)+g 1(my,my)

G2
+?SP2(ml,m2)+"':|, (1122)

and

G? G
MhP;ad :—3m%m%(m2 —m1)|:SP()(ml ,mz) +ESP1 (ml,mz)

As above, each such mass-polynomiality structure leads,
after scaling out the appropriate power of ¢4, a polynomial
structure in the symmetric mass ratio v (with y-dependent
coefficients), namely,

GN GM

N

One then easily checks that relations such as Eq. (7.27) in
Ref. [30] and its G° generalization indicated in the caption
of Table II there, follow from Egs. (11.18) and
(11.19) above.

We have already mentioned above that our c.m.-based
and PN-based results on E™!, P2 and PP were all in
agreement (after adding all separate contributions and,
notably, the one linked to radiation-reaction modifications
of the orbital motion) with the v-polynomiality rules
rederived here. We can therefore encapsulate the full,
current PN-expanded information on P, in the values

of the y-dependent v polynomials p}&] (y,v) parametrizing
2

[
the form factors, see Eqs. (11.3)—(11.8).

At order G® our results yield

: 37 839 2699
142,68y _ (27 3 5
Py ) _”(3011""’“L 16807 T 20167
1531643

- pl! 2 11.2
HammgPe tOUR)). (1129

which agrees with the fractionally 3PN-level expansion of
the exact result

b g — (11.26)
G2
b At order G* we find
|
Lot 784 2168 1568 , 98666 , 512 , 2702747 ]
1 - 0 0 o0 " ThePo T A ha0nz P 0 00/
Py W =25, T 175 P45 Po T 11025 P T 105 7>~ 363805 P T OPR)
o 176 72 352 , 9746 , 448 , 484019 ]
’ = — _— — — D~ —_— —_ 0 N
Py ) = 5, T35 T 45 P T s P T s P Sgys et OP)
b G* 37 1661 , 1491 , 23563 , 26757 . 700793 ,
0 = |55 ) 0 © ) © /| 11.27
Py 7130 560 7= T 200 P> T 100807 ~ 5600 7> T 506880 7> T O(P) (11.27)

While writing up our results, a PN-exact computation of the 4PM contribution to P!, and notably, its b,
projection, appeared on arXiv [25]. Our (fractionally 3PN-accurate) results, Eq. (11.27), are compatible with those given

in Ref. [25].
Similarly, at O(G’) we have
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P (1) = 61 | 3A073 297 , 23923 [ 31029, 1484997 ,
. — — - T
PV TS T 680p, | 40 ¢ 2880 P 2240 11200
(9,2, 34695068413 10593 (pe\
— — n —_—
20" T 7620928000 700 '\ 2 ) )P*
. 55 6427 877_939 5\ o, (B55901_4059 N 5
V| ———+ —— ———7 ——-7 .
12ps 100807 T \400 560" )= \ 10080 ~1280" P> T Y\P
. 82 5207 1491 939 , 963239 902743 13603 ,\
Py =a| - - o = p (a7 | PR
: 1503, 630p, 400 ' 280" ~ 40320 33600 4480
4809573323 1591 /p.\ 313
- g MY 0
+< 434649600 980 n(2)4“140 >p°°+ (e )}
oy 64 3T 5 21392 30208 (8567683429 )\ , 462592 .
Po W= T30 700" T 55 T 205 P 33075 1120" )P> " 7875 P
74417152 7915 L\ ,
- - o(p3,). 11.28
+< 363825 2688”)p°°+ (p=) (11.28)
" U _ph
XIL INFORMATION ON THE INDIVIDUAL Apy+Apy = Py (12.3)
IMPULSES Ap” DERIVABLE FROM P/ | . N
Third, we have the decomposition
Let us now discuss what information on the individual
momentum changes (or impulses), Ap/,Aph, can be Apy, = ApSrs + Apilin 4 Apmiontin - (12.4)

extracted from our results on P!
different facts:

First, the coefficients of the PM expansion of Ap/, Ap)
in terms of the incoming 4-velocities |_, u5_ and of the
vectorial impact parameter b* = b} — b, must be polyno-
mials in the two masses m; and m,. More precisely, one has
(for the first particle)

aq Dy combining six

27— 1 buy

VA1

nPM

—2Gmm, (12.1)

+ Y ApiM,

n>2

Apl;t =

where each term Apf, is a combination of the three
vectors by, /b, u}_, and ub_, with coefficients that are, at
each order in G, homogeneous polynomials in m; and m,,
containing the product m;m, as an overall factor.

Symbolically,
Gm1 nmy
b}’l
+ (Gmy)"2Gmy + -+ - +

nPM _,

Ap]/,l

[(Gmy)"!

(Gm,)"1], (12.2)
where each term is a combination of the three vectors b* /b,
u_, and f;_, with coefficients that are functions of y. (Note

that, contrary to the case of P’ , A p”PM is not symmetric

under particle exchange.)
Second, linear-momentum conservation implies that the
radiated momentum is equal to

Here, (i) the conservative part Apg™ is known up to

the sixth PN order (modulo six still unknown parameters
[32-34,67]), while its G expansion is known exactly up to
order G* included [10,25]; (i) the linear-response contri-
bution Ap“h“ is known (modulo some linear, time-even
radiation-reaction effects discussed below) from our pre-
vious work [30]; while (iii) the remainder term Ap"“"“hn
can be described as containing the contributions that are
higher-order in radiation reaction [starting with the quad-
ratic order O(Fh?)].

Fourth, as we are going to show, the linear-response
contribution happens to satisfy, by itself, the momentum
conservation law (12.3), namely,

Pﬂ

rad*

Aprrlm + Aprrlm _ (125)

Fifth, the linear-response contribution satisfies a linear-

1zed version of the mass-shell condition that must hold for
the outgoing momenta, namely,

pd C"“Ap”nhn =0. (12.6)
Sixth, the nonlinear contribution Ap{{nonl”‘ to the
impulse of the ath particle (as well as the additional

contribution Apa,, “ to Apgy wlin jinked to the time-even

part of F#. discussed below) must involve a factor m.
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In the following, we explain the origin of these facts and
then show how they degermine the conservativelike radi-
ative contributions Apg, 4+ A p‘““"llln at the fourth post-
Minkowskian order [O(G*)] and strongly constrain them at
the fifth post-Minkowskian order [O(G)].

A. Proof of the identity (12.5) and
antisymmetry property of Ap"“"“'“‘
The linear-response contribution A prrlln was obtained in
[30] as the sum of two terms: a “relative motion” term
A p”re' and a “recoil” term Apg©,

Aprrhn _ Aprrrel + Aprrrcc_ (12.7)

From Egs. (3.32) and (3.33) in [30], we have

Aprrrel )(rr rel APZ(;DS + AP

d)(cons Pcm o™ Ell Pcm, -
(12.8)
and
E 4 (p&P"y)
Aprree = — 4 prd _ L ndlg o (12.9)
EC.IH. . Ec.m. :
Here,
E\E,
APC.m. = _ﬁEmd’ (1210)
c.m.® c.m.
and the quantities FE,, E., =FE, +E,=Mh,

Pem ="k, pg, (outgoing momenta), and U, =
(py, + pgy)-/Ec_m, are all taken along the unperturbed,
conservative motion.

When summing over the particle label a, taking into
account the fact that )  ApS™ =0 and ), pi =
> wPa = EcnU,, one easily finds that Eq. (12.5) is
(exactly) satisfied. This identity (together with the fact
that )", Ap$™ = 0) implies the somewhat remarkable
identity that the remainder (nonlinear) term in the linear-
response formula (12.4) must separately satisfy the
identity

Aprrnonhn + Aprrnonhn =0. (1211)
In other words, the nonlinear contribution ApfL°™" must
be antisymmetric under particle exchange.

Another constraint on Ap““"nhn is the mass-shell con-
dition
PP = —mg, (12.12)

where the total outgoing momentum is

p[-;-/:ot pacons + Aprrhn +Apnnon11n (1213)

Using the fact that Ap‘“m satisfies (independent of the

value of »™) Eq. (12.6), we get the following additional
constraint on A pfnonin:

conqA yrr nonhn

(APa rr lin + Aprrnon]m)Z =0. (1214)

2pas

B. Completing the linear-response formula when F7" is
time asymmetric, without being time antisymmetric

At this point, we need to complete one result derived in
Ref. [30], namely, Eq. (3.25) there, giving the value of the
radiation-reaction contribution y™™' to the relative scatter-
ing angle. Note first that the actual value of ™! did not
matter in the proof of the validity of Eq. (12.5) we have just
given. Indeed, after summing over a, the coefficient
of ){rrrel is

by
A pcons ;
d)( cons ;

which vanishes because ), Ap$™ vanishes, independent
of the value of y qn.

The only place were the assumption of time antisym-
metry of the radiation reaction force was crucial in the
derivation of the linear-response formula in Ref. [30] was in
the derivation of the value of y™™ [leading to Eq. (3.25)
there]. Going back to the previous derivation of ™™ in
Ref. [29], it was explained, around Eq. (5.98) there, that
one could (when using Lagrange’s method of variation of
constants) directly relate ™™ to the radiative losses of
(c.m.) energy and angular momentum if the time deriva-
dLI( ) and d‘g( )

(12.15)

tives of were odd functions of time (around

the moment of closest approach in the conservative

d . . .
motion). As dc’ ( and C‘”() are linear expressions in the

radiation- reactlon force, thelr time-odd character is directly
linked to the time-odd character of F . (as was discussed at
the end of Sec. III above, when working with the LO,
2.5PN radiation-reaction force). As we were aware of this
limitation in Ref. [30], we limited our study of radiation-
reaction effects to the 4.5PN level, because we had shown
there [see Eq. (H3) there] that at the SPN level there arose a
nonzero value of PP (while a time-odd F, implies a
vanishing value for Pt9).

When staying at the level of linear effects in F,, a
reexamination of the proof of the linear-response formula in
Ref. [30] shows that the only O(F ) modification to take
into account is the presence of an extra contribution in
Eq. (3.25) there. One gets an explicit expression for the
latter extra contribution by using the varying-constant
version of the quasi-Keplerian representation, Eq. (3.1).
From the equation parametrizing (), and the link
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¥ = [¢]=2 — 7 between the total scattering angle y and the
variation of ¢, we get (using ¢; = E and ¢, = J)

W(L,E(1),J(1)] — 7 + [cy(1)].

The first term yields (when separating out the conservative
contribution and linearly expanding in the radiative losses
of energy and angular momentum) our usual linear-
response formula for the radiative contribution to the
c.m. relative scattering angle. The second contribution is
new [and exists only when F . (7) is time asymmetric, rather
than time odd]. This yields the result

)(rr rel _ (1 axcons E

x = (12.16)

1 aXCOl']S

2 ot ™ 20

E)—(rrrel + AC{/),

Jrad) + AC¢

(12.17)

where the first contribution 7"™' has been evaluated
at the O(F,;) accuracy and where a formal, but explicit,

expression for the additional contribution Acy = [cy] =

Jrede dc“”( ) is obtained from the last equation in Eq. (3.5)
and reads

A /Hodt oW [aS\ ! 6SdE+anJ

C = —_— P —_— -

L al \ al OE dt ' dJ dt
oW dE av‘vdq

OE dt oJ dt|’ (12.18)

Here “E and 4/ are linear expressions in F.(7), defined by
the first two equatlons in Eq. (3.5) [or, explicitly, Eq. (3.6)
in the Hamiltonian formalism].

We leave to future work the use of this result to directly
estimate the additional term (starting at the SPN level) Ac,
in ™™ linked to time-asymmetric radiation-reaction

effects.

C. Proof that time-asymmetric radiation-reaction

contributions to Ap,, involve m}

One of the aims of the present paper is to go beyond the
limitations of Ref. [30] and to discuss the physical effects
present in Prad and in Ap,, that are related to time-
asymmetric (rather than simply time-odd) radiative proc-
esses. Time-asymmetric effects in the equations of motion
first enter at the 4PN (and 4PM) level via tail-transported
hereditary processes [48]. However, at the 4PN level one
can still uniquely decompose these contributions to the
dynamics into a nonlocal-in-time conservative (time-
symmetric) contribution and a nonlocal-in-time dissipative
(time-antisymmetric) one [49]. This postpones the presence
of genuinely time-asymmetric effects to the SPN level (still
being at the 4PM level).

Additional information on the structure of time-
asymmetric contributions to, say, the impulse of particle

1, is obtained by considering the small mass-ratio limit
(say, m; < m,). This limit is usefully tackled by using the
gravitational self-force approximation method (i.e., pertur-
bations around the probe limit in which a test particle of
infinitesimal mass 71, moves around a Schwarzschild black
hole of mass m,). It was shown in Ref. [68] that, if one
works at the first-order self-force approximation, i.e., if one
keeps only terms of order m,; in the acceleration of particle
1, i.e., terms of order m? in the force acting on particle 1,
one can uniquely decompose the dynamics in a
conservative (time-symmetric) contribution and a non-
local-in-time dissipative (time-antisymmetric) one. This
proves that the level where the separation time even versus
time odd becomes ambiguous is the second-order self-force
approximation, corresponding to terms of order m% in the
force acting on particle 1. The corresponding contributions
to Ap,, will therefore also involve a factor m?. (When

scaling out the total mass, such terms contain a factor 1/3.)

D. Contribution to the impulses proportional to
Pt and its nonpolynomiality in the masses

As recalled above, Ref. [30] generalized the linear-
response formula of Ref. [29] by including recoil* effects.
However, while the effects proportional to the e, compo-
nent P;ﬂd of the recoil were kept (and analyzed) in all the
formulas derived in Ref. [30], in some of the formulas there
the contributions proportional to the e, component P24
were set to zero. Here we explicitly include (and analyze)
the contribution to the impulses proportional to P™4,

Accordingly, it is henceforth useful to decompose the
radiation-reaction contribution A pjp, to the impulses in the
following new way:

Apgﬂ — Apzrﬂlin—odd + API;”PX + Aprrremdm. (1219)
Here, Apj"~°% denotes the part of our linear-response
formula obtained when assuming that F, is time odd
(keeping the full® E™, J=d, and P contributions, but
setting Acy = 0, and PP = 0),

 (pacPR)

c.m. Ec.m.

Prad - _ Ea Prad

APaM = U

u"

(12.20)

is the contribution linked to a nonzero value of Pt
contained in Eq. (3.33) of Ref. [30], and finally,

Apr;’;emmn = AprrAq,, + Apr[;lrﬂnonlin7 (1221)
where
“As Pid = 0(G?), it is enough to work linearly in recoil to

reach the O(Gf’) accuracy.
>The adjective “full” means here that we keep all the time-
asymmetric (tail) contributions to the radiative losses.
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mAc,

Apart = Acy Apeons (12.22)

d)(cons

is the additional term linked to a nonzero Acy and where
Apf{,f""““ is the same remainder term as in our previous
decomposition [nonlinear in radiation reaction and satisfy-
ing the antisymmetry constraint Eq. (12.11)].

An important fact for the following reasonings is that,
as Acd, is symmetric under particle exchange, while

o Acy . .
Sl T Ap&r = 0, the contribution A pg,, “ is antisym-
metric under particle exchange. As the same was proven to
be true for Apg, nonlin [see Eq. (12.11)], we conclude that
A p“rema‘“ also satisfies the antisymmetry constraint
Apxl'rﬂremain + Aprzrﬂremain =0. (1223)
From our previous work, and from the considerations
above, we know that both Ac, and P start at order G4
ie., at 4PM and 5PN. Therefore, A p’”ema‘“ starts also at

order CT

One useful source of information on the various con-
tributions to A pp, in the decomposition (12.19) is that they
should combine to ensure the mass polynomiality of ApZ,.
(We assume here, consistent with previous works, that
Apg has been defined so as to be mass polynomial.)

It was shown in Ref. [30] that A pTfin=°4 (in the precise
sense defined above) is polynomial in the masses under
some constraints on the mass structure of Eqg, J%,
and P;ad. It is easily checked that the constraints discussed
in Ref. [30] are all implied by the more general con-
straints on the mass structure of E,q, J™, and P,
which have been deduced above from the mass polyno-
miality of Prad considered as a function of b (see Sec. XI
above). Therefore the contribution Apfn=od to ApT,
in the decomposition (12.19) is separately polynomial in
masses.

By contrast, we see that the presence of denominators
E. . in Apil™, Eq. (12.20), implies that the P con
tribution to Apj, is nonpolynomial in the masses. We are
going to see that the need to cancel the nonpolynomiality of
P by the remaining contribution A Pay remain | tooether with
the antisymmetric character, Eq. (12.23), and the second-
self-force character (e m_) of the remaining contribution,
uniquely determines A p;”ema‘“ (and therefore Apg,) at

order G* and determines it nearly completely at order G°.

E. Uniqueness of Apg; remain apqd Apy, at 4PM and
strong constraints on them at SPM

To discuss the uniqueness of ApTre™in it is useful to
consider its form factors on the same basis as the one used

: iz M iz M Nz
in Sec. XI, namely, u|_ + u,_, u|_ — u,_, and b,. Namely,

for a = 1, and for any label X = rrremain, rr P24, rr lin-
odd, etc., we write

APTX =X, (my.my,y. b)(u_ + us_)

-
+ Cifz(ml’ my,y,b)(u_ —uh_)

+ X (my,my,y, b)D,. (12.24)
For a = 2, one should exchange 1 <> 2, including in the
basis vectors.

Among the basis vectors, the first one is symmetric under
particle exchange, while the other two are antisymmetric.
The exchange antisymmetry of A pmema‘“ then implies that
its component ¢! ™" along ul_ + ub_ will be antisym-

142
metric, while its components, c}emain clremain glong
u

u{_ —uly_, and b/, will be symmetric. Let us assume that
we can construct (as we will do next) one particular
A pgfemam that satisfies the needed conditions of canceling

the nonpolynomiality of A pa,,; (so as to lead to a mass-
polynomial Apg,) and of being o m3. The most general
Ap{{,{emai“ satisfying the latter condition will then be
obtained by adding to this particular solution a general
additional term, say, Apfreminadd that must satisfy several
conditions. Namely, (i) it must be antisymmetric; (ii) it
must be mass polynomial; and (iii) it must contain a factor
m? (in addition to containing the factor m?m3 which is a
common factor of all contributions to Apfg,).

Let us prove that there cannot exist such a A plpremainadd 5¢
order G*. Indeed, at order G*, mass polynomiality of an
impulse means that it must be quintic in masses. After
factoring the universal factor m?m3, we find that the mass
dependence of the (antisymmetric) component of
Apfremainadd along f_ + uf_ must be proportional to
m3m3(m; —m,), while the (symmetric) components of
Apiremainadd along i —y*, and b, (with @’ # a) must
be proportional to m$m3(m; + m,). Neither of these types
of components can also satisfy the last condition of
containing a factor m;.

When going at order G°, we must discuss antisymmetric,
or symmetric, sextic polynomials in masses. In the anti-
symmetric case (#/{_ + u,_ component), such polynomials
must be proportional to mim3(m; —m,)(m; + m,), and
the m? condition does not allow such terms. By contrast, in
the symmetric case («_ — u5_ and b/, components), such
polynomials must be proportional to a combination
mim3(cyp(my 4+ my)* 4 ¢,y mymimy). The first combina-
tion (with coefficient ¢, ) is forbidden by the m, condition.
However, the second combination, namely, c,,,,,,,m;mj3 is
compatible with the m? condition. The conclusion is that at
order G’ there are two different types of contributions that
can be added to any specific solution of all the conditions,
namely,
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. G5 3 .
Ap!llrrremam add _ m; m2 "o u/;) + bei (7)b/fz)a

(12.25)

(FT2r) (ol

involving two a priori unconstrained functions of y:
@, (y) and f§ ().

We show below how to construct a particular solution of
all the constraints. The general solution at order G is then
obtained by adding the specific (ox mjm3) additional terms
displayed in Eq. (12.25).

F. Determining the unique transverse components
Ap;;“"m"‘i“ and Apl} at 4PM
For definiteness, we henceforth consider the impulse of
the first particle, a = 1. It is easily seen from its definition
in Eq. (12.20) that, at order G*, the only nonzero compo-

t of Ap™™ is th long B*
nent of Ap,* is the one along b,, say,

AP = ApTFE B, (12.26)

which is equal to

ApT = -z Pl (12.27)
c.m.

The problem to be solved is the following: given the
o7 prad
nonpolynomial term in the b12 component of A p1 ,

Prad E]
Aplirb - E
c.m.

rad __ _
xG*

my (my +ymy)
PR P, (1228)

where P;ag4 is mass polynomial and of the type [see
Eq. (11.22)]

4

rad _G 2.2

PRgs =g mim3(my —m)pg (v),  (12.29)

what type of extra contribution A p“remam =A prl”emamb”

(satisfying the constraints discussed above) can be added to
it to guarantee that the sum becomes polynomial in the
masses.

It is easily seen that

; miE, +myE
Appen = et T2 0
G* mmy(y+1)
=57 i %Tl’f () (12.30)
satisfies the needed constraints (symmetry, o m3) and
solves the problem at hand. Indeed,

4

Prdd4 + Aprrremain — _|_G

Ec_m e 3 (12.31)

mim3p¢ (7).

As proven above, this solution is unique.

Therefore, we have proven that the full radiation-reaction
contribution t(i the impulse (including the time-even con-
glbutlon A Py i % and the nonlinear one A prlr“‘g}}m) is given

y

4

Aplirﬂcﬂ — Aprrlin—odd 4+ — G

T+ o (12.32)

m m2px ( )BlllZ’
or, equivalently [using the definition Eq. (11.22) of p& (y)],

Aplirﬂc“ — Aprrlin—odd + Prad b# (]233)

; I
LuG my, —m

In other words, the full, 4PM-level, transverse impulse of
the first particle reads

G4
= AP APt e minip? ()

. m

_ cons rrlin—odd 1 rad

_Aple4+Ap1bG4 +m - PxG4'
2 1

Apipe

(12.34)

The latter equation corresponds to Eq. (18) in Ref. [24],
with the value & o m3 Sm3p¢ *(y) for the (undefined) term

denoted & Z/MSC‘Z 5" there. Note that our reasoning has

given a dlrect relation between this term and the value of
Prag4, namely,
4
m
mimyp{'(y) = ———— P

12.35
b4 my, — m, xG* ( )

Our results above yield only the beginning of the PN
expansion of the function p¢*(y), namely,

h*P
G* o x4
Px (7/> -
(r’—1)?
1491 26757
=7x| - o(pl) ). 12.36
(- P g P00 ). (1236
Concerning the first term, Apinzedd jts general expres-
sion as a function of E‘é‘?, J‘(";?, and J‘ald was derived in

Eq. (7.16) of Ref. [30]. At the time, only Erad [9,23] and
r"‘d [28] were known (in a PN-exact sense). Smce then, the
exact value of Jgg' has been obtained in Ref. [24]. This

leads to the following exact value of A prlrljigZOdd:

4
A rrlin—odd __

PipcH yr mim3[CyM (y)M + CPM (y)m ],

bm,

(12.37)
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with coefficients [see Eq. (7.31) of Ref. [30] and Eq. (19) of
Ref. [24]]

2r(6r°=5) 3. (5/2-1) 5 (2r°-1)
Cﬁ/IM(}’):”g(yz_l)S/z_ 4 2()/2—1)3/2_ 3(},2_1)2’
. 221
CiM(y) = —né—7 (12.38)
r+1)vr-1

Here, &=E&/m, T, =227* = 1)(y2 = 1)'/2T (with T
defined in [28]), and J; = (y> = 1)(C + 2D) (with C and
D defined in [24]).

When separating out the 4PM conservative contribution

Ap{ies [10,25] from the E’fz—projected impulse in our

Eq. (12.34), the term Ap™!in70dd coincides with the term

16 G*
cﬁ)flif;d in Eq. (15) of [25], while the remaining term

g—jm?m% pS'(y) has the same mass structure as the term
cgi)fizlizd in Eq. (16) of [25]. Moreover, not only the first two
terms in the PN expansion of C(l4b),dzli2d given in Eq. (16) of

[25] agree with those given by inserting our PN-derived

result Eq. (12.36) in the last term in Eq. (12.34), but the PN-

exact value of C(14t2.dzli2d [25] satisfies the exact relation

(4)diss _ m,
1b2rad =™ my—m,
term and the x component of the radiated momentum.

Pf(""g4 derived here between this remaining

. . 4
G. High-energy behavior of Ap$;

Let us remark in passing that, if one considers the result
Eq. (12.34), the mass scaling of the term g—:m?m% % (7)
makes it impossible to tame the high-energy behavior
of Ap¥,.

When considering the high-energy (HE) limit y — oo for
a fixed value of the scattering angle y; ~ GEb““-, with

E .., =Mhx y%, one would expect, in this limit (suitably
scaled'®) scattering observables to admit a finite limit.
If the formal G — O limit commuted with the HE limit,
this would imply, in particular, that each term in the
PM expansion of the impulse would admit a finite HE

limit (at fixed y ~GEh“-’“‘). This is the case at orders

G! and G2. At the G? level, the conservative contribution

Api‘,’)“S'G3 /Pqm [5] is logarithmically larger than its
expected contribution N)(?. However, it was found
[27,28] that this logarithmic divergence is tamed when
completing the conservative impulse by the radiative
correction Aprlrl;G3. This raises the hope that a similar
taming might occur at order G*.

At order G* the ratio ApSo™<"

divergent, being proportional to y%. In terms of the

: - . . !
unrescaled impulse, this divergence is A p?céns,G

(Pem )(‘1‘) is power-law
x pl.

"For example, one should consider the ratio Ap,;/P. ., .

Parametrizing the various contributions to the HE limit
of the impulse according to

4,22
G mim;

4
ApE & x nCXGy3, (12.39)

the coefficient entering the conservative contribution
4.
A p(lxl)qns.G is

105

Ceons Gt — 5 (4In2) =1+ 41n(2)%)(my + my).

(12.40)

As pointed out in [24], the linear-response radiative
contribution Ap"f7edd js similarly o« y°. However, the

corresponding coefficient is

. 35
CriinG' — 7 I (1481n(2)) + 2my (1 + 51n(2)],

(12.41)

which has the correct sign, but not the correct value to
cancel the “bad” high-energy behavior of the conservative
contribution. If we assume that the function p¢’ () entering
our additional contribution has a HE behavior of the type
% (y) & mc,y3, it will contribute another term of order y3,
with a coefficient

CmrG' = ¢ m;. (12.42)
It is, however, easy to see that, whatever the value
of c,, such an additional term (proportional only to m;)
cannot tame the contribution proportional to m,, i.e.,
cannot yield a vanishing total coefficient C©.C" =

ceons G cmlinG' | cmp G [ndeed, the latter turns out
17
to be

s 35 175 105
Cmt’G = (TIH(Z) =+ T — TIH(Z)z + Cx>m1

245 1
+ (35 In(2) + TS - %m(z)?) my.  (12.43)

. 4.
In order to tame the HE behavior of Ap'%? ", i.e., to reduce

it from y3 to, say, 72 or y2Iny,"® one would need to add a
suitable extra contribution of the (disallowed) symmetric

4
type %m%m% (ml + mQ)fsym(y)'

"The recent result of Ref, [25] happens to lead to a coefficient
¢, which precisely annuls the coefficient of m; in C*°4C",

'8Such a reduction would ensure the HE vanishing of the ratio
A pt1°1§‘04 /(Penm. ;(‘11), as expected from the structure of the massless
scattering discussed in Ref. [19].
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We do not view the inability of the additional term to
tame the HE behavior of the G-expanded impulse as a
blemish. It seems indeed probable that the G — 0 limit
does not commute with the HE limit y — oco. This is
notably indicated by the studies of the HE limit of the
total gravitational-wave energy emitted during the collision
of massless particles [69-71]. While the HE limit of
the O(G®) leading-order radiative energy loss exceeds

the energy E., available in the system by a factor « y%,
the works [69—71] suggest that (due to coherence effects in
the beamed radiation) the HE limit of radiative losses is
finite and of order y{In -

H. Longitudinal components of Ap7, at 4PM

To end our discussion of the radiative contributions to the
impulse of the first particle Apy,, let us also consider its
longitudinal components, i.e., the components along u;_
and u,_. We have shown above that the only source of
nonpolynomiality (namely, the P,-related contribution
|

Ap1 ) does not contribute to the longitudinal compo-
nents. In addition, we have shown that there was, at the
4PM level, a unique value of ApY, satisfying all the needed
constraints. Namely, the one given by Eq. (12.32)
or (12.33).

In view of Eq. (12.32), at order G*, the longitudinal
components of ApY, are fully described by the time-odd-
linear-response formula of Ref. [30], i.e., the term denoted

Ap’lmhn_(’dd above. Using the notation of Ref. [30], its
longitudinal components are defined as follows:

Ap/a‘r longit _

lin-odd longit
A p” "
1

1

lrr M
= Cul u]_ + Cy, Uy

lrrhnodd /4 +ec lrrlm odd /4
= Cu, u_.

(12.44)

Using the expressions given in Table II of Ref. [301,"
find that the coefficients c},lrr and ¢, are given by

- 1 - A
R MBSy EL 20207 = 1)y + ),

1 d4PM G4m2m%
Ik
G*m?m? o
11r.4PM 1M 0
Cu =—=|ME)] +
" b2 - 1)} [ ‘2

where £9 and E} (defined by ’E, = E} + vE}), as well as
J, = h2J, are all functions only of y. [See Eq. (8) of [25]
for the exact value of A E,.]

The combination

27,(2y% = 1)?
111 4PM 11,4 PM 2
b (ew™ ™ Hye ) = %miwf
coincides with the impulse coefficient cgfffif:ad given in
Eq. (15) of Ref. [25]. The other combination

(12.46)

b4(C1521T4PM+ L]IT,4PM)
2.2 ~ =~ b F
= — G [y (EQ+ 3 EY + 2277 = 1720,) + m EY),

(12.47)

(4)diss

(4)diss
coincides with the sum Cli 1rad +c

Cliy 2 1ad of the two ii,-

type impulse coefficients given in Egs. (15) and (16) in

Ref. [25]. More precisely, the part called c(lu)dlffad corre-

sponds to the part of the right-hand side of Eq. (12.47)

featuring odd powers of p, in its PN expansion, while the

part called c%)ji;:ad corresponds to the part of the right-hand

side of Eq. (12.47) featuring even powers of p, in its PN
expansion (the latter part is the one generated by the tail
contribution to the radiated energy).

1 - o
FmEL 2027 = 1)+ ),

(12.45)

I. Radiative contribution to the impulse coefficients
at SPM: Transverse component

As in the above discussion of the impulse at 4PM, it is
convenient to project the various radiative contributions
(labeled by X = rrlin-odd, rr P;ad, rr remain) to the impulse,

Apay _ Aprrhn -odd + Apgup;ad + Apgﬂremain’ (1248)
on the basis given in Eq. (12.24). For instance, for a = 1,

the transverse (5,) component is the sum of the following
contributions:

1 1,rr lin-odd 1,r prd 1,rr remain
=cC +c b *Hc b .

e =ch (12.49)

Similar to what happened at 4PM, the nonpolynomial
contribution generated by c}l;rrpidd reads, at the 5SPM level,

rad (5 E
cln?e _ _ B pra (12.50)

PWe also use Eq. (7.26) there to replace the original
expression in terms of the 4PM component P, of the y
component P;“d of the recoil in terms of the rescaled 4PM

component E, of the energy loss.
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Again, the simplest solution (satisfying all the needed

constraints) for the remaining contribution ¢, ™™™ "¢" to

.1 L PGS .
cancel the nonpolynomiality of ¢, is

1,1t remain simplest,G> nmy E2 + m2E1 rad
cb - + - ~Na Psz .

(mZ_ml)Ecm (1251)

Indeed, we have

cl,rrP;“dG5 + Cl,rrremainsimplest,G5, =4 ny prad
= 55
’ b (my —my) 6

(12.52)

which is polynomial in masses because Pffgs contains a
factor (m, — m,).
As was discussed above, the most general solution for

Cl rrremain G° is

m1E2+m2E1 GS

L inGs ad 3.3 G
o rrremain + P +—m|m2fb (]/)

P;ags = g_ssm%m%(mz —my)(my +my)p.s(y),  (12.54)
we finally get
LrP™GS | 1 rrremain,G3 G 5,
b TG - +ﬁ””lmz(’”l +my)ps(r)
+G—5m?m§ Fy).  (12.55)

bS

In other words, the most general SPM transverse radiative
impulse reads

3

5
11 G? 1.rrlin—odd G° G 2
=G +lem2(m1 +my)pycs ()

Cp
5

G :
+—=mimyf (7).

7 (12.56)

Tables I and II of Ref. [30] gave exact expressions for

b  (my—=m))E., b chmtin=odd G 5 terms of E, and J, with n < 4. However,
(12.53)  the PN-exact value of J, is unknown so that our 5.5PN-
accurate determination of J4 currently limits the knowledge
Writing P as of ¢}in=0ddG® 4 the 5.5PN level. We so find
5 0202
. 3 CTLTOS  P CLC E V
203264 47 ,\ ,| 1 896 , 1 159232 1243 ,\ ,
< 1575 5" )mz] o7 25 mEm)t o ( 3675 56 >m1
2283544 1489 116992 5697 ,\ , (8384 , 694016 10304
< 11025 35 >m1m2+ ( 1225 280 )m2+ ( 35 ™M T s7s +Tm2>p°°
. [ <24_1 2 22294592) o (67876972 | 23783 ”2> _— (_ 9728 | 3407 ﬂ2> mz] 2
120 363825 ) ! 363825 ' 3360 e 275 ' 672 2| e
+0(p20)}. (12.57)

. 5
The second contribution in cé’“G

6.5PN-accurate value of p,s(7):

20608

1143232

is known to 6.5PN absolute accuracy, because our results above give the following

y 19609

P (¥) = — 555 Pt

7875

+0(p3,). (12.58)

P 945 P

By contrast, the only thing we know at this stage concerning the additional contribution be5 (y) in Eq. (12.56) is that it

could start at the SPN level and be £S°(y) = O(pe).

20 1 G 2.1 G?

The latter result limits the PN accuracy of cé’“ ¢ However, more is known about the sum Cp, FCh, s in which the

[ term cancels. Indeed, the linear-odd contribution to this only depends on E5 and E, (see Table II of Ref. [30]), which are
exactly known [9,25]. The beginning of its PN expansion reads

“Note that the sum becomes a difference if one exchanges l;u into 1321.
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5
1rrlin—odd G° 2,rrlin—odd G> __ G 64 37 27392 128
Cp ’ +¢ ° s mim3z(my + my)(my —my) {—% (20 : 525 _Tpoo
856768 3429 ,\ ,
- — o(p)|. 12.59
(33075 120" >p°°+ (p“)} (12.59)
The second contribution is known to 6.5PN accuracy by using Eq. (12.58) and reads
5
IS m%mZ(ml +my)(my —my)pygs(y), (12.60)
where the 6.5PN value of p,;s(y) is given in Eq. (12.58) above.
J. Radiative contribution to the impulse coefficients at SPM: Longitudinal components
Let us finally consider the nonpolynomial contributions to the u;_ £ u,_ components of A prlrpad,
1 PGS _ G_Sm%m% (my — my) (272 -1)(y-1) —2’”%7 + m% —2mym, — m% G4(y)
1+2 2 1 2 (72 _ 1)3/2 (m% 4 2ym1m2 + m%) X ’
11r.P, G’ _ G_Sm?m% (m —m ) (27/2 - 1)(7/ + 1) Zm%y - m% + 2mlmZ + m% pG4(}/) (12 61)
1’2 208 T (A=) (md o 2ymymy +md) T '
where p@'(y) is the same function of y as defined above, & = ¢ (my = my)(my + my)mymy,  (12.64)

Eq. (12.36).

As before, we look for corresponding components of
Apzr,{emai“ that will cancel the nonpolynomiality of the
above longitudinal components. As discussed above, there
is a unique way to do so for the u;_ + u,_ component,
while the u;_ — u,_ component is nonunique and can be
augmented by a term of the form [see Eq. (12.25)]

Gsm m3
— 12

I rr,remain
Ac Cl—2 -

(). (12.62)

Let us start by considering the u;_ + u,_ component

11m,P, G - . .
¢;15*” and look for an additional mass-antisymmetric

: 1 rr,remain
contribution ¢, 5

1m,P,G’
of ¢ 15

able to cancel the nonpolynomiality

. After scaling out

5 1122
G mim;

S5 P =1 =1 = 1)72pE (),

(12.63)

and multiplying by m? + 2ymm, + m3, the problem to be
solved involves quartic polynomials in the masses. Namely,
we look for a rescaled

and two coefficients x, y, such that ¢, x, y satisfy the mass-
polynomial equation

my(my —my)(m} — 2mymy — (2y + 1)m3)

+ ey (my —my)(my + my)mym,

— (m? + 2ymymy + m3) (xm? + ymym,) = 0. (12.65)

Here, we imposed the constraint that the resulting con-
tribution to Ac|™, be o mj.
It is easily found that the mass-polynomiality equa-
tion (12.65) admits a unique solution, namely,
cy =2 +1); (12.66)

x=1; y=—1.

This proves that

—my)(my +my) (27 — 1)
(72 = 1)'2(m} + 2mymyy + m3)
(12.67)

5172172
I rr,remain _ G myn; mlmZ(ml
142 - bS

x pS' (7).

and therefore that
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5,2 2
G’mim;
b5

1G> __ 1rrlin-odd
Cly2 = Cip2

my(my —my)

=12y -1 s

22— 17 > (). (12.68)

1 rr,remain

Proceeding in a similar way for the particle-symmetric u,_ — u,_ component, we find as a general solution for ¢,”; ,

1rr,remain __ ) Gsm%m% m%m% (23/2 - 1)(7 + 1) G4 Gsm?m; G 12.69
1-2 = s 5 5= Dx () + —=—f1) (12.69)
(my +2mymyy + m3)\/y” = 1
and therefore that
~ Gmimim(m, + my, — 2myy)(2y* = 1)(y + 1) G’mim3
oGS . 11rlin-odd 1My my\m, 2 27)\4Y /4 G* 1M .65
C1_2 - 01_2 + b5 2(]/2 _ 1)3/2 Px (},) b5 f]—z(Y)' (]270)
At this stage, the constraints we used above leave un- P2
. o e . . . . +cons u fr —COS(X )
determined Sthe additional longitudinal term involving the p T om cons /»
function f{,(y) [in addition to the function f % (y) enter- e
ing the transverse'component]. ' Pty = — =008 (Yeons )
However, we still have one more constraint that we can my
use, namely, the mass-shell-related constraints, Egs. (12.6) p1+°0“5 b= P Sin(Yeons)- (12.76)

and (12.14). When using our new decomposition, the
following analog of Eq. (12.6) holds (because the Ac,
contribution vanishes separately):

pacens(Aphrinedd A puPy — o (12.71)
The analog of Eq. (12.14) then reads
~+cons IT remain 1 1T tot\2
Py - Apg it = =2 (Apg )t (12.72)

where ApT™ is the full (nonlinear) radiative impulse, as
determined above at orders G* and G°,

Aprrtot — Aprrlin—odd + Ang;ad + Aprrrcmain (12 73)
a a a * *
Since ApT starts at order G°, the right-hand side of
Eq. (12.73) starts at order G°. Inserting the decomposition
(fora=1)

rrremain __ .1t remainjy 1 rrremain
Ap; =cpi b+, (U1 +uy)

el T 1y — ) (12.74)
in Eq. (12.71), we find
p-l',-cons A plirremain — _ Cl}']rlremain P Sin()(cons)
+ p% COS()(cons)[C%néremain(m2 - ml)
mynt, "
+ey M (1 + my)]. (12.75)

Here we used

Working up to order G° we find

inGt X
_ rrremain G4 <A lcons pP-
0= —cp; —t—
J mymy

> [cir_ir_.zremain,G5 (mz _ ml) + c%r_r,zrcmain,Gs (ml + mZ)]a

(12.77)
which determines the value of f?jz (7), namely,
; Qr-Dr+1)
FEy) ==y (1) (12.78)
(r=Dvr -1
Consequently,
C} irzG5 _ C} irz,lin—odd
bS 2(}/2 _ 1)3/2 Pxc+\V)-
(12.79)

XIII. CONCLUDING REMARKS

In the present work, we improved the knowledge of
radiative contributions to scattering observables in several
directions.

We pushed the PN accuracy of the energy, angular
momentum, and linear-momentum radiated during a scat-
tering encounter to higher levels, namely, the fractional
3PN accuracy: for energy, we reached the absolute 5.5PN
accuracy [see Eqgs. (6.3) and (6.4)]; for angular momentum,
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we reached the absolute 5.5PN accuracy [see Egs. (7.2) and
(7.3)]; for linear momentum, we reached the absolute
6.5PN accuracy [see Egs. (4.13), (5.3), (8.7), (9.6), and
(9.10)]. See the summary of our results in Sec. X and,
notably, in Tables II and III.

Our results have a limited PN accuracy, but are valid (at
least) at order G’.

We completed the linear-response computation of the
radiative contribution to the individual impulses [30] by
including two additional terms (see Sec. XII): (i) the
additional contribution Ac, in the relative scattering angle
linked to the time-asymmetric piece of the radiation-
reaction force [see Eq. (12.18)] and (ii) the additional
contribution ApT"in Jinked to nonlinear radiation-reac-
tion effects. We then wrote the total radiative contribution
to the impulses in the following form:

Aprrtot Aprrhn -odd + Aprrde + Aprrremzun (131)

with

Aprrlm -odd __ grrrel A cons +APCm p+ _

=X

d){conﬂ C.m. “ EH PC.m. :
_E a I‘)Lad_(pgxprad) U/n (132)
c.m. c.m.
where
E\E,
AP, = E 13.3
c.m. Ecim,Pc N rad ( )
Here 7™ is defined as
_ 1 aXCOHS 1 aXCOIIS
7 = <2 oF +§71rad>’ (13.4)

and Pt denotes the part of Pk, orthogonal to the x

direction, namely,
PfadEPf' Pradex (135)

All the radiative losses (in Eq, J;,q, and P% ;) entering here

include time-asymmetric (hereditary) effects. The second

rrP

term in Eq. (13.1), Ap, * , is the contribution linked to the

x component of Prad, namely,
o E P
ApE = - pPde,, (pg‘—)U,,. (13.6)
c.m. c.m.

Finally, the remaining contribution in the decomposition
(13.1) is

Aprl‘ remain — AC¢ ApCOIlS + Aprl‘ nonlin .

13.7)
d)(cons (

Within our approach, the two contributions to A p‘,},{emain,
Eq. (13.7), have different physical origins: the Ac-related
one is linear in radiation reaction (but of time-asymmetric
origin), while Apfromin js nonlinear in radiation reaction.
However, they share common mathematical properties
(antisymmetry under particle exchange, second-self-force
character), and our mass-polynomiality constraints do not
distinguish their origins.

We studied the consequences of the mass polynomiality of
the Lorentz-invariant form factors as defined in Egs. (11.3)—
(11.8). The resulting structures were shown to imply the
v-polynomiality rules introduced in [30]. The latter v rules
ensure the mass polynomiality of the first contribution
Aptrlin-odd o the impulses (see Table II of [30]). Then we
showed how the nonpolynomiality of the P, -related con-
tribution Apjy P could be cured by adding specific remain-
ing contributions ApTreman At order G*, the various
constraints to be satisfied by ApT™™n were shown to be
sufficient to fully determine A pT™™4" in terms of P, see
Eq. (12.30). At order G°, A pr™™a" was determined up to the
addition of one extra term, see Eq. (12.69).

All our 4PM-level results are compatible with those of
Ref. [25] and provide an alternative way of understanding
4PM radiation reaction effects. Our SPM-level results give
benchmarks for future SPM computations and hopefully
will bring new light on the current puzzles concerning the
5PN dynamics of binary systems [41,72].
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APPENDIX A: NOTATION AND
USEFUL FORMULAS

We list below some useful formulas that one often
needs to have at hand. The incoming c.m. Lorentz factor
y = -u; and its associated (dimensionless) momen-
tumhke variable p., are related by

Po=\r" -1 (A1)
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The dimensionless angular momentum j is related to the
original c.m. angular momentum J by

cJ
Gmlmz '

j= (A2)

The vectorial impact parameter (orthogonal to u] and u;)
b, =b;—-b, = bﬁlz together with the conservative scat-
tering angle ..., enters the definition of the Cartesian-like

basis vectors e, and e, as follows [see Eq. (3.49) of
Ref. [30] ]:

e _ COSXCOH§b+ ~nXC20H§n ,
e, =— stCO"S b+ cos?omp | (A3)
2 2
where n_ is the direction of the incoming momenta,
E5 ET
no- i (Bur-u). (A
Pc.m.Ec.m, my ny
and [see Eqgs. (A4) and (AS5) of Ref. [30] ]
— myn, 2
P, = -1
c.m. E;m y ’
E;m = Mc*h = Mc*\/1+2u(y—1). (A5)
An equivalent expression for n_ is the following:
A U~
n_ — (MZ— ul—) , (A6)

Vi1

where the wedge product of two vectors A and B is
standardly defined as

AAB=A®B-BQA., (A7)

so that the contraction with a third vector C is given
by (AAB)-C=A(B-C)—B(A-C).

Boldface vectors denote spatial vectors in the c.m. frame
with time axis U~: p; = myu; = E,U™ + p; (where p; is
orthogonal to U™, and py = —p; = p~), with

\pT +p3l Eom.

(myuy +mouy).  (A8)

and E;,, = E7 + E3.

To ease the notation, we often remove the “c.m.” label
from both energy and linear momentum, e.g., P;,, — p_.
The label “—” (for incoming) is also frequently omit-
ted: E;, — E.

Let us also recall the following expressions [see
Egs. (A9) of Ref. [30]] for the incoming c.m. energy of
each particle:

_ my(myy +my)
E] :T,

ma(myy + my)

E; = = :

(A9)
as well as the relation between the dimensionless angular
momentum and the impact parameter,

1 GMh GE
== (A10)
J bpy  bps

When describing the conservative scattering, it is useful to
introduce the c.m. direction of the (conservative) outgoing
momenta n¢", as well as its associated orthogonal

direction ]§, namely,

B = COS()(conS)B + Sin()(COHS)n—

n(fns = Sin()(cons)l; + COS(Xcons)n— (Al 1)
In the text we used the relation
. d
B=——"—n%m, (A12)
d){CO]’lS *

The dyad (B,n<™,) differs from the incoming dyad
(b,n_) by a rotation of angle ... The dyad (e,, e,) is
midway between the latter two dyads, being obtained from
the incoming dyad by a rotation of angle % X cons-

The conservative scattering of the particle 1 corresponds

to the change p7 — p; ™™ of its linear momentum

pi=EU+p.n_, pf=EU+p_n?s, (Al3)
such that
ApS™S = pie™ — pT = p_(n™ —n_) (A14)
The following representation
Ap§ems = cmSh + el uy + clemu,, (A1)
with
CJEOM = —p_8iN Yoons.,
et =2 cos = 1),
el = =" Cosfems = 1), (AI6)
is also used.
For particle 2 we have instead
py=EU-pn_. p;*"=EU-pne™, (Al7)

with
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—+cons

ApSs = p3 —p; = —p_(n®™ —n_). (A18)

Therefore, Ap{®™ + Ap5°™ = 0, and then

d
d){COHS

d
ApSems. Al19
d)(cons %) ( )

cons

Ap$™ =—p B = -

APPENDIX B: RELATING HYPERBOLIC-
MOTION RESULTS TO ELLIPTIC-MOTION
ONES BY ANALYTIC CONTINUATION

As a check on our computation, in Sec. III, of the
2.5PN radiation-reaction correction to the quasi-Keplerian
parametrization of hyperboliclike motions, we have (suc-
cessfully) related it to the corresponding 2.5PN radiation-
reaction correction to the quasi-Keplerian parametrization
of ellipticlike motions derived in Ref. [55] (by using the
elliptic version of Lagrange’s method of variation of
constants). As already mentioned in the text, this compari-
son used two different ingredients: (i) analytic continuation
between elliptic and hyperbolic quasi-Keplerian paramet-
rizations (at the Newtonian order) and (ii) the use of a
different expression for the radiation-reaction force,
because of a difference in coordinates (ADM versus
harmonic).

Let us only mention a few technical steps of this
comparison. The analytic continuation relating the elliptic
eccentric anomaly u to the hyperbolic one » is simply
u — iv. This has to be taken together with the replacement
|

—48a + 334 — 65

a, —» —a,. Concerning the gauge dependence of the
radiation-reaction force, let us recall that, in a general
coordinate system, the 2.5PN-level radiation-reaction
acceleration depends on two gauge parameters, o and f3,
and reads [73,74]

8 G?*M?> .
A" = VS A [~A;spnim + Byspyy],  (B1)
where
1 GM .
AZ.SPN = 3(1 +ﬂ)1)2 + g (23 + 60( —_ 9ﬂ) T - Sﬁrz,
GM .
BZ.SPN: (2+a)U2+(2—Q)T—3(1+Q)r2 (B2)
For example, in harmonic coordinates @ = —1 and f = 0,
17GM
Ayspnp =302 +——,
3 r
GM
By spnp = 02 + 37- (B3)

Other useful gauge choices correspond to the Burke-
Thorne reactive potential (¢ =4, f=15) and to ADM
coordinates (o = %, p=73).

One can then easily derive the variation of constants in a
general gauge. For example the (a, f)-dependent equation
for 6"e, reads

N 21(e? =3)B—9(2a + 3)e? + 60a + 109

ds"e, 8u(1—e7) {120: -6+ 15 n

dt 15ate, 7 7

+24(e%—1)(&—%/%%) 158(e? — 1)
- 7

)(5

(B4)
x° X
In the ADM case, this equation becomes
d&”e,:8u(1:e?) 1_3_4_5 6e%—l—20_54(3,2—1_45((3,27—1)2 , (BS)
dt 15ate, 1 x > x° X
as in Eq. (56.b) of Ref. [55], while in the harmonic case we find
do™ 8u(l—e2)[3 17 9¢?—49 35(e? -1
€ _ v( 4et) - € B (et6 ) ) (B6)
dt 15a7e, X X

APPENDIX C: RADIATION-REACTION
CONTRIBUTION TO THE RELATIVE
SCATTERING ANGLE UP TO 4.5 PN ACCURACY

Reference [29] [see Eq. (5.99) there] has shown that, to
linear order in radiation reaction and under the assumption
of a time-odd radiation-reaction force, the radiation-reaction

contribution to the relative scattering angle (in the c.m.
frame) y, . can be computed through a linear-response
formula involving the radiative losses of energy and angular
momentum. We have generalized this linear-response for-
mula above, see Eq. (12.17), by including the term Ac,
that is nonzero when the radiation-reaction force contains a
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time-even piece. As discussed above, such a correction in
Xirrel StArts to contribute only at the 5PN (and 4PM) level. In
other words, the first two terms on the right-hand side of
Eq. (12.17) suffice to evaluate y,, ; up to the 4.5PN level, by
using the known radiative losses at the 4.5PN accuracy (as
the radiative losses start at the 2.5PN level, this corresponds
to a fractional 2PN accuracy).

At the leading-order 2.5PN level, we have given in the
text a direct rederivation of the value of . ., see
Eq. (3.23). The explicit expression of yZ3'N = [§7¢]> PN

rrrel T
in terms of a, and e, reads

2.5PN
)(rr.rel

2 72e 4+ 1069¢2 + 134
(ar.e,)

153 (2 = 1)32 3e2

121e% + 304 < 1)}
———arccos | —— | |,
er

Ve:—-1

which, when expressed in terms of the conserved energy
and angular momentum, becomes

(C1)

AN ) = v [72pd j* +1213p3,j2 + 1275
- 1557 3(1 4 paj?)
121p% 2 + 425 ,
+ AP ) | (C2)
Poo)
where
Alpr ) ( : ) ()
P J) = arccos | — ————— .
V1+pas

The large-j expansion of the latter expression reproduces
the leading PN order of the PM expansion of y,,, the first
terms of which [up to O(G’)] are listed in Table XI
of Ref. [30].

When going to higher PN levels in the radiative losses
(still keeping below the absolute SPN level), we must take
into account that the radiative losses contain fractional

|

2w [ (168(pe)? ;
1N (Poon ) = j—7{<(+])+72>“42(p°°’1)

corrections at the following levels: 1PN, 1.5PN, and 2PN.
The 1.5PN correction to the losses is the leading-order tail
effect (which is still described by a time-odd radiation
reaction). Let us first discuss the 1PN and 2PN fractional
corrections, leading to contributions to y,. . at the 3.5PN
and 4.5PN levels.

The expressions of y, . at the (n+ 1PN levels (for
n = 3, 4) have the general structure

Xt (Peor )N = A3 N(po, ji V) A (Poos )
+ AN (p o V) A(Peos J)

+AF N (Poo- Ji0). (C4)

Using the 2PN conservative scattering angle, Eq. (45) of
Ref. [31],

1PN 2PN

N
X cons Xcons | Xcons o , Xcons 4 6
= 0] , C5
5 5 Ty 0. (CS)
where
N
Xcons . _E
2 _A(poo’.]) 2’
xégrﬁ:iA(p j)+poo(3+2j2p§o)
2 = J(+ /*p%)
2PN )
Xcons 3[.] poo(zy_s) -35+ 101/] .
2 - 4]4 A(poov.])
P 44
—_—— —-81 + 26
AP( ey PR
+ 2j2p§o(—95 +28v) + 30v — 105], (Co)

and the fractionally 2PN-accurate expressions (when
excluding tails) for the radiated energy and angular
momentum given in Ref. [30], Eqgs. (C10)—-(C13) and
(E4)—(E10), we get the following explicit results:

(23111 4370 (11647 424y M7 _10m |
+ |:<poo])3<—_ )+(poo])< _ )+ 40 6 ].A(poo,])

840 30 60 3 (o)
. ] i (B0_8Y | (92639 T8I (5049251 3503
(PP L 12 |17\ 7775 Pel)"\ 7200 ~ 90 Pel) "\ 2600 ~ 10

1127y

, (81889 8179v)

* (Pe) ( 120 18 6

n 13447
40 '
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2% 0aed) =25 [ (-T2 (pri (316- 20 - 7450 4. 1586] A2 )
PR {pmﬂ 5111/2—752531/4—44759)—|—(p°°j)6<3 s, 13678% 1020745>
(Peo) (Peoi)* + 24 1680 ' 1120 168 1512
(pi) (52371/ 15795491/+16375901> (pi)? <49491/ 1492090 6034507>
4 420 5040 3 24 1080
5481.2 _ 258051y 5839651
8 80 2016 ] Pes:J)
N 1 {(p j)12<81_@+@> p j)10<197811/2_1059131/ 45934963)
(Peod)?+ 1) [7°° 5 35 63 % 120 560 352800
i) (4396571/2_47396053y 3027711913)+( i (607627y2_95753533u 7101025663)
360 25200 3175200 180 12600 1587600
i) (7963371/ _ 170414669 434998411) (i) <66997y 520709y 266996831)
180 12600 45360 24 48 30240
5481, 258051y 5839651
8§ 80 | 2016 H (€7)

For completeness, the corresponding PN-expansion coefficients when considering y,, as a function of a@, and e, are Eq. (C1)

(at the 2.5PN accuracy) together

with

3.5PN v 3.5PN 2 1 C3.5PN 1 3.5PN
i a,.e,) = C3”>arccos | —— | + arccos + G ,
& ( ) C_ZZ/Z(E% - 1)7/2 |: ’ ( er) vV e% -1 ( er) :|
4.5PN v 4.5PN 2 1 C4.5PN 1 4.5PN
i May,e,) = P2 19 [Cz' arccos (— e_,> + o arccos (— €_r> +C} } (C8)
where
336 , 384
C3 SPN _ 2 ,
5 TS
2783 47 260 1507 1832 14594
35PN 4 T 2 _ —
<420 >+< 37 7>er 15777105
8, , 288 1253 1396049\ , 7498 71683 64 39394\ 1
35PN _ _ _ 2 _ _ o= _ C
o (5 ) ( 45 7 76300 )e’ 45 77450 +< sVt 1575> (C9)
and
1716 94 10008 2624 16904
45PN _ 4 _ _ 2 _ 480y
€2 < 35 5”>e’+< 35 5 ”)e’ LTI
9 , 7783 82489 49 , 48821 417001 514, 427622 1607
C4SPN 2 a7 5 _ 4 214 5 2
1 <20y+840y+1680> +<3"+ 84 3780> ’+<5 ¥ 105 63 )e
19066 19882
2 _ =
+ 88v° + G v 7
2, 242 808 1367 , 72587 28987039 365 , 72257 147017953
CASPN _ [ _Z2 2 272 oUB\ ¢ 2 4 200 5 _ 2
0 < sV s 45)6’ * ( 180~ T 2520 © 176400 ) ( 6~ 18 793800 )e’
5956 , 98228321 1299217 (36 , S6108 16847071\ 1 c10)
45 99225 630 5 315 99225 ) &2
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Let us finally discuss the tail-related contribution to y, ;. The leading-order 4PN tail contribution is obtained by
inserting in the linear-response formula the (j-expanded) Eqs. (D26) and (F2) of Ref. [30]. The result is the following:

. 7168 p3, 573 . p2 512 153856 p 1
4PN _ 0 3 oo i 2 ) > — 1. 11
Yiel(Poos J) 1/{ 5 + 50 " 7 + 9 + 75 " Fi + 0 7 (C11)

If we formally insert also the fractional 1PN correction to the linear tail, we get [by using the 2.5PN-accurate expressions for
E™ and J™ derived above in Egs. (6.5) and (7.4), respectively] the following 5PN-level contribution to yy;

erre

SPNfromuilinloses () — [(4992 676096) ( 32079 145536 7767 2+14032) &

35 1575 120" 175 70 7 Tss V)T
7014 515456 , 206188 207 , 89216 18853168 .\ p’ 2
=223 e - ©. 0 . (C12
*’( 5 03057 105 T s 7 105 Y 3075 V” ) i <‘, )] (€12)

Note, however, that at this level there are several other contributions that should be added to this result.

APPENDIX D: 3PN-ACCURATE QUASI-KEPLERIAN PARAMETRIZATION
OF THE HYPERBOLIC MOTION

The 3PN-accurate quasi-Keplerian parametrization of the hyperboliclike motion is
=a,(e,coshv —1),
nt=e,;sinhv—v+ f,V+g,sinV + h,sin2V + i,sin3V,

¢ = K[V + fysin2V + g, sin 3V + h; sin4V + i, sin 5V], (D1)
with
+1
V(v) = 2arctan [ % tanhﬁ} (D2)
e¢ -1 2

The 3PN orbital parameters in modified harmonic coordinates along hyperboliclike orbits were obtained in Ref. [56].

However, their expressions are affected by typos, which we discovered when rederiving the 3PN-accurate quasi-Keplerian
parametrization of hyperboliclike motions. We list below these typos.
(1) Eq. (2.36b), third line: the term 473, should be replaced by

4 = 1951% + 1120 — 1488

2E?
430080

(2) Eq. (2.36¢): The third term in parentheses should have an overall factor of 15 in front, and one should replace the
+35° by =37°.
(3) Eq. (2.36j): The prefactor 5° should instead be 7.
(4) Eq. (2.36k): The +— sign of the third term in parentheses is a —.
(5) Eq. (2.36m), second line: the term —301357> is —301357°.
(6) Eg. (2.360): There is a missing overall 3/35 in front.
It is convenient to express the orbital parameters in terms of a, and e, through the relations

1 71U\ 2507 1, (2-
E= +<—L>"+[—-+ +( )%

2a, \8 8 16 16" 16" 21
363 149 Eag_jlﬁ+ﬁ5+5%”'J£§W+%ﬁ) 4+ (155 + g + )
128 128" T64” T128 (e2—1) (€2 —1)2 at’
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1 B-3v)] 7
g = 2_1 1=—= 2_1 2
=i (e 2

e; —
TIPS @ﬁ—ﬁwlvm@—ﬁ -12) o
27878 ’ Je—1 ( 12 | @2
N 5 5_1 z i (6+( =80 + 9% - X 17)
27 16" 16" m
(5+ % 2 2%51;33)”_|_71 l/2+ l/) (17+(_ 33237) 1851/2_%1/3) ’7_6 (DS)
(e —1)%2 (ef —1)%2 a*
We find
11 7 [3, 25 147 (-3v+6)] 7t
I’l:y ( 9—|-I/) 5/2+|:§IJ —§U+?+7e%_l T/Z
USL_ 235 L 5 o (9+(BR BB (24 (BB 3] A
16 16 16 21 (2—1)? 22
K143 7 [Gr=9 (vt
(e2-1)a, e2—1 (e2 1) | a?
N (%v—%v2)+( D+ B+iEa2) - %1/2)+(%+(—122+%§7r2)1/+%v2) n°
e2—1 (e2—1)2 (e2-1)3 a’
e 3\ 67 15, 4-Tv\n*
T4 (4-2 16— —v+— -
e, +< 2U)a, < gV gY +e%—1 a?
o1 599y+219y U35 (28 + (& 22 3;{;‘33)u+21u)+(8+(—%+‘}ézﬂ)u+2u) °
16 16 16 2-1 (e2—1)2 a’
ey vi? 29 15, (-5- *57u+;§u2) n* 213 213, 61
2 _1=-ZL =z i 4 == -
e, 2a,+< RV TRt 21 Z1 28t 1Y 128t
(4 Qw0+ B0 - B) | (164 (B + B + 802+ 500\ o o
e? -1 (€2 —1)? Ez_f' (D4)

The remaining 3PN orbital parameters still expressed as functions of @, and e, are listed in Table IV.

TABLEIV. The orbital parameters of the 3PN quasi-Keplerian hyperbolic representation in modified harmonic coordinates, expressed
as functions of a, and e,. The corresponding (equivalent) expressions in terms of £ and j have been given in Ref. [56].

f 3(5-20) 4, 144(40%—190+40)e2 +u(~8768+5760+1237%) ¢
t - + 192(2— 128 n
2a%/e2—1 (ez=1)"?a;
f¢ e2(1+19v-312) 4_e%[—280»(%2—l77v+458)e,2726880+268801/3+36960v2+(7107104+301357z2)u] 6
sa2(e2—1)2 2683023 (2—1)7 n
9; ev(15-v) 4 e, [=350(2712=263v+717)e2~22400+7000 + 882002 +(—5956+14357%)1] 6
P 240(3-1)% n
9y (1-3v)ve; 4 ve,[ 35(2302—87u+27)e2 4196002+ 148400414357 ~31856] ¢
2@ (2-1) 89603 (¢2-1)° n
h, (32 —490+116)ve? ¢
16(e2-1)%2a}
h¢ (|5u2—57b+82)eﬁu 6
192a}(e2-1)3
i (1302=73v423)ve} ¢

192(e2-1)3a}

(5v2=5v+1)ve} 6
256a)(e2—1) 1
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