
Systematic bias on the inspiral-merger-ringdown consistency test
due to neglect of orbital eccentricity

Sajad A. Bhat ,1,* Pankaj Saini ,1,† Marc Favata ,2,‡ and K. G. Arun 1,§

1Chennai Mathematical Institute, Siruseri 603103, India
2Department of Physics and Astronomy, Montclair State University,

1 Normal Avenue, Montclair, New Jersey 07043, USA

(Received 27 July 2022; accepted 15 November 2022; published 11 January 2023)

The inspiral-merger-ringdown (IMR) consistency test checks the consistency of the final mass and final
spin of a binary black hole merger remnant, independently inferred via the inspiral and merger-ringdown
parts of the waveform. As binaries are expected to be nearly circularized when entering the frequency band
of ground-based detectors, tests of general relativity (GR) currently employ quasicircular waveforms. We
quantify the effect of residual orbital eccentricity on the IMR consistency test. We find that eccentricity
causes a significant systematic bias in the inferred final mass and spin of the remnant black hole at an orbital
eccentricity (defined at 10 Hz) of e0 ≳ 0.1 in the LIGO band (for a total binary mass in the range
65–200 M⊙). For binary black holes observed by Cosmic Explorer (CE), the systematic bias becomes
significant for e0 ≳ 0.015 (for 200–600 M⊙ systems). This eccentricity-induced bias on the final mass and
spin leads to an apparent inconsistency in the IMR consistency test, manifesting as a false violation of GR.
Hence, eccentric corrections to waveform models are important for constructing a robust test of GR,
especially for third-generation detectors. We also estimate the eccentric corrections to the relationship
between the inspiral parameters and the final mass and final spin; they are shown to be quite small.
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I. INTRODUCTION

With the increasing number of gravitational-wave (GW)
detections by LIGO/Virgo [1–5], general relativity (GR) has
been subjected to a battery of tests in the strong field and
nonlinear regime of the theory. No statistically significant
evidence of physics beyond GR was found in any of these
tests [6–17]. However, efforts in the near and long term aim
to test GRwith increasing levels of precision. To confidently
claim a deviation from GR, the waveform templates that are
compared with the data should be free of systematic biases.
These might be due to unmodeled physical effects like
eccentricity, spin precession, higher modes, or high post-
Newtonian-order terms [18,19]. If these effects are not
included at a level consistent with the precision of the
detector, systematic biases may lead to a false indication of a
GR violation.
One of the many proposed tests of GR using gravitational

waves is the inspiral-merger-ringdown (IMR) consistency
test [20,21]. The IMR consistency test considers the mass
and spin of the remnant black hole (BH) obtained via two
independent estimates. The individual masses and spins of

the component black holes are first inferred from the inspiral
(low-frequency) part of the GW signal. Using numerical
relativity fits [22–24], these component masses and spins
are mapped to the final mass and final spin of the remnant
black hole formed after the binary components merge. The
final mass and final spin of the remnant black hole can also
be independently estimated from the merger-ringdown
(high-frequency) part of the signal. If the signal is described
by the dynamics of binary black holes in GR, the remnant
final mass and spin inferred via these two approaches should
be consistent with each other [25–27]. Lack of consistency
indicates a potential GR violation.
Measurements of the final mass and final spin of the

remnant black hole using the merger-ringdown signal are
poorly constrained with current detectors—due to the low
signal-to-noise ratios (SNRs) associated with that part of
the signal [11,13,15,16]. This limits the overall precision of
the IMR consistency test. The combined posterior on the
fractional mass and spin deviation parameters of GWTC-3
events are consistent with GR predictions (see Sec. IV B
of [16]).
It is likely that deviations from GR are too small to be

detected by the LIGO/Virgo/Kagra network. The future
space-based detector LISA [28] or third-generation (3G)
ground-based detectors [29–31]—which may achieve levels
of precision ∼10 to 100 times greater—are more likely to
detect GR deviations. These detectors will attain higher
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precision measurements of the final mass and final spin
inferred from both the inspiral and the merger-ringdown. In
the case of the IMR-consistency test, the inverse of the area
enclosed by the error ellipses in the final mass-final spin
plane represents a parameter (called the resolving power)
that characterizes a detector’s ability to distinguish between
GR and non-GR effects [26]. Smaller areas or larger
resolving powers imply a greater chance of detecting
potential GR violations. In terms of this parameter, a 3G
detector like Cosmic Explorer (CE) [29] results in a factor of
∼1000 improvement in the precision of the IMR consistency
test [26] relative to LIGO’s first observing run (O1) [13]. An
additional factor of ∼10 improvement is achieved by
combining CE and LISA observations of a given source
(i.e., multibanding) [26,32]. Hence, even a small systematic
error may contaminate the IMR consistency test.
Since the emission of GWs in a bound binary leads to the

rapid decay of orbital eccentricity, it is expected that
binaries formed long before they merge will have nearly
circularized when they enter the frequency band of ground-
based detectors [33]. For example, consider a binary with a
moderate eccentricity of ∼ 0.2 when emitting a GW
frequency of 0.1 Hz. When it enters the LIGO frequency
band at 10 Hz, its orbital eccentricity reduces to ∼ 10−3.
Hence, LIGO/Virgo analyses primarily employ quasicir-
cular waveforms for parameter estimation of the observed
events.
However, the dynamical formation of compact binaries

[34,35] in dense environments such as globular clusters and
nuclear star clusters may lead to the formation of highly-
eccentric binaries. When these eccentric sources enter the
frequency band of GW detectors, they still possess some
residual eccentricity [36–39]. The detection of eccentric
signals in ground-based detectors using quasicircular wave-
forms has been studied in detail [40–48]. Those studies
found that circular templates are sufficient for detection if
eccentricities are ≲ 0.02–0.15. Moreover, using quasicir-
cular waveforms to analyze an eccentric source will
introduce a systematic bias on the inferred parameters
[18,49]. The size of this parameter bias Δsysθa depends
(approximately) on the square of the eccentricity e0 near the
low-frequency band of the GW detector [Δsysθa ∼Oðe20Þ].
(Throughout this paper we define e0 to be the orbital
eccentricity at a reference GW frequency of f0 ¼ 10 Hz.)
Eccentricity-induced errors may already be biasing the
parameter estimation of detected sources that are potentially
eccentric [50–53]. In addition to biasing parameters,
residual eccentricity also has the potential to bias tests of
GR. All the current tests presume circularity in the wave-
formmodels used in the analysis. In Ref. [54] we studied the
effect of neglecting the orbital eccentricity on parametrized
tests of GR. That test considers only the inspiral phase of the
binary evolution in the regimewhere a post-Newtonian (PN)
expansion of the GW phase is valid. The GR values of the
coefficients of the PN phase expansion are replaced with

new coefficients that are perturbed from their GR values.
The parametrized test then attempts to constrain the size of
those perturbations (with zero perturbation corresponding to
GR). In [54] we found that the systematic bias on para-
metrized deviation coefficients becomes significant at
e0 ∼ 0.04 at 10 Hz in the LIGO band and at e0 ∼ 0.005
at 10 Hz in the CE band.
Here we perform an analogous study, considering the

systematic bias that eccentricity induces on the IMR
consistency test. We focus on the bias in the binary masses
and spins that accumulates over many GW cycles during the
inspiral. That bias then propagates into the numerical
relativity fitting formulas that predict the final mass and
spin of the remnant BH, potentially exceeding (if e0 is
sufficiently large) the statistical errors on those parameters.
When compared with the final mass and spin inferred from
the merger-ringdown, this may lead to an inconsistency that
mimics a GR violation. Moreover, the effect of systematic
waveform errors may grow for a large catalog of GW
events [55].
Section II of this paper briefly discusses our waveform

model and the methods for calculating statistical and
systematic errors. (Additional details about our waveform
model are provided in Appendix A.) Section III explains
how we propagate statistical and systematic errors in the
component masses and spins to determine the errors in the
final mass and spin (including the relevant error ellipses).
Our results are discussed in Sec. IV, followed by our
conclusions in Sec. V. Appendix B provides a quasi-
Newtonian derivation of the eccentric corrections to the
final mass and final spin formulas. Throughout the paper we
use geometric units (G ¼ c ¼ 1).

II. WAVEFORM AND PARAMETER ESTIMATION

We use the sky-averaged IMRPhenomD waveform
model developed in Refs. [56,57]. This is a frequency-
domain phenomenological model parametrized in terms
of the total binary mass M ¼ m1 þm2 (for binary com-
ponent masses m1 and m2), the symmetric mass ratio
η ¼ m1m2=ðm1 þm2Þ2, the dimensionless spin parame-
ters of the two BHs (χ1; χ2), the time and phase of
coalescence (tc, ϕc), and the luminosity distance to the
source DL. The cosmological redshift is accounted for by
replacing M → ð1þ zÞM, where z is the source redshift.
TheM used here and throughout refers to the source frame
binary mass. We adopt the luminosity distance/redshift
relation for a flat universe [58],

DLðzÞ ¼
c
H0

ð1þ zÞ
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ z0Þ3 þ ΩΛ

p ; ð2:1Þ

with the following cosmological parameters [59]: H0 ¼
67.90 ðkm=sÞ=Mpc, ΩM ¼ 0.3065, and ΩΛ ¼ 0.6935.
The IMRPhenomD waveform includes only the domi-

nant ðl; mÞ ¼ ð2;�2Þ spin-weighted spherical harmonic
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modes and assumes that the BH spins are aligned or
antialigned with the orbital angular momentum (i.e., are
nonprecessing). Reference [57] provides the amplitude and
phase of the Fourier transform of the h2;2 waveform mode,

h̃2;2ðfÞ ¼ AIMRðfÞe−iϕIMRðfÞ; ð2:2Þ

where f is the GW frequency. Our parameter estimation
formalism below depends on the Fourier transform of the
detector response hðtÞ ¼ hþFþ þ h×F× written in the form
h̃ ¼ AðfÞeiΨðfÞ. Here hþ;× are the GW polarizations, and
Fþ;× are the detector antenna response functions. The
relationships between AðfÞ and AIMRðfÞ and ΨðfÞ and
ϕIMRðfÞ for IMRPhenomD are provided in Appendix A.
To incorporate the effects of eccentricity into the

IMRPhenomD waveform, we implicitly modify the inspiral
phase by adding a leading-order [i.e., Oðe20Þ] eccentricity
correction. When the waveform Fourier transform is
expressed in the form h̃ðfÞ ¼ AðfÞeiΨðfÞ, this correction
shifts the phase Ψ → Ψþ ΔΨ, where ΔΨ is the 3PN order
eccentric correction computed in Eq. (6.26) of [60]. Since
we work in the regime where the eccentricity at the reference
frequency is small (e0 ≲ 0.2), and because the instantaneous
eccentricity further decays during the remainder of the
inspiral, we ignore any (small) eccentric correction to the
merger-ringdown part of the waveform. In our approxima-
tion the systematic errors depend only on the phase differ-
ence induced by eccentricity corrections to the waveform.
Since the Cutler and Vallisneri systematic error formalism
[61] (discussed further below) allows us to decouple these
eccentric corrections from the rest of thewaveform [see, e.g.,
Eq. (2.13)], a direct modification of the IMRPhenomD
waveform is not needed in our analysis. We also ignore
eccentricity effects on the mapping between the inspiral
parameters and the final mass Mf and final spin χf of the
merger remnant. Appendix B computes the leading-order
eccentric correction to that mapping and demonstrates that it
is small.
To carry out the IMR consistency test, the signal is

divided into two parts: inspiral and merger-ringdown. Both
parts of the signal should have sufficient signal-to-noise
ratios (SNRs) to allow for precise parameter estimation. The
choice of transition frequency from inspiral to merger-
ringdown is not unique. However, small variations of the
inspiral cut-off frequency do not have a significant impact on
the test [20,25]. We adopt the choice of the LIGO-Virgo-
Kagra (LVK) collaboration [13,15,16] and choose this
transition frequency to be the GW frequency (fISCO)
corresponding to the test-particle innermost stable circular
orbit (ISCO) [62] of the remnant Kerr black hole. (This is
described further below.)
To calculate the statistical measurement precision, we

apply the Fisher information matrix formalism to the
IMRPhenomD waveform model. This produces the covari-
ance matrix and the 1σ width of the parameters’ posterior

probability distribution, given the assumptions of large SNR
and noise that is stationary and Gaussian [63,64].
The probability that the GW data dðtÞ is characterized by

the source parameters θa is given by

pðθjdÞ ∝ p0ðθÞ exp
�
−
1

2
Γabðθa − θ̂aÞðθb − θ̂bÞ

�
; ð2:3Þ

where p0ðθÞ is the prior probability. The values θ̂a are the
maximum of our Gaussian likelihood function and corre-
spond to the “true” value of the source parameters in the
absence of bias. If the gravitational wave signal is described
by hðtÞ, the Fisher information matrix Γab is given by

Γab ¼
�
∂h
∂θa

���� ∂h
∂θb

�
; ð2:4Þ

where the inner product is defined as

ðajbÞ ¼ 2

Z
∞

0

ã�ðfÞb̃ðfÞ þ ãðfÞb̃�ðfÞ
SnðfÞ

df: ð2:5Þ

Here SnðfÞ is the noise spectral density of the detector,
h̃ðfÞ is the Fourier transform of the time-domain GW signal
hðtÞ, and � denotes complex conjugation. In practice, the
lower and upper limits of integration are defined by the
sensitivity of the detector and the source considered.
The prior probability p0ðθÞ characterizes our prior

knowledge about the parameters θ. If p0ðθÞ follows a
Gaussian distribution centered on values θ̄,

p0ðθÞ ∝ exp

�
−
1

2
Γ0
abðθa − θ̄aÞðθb − θ̄bÞ

�
; ð2:6Þ

then the covariance matrix is given by

Σab ¼ ðΓab þ Γ0
abÞ−1; ð2:7Þ

where we have assumed θ̄ ≈ θ̂. The 1σ statistical errors σa
in the parameters θa are given by the square root of the
diagonal elements of the covariance matrix:

σa ¼
ffiffiffiffiffiffiffi
Σaa

p
: ð2:8Þ

The parameters of our waveform model are

θa ¼ ftc;ϕc; ln M; η; χ1; χ2; ln DLg: ð2:9Þ

Since the coalescence phase ϕc and spin parameters
ðχ1; χ2Þ are restricted to the physically allowed ranges ϕc ∈
½−π; π� and χ1;2 ∈ ½−1; 1�, we approximately incorporate
these constraints in the Fisher matrix approach by adopting
Gaussian priors on those parameters with zero means and
1σ widths given by δϕc ¼ π and δχ1;2 ¼ 1. Note that we
work with an angle-averaged waveform, so sky position
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and binary orientation angles do not enter our analysis; see
Appendix A for details.
We use the Cutler and Vallisneri formalism [61] to

calculate systematic errors. We can write the approximate
waveform in terms of an approximate amplitude (AAP) and
approximate phase (ΨAP) via

h̃AP ¼ AAPeiΨAP : ð2:10Þ

The true waveform is similarly written as

h̃T ¼ ðAAP þ ΔAÞeiðΨAPþΔΨÞ; ð2:11Þ

where ΔA and ΔΨ are the amplitude and phase difference
between the true and approximate waveforms, respectively.
The systematic error Δsysθa in the parameter θa is then
approximated by [61]

Δsysθa ≈ Σabð½ΔAþ iAAPΔΨ�eiΨAP j∂bh̃APÞ: ð2:12Þ

(Note that parameter and matrix indices are freely raised
or lowered, with repeated indices denoting summation.)
Ignoring the eccentric corrections to the amplitude
(ΔA ¼ 0), this equation becomes

Δsysθa ≈ Σabðih̃APΔΨj∂bh̃APÞ; ð2:13Þ

where the right-hand side is evaluated at the “best-fit” value
of the parameters.
In our calculation, the approximate waveform h̃AP is the

inspiral part of the IMRPhenomD waveform, while ΔΨ in
Eq. (2.13) is the leading-order [i.e., Oðe20Þ] eccentric
correction to the inspiral stationary phase approximation
phasing [60] discussed earlier. See [49,54] for more details
and applications of systematic errors arising from eccentric
corrections. In particular, [49] compared the statistical and
systematic parameter errors of eccentric binaries using both
Bayesian parameter estimation and the Fisher/Cutler-
Vallisneri formalism, finding good agreement. That study
supports the application of the Fisher/Cutler-Vallisneri
formalism in the context of assessing systematic biases
in GR tests here and in [54].
Note that the eccentric corrections ΔΨ that induce

systematic parameter errors in Eq. (2.13) are completely
decoupled from the IMRPhenomD waveform; the latter
enters only in h̃AP. Because of the complexity of the
IMRPhenomD waveform, the parameter derivatives
∂h̃AP=∂θb appearing in Eqs. (2.4) and (2.13) are not easily
computed analytically. We compute them numerically via a
“symmetric difference quotient.” For example, for a function
fðxÞ the derivative is approximated via f0ðxÞ ≈ ½fðxþ hÞ −
fðx − hÞ�=2h for very small h.

The noise curve for LIGO is taken from Eq. (4.7) of [65];
the CE noise sensitivity is from Eq. (3.7) of [66]. The lower
cutoff frequency is flow ¼ 10 Hz for LIGO and flow ¼
5 Hz for CE. The transition frequency between the inspiral
and merger-ringdown part of the waveform is taken to be
the GW frequency fISCO. This frequency corresponds to
twice the orbital frequency of a test particle orbiting at the
innermost stable circular orbit of the black hole merger
remnant formed by the binary coalescence [23,62,67] [see
Eq. (2.23) and Appendix C of [49]].
Using the IMRPhenomD waveform h̃ðf; θaÞ and the

Fisher matrix approach, we compute the 1σ statistical errors
and parameter covariances via three separate approaches:
(i) The inspiral-only parameter errors are computed by
performing the Fisher matrix frequency-integrals [Eqs. (2.4)
and (2.5)] from flow to fISCO. (ii) The merger-ringdown
(MR) parameter errors are obtained by evaluating the Fisher
matrix from fISCO to fend. Here fend is chosen to be the
minimum frequency beyond which there is no further
accumulation of SNR. (iii) The inspiral-merger-ringdown
(IMR) parameter errors involve evaluating the Fisher matrix
integrals from flow to fend. Note that in all three cases, we
are computing the errors in the parameters θa that primarily
characterize the inspiral. Those are the parameters that fully
determine the entire IMRPhenomD waveform. This is in
contrast to the parameters that characterize the BH merger
remnant (i.e., via an analysis of ringdown modes), namely
the final BH mass Mf and spin χf. The computation of the
errors in ðMf; χfÞ is discussed in the next section. The
systematic errors in θa [Eq. (2.13)] can only be computed
for the inspiral [case (i)], as the eccentric waveform phase
correction ΔΨ that we employ does not extend to the
merger-ringdown.

III. COMPUTING ERRORS IN THE FINAL
MASS AND SPIN

Having established a method to compute the statistical
and systematic errors for the parameters θa, we now
proceed to compute the errors in the final mass Mf and
final spin parameter χf of the BH remnant. This is
effectively done via error propagation as we now describe.
Defining θμ ¼ ðlnM; η; χ1; χ2Þ to be a subset of the

inspiral parameters θa [Eq. (2.9)], the final mass and spin
are related to θμ via numerical relativity (NR) fitting
formulas: Mf ¼ MfðθμÞ and χf ¼ χfðθμÞ. Here we make
use of the NR fits in [56,67] (see also Appendix C of [49]
for the relevant formulas). Note that these fits assume that
the binary’s orbit is circular. In reality, the parameter e0
should be added to θμ as it will affect the relationship
between the binary component parameters and the final
mass and spin. Here, we assume that the binary already has
a modestly low value of e0 (≲0.2) at f0 (near the detector
low-frequency cutoff flow). As the binary circularizes, the
instantaneous eccentricity becomes even smaller near
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fISCO.
1 Hence, we posit that any eccentric correction to the

final mass and spin will be small, with Mfðθμ; e0Þ ≈
MfðθμÞ (and likewise for χf). We attempt to quantify this
approximation in Appendix B by estimating the eccentric
corrections to Mf and χf via a leading-order 0PN
(Newtonian) calculation. We find the corrections to be
quite small (≲ 1% for e0 ≲ 0.2). NR simulations covering a
large parameter space of eccentric binaries will ultimately
be necessary to compute these corrections in detail.
Given the functions MfðθμÞ and χfðθμÞ, the correspond-

ing 1σ statistical errors ðδMf; δχfÞ are computed as
follows. The Fisher matrix Γab þ Γ0

ab determines a
Gaussian probability distribution [Eq. (2.3)] for all the
parameters θa [Eq. (2.9)]. This is then marginalized over
the extrinsic parameters ðtc;ϕc; lnDLÞ. In the Fisher matrix
approach, this marginalization is performed by simply
removing the rows and columns corresponding to
ðtc;ϕc; lnDLÞ in the covariance matrix Σab [Eq. (2.7)].

This defines a 4 × 4 covariance matrix Σð4Þ
μν for the

parameters θμ, with diagonal elements defining the squares
of the marginalized 1σ errors ðδ lnM; δη; δχ1; δχ2Þ. The off-
diagonal elements (e.g., Σð4Þ

lnMχ1
) define the marginalized

correlations.
The 1σ statistical errors and covariances in the final mass

and final spin are then computed via standard statistical
error propagation using the analytic NR fits MfðθμÞ and
χfðθμÞ. Defining a 2 × 2 symmetric covariance matrix for
the parameters Mf and χf as

Σ̃AB ¼
"
Σ̃MfMf

Σ̃Mfχf

Σ̃χfMf
Σ̃χfχf

#
; ð3:1Þ

the elements of Σ̃AB are related to Σð4Þ
μν via

Σ̃MfMf
¼ δM2

f ¼
�
∂Mf

∂θμ

��
∂Mf

∂θν

�
Σð4Þ
μν ; ð3:2aÞ

Σ̃χfχf ¼ δχ2f ¼
�
∂χf
∂θμ

��
∂χf
∂θν

�
Σð4Þ
μν ; ð3:2bÞ

Σ̃Mfχf ¼ Σ̃χfMf
¼

�
∂Mf

∂θμ

��
∂χf
∂θν

�
Σð4Þ
μν : ð3:2cÞ

This procedure provides the covariance matrix for the final
mass and spin given the covariance matrix of the original
parameter set θa.
To help interpret and visualize our results in Sec. IV, we

plot the 1σ error ellipse in theMf − χf plane. To do this we
recognize that the ellipse semimajor (a) and semiminor (b)
axes are related to the eigenvalues ðΛ�Þ of the covariance
matrix Σ̃AB via2

a ¼ ffiffiffiffiffiffiffi
Λþ

p
and b ¼

ffiffiffiffiffiffi
Λ−

p
: ð3:3Þ

The counterclockwise angle θ of the error ellipse’s semi-
major axis relative to the Mf (horizontal) axis is

θ ≈ −
1

2
arctan

�
2Σ̃Mfχf

Σ̃χfχf − Σ̃MfMf

�
: ð3:4Þ

We must also propagate the systematic errors Δsysθa

computed in (2.13) to determine the systematic errors inMf

and χf (i.e., ΔsysMf, Δsysχf). In our case, the relations
MfðθμÞ and χfðθμÞ provide analytic formulas that relate the
shifts Δsysθμ (computed for the relevant subset ofΔsysθa) to
the shifts ΔsysMf and Δsysχf. This is simply given by a
Taylor series expansion (see, e.g., [68] and Eq. (2.12) of
[69]). For example, the observed (biased) final mass is

MfðθμobsÞ ≈MfðθμtrueÞ þ
∂Mf

∂θμ
ðθμobs − θμtrueÞ

þ 1

2

∂
2Mf

∂θμ∂θν
ðθμobs − θμtrueÞðθνobs − θνtrueÞ þ � � � ;

ð3:5Þ

where θμtrue are the true values of the parameters, θμobs are the
observed values, and the partial derivatives are evaluated at
the true values. Defining ΔsysMf ≡MfðθμobsÞ −MfðθμtrueÞ,
Δsysθμ ≡ θμobs − θμtrue, and ignoring the quadratic and
higher-order terms, the systematic errors in the final mass
and spin are approximated as

ΔsysMf ¼
∂Mf

∂θμ
Δsysθμ; ð3:6aÞ

Δsysχf ¼
∂χf
∂θμ

Δsysθμ: ð3:6bÞ

We have verified that the quadratic-order corrections to the
above change the errors by only ∼ 10%.1For example, a binary like GW150914 (with masses

m1 ¼ 36 M⊙, m2 ¼ 29 M⊙ and spins χ1 ¼ 0.4, χ2 ¼ 0.3)
evolves from an eccentricity of e0 ¼ 0.1 at 10 Hz to e ∼ 0.005
at the ISCO. A binary with total mass M ¼ 100 M⊙, mass ratio
q ¼ 2 and spins ðχ1; χ2Þ ¼ ð0.4; 0.3Þ evolves from an eccentricity
of 0.1 at 10 Hz to et ≈ 0.009 at the ISCO. A system with the same
mass ratio and spins but total mass M ¼ 300 M⊙ (in the CE
band) evolves from an eccentricity of 0.01 at 10 Hz to 0.003 at
ISCO. We assume DL ¼ 500 Mpc for all the systems.

2Note that similar formulas are given in Sec. VIII of [49], but
expressed there in terms of the eigenvalues λ� and components of
the Fisher matrix rather than the covariance matrix. The formulas
for a, b, and θ are consistent with the results here when using the
relation Σ ¼ Γ−1. Note also that a factor of 2 should multiply the
third term on the left side of Eq. (8.1) in [49].
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A. Error propagation for the null variables

In addition to computing the statistical and systematic
errors in Mf and χf, it is also helpful to define the null
variables

ΔMf ≡Minsp
f −MMR

f ; ð3:7aÞ

Δχf ≡ χinspf − χMR
f : ð3:7bÞ

Here, the variables ΔMf and Δχf represent the difference
between the final mass (or spin) computed using only the
inspiral signal and only the merger-ringdown (MR) signal.
[They are not to be confused with the systematic errors
as in Eq. (3.6).] In these coordinates the origin point
ðΔMf;ΔχfÞ ¼ ð0; 0Þ represents the GR prediction; sta-
tistically significant deviations from that origin provide a
signature of GR violations via the IMR consistency test.
Formulating the IMR consistency test in terms of the null
variables provides a simpler interpretation of the overall
measurement precision of the test. It also provides a clearer
indicator of when systematic errors bias the test to a stated
level of statistical significance [e.g., by excluding the (0,0)
point].3

To compute the statistical errors in ðΔMf;ΔχfÞ, we
recognize that these null variables are a combination of two
separate measurements. In the first measurement, the binary
inspiral parameters θainsp [given by Eq. (2.9)] are determined
via the IMRPhenomDwaveform integrated over the inspiral
as discussed above (from flow to fISCO). The errors in those
variables are determined via the 7 × 7 dimensional Fisher

matrix Γð7Þ; insp
ab and its corresponding covariance matrix

Σð7Þ; insp
ab ¼ ½Γð7Þ; insp

ab �−1. One can similarly introduce a new
set of variables θaMR that are identical to θ

a
insp except that they

represent the values of the inspiral parameters that are
determined by applying the IMRPhenomD waveform over
the merger-ringdown frequency-range only (i.e., from fISCO
to fend as described at the end of Sec. II). These variables
have errors similarly determined by 7 × 7 dimensional

Fisher and covariance matrices, Γð7Þ;MR
ab and Σð7Þ;MR

ab .
We can now consider a larger parameter space,

θã ¼ ðθainsp; θaMRÞ, which is the union of the binary param-
eters measured during the inspiral and the binary parameters

measured during the merger-ringdown. The errors in this
new parameter set are described by a 14 × 14 dimensional

Fisher matrix Γð14Þ
ã b̃

that is block diagonal and composed
of the two seven-dimensional Fisher matrices discussed
above:

Γð14Þ
ã b̃

¼
"
Γð7Þ;insp
ab 0

ð7Þ
ab

0
ð7Þ
ab Γð7Þ;MR

ab

#
; ð3:8Þ

where here and below 0ðnÞ is a n × n zero matrix. Because
of the block diagonal form, the corresponding covariance
matrix can be found by inverting the individual seven-
dimensional Fisher matrices:

Σð14Þ
ã b̃

¼

2
64Σð7Þ; insp

ab 0
ð7Þ
ab

0
ð7Þ
ab Σð7Þ;MR

ab

3
75;

¼

2
64 ðΓð7Þ; insp

ab Þ−1 0
ð7Þ
ab

0
ð7Þ
ab ðΓð7Þ;MR

ab Þ−1

3
75: ð3:9Þ

The resulting 14-dimensional covariance matrix can then
be marginalized over the parameters ðtc;ϕc; lnDLÞinsp
and ðtc;ϕc; lnDLÞMR by removing the corresponding
rows and columns. This yields an 8 × 8 covariance matrix
that is also block diagonal and composed of two 4 × 4

submatrices:

Σð8Þ
μ̃ ν̃ ¼

"
Σð4Þ; insp
μν 0

ð4Þ
μν

0
ð4Þ
μν Σð4Þ;MR

μν

#
: ð3:10Þ

Here the rows and columns span the eight-dimensional
parameter set θμ̃¼ðθμinsp;θμMRÞ consisting of ðlnM;η;χ1;χ2Þ
measured separately during the inspiral and the merger-
ringdown.
Next, following the procedure in Eqs. (3.1) and (3.2), we

define a 2 × 2 covariance matrix that determines the 1σ
errors and covariances in the null variables,

Σ̂AB ¼
"
Σ̂ΔMfΔMf

Σ̂ΔMfΔχf

Σ̂ΔχfΔMf
Σ̂ΔχfΔχf

#
: ð3:11Þ

The elements of Σ̂AB are related to Σð8Þ
μ̃ ν̃ via

3To quantify consistency between the inspiral and merger-
ringdown, the LVK collaboration’s testing GR papers define
fractional mass and spin deviation parameters, ϵ≡ ΔMf

M̄f
and

ξ≡ Δχf
χ̄f
. Here M̄f (χ̄f) denote the mean of the final mass (final

spin) inferred from the inspiral and merger-ringdown. The GR
value ðϵ; ξÞ ¼ ð0; 0Þ in this parametrization is consistent with the
GR value (0,0) in our null parametrization. We use difference
(rather than fractional difference) parameters as they greatly
simplify the error propagation in our analysis.

BHAT, SAINI, FAVATA, and ARUN PHYS. REV. D 107, 024009 (2023)

024009-6



Σ̂ΔMfΔMf
¼δðΔMfÞ2¼

�
∂ΔMf

∂θμ̃

��
∂ΔMf

∂θν̃

�
Σð8Þ
μ̃ ν̃ ; ð3:12aÞ

Σ̂ΔχfΔχf ¼ δðΔχfÞ2 ¼
�
∂Δχf
∂θμ̃

��
∂Δχf
∂θν̃

�
Σð8Þ
μ̃ ν̃ ; ð3:12bÞ

Σ̂ΔMfΔχf ¼ Σ̂ΔχfΔMf
¼

�
∂ΔMf

∂θμ̃

��
∂Δχf
∂θν̃

�
Σð8Þ
μ̃ ν̃ : ð3:12cÞ

To evaluate the partial derivatives in the above, we
note that the functional forms for the NR fits that determine
ðMf; χfÞ depend only on the θμ (i.e., they do not distin-
guish between θμinsp and θμMR, which represent the same
physical parameters determined via different measurement
processes). DefiningMinsp

f ¼ MfðθμinspÞ,MMR
f ¼ MfðθμMRÞ,

and similarly for χinspf and χMR
f , the partial derivatives

simplify to

∂ΔMf

∂θμ̃
¼ � ∂Mf

∂θμ
; ð3:13Þ

where the (þ) sign holds for θμ̃ ¼ θμinsp, the (−) sign holds
for θμ̃ ¼ θμMR, and the right side is evaluated at either θμ ¼
θμinsp or θ

μ ¼ θμMR. Because of this property and the fact that

Σð8Þ
μ̃ ν̃ is block diagonal as in Eq. (3.10), one can easily show

that Eq. (3.12) simplifies to

Σ̂ΔMfΔMf
¼
�
∂Mf

∂θμ

��
∂Mf

∂θν

�
ðΣð4Þ; insp

μν þΣð4Þ;MR
μν Þ; ð3:14aÞ

Σ̂ΔχfΔχf ¼
�
∂χf
∂θμ

��
∂χf
∂θν

�
ðΣð4Þ; insp

μν þ Σð4Þ;MR
μν Þ; ð3:14bÞ

Σ̂ΔMfΔχf ¼
�
∂Mf

∂θμ

��
∂χf
∂θν

�
ðΣð4Þ; insp

μν þ Σð4Þ;MR
μν Þ: ð3:14cÞ

The resulting 2 × 2 covariance matrix can be used to define
error ellipses in the ΔMf − Δχf plane via relations analo-
gous to Eqs. (3.3) and (3.4).
To compute the systematic error in the null variables we

note that

ΔsysðΔMfÞ ¼ ΔsysMfðθμinspÞ; ð3:15Þ

as there is no eccentricity-induced systematic error in the
final mass (and spin) values determined via the merger-
ringdown waveform. Hence, the systematic shift in the

1σ ellipses of the null variables are also given by Eqs. (3.5)
and (3.6):

ΔsysðΔMfÞ ¼
∂Mf

∂θμ
Δsysθμ; ð3:16aÞ

ΔsysðΔχfÞ ¼
∂χf
∂θμ

Δsysθμ: ð3:16bÞ

IV. RESULTS

Using the formalism described above, we proceed to
evaluate the statistical and systematic errors in the final mass
and spin, as well as for the corresponding null variables. This
is done for binary black hole (BBH) sources in the LIGO and
CE bands. We focus on LIGO-band sources with total
(source frame) masses ofM ¼ ð65; 100; 150; 200Þ M⊙. For
CE (which has better low-frequency sensitivity) we consider
more massive binaries with M ¼ ð200; 300; 400; 600Þ M⊙.
In all cases we take the mass ratio to be m1=m2 ¼ 2=1, the
BH spins as χ1 ¼ 0.4 and χ2 ¼ 0.3, and the binary
luminosity distance to be 500 Mpc.
For LIGO and CE (respectively), Figs. 1 and 2 show the

statistical errors (as ellipses in the Mf − χf plane) and
systematic errors (as dots). The three error ellipses in each
figure panel correspond to the three cases discussed at the
end of Sec. II: the errors in the final mass and spin inferred
via information from the inspiral only (red), the merger-
ringdown only (blue), or the entire inspiral, merger, and
ringdown (green). In all cases these ellipses are computed
by finding the statistical errors in the θa [Eq. (2.7)] and
propagating those errors as described by Eqs. (3.1) and
(3.2). The 1σ ellipses are drawn via Eqs. (3.3) and (3.4).
Eccentricity (the source of the systematic error) is assumed
to be zero when computing these error ellipses. The figures
are centered on the true values of the final mass and spin
(represented by a star). The colored dots [computed via
Eqs. (2.13) and (3.6) for the inspiral only] show the biased
values of the final mass and spin when eccentricity is
neglected for eccentric binaries. Each dot represents the
biased center of the inspiral error ellipse for a binary with
eccentricity e0.
Considering Fig. 1, we see that the behavior of the

statistical errors depends on the system mass. Lower mass
systems (e.g., the 65 M⊙ case) have a long inspiral in the
LIGO band but a relatively weak merger-ringdown signal.
Hence, the red ellipse is much smaller than the blue one. As
the mass increases, the number of inspiral cycles in the
LIGO band decreases (leading to larger red ellipses), while
the strength of the merger-ringdown signal increases with
increasing mass.4 As the mass increases to 200 M⊙, the red

4For reference, the SNR as a function of total mass
M ¼ ð65; 100; 150; 200ÞM⊙ is (32,42,51,55) for the inspiral
signal and (13,24,44,62) for the merger-ringdown signal.
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ellipse expands while the blue ones shrink. The green error
ellipses are the smallest as they combine information from
the inspiral and merger-ringdown; they indicate the maxi-
mum achievable precision in the final mass and spin if a full
waveform model is employed. Note that each panel in
Fig. 1 shows the same final mass and spin range, so the
ellipse sizes can be directly compared.

Examining the trends in the systematic errors (colored
dots), we see a clear trend of increasing deviation from the
central value as the eccentricity is increased. The dots
represent the migration of the red (inspiral) error ellipse in
the Mf − χf plane with increasing e0. Systematic errors
increase in proportion to ∼e20 [49]. In the context of the
IMR consistency test, one is comparing the final mass and

FIG. 1. Error ellipses and systematic bias for selected LIGO band binaries. Ellipses show 1σ probability contours in the final
mass-final spin plane. Red ellipses use only information from the inspiral signal, combined with NR fits that determine the final
mass and spin. Blue ellipses use signal information from only the merger-ringdown. The green ellipses show the minimum achievable
error by using the entire signal waveform (inspiral þmerger‐ringdown). Ellipse centers (stars) show the final mass and spin values
predicted by the NR fits given the binary inspiral parameters and assuming e0 ¼ 0. Panels are labeled by total binary mass. While the
central values differ, each panel shows the same horizontal and vertical scaling for ease of comparison (a range difference of 26 M⊙ in
final mass by 0.35 in the final spin). Colored points illustrate the systematic bias, showing the migration of the center of the red (inspiral)
ellipse as the eccentricity (at 10 Hz) varies from e0 ¼ 0.0 (stars) to 0.15. The dashed curve indicates the biased inspiral ellipse
for a single value of e0 (chosen to be the same e0 as the dashed ellipse in the corresponding panel of Fig. 3). The systematic bias
becomes increasingly important as the overlap between the blue (merger-ringdown) ellipse and the shifted inspiral ellipse decreases.
For all sources the mass ratio is 2∶1, the luminosity distance is 500 Mpc, and the dimensionless spin parameters are χ1 ¼ 0.4 and
χ2 ¼ 0.3.
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spin inferred from the inspiral (red ellipse) with the final
mass and spin inferred from the merger-ringdown (blue
ellipse). The dashed ellipse shows the shifted (biased)
inspiral ellipse for a particular value of e0. Eccentricity
imparts a significant bias on the IMR consistency test
when the red (inspiral) error ellipse experiences a suffi-
cient shift such that its overlap with the blue (merger-
ringdown) error ellipse is substantially reduced. This
happens when e0 ≳ 0.1–0.15. There are multiple ways
to quantify this overlap reduction, and we prefer instead
to switch to a null-variable approach, discussed further
below.
Figure 2 similarly shows the error ellipses for sources in

the CE band. Because CE is sensitive at lower frequencies
than LIGO (down to ∼5 Hz), these binaries have much
longer inspirals. Relative to the LIGO band sources, the red

(inspiral) error ellipses are therefore much smaller than the
blue (merger-ringdown) error ellipses for the cases shown
here (up until the 600 M⊙ case, where the ellipse areas
become comparable); this happens for the same reasons as in
Fig. 1.5 For masses below 200 M⊙, the inspiral error ellipses
become significantly smaller than the merger-ringdown error
ellipses. We also see that the required value of e0 (which is
still defined at a reference frequency of 10 Hz) to introduce a
significant bias is reduced by about a factor of 10. This is
because, for a given value of e0, the instantaneous eccen-
tricity et is much greater than e0 over the frequency range

FIG. 2. Same as Fig. 1, but showing binary black holes in the Cosmic Explorer (CE) band and for a higher range of total masses. All
panels are again centered on the final mass and final spin for e0 ¼ 0, and all have the same horizontal and vertical axis ranges (12 M⊙ in
final mass by 0.03 in final spin.) The dashed ellipse is the shifted inspiral ellipse for a particular value of e0 corresponding to the shifted
ellipse in Fig. 4.

5For reference, the respective SNRs in the CE band for the
M ¼ ð200; 300; 400; 600ÞM⊙ cases are (2778,3549,4059,4144)
for the inspiral and (1122,2022,3054,5188) for the merger-
ringdown.
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f ∈ ½5; 10� Hz and hence has a larger impact on the GW
phase. In contrast, flow ¼ f0 in the LIGO case, so et < e0
over the entire LIGO frequency band. Considering the
resulting systematic shift in the inspiral error ellipse, we
see significant systematic biases in the IMR consistency test
in the CE case for e0 ≳ 0.015–0.020.
In Fig. 3 we plot the measurement precision in the null-

variable plane ðΔMf;ΔχfÞ via the procedure described in
Sec. III A. The null variable formulation has the advantage
of yielding only a single error ellipse that combines the
measurement information from both the inspiral and
merger-ringdown. Agreement with GR via the IMR
consistency test is indicated by an error ellipse centered

on the origin in the null-variable plane. Colored dots
represent the shift of that ellipse due to the eccentricity-
induced systematic bias. If the shifted ellipse excludes the
origin, consistency with the GR value (0,0) is excluded
with at least 1σ confidence. The dashed ellipses in Fig. 3
highlight selected values of e0 that exclude the origin. This
suggests that eccentricity significantly biases the IMR
consistency test for e0 ≳ 0.1–0.15 for LIGO-band bina-
ries. Figure 4 shows the corresponding ellipses for CE-
band binaries. There we see significant biases for
e0 ≳ 0.015–0.020. Note that these values are consistent
with the error ellipses showing significant bias in Figs. 1
and 2.

FIG. 3. Error ellipses and systematic bias for selected LIGO band binaries in null variable coordinates. The solid (black) error ellipse
shows the two-dimensional measurement precision of the null variables ðΔMf;ΔχfÞ defined in Eq. (3.7). These represent the difference
between the inferred inspiral and merger-ringdown values of the final mass (or final spin). The central point (0,0) indicates the GR
prediction (no difference in the inferred values). Colored dots indicate the shift in the center of the solid (black) ellipse due to the
eccentricity-induced systematic bias. The dashed ellipse highlights the shifted ellipse for a particular value e0, as indicated by the central
dot of the corresponding color. Note that the highlighted shifted ellipse excludes the origin, indicating an inconsistency with GR at the
1σ level. The mass and eccentricity values shown here correspond to those in Fig. 1.
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V. CONCLUSIONS

As detections of compact binary coalescences increase,
more sensitive tests of GR can be performed in the highly-
dynamical and strong-field regime of gravity. But these tests
are prone to systematic biases due to any missing physics in
the waveform models employed. One might therefore
wrongly interpret the resulting systematic error as a GR
violation. Here, we specifically focused on the IMR con-
sistency test: estimates of the BBH remnant’s final mass and
final spin are computed separately via the inspiral andmerger-
ringdown signals. Any statistically significant inconsistency
in the resulting values could be interpreted as a GR violation.
We investigate the effect of neglecting orbital eccentric-

ity on the final mass and final spin estimated from the
inspiral portion of the signal. Our analysis assumes that
eccentricity has a negligible effect on (i) the merger-
ringdown signal and (ii) on the relationship between the
binary component masses and spins and the BH remnant’s
final mass and spin. (See Appendix B for a justification of

the latter.) The resulting bias is investigated for sources in
both the LIGO and CE bands. We find that the systematic
errors in the remnant final mass and final spin become
statistically significant in the CE band if e0 ≳ 0.015 (recall
that e0 is defined at a reference frequency of 10 Hz). In the
Advanced LIGO band, systematic errors become sta-
tistically significant only at relatively higher eccentricities,
e0 ≳ 0.1 at 10 Hz.
These results show that neglecting eccentricity in the

IMR consistency test might lead to a false claim of a GR
violation, even for binary black hole systems with only
modest eccentricities. Hence, consistently incorporating
eccentricity into waveform models that are applied to these
tests is of paramount importance.
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APPENDIX A: RELATING FOURIER
AMPLITUDES AND PHASES OF IMR

WAVEFORM MODES AND POLARIZATIONS

Considering only the leading-order ðl; mÞ ¼ ð2;�2Þ
modes, the plus and cross GW polarizations in the time
domain are given by

hþ − ih× ¼ h2;2ð−2ÞY
2;2ðΘ;ΦÞ þ h2;−2ð−2ÞY

2;−2ðΘ;ΦÞ
¼ h2;2Ŷþe2iΦ þ h2;−2Ŷ−e−2iΦ; ðA1Þ

where we used the following spin-weighted spherical
harmonic function:

ð−2ÞY2;�2ðΘ;ΦÞ≡ Ŷ�e�2iΦ ¼ αð1� cosΘÞ2e�2iΦ; ðA2Þ

with α ¼ 1
8

ffiffi
5
π

q
. Note that

Ŷþ þ Ŷ− ¼ 2αð1þ cos2ΘÞ; ðA3aÞ
Ŷþ − Ŷ− ¼ 4α cosΘ: ðA3bÞ

The angles ðΘ;ΦÞ represent the direction to the detector
relative to the binary’s frame, with Θ equivalent to the
binary inclination angle. For nonprecessing binaries orbit-
ing in the x − y plane, the (2,2) and ð2;−2Þ modes are
related by

h2;2ðtÞ ¼ h�2;−2ðtÞ; ðA4aÞ

h�2;2ðtÞ ¼ h2;−2ðtÞ; ðA4bÞ

where � denotes complex conjugation. We can construct
hþðtÞ and h×ðtÞ via

hþðtÞ ¼
1

2
½ðhþ − ih×Þ þ ðhþ − ih×Þ��

¼ 1

2
ðŶþ þ Ŷ−Þðh2;2e2iΦ þ h�2;2e

−2iΦÞ; ðA5aÞ

h×ðtÞ ¼ −
1

2i
½ðhþ − ih×Þ − ðhþ − ih×Þ��

¼ 1

2
ðŶþ − Ŷ−Þeiπ2ðh2;2e2iΦ − h�2;2e

−2iΦÞ: ðA5bÞ

Note that hþ;×ðtÞ are real-valued functions of t, while
h2;2ðtÞ is a complex function of t.
Now we construct the GW strain hðtÞ≡ hþFþ þ h×F×

and its Fourier transform. Here Fþ;×ðθ;φ;ψÞ are the
detector antenna response functions; they depend on the
sky position angles ðθ;φÞ of the source and the polarization
angle ψ . From Ref. [57] the Fourier transform of the h2;2ðtÞ
mode is given by

h̃2;2ðfÞ ¼ AIMRðfÞe−iϕIMRðfÞ; ðA6Þ
where AIMRðfÞ and ϕIMRðfÞ are real-valued functions that
make up the IMRPhenomD waveform; they are largely
provided in [57] [see Eqs. (35), (36), and numerous
associated equations in that reference]. This implies that

h̃�2;2ðfÞ ¼ AIMRðfÞeiϕIMRðfÞ: ðA7Þ
The Fourier transform of hðtÞ can then be written as

h̃ðfÞ ¼ 2αAIMRðfÞ½Fþð1þ cos2ΘÞ cosðϕIMR − 2ΦÞ
þ2F× cosΘ sinðϕIMR − 2ΦÞ�: ðA8Þ

Note that this expression is real valued. Using trig identities
we can rewrite this as

h̃ðfÞ ¼ 2αAIMRðfÞ½F2þð1þ cos2ΘÞ2 þ 4F2
× cos2 Θ�1=2

× cosðϕIMR − 2Φ − 2Φ0Þ; ðA9Þ

where

Φ0 ¼
1

2
arctan

�
2F× cosΘ

Fþð1þ cos2ΘÞ
�
: ðA10Þ

Equating to h̃ðfÞ ¼ ReðAeiΨÞ we have

AðfÞ ¼ 2αAIMRðfÞ½F2þð1þ cos2 ΘÞ2 þ 4F2
× cos2 Θ�1=2;

ðA11aÞ

ΨðfÞ ¼ ϕIMRðfÞ − 2Φ − 2Φ0: ðA11bÞ

In our analysis we do not consider the sky position and
binary orientation angles as free parameters. For an opti-
mally oriented and optimally located binary (Fþ ¼ 1;
F× ¼ 0;Θ ¼ 0;Φ ¼ 0),

AoptðfÞ ¼ 4αAIMRðfÞ; ðA12aÞ

ΨoptðfÞ ¼ ϕIMRðfÞ: ðA12bÞ

We can also consider an angle-averaged waveform by
averaging h̃h̃� ¼ A2 over all the angles ðΘ;Φ; θ;φ;ψÞ
(see, e.g., Sec. II B of [49] where the SNR is also defined).
This yields
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AavgðfÞ ¼
ffiffiffiffiffiffiffiffiffiffi
hA2i

q
¼ 8

5
αAIMRðfÞ; ðA13aÞ

Ψavg ¼ ϕIMRðfÞ: ðA13bÞ

We use this latter angle-averaged waveform in our analysis.
(We note that Ref. [57] uses a different convention for the
definition of the Fourier transform than what we have used
in previous works [49], but this does not affect any of our
calculations.) The implementation of IMRPhenomD was
provided to us by one of the authors via a Mathematica
notebook [70]. It is also available within LALSuite [71].

APPENDIX B: ECCENTRIC CORRECTION
TO THE FINAL MASS AND FINAL SPIN

The analysis presented in this paper ultimately relies on
the mapping of the binary inspiral parameters ðM; η; χ 1; χ 2Þ
to the final mass and spin ðMf; χfÞ of the BH merger
remnant. Those relations have been estimated semianalyti-
cally for circular orbits in Ref. [72], with accurate relations
provided by NR fits [22–24]. In a proper generalization of
the IMR consistency test, one would need a function
MfðM; η; χ 1; χ 2; e0Þ that includes the binary eccentricity
e0 correction to the final mass (and similarly for the final
spin). We have ignored those corrections in our analysis as
they are not yet analytically available in the literature.
(However, see [73] for a recent numerical relativity study
that computed the final remnant properties for over 800
eccentric black hole mergers.) Here, we justify this by
showing that eccentric corrections to Mf and χf are likely
to be very small. Our analysis will rely on a simple quasi-
Newtonian analysis of the binary inspiral. It will also
assume that the eccentricity is small.
The final mass is determined by the sum of the binary

component masses minus the energy radiated in GWs:

Mf ¼ m1 þm2 − ΔEgw; ðB1Þ

where the radiated GWenergy is given by minus the change
in the orbital energy E: ΔEgw ≈ −ΔE > 0. This assumes
that most of the radiated GW energy is emitted throughout
the inspiral up through the last-stable-orbit (LSO) of the
binary. (The GW energy emitted during the merger-ring-
down is ignored.) The Newtonian orbital energy is

E ¼ −
1

2

μM
a

¼ −
1

2
ηM

M
a
¼ −

1

2
ηMv2; ðB2Þ

where μ ¼ m1m2=M is the reduced mass,M ¼ m1 þm2 is
the total mass, η ¼ m1m2=M2 is the reduced mass ratio, a is
the ellipse semimajor axis, and v≡ ðπMfÞ1=3. Here we
made use of Kepler’s third law,

2

P
¼ 2forb ¼ f ¼ 1

π

ffiffiffiffiffi
M
a3

r
; or

a
M

¼ 1

v2
; ðB3Þ

where forb ¼ 1=P is the orbital frequency, P is the orbit
period, and f is the dominant GW frequency if the
instantaneous eccentricity et is small. Note that these
relations are fully valid for eccentric Newtonian orbits.
Since the orbital energy E → 0 when the binary is

widely separated, the change ΔE is dominated by the
orbital energy at the LSO, ΔE ¼ − 1

2
ηMv2LSO, where

vLSO ≡ ðπMfLSOÞ1=3 depends on the GW frequency
fLSO at the LSO. The final mass of the BH merger remnant
is then given by

Mf

M
¼ 1 −

1

2
ηv2LSO: ðB4Þ

Note that the eccentricity does not explicitly enter this
expression. However, eccentricity does modify the LSO,
and this correction is discussed further below.
The final spin vector of the BH remnant is simply the

sum of the individual spin vectors of the binary components
plus the orbital angular momentum vector at the last stable
orbit [72],

Sf ¼ S1 þ S2 þ LLSO: ðB5Þ

This assumes that the individual spin vectors S1;2 do not
change during the plunge and that little GW angular
momentum is radiated during the plunge, merger, and
ringdown phases. We will restrict to the case where the spin
vectors are aligned or antialigned with the orbital angular
momentum vector. The individual BH spins do not precess
in this case and we assume they remain constant throughout
the inspiral. We can then replace the above vector equation
with an equation for the magnitude of the final spin vector.
Using jSj1;2 ¼ m2

1;2 χ1;2 gives

M2
fχf ¼ m2

1χ1 þm2
2χ2 þ LLSO: ðB6Þ

Here χ1;2 ∈ ð−1; 1Þ with positive values indicating spins
aligned with the direction of LLSO. Dividing by M2 gives

�
Mf

M

�
2

χf ¼
�
m1

M

�
2

χ1 þ
�
m2

M

�
2

χ2 þ
LLSO

M2
: ðB7Þ

Assuming m1 > m2 we can make use of the relation
m1M ¼ m1ðm1 þm2Þ ¼ m2

1 þ ηM2 to show that

�
m1;2

M

�
2

¼ m1;2

M
− η ¼ 1

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
Þ − η; ðB8Þ

where the þ in the � denotes the m1 case. The magnitude
of the orbital angular momentum for an elliptical
Newtonian orbit is
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L ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mað1 − e2t Þ

q
¼ μM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða=MÞð1 − e2t Þ

q
¼ ηM2

v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
: ðB9Þ

Putting everything together and dividing Eq. (B7) by
ðMf=MÞ2, the final spin becomes

χf ¼
�
1−

1

2
ηv2LSO

�
−2
��

1

2
− η

�
ðχ1þ χ2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−4η

p
ðχ1− χ2Þþ

η

vLSO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−etðvLSOÞ2

q �
: ðB10Þ

Here the eccentricity does enter explicitly via the orbital
angular momentum. For small eccentricity, et varies accord-
ing to [60]

et ¼ e0

�
v0
v

�
19=6

; ðB11Þ

where v0 ≡ ðπMf0Þ1=3 for reference frequency f0 (taken to
be 10 Hz). In Eq. (B10) et is evaluated at v ¼ vLSO.
The frequency of the LSO (and the corresponding value

of vLSO) also depends on the eccentricity. As the LSO is not
well defined for comparable-mass binaries (eccentric or
circular), we will appeal to the extreme-mass ratio limit to
estimate the eccentric correction to the LSO. For a point
mass orbiting a Schwarzschild BH of massM, the LSO for
circular orbits (the ISCO or innermost stable circular orbit)
corresponds to vLSO ¼ vc ≡ 6−1=2. To derive a correction in
the eccentric case, we use the result in [74], which found
that eccentric test-mass orbits become unstable for semi-
latus rectum values p=M < 6þ 2et. Equating to the
Newtonian definition p ¼ að1 − e2t Þ and using Eq. (B3),
we arrive at

vLSO ¼ 6−1=2
�
1 − e2t
1þ 1

3
et

�
1=2

;

≈ vc

�
1 −

1

6
etðvLSOÞ

�
;

≈ vc

�
1 −

1

6
e0

�
v0
vLSO

�
19=6

�
; ðB12Þ

where we expanded in small et. To solve for vLSO we
assume a perturbative solution of the form vLSO ¼
vc þ δv ¼ vcð1þ δv

vc
Þ, where δv ∼OðetÞ is small. From

this it is clear that an approximate solution is simply

vLSO ≈ vc

�
1 −

1

6
etðvcÞ

�
≈ vc

�
1 −

1

6
e0

�
v0
vc

�
19=6

�
: ðB13Þ

With the relevant formulas in hand, we can now evaluate
the magnitude of the eccentric correction. First, we note
that in the e0 ¼ 0 case, these quasi-Newtonian formulas
already come remarkably close to the values predicted by
the NR fits. For example, for an equal mass (η ¼ 0.25),
nonspinning binary ðχ1 ¼ χ2 ¼ 0Þ and vLSO ¼ vc ¼ 6−1=2,
we find Mf ¼ 0.979M and χf ¼ 0.639. This agrees with
the predicted NR values of ðMf; χfÞ ¼ ð0.952M; 0.686Þ to
within 2.8% and 6.9%, respectively.
To quantify the impact of the eccentric correction we

define the fractional error in Mf relative to the circular

value MðcÞ
f ¼ Mfðe0 ¼ 0Þ via

δMf

MðcÞ
f

≡Mf −MðcÞ
f

MðcÞ
f

¼
1
6
ηv2ce0ðv0=vcÞ19=6

1 − 1
2
ηv2c

; ðB14Þ

where we have plugged Eq. (B13) into Eq. (B4). A similar
expression for the final spin is given by

δχf

χðcÞf

≡ χf − χðcÞf

χðcÞf

≈
1

6

�
5ηv2c − 2

ηv2c − 2

�
e0

�
v0
vc

�
19=6

: ðB15Þ

To arrive at the result above we plugged Eqs. (B11)
and (B13) into (B10), series expanded in small e0, and
assumed χ1 ¼ χ2 ¼ 0 to arrive at a simpler expression.
Assuming η ¼ 0.25, vc ¼ 6−1=2, and v0 ¼ ðπM10 HzÞ1=3,
these expressions simply to

δMf

MðcÞ
f

¼ 0.00015

�
e0
0.1

��
M

100 M⊙

�
19=18

; ðB16Þ

δχf

χðcÞf

¼ 0.0032

�
e0
0.1

��
M

100 M⊙

�
19=18

: ðB17Þ

For small e0, this is clearly a negligible correction
unless M ≳ 1000 M⊙.
This calculation is approximate and could be improved

upon by including higher PN-order terms. Ultimately,
NR simulations of merging eccentric binaries will be
able to accurately quantify the impact of eccentricity on
Mf and χf. The analytic study presented here may be
helpful in constructing new fitting functions that match
those NR results.
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