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The lightlike limit of boosted black hole solutions with one angular momentum is considered for D ≥ 4

dimensions. The boost is performed parallel to the angular momentum and the lightlike limit is done by
means of perturbative expansions. We show that for D ¼ 4 and D > 5 the lightlike limit cannot be
extended inside the ring singularity. Then, forD ¼ 5 we discuss the arising of trapped surfaces in the head-
on collision. We find that, inside the validity of the performed perturbative analysis, a trapped surface with
topology R × S1 × S1 seems to appear over the past light cone of the collision below a critical value of the
Kerr parameter.
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I. INTRODUCTION

The study of colliding gravitational shock waves has
a long history. Previous to the attention in high energy
physics, the larger class of colliding pp-wave spacetimes
were thoroughly studied in the context of general relativity.
In particular, the convergence of null geodesics, classifi-
cation and production of apparent horizons after collisions
were considered with certain detail [1–4]. Once the
fundamental mathematics of colliding gravitational shock
waves was known, the issue was addressed within the
framework of TeV gravity as a model to estimate a micro
black hole cross section in high energy collisions [5–7].
More recently, in the framework of the AdS=CFT corre-
spondence, colliding shock waves inside the AdS space
were also used to model thermalization after high energy
collisions in the boundary field theory [8–13].
The concept of gravitational waves usually refers to

gravitational radiation arising from any evolving phenom-
ena in gravitational systems [14–16]. These gravitational
waves are, however, weak perturbations over some sta-
tionary spacetime satisfying the Einstein field equation
up to first order. Besides gravitational radiation, there are
also nonperturbative gravitational waves, as space-time
wrinkles propagating over flat space satisfying exactly
the Einstein field equation for some stress-energy tensor.
Gravitational shock waves belong to this second kind of
gravitational waves.
Gravitational shock waves are spacetimes describing

energy distributions traveling at the speed of light [17,18].

Roughly speaking, if some energy distribution is boosted
to the speed of light, the gravitational field surrounding it
squeezes by Lorentz contraction to the normal space to
propagation, and that is a gravitational shock wave. In its
Brinkmann form, the line element of a gravitational shock
wave is

ds2 ¼ −dudvþ dx⃗2⊥ þ δðuÞΦðx⃗⊥Þdu2; ð1Þ

where u ¼ tþ x; v ¼ t − x are lightlike background coor-
dinates and x⃗⊥ spans the transverse space to the wave
propagation. The function Φðx⃗⊥Þ gives the profile of the
wave and it must satisfy the Einstein field equation for
some stress-energy tensor with nonvanishing component
Tuu ¼ ρðx⃗⊥ÞδðuÞ. Then, the Einstein field equation reduces
to the Poisson equation in the transverse space to the
direction of propagation of the wave,

△⊥Φ ¼ −16πGDρðx⃗⊥Þ: ð2Þ

Note that the wave exists only at the hypersurface u ¼ 0,
where an infinitely thin energy distribution can exist,
because of the distributional term δðuÞ in Eq. (1) and
the stress-energy tensor. Thus, after and before the wave-
front, the spacetime is flat and satisfies the vacuum Einstein
field equations.
For each energy distribution proposed in Eq. (2), a

gravitational shock wave is produced [17,19–21]. However,
solving the shock wave from Eq. (2) could be an impossible
task depending on the mathematical expression for the
energy density ρðx⃗⊥Þ. In these cases, the shock wave can
be found from boosting until the speed of light a black
hole solution to the Einstein field equation. Then, the
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gravitational field squeezes to form a shock wave given by
the line element Eq. (1). For instance, a pointlike sourced
gravitational shock wave can be built from the lightlike
limit of the boosted Schwarzschild solution, with a subtle
scaling of the mass proposed firstly by Aichelburg and Sexl
in Ref. [19]. After the lightlike limit is taken, the resulting
line element can be understood as the gravitational field
accompanying a massless particle [22]. Recently, it was
proposed in Ref. [23] that gravitational shock waves also
can be computed from scattering amplitude techniques.
After the pioneering work of Aichelburg and Sexl,

lightlike limits of a wide variety of stationary solutions
to the Einstein field equation have been considered beyond
the Schwarzschild solution. In order to include angular
momentum and charge, the lightlike limits of Reissner-
Nordström, Kerr and Kerr-Newman were computed in
several works, but with relative success because the
physical meaning of such solutions after performing the
lightlike limit are still a controversial point [21,24–27].
With respect to the Kerr case, the stress-energy tensor
sourcing the shock wave was computed in Ref. [21] for
D ¼ 4 dimensions, and in Ref. [28] for D > 4, showing
that, as was expected, computing the shock wave from
solving Eq. (2) is far from being a manageable mathemati-
cal task. Also with the goal of including angular momen-
tum, other shock waves, such as gyratons, have been
proposed to describe polarized light beams [29–31]. The
lightlike limit of boosted extended black objects was also
considered in Ref. [20]. Finally, the lightlike limit of
asymptotically AdS black holes was proposed to build
gravitational duals for energy lumps traveling at the speed
of light in the boundary theory [8,9,11].
It is possible to build spacetimes containing two gravi-

tational shock waves propagating in opposite directions
such that they collide at some null hypersurface. Since both
gravitational waves propagate at the speed of light, the
spacetime previous to the collision can be built by a simple
linear superposition. That is, adding a term δðvÞΦðx⃗⊥Þdv2
to the line element of Eq. (1). However, after the collision,
highly nonlinear gravitational interactions between the two
waves take place, and a way to compute the spacetime
structure in the future of the collision remains unknown
nowadays. Fortunately, trapped surfaces can be sought over
the light cone of the collision. Then, the appearance of
trapped surfaces is taken as an indication that an apparent
horizon forms after the collision [32–34]. In an inspiring
seminar at Cambridge University, Penrose showed the way
a trapped surface over the past light cone of the collision
can be found [35]. This trapped surface, called Penrose
trapped surface from here on, is the one computed mostly
in the works about colliding shock waves. Other authors,
however, have considered the possibility of apparent
horizons arising over the future light cone of the collision
[36,37]. It is interesting to note that the study of colliding
shock waves from boosting the Reissner-Nordström black

hole shows that an apparent horizon over the future light
cone can appear, while the Penrose trapped surface does
not [13,36].
In this work we compute perturbatively the shock wave

geometry which arises from a black hole solution in D ≥ 4
dimensions, with one angular momentum, by boosting the
metric in the direction of the angular momentum until the
speed of light.1 The lightlike limit is taken with a mass
scaling which follows the original work of Aichelburg and
Sexl previously mentioned, and proposing an additional
scaling for the angular momentum, such that the ring
singularity of the original black hole solution is preserved
through the limit. Then, the Penrose trapped surface is
computed and shows that, in the scope of the perturbative
method previously developed, it has ring topology for
D ¼ 5 dimensions. Although trapped surfaces with ring
topology have been found in collisions of extended objects
[39], this is the first time that such topology appears from
the head-on collision of pointlike sourced shock waves.
The manuscript is arranged as follows. In Sec. II, a brief

review of some aspects of Kerr and Myers-Perry solutions
is delivered. Then, in Sec. III, we set out the lightlike limit
over the boosted metric. In Sec. IV we develop a pertur-
bative method to find the shock wave geometry inside
and outside the ring singularity for D > 4, while Sec. V
is devoted to briefly discuss the case for D ¼ 4. Then,
in Sec. VI, we look for the Penrose trapped surface for
D ¼ 5. Finally, some remarks and conclusions are given in
Sec. VII.

II. KERR-LIKE SOLUTIONS

In four dimensions, a rotating uncharged axially sym-
metric black hole with a quasispherical event horizon can
be described by the so-called Kerr solution [40]. In Boyer-
Lindsquit coordinates, the Kerr metric can be written as
follows [41]:

ds2 ¼ −dt2 þ sin2 θðr2 þ a2Þdφ2 þ Δðdt − a sin2 θdφÞ2
þ ξdr2 þ Σ2dθ2; ð3Þ

with the following definitions:

Δ ¼ Mr
Σ2

; ξ ¼ Σ2

r2 þ a2 − rM
; Σ2 ¼ r2 þ a2 cos2 θ;

ð4Þ

where a is the Kerr parameter;M and J ¼ aM
2GN

are the mass
and angular momentum of the black hole; Σ, Δ and ξ are
auxiliary functions.

1The scattering of two Kerr black holes has been previously
considered in detail in Ref. [38], but in the post-Minkowskian
approximation.
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The situation is more complicated when one goes to high
dimensions. First, apart from black holes, other objects
with nonspherical topologies such as black rings appear
[42,43]. This fact breaks the uniqueness theorems in higher
dimensions. Moreover, the rotation group SOðD − 1Þ
has more than one Casimir operator for D > 4 and,
therefore, more than one angular momentum would be
defined in the solutions. In particular, a D-dimensional
rotating solution to the Einstein field equation could have
up to ⌞ ðD − 1Þ=2 ⌟ angular momenta. In spite of this
richer taxonomy of higher dimensions, we are going to
consider only the solution with spherical topology (Myers-
Perry solution [44]) and only one angular momentum.
Using the same coordinate definitions than Eq. (3), the
mentioned solution is given by

ds2 ¼ −dt2 þ sin2 θðr2 þ a2Þdφ2 þ Δðdt − a sin2 θdφÞ2
þ ξdr2 þ Σ2dθ2 þ r2 cos2 θdΩ2

D−4; ð5Þ

where

Δ ¼ M
rD−5Σ2

; ξ ¼ rD−5Σ2

rD−5ðr2 þ a2Þ −M
;

Σ2 ¼ r2 þ a2cos2θ: ð6Þ

Moreover, the mass M and angular momentum J in
Eq. (5) are related to parameters M, J and a as

M ¼ ðD − 2ÞΩD−2

16πGN
M; J ¼ ΩD−2

4π
J: ð7Þ

The line element Eq. (5) is the simplest generalization of
the Kerr solution in higher dimensions. For this reason, in
the following, we will refer to it as the Kerr-like metric inD
dimensions.
When a ¼ 0, the Kerr-like metric of Eq. (5) reduces to

the Schwarzschild metric in D dimensions. Thus, in the
limit M → 0, we will expect the metric represents flat
space-time. Setting M ¼ 0 in the Kerr-like metric, Eq. (5)
reduces to

ds2 ¼ −dt2 þ sin2 θðr2 þ a2Þdφ2 þ r2 þ a2 cos2 θ
r2 þ a2

dr2

þ ðr2 þ a2 cos2 θÞdθ2 þ r2 cos2 θdΩ2
D−4; ð8Þ

which can be translated into the standard Cartesian form of
the Minkowski metric changing to coordinates

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ sinφ; ð9aÞ

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ cosφ; ð9bÞ

zi ¼ r cos θωi; ð9cÞ

such that
P

D−3
i¼1 ω2

i ¼ 1. In these coordinates, the black
hole is rotating in the plane x − y. Note that r ¼ 0

corresponds to the disk x2 þ y2 ≤ a2 located in the planeP
i z

2
i ¼ 0 and hence the r coordinate has properties which

are quite different from those of the usual radial coordinate.
The metric in Eq. (5) has horizons for ξ−1 ¼ 0. For

D ¼ 4, it happens at

r ¼ M
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

4
− a2

r
; ð10Þ

and thus horizons appear only when M2 ≥ 4a2 is satisfied.

The external horizon, rh ¼ M
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

4
− a2

q
, will be the

event horizon. For D ¼ 5 only one (event) horizon exists;
it is located at

rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M − a2

p
; ð11Þ

andM > a2 must be satisfied. WhenD > 5, it happens that

lim
r→∞

ξ−1 ¼ 1; lim
r→0

ξ−1 ¼ −∞: ð12Þ

Therefore, an event horizon always exists whatever the
parameters M and a are for D > 5. In all dimensions,
outside the event horizon, there is a surface where gtt
vanishes, i.e., it changes sign inside the surface. It is
located at

reðθÞ ¼
M
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

4
− a2 cos2 θ

r
; ð13Þ

for D ¼ 4, and

reðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M − a2 cos2 θ

p
; ð14Þ

for D ¼ 5. The region r ∈ ðrh; reÞ is called the ergosphere.
From the expression of the metric in Eq. (5), it is obvious

that, besides the horizons, the metric becomes ill defined at
Σ ¼ 0. The calculation of the curvature shows that Σ ¼ 0
is indeed a curvature singularity.2 In the asymptotically
Cartesian coordinates, Eqs. (9), this corresponds to

x2 þ y2 ¼ a2;
X
i

z2i ¼ 0: ð15Þ

That is, the Kerr metric has a ringlike singularity of radius a
located in the plane

P
i z

2
i ¼ 0.

2In particular, for D ¼ 4, relative to a null tetrad based on the
repeated principal null directions, the only nonzero component of
the curvature tensor is Ψ2 ¼ −M=½2ðrþ ia cos θÞ3�.

ARISING OF TRAPPED SURFACES WITH NONTRIVIAL … PHYS. REV. D 107, 024008 (2023)

024008-3



III. THE LIGHTLIKE LIMIT

In this section, we boost the Kerr-like line element
Eq. (5) and set the lightlike limit over it. Having as a
reference the Aichelburg-Sexl limit over the Schwarzschild
metric [19], this implies eventually to take the limit γ → ∞
whereas μ≡Mγ remains fixed. This means that the terms
of order M2 and beyond in the metric will vanish after
taking γ → ∞. Therefore, it is convenient to perform a
power series expansion in M of the metric Eq. (5) and to
keep just the terms of order M0 and M1:

ds2 ¼ ds20 þMds21 þOðM2Þ: ð16Þ

After a bit of algebra, we obtain

ds20 ¼ −dt2 þ ðr2 þ a2Þsin2θdφ2 þ r2 þ a2cos2θ
r2 þ a2

dr2

þ ðr2 þ a2cos2θÞdθ2 þ r2cos2θdΩ2
D−4; ð17Þ

ds21 ¼
1

rD−5ðr2 þ a2cos2θÞ dt
2 −

2asin2θ
rD−5ðr2 þ a2cos2θÞ dtdφ

þ a2sin4θ
rD−5ðr2 þ a2cos2θÞ dφ

2 þ r2 þ a2cos2θ
rD−5ðr2 þ a2Þ2 dr

2:

ð18Þ

The boost must be done in such a way that the zero order
remains unchanged. In another way, we will obtain a shock
wave geometry that does not recover the flat space-time
metric when μ → 0. Since ds20 reduces to the Minkowski
metric in the asymptotically Cartesian coordinates, Eqs. (9),
the authors of Refs. [21,25] proposed to do the boost with
respect to these coordinates. In addition, we choose to
perform the boost in the direction of angular momentum.
If we label this direction as z, the proposed coordinate
transformation is

z ¼ γðz0 þ βt0Þ; z⃗⊥ ¼ z⃗0⊥; x ¼ x0;

t ¼ γðt0 þ βz0Þ; y ¼ y0: ð19Þ

From the inverse relations to Eqs. (9)

cos2 θ ¼ 1

2a2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2 þ z⃗2 − a2Þ2 þ 4a2z⃗2

q
− ρ2 − z⃗2 þ a2

�
;

ð20aÞ

r2 ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2 þ z⃗2 − a2Þ2 þ 4a2z⃗2

q
þ ρ2 þ z⃗2 − a2

�
;

ð20bÞ

where ρ2 ¼ x2 þ y2, we can compute the transformation of
the components of ds21. For dr

2 we have

dr2 ¼ 1

r2ðr2 þ a2 cos2 θÞ2 ½r
2ρ2dρ2 þ ðr2 þ a2Þz⃗dz⃗�2:

ð21Þ

After taking the limit γ → ∞, only the terms linear in γ2 will
survive in the transformation of dr2. Thus, we can take for
the transformed dr2

dr2 ¼ ðr2 þ a2Þ2
r2ðr2 þ a2 cos2 θÞ2 γ

2ðz0 þ βt0Þ2γ2ðdz0 þ βdt0Þ2:

ð22Þ

Taking this into account and writing

ds21 ¼ hμνdxμdxν; ð23Þ

the components after the boost are

ht0t0 ¼
γ2

rD−5ðr2þa2 cos2 θÞ
�
1þ γ2β2ðz0 þβt0Þ2

r2

�
; ð24aÞ

hz0z0 ¼
γ2

rD−5ðr2 þ a2cos2θÞ
�
β2 þ γ2ðz0 þ βt0Þ2

r2

�
; ð24bÞ

ht0z0 ¼
γ2β

rD−5ðr2 þ a2 cos2 θÞ
�
1þ γ2ðz0 þ βt0Þ2

r2

�
; ð24cÞ

hφ0φ0 ¼ a2 sin4 θ
rD−5ðr2 þ a2 cos2 θÞ ; ð24dÞ

ht0φ0 ¼ γa sin2 θ
rD−5ðr2 þ a2 cos2 θÞ ; ð24eÞ

where

r2 þ a2 cos2 θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ02 þ γ2ðz0 þ βt0Þ2 þ z⃗02⊥ − a2Þ2 þ 4a2γ2ðz0 þ βt0Þ2 þ 4a2z⃗02⊥

q
: ð25Þ
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A priori it seems that the components of Eqs. (24) grow
monotonically without limit when γ approaches∞. In order
to regularize this behavior, μ ¼ γM is fixed while taking
γ → ∞; as in Refs. [21,25], we also keep a fixed through-
out the process. In this way, we obtain

hφ0φ0 ¼ 0; ht0φ0 ¼ 0: ð26Þ

The remaining components, in lightlike background coor-
dinates u0 ¼ z0 þ t0 and v0 ¼ z0 − t0, are

hu0u0 ¼
γ2

4rD−5ðr2 þ a2cos2θÞ ð1þ βÞ2
�
1þ γ2ðz0 þ βt0Þ2

r2

�
;

ð27aÞ

hv0v0 ¼
γ2

4rD−5ðr2 þ a2 cos2 θÞ ð1 − βÞ2
�
1þ γ2ðz0 þ βt0Þ2

r2

�
;

ð27bÞ

hu0v0 ¼
γ2

4rD−5ðr2 þ a2 cos2 θÞ ðβ
2 − 1Þ

�
1 −

γ2ðz0 þ βt0Þ2
r2

�
:

ð27cÞ

Thus, only the component hu0u0 survives to the imposed
limit.
Summarizing, from Eq. (18) and the ðu0u0Þ component

of Eqs. (27), the lightlike limit over the line element
Eq. (16) is

ds2 ¼ −dudvþ dx2 þ dy2 þ dz⃗2⊥ þ Fðt; ρ2; z; R2Þdu2;
ð28Þ

which is the metric of a shock wave. The primed coor-
dinates have been changed by unprimed ones for clarity, R2

stands for z⃗2⊥, and Fðt; ρ2; z; R2Þ is given by the limit

Fðt; ρ2; z; R2Þ ¼ μ lim
γ→∞

γfðγ2ðzþ βtÞ2; ρ2; R2Þ; ð29Þ

being fðw2; ρ2; R2Þ the function

fðw2; ρ2; R2Þ ¼ 2
D−5
2h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρ2 þ w2 þ R2 − a2Þ2 þ 4a2ðw2 þ R2Þ
p

þ ρ2 þ w2 þ R2 − a2
iD−5

2

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρ2 þ w2 þ R2 − a2Þ2 þ 4a2ðw2 þ R2Þ
p

×

�
1þ 2w2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρ2 þ w2 þ R2 − a2Þ2 þ 4a2ðw2 þ R2Þ
p

þ ρ2 þ w2 þ R2 − a2

�
: ð30Þ

It is worth noting herein that we have obtained a shock
wave from a rotating solution; however, the following limit
has been imposed

lim
γ→∞

J ∝ lim
γ→∞

Ma ¼ 0; ð31Þ

since we have fixed μ ¼ Mγ and a. This means that the
shock wave has no angular momentum. From a physical
point of view, it is not surprising given that any observer
can not measure rotation in an ultrarelativistic object.
However, this lack of angular momentum has been used
as an argument to reject the shock wave of Eq. (28) as a
valid model for ultrarelativistic energy lumps with spin.
Gyratons have been proposed instead but, strictly speak-
ing, a rest solution for gyratons is not known and thus they
cannot work as a model to describe high energy collision
between heavy ions. In addition, note that in both cases

the angular momentum is of orbital type, and not spin.
Finally, in Ref. [45] a shock wave with angular momen-
tum has been obtained from a Kerr solution, but a
rescaling of a is mandatory. Since a measures distances
in the plane xy, the rescaling is equivalent to changing
distances in the plane perpendicular to the boost direction,
which does not seem to be a good idea from a physical
point of view.

IV. PERTURBATIVE COMPUTATION
FOR D > 4

We now turn our attention to the computation of the limit
in Eq. (29) for D > 4. The way to proceed is basically
finding a primitive of γfðγ2ðzþ βtÞ2; ρ2; R2Þ with respect
to z, compute the limit, and derive it. When fðw2; ρ2; R2Þ is
integrable with respect to w, this method is resumed in the
equation
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lim
γ→∞

γfðγ2ðzþ βtÞ2; ρ2; R2Þ ¼ δðuÞ
Z

∞

−∞
dwfðw2; ρ2; R2Þ:

ð32Þ

In any case, given that the Kerr-like metric has a ring
singularity located at x2 þ y2 ¼ a2,

P
i z

2
i ¼ 0, it is neces-

sary to compute the limit separately for ρ2 < a2 (interior
solution) and ρ2 > a2 (exterior solution).

A. Interior solution

The integral in the right part of Eq. (32) is difficult to
compute because of the very complicated form of the
function fðw2; ρ2; R2Þ in Eq. (30). To deal with this
problem, we define dimensionless variables

w̄ ¼ w
a
; ρ̄ ¼ ρ

a
; R̄ ¼ R

a
; ð33Þ

and propose to do an expansion of fðw2; ρ2; R2Þ in powers
of ρ̄ to integrate order by order.3

After some algebraic manipulations, we get the follow-
ing expression:

aD−4fðw̄2; ρ̄2; R̄2Þ ¼
X∞
n¼0

IðDÞ
2n ðw̄2; R̄2Þρ̄2n

þ 2w̄2
X∞
n¼0

IðDþ2Þ
2n ðw̄2; R̄2Þρ̄2n; ð34Þ

where

IðDÞ
2n ðw̄2; R̄2Þ ¼ ð−1Þn

2nn!ðw̄2 þ R̄2ÞD−5
2 ðw̄2 þ R̄2 þ 1Þ2nþ1

×
Xn
k¼0

�
n
k

�
PðkÞ
n ðDÞðw̄2 þ R̄2Þk; ð35Þ

with PðkÞ
n ðDÞ being polynomials in D of degree n,

defined as4

PðkÞ
n ðDÞ ¼ ðD − 5þ 2nÞk;2ðD − 7 − 2kÞn−k;2: ð36Þ

The integration of the first term in Eq. (34) gives

Z
∞

−∞
dwIðDÞ

2n ðw̄2; R̄2Þ ¼ ð−1Þn
2nn!

w̄
R̄D−5ð1þ R̄2Þ2nþ1

Xn
k¼0

�
n
k

�
PðkÞ
n ðDÞR̄2kF

�
1

2
;
D − 5 − 2k

2
; 2nþ 1;

3

2
;
−w̄2

R̄2
;
−w̄2

1þ R̄2

�����∞
−∞

:

ð37Þ

Using the properties

Fða;b1; b2; c; z1; z2Þ ¼ ð1 − z2Þ−aF
�
a; b1; c − b1 − b2; c;

z2 − z1
z2 − 1

;
z2

z2 − 1

�
; ð38Þ

Fða; b1; b2; c; z1; 1Þ ¼ 2F1ða; b2; c; 1Þ2F1ða; b1; c − b2; z1Þ; ð39Þ

together with the asymptotic value

2F1ða; b; c; 1Þ ¼
ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ ; ð40Þ

we can evaluate Eq. (37), obtaining

Z
∞

−∞
dwIðDÞ

2n ðw̄2; R̄2Þ ¼ ð−1Þn ffiffiffi
π

p

2nn!R̄D−5ð1þ R̄2Þ4nþ1
2

Xn
k¼0

�
n
k

�
PðkÞ
n ðDÞR̄2k

×
ΓðD−4þ4n−2k

2
Þ

ΓðD−3þ4n−2k
2

Þ 2F1

�
1

2
;
D − 5 − 2k

2
;
D − 3þ 4n − 2k

2
;−

1

R̄2

�
: ð41Þ

3Inside the ring singularity we have ρ̄ < 1 and thus the expansion, as well as the integration, makes sense.
4The ðaÞn;k is the generalized descendent Pochhammer symbol, defined as ðaÞn;k¼aða−kÞða−2kÞða−3kÞ…ða−ðn−1ÞkÞ and

ðaÞ0;k ¼ 1.
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Proceeding in a similar way, the integration of the second term in Eq. (21) gives

Z
∞

−∞
dw2w̄2IðDþ2Þ

2n ðw̄2; R̄2Þ ¼ 2
ffiffiffi
π

p ð−1Þn
2nn!R̄D−3ð1þ R̄2Þ4n−12

Xn
k¼0

�
n
k

�
PðkÞ
n ðDþ 2Þ

× R̄2k

�
ΓðD−4þ4n−2k

2
Þ

ΓðD−3þ4n−2k
2

Þ 2F1

�
1

2
;
D − 3 − 2k

2
;
D − 3þ 4n − 2k

2
;−

1

R̄2

�

−
ΓðD−2þ4n−2k

2
Þ

ΓðD−1þ4n−2k
2

Þ 2F1

�
1

2
;
D − 3 − 2k

2
;
D − 1þ 4n − 2k

2
;−

1

R̄2

��
: ð42Þ

Therefore, from Eqs. (32), (34), (41), and (42), we have finally for the interior solution

Fðt; ρ2; z; R2Þ ¼ δðuÞΦ−ðρ̄2; R2Þ; ð43Þ

where

Φ−ðρ̄2; R2Þ ¼ μ
ffiffiffi
π

p
aD−4

X∞
n¼0

ð−ρ̄2Þn
2nn!R̄D−5ð1þ R̄2Þ4nþ1

2

Xn
k¼0

�
n
k

�
PðkÞ
n ðDÞR̄2k

×
ΓðD−4þ4n−2k

2
Þ

ΓðD−3þ4n−2k
2

Þ 2F1

�
1

2
;
D − 5 − 2k

2
;
D − 3þ 4n − 2k

2
;−

1

R̄2

�

þ 2μ
ffiffiffi
π

p
aD−4

X∞
n¼0

ð−ρ̄2Þn
2nn!R̄D−3ð1þ R̄2Þ4n−12

Xn
k¼0

�
n
k

�
PðkÞ
n ðDþ 2Þ

× R̄2k

�
ΓðD−4þ4n−2k

2
Þ

ΓðD−3þ4n−2k
2

Þ 2F1

�
1

2
;
D − 3 − 2k

2
;
D − 3þ 4n − 2k

2
;−

1

R̄2

�

−
ΓðD−2þ4n−2k

2
Þ

ΓðD−1þ4n−2k
2

Þ 2F1

�
1

2
;
D − 3 − 2k

2
;
D − 1þ 4n − 2k

2
;−

1

R̄2

��
: ð44Þ

Note that this general result holds only for R̄2 ≠ 0. When R̄2 ¼ 0, each term in Eq. (34) takes the form

IðDÞ
2n ðw̄2; R̄2Þ þ 2w̄2IðDþ2Þ

2n ðw̄2; R̄2Þ ¼ ð−1Þn
2nn!jwjD−5ð1þ w2Þ2nþ1

Xn
k¼0

�
n
k

�
½PðkÞ

n ðDÞ þ 2PðkÞ
n ðDþ 2Þ�: ð45Þ

Therefore, whenD > 5, negative powers in jwj appear in the
expansion of fðw̄2; ρ̄2; R̄2 ¼ 0Þ, and thus it is not integrable
in the plane R̄2 ¼ 0. It has been argued in Ref. [27] that this
implies the disk x2 þ y2 ≤ a2, R ¼ 0 is a curvature singu-
larity. However, strictly speaking, the fact that Eq. (34) is not
integrable in R2 ¼ 0 only tells us that we cannot use the
relation (32) to compute the limit because such relation only
applies to integrable functions. It could happen that the
lightlike limit Eq. (29) was well defined inR ¼ 0; the correct
way to check it is to see if (44) can be extended analytically
to R ¼ 0. A fast inspection in this sense shows that only for
D ¼ 5 the solution can be extended into the ring.

B. Exterior solution

We are going to solve the integral of Eq. (32) beyond
the ring singularity. In order to do so, we redefine the
coordinate ρ as

ρ2 − a2 → ρ2; ð46Þ

and perform an expansion in powers of a2 of the function
fðw2; ρ2; R2Þ,

fðw2; ρ2; R2Þ ¼
X∞
n¼0

JðDÞ
2n ðw2; ρ2; R2Þa2n; ð47Þ

to integrate order by order. In this way we are studying
how differently is the shock wave obtained form the Kerr-
like line element from the one generated boosting the
Schwarzschild solution, out of the region bounded by the
cylinder x2 þ y2 ¼ a2.
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After some algebraic manipulations, we get

JðDÞ
2n ðw2; ρ2; R2Þ ¼ ð−1Þn

2nn!
Rn−1ðDÞ ðw

2 þ R2Þn½2ðDþ 3n − 3Þw2 þ ðD − 3þ 2nÞðR2 þ ρ2Þ�
ðw2 þ R2 þ ρ2ÞDþ4n−1

2

; ð48Þ

where RnðDÞ are polynomials in D of degree n, defined as.5

RnðDÞ ¼ ðD − 3þ 2ðn − 1ÞÞn;2; R−1ðDÞ ¼ 1

D − 3
: ð49Þ

The integration of the general term JðDÞ
2n gives

Z
∞

−∞
dwJðDÞ

2n ðw2; ρ2; R2Þ ¼ ð−1Þn
2nn!

Rn−1ðDÞ wR2n

ðR2 þ ρ2ÞDþ4n−1
2

×

�
3ðDþ 2n − 3ÞðR2 þ ρ2ÞF

�
1

2
;−n;

Dþ 4n − 1

2
;
3

2
;−

w2

R2
;−

w2

R2 þ ρ2

�

þ2ðDþ 3n − 3Þw2F

�
3

2
;−n;

Dþ 4n − 1

2
;
5

2
;−

w2

R2
;−

w2

R2 þ ρ2

������w→∞

w→−∞
: ð50Þ

To evaluate it we use one more time the relations (38) and (40). Finally we obtain

Z
∞

−∞
dwJðDÞ

2n ðw2; ρ2; R2Þ ¼ 6
ð−1Þn
2nn!

Rn−1ðDÞ R2n

ðR2 þ ρ2ÞDþ4n−4
2

�
2F1

�
1

2
;−n;

Dþ 2n − 1

2
;−

ρ2

R2

�

þ 2ðDþ 3n − 3Þ
Dþ 2n − 3 2F1

�
3

2
;−n;

Dþ 2n − 1

2
;−

ρ2

R2

��
: ð51Þ

Therefore, writing the exterior solution in Eq. (28) as

Fðt; ρ2; z; R2Þ ¼ δðuÞΦþðρ2; R2Þ; ð52Þ

from Eqs. (32), (47), and (51), we have

Φþðρ2; R2Þ ¼ 6μ
X∞
n¼0

ð−a2Þn
2nn!

Rn−1ðDÞ R2n

ðR2 þ ρ2ÞDþ4n−4
2

�
2F1

�
1

2
;−n;

Dþ 2n − 1

2
;−

ρ2

R2

�

þ 2ðDþ 3n − 3Þ
Dþ 2n − 3 2F1

�
3

2
;−n;

Dþ 2n − 1

2
;−

ρ2

R2

��
: ð53Þ

It is convenient to introduce new coordinates fη; ξ; χ; ϑig given by

x ¼ ðη2 sin2 ξþ a2Þ12 sin χ; ð54aÞ

y ¼ ðη2 sin2 ξþ a2Þ12 cos χ; ð54bÞ

z⊥i ¼ η cos ξϑi; ð54cÞ

such that
P

D−4
i¼1 ϑ2i ¼ 1, η ∈ Rþ, ξ ∈ ½0; π�, and ξ ∈ ½0; 2πÞ. With these coordinates, Φþ reads

5The ðbÞn;k is the generalized ascendant Pochhammer symbol, defined as ðbÞn;k ¼ bðbþ kÞðbþ 2kÞðbþ 3kÞ…ðbþ ðn − 1ÞkÞ and
ðbÞ0;k ¼ 1.
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Φþðη; ξÞ ¼
6μ

ηD−4

X∞
n¼0

�
−

a2

2η2

�
n Rn−1ðDÞcos2nξ

n!

�
2F1

�
1

2
;−n;

Dþ 2n − 1

2
;−tan2ξ

�

þ 2ðDþ 3n − 3Þ
Dþ 2n − 3 2F1

�
3

2
;−n;

Dþ 2n − 1

2
;−tan2ξ

��
: ð55Þ

Note that this is a multipole expansion of Φþ in powers
of a2=2η2 outside the region delimited by the surface
x2 þ y2 ¼ a2. Therefore we can assure the convergence of
Eq. (55) whenever a2=2η2 < 1. Since, from Eqs. (54)

�
η

a

�
2

−
�
R
a

�
2

¼ x2 þ y2

a2
− 1; ð56Þ

we cannot assure the convergence of the perturbative
expansion Eq. (55) inside the region

x2 þ y2 þ R2 ≤
3

2
a2; x2 þ y2 ≥ a2: ð57Þ

In Fig. 1 a graph of the perturbative expansion Eq. (55)
until the mode n ¼ 2 is shown for D ¼ 5 dimensions,
together with the region where the convergence of Eq. (55)
might be compromised.

V. BRIEF REVIEW OF THE SHOCK WAVE
IN D= 4

The construction of the shock wave forD ¼ 4 is delicate
because the lack of degrees of freedom, since the variable R

does not exist in four dimensions. In this way, the integral
of the terms in Eq. (34) is reduced to

Z
∞

−∞
dw̄

h
Ið4Þ2n ðw̄2; R̄2Þ þ 2w̄2IðDþ2Þ

2n ðw̄2; R̄2Þ
i

¼ ð−1Þn
2nn!

Xn
k¼0

�
n
k

�h
PðkÞ
n ð4Þ þ 2PðkÞ

n ð6Þ
i Z ∞

−∞

dw̄jw̄j
ð1þ w̄2Þ2nþ1

:

ð58Þ

The mode n ¼ 0 gives a nonfinite result:

Z
∞

−∞

dw̄jw̄j
ð1þ w̄2Þ ¼ 2

Z
∞

0

dw̄ w̄
ð1þ w̄2Þ ¼ logð1þ w̄2Þj∞0 → ∞:

ð59Þ

Therefore, it is not clear if an interior solution is possible in
four dimensions. In fact, it may not exist since such solution
should satisfy some Einstein equations but the ring singu-
larity forbids any boundary condition. We can only state that,
from this point of view, the problem is not well posed.
On the other hand, the exterior solution can be com-

puted, as it has been shown in Ref. [25]. Note that in this

FIG. 1. Contour graph of the exterior solution Eq. (53) over the slice x ¼ 0 up to second order, for D ¼ 5 and μ=a ¼ 1. Red points
mark the location of the ring singularity x2 þ y2 ¼ a2; R2 ¼ 0. The region in white, delimited by the green arcs, corresponds to the
region x2 þ y2 þ R2 ≤ 3a2=2, where the convergence of Eq. (53) cannot be assured. Finally, the shadowed region in gray corresponds to
the domain of the interior solution, Eq. (44), which is not plotted for clarity.
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case the solution (53) is valid except to the order n ¼ 0,
since the integral (50) is not finite for n ¼ 0 and D ¼ 4. In
Ref. [24] a procedure to regularize the limit has been
defined. Given that for n ¼ 0 we are faced with the shock
wave arising from boosting the Schwarzschild black hole,
we can use the results of Ref. [12] without computing
again. Then we have

lim
γ→∞

γJð4Þ0 ðγ2ðzþ βtÞ2;ρ2;R2Þ ¼−2δðuÞ log ðρ2þR2Þþ 2

juj :

ð60Þ
VI. HEAD-ON COLLISION

Let us assume that two shock waves collide at t ¼ 0 with
zero impact parameter, and such that their profiles are given
by Eqs. (44) and (55). Then, outside the chronological
future of the collision surface, the metric is given by

ds2 ¼ −dudvþ dx2 þ dy2 þ dz⃗2⊥ þ δðuÞΦðρ̄2; R̄2Þdu2
þ δðvÞΦðρ̄; R̄2Þdv2; ð61Þ

where Φ ¼ Φþðη; ξÞ (Φ ¼ Φ−ðρ̄2; R2Þ) whenever we are
outside (inside) the region x2 þ y2 ¼ a2.
From the line element Eq. (61), we now look for the

Penrose trapped surface. It is a marginally outer trapped
surface lying in the past light cone of the collision, i.e., a
spacelike (D − 2) surface inside the region fu≤0;v¼0g∪
fu¼0;v≤0g whose outer null normals have zero con-
vergence. Note that because a ≠ 0, the rotation group
SOðD − 2Þ that acts over the wavefront is broken into
SOð2Þ × SOðD − 4Þ; this signals the possibility of torus
topology for the Penrose trapped surface. To get the
equations satisfied by the Penrose trapped surface it is
necessary to choose suitable coordinates fU;V; X; Y; Z⃗⊥g
such that the null geodesics normal to the wavefronts
are continuous. Then, parametrizing the Penrose surface
S ¼ Su ∪ Sv by a function ΨðX; Y; Z⃗⊥Þ ≥ 0 as

Su ¼ fðU;V; X; Y; Z⃗⊥Þ∶U ¼ 0; V þ Ψ ¼ 0g; ð62aÞ

Sv ¼ fðU;V; X; Y; Z⃗⊥Þ∶U þ Ψ ¼ 0; V ¼ 0g; ð62bÞ

to find the Penrose trapped surface is equivalent to solve
the boundary problem given by (see Refs. [6,7,10,11] for
details):

△⊥ðΦ − ΨÞ ¼ 0; ð63aÞ

ΨjC ¼ 0; ð63bÞ

gab⊥ ∂aΨ∂bΨjC ¼ 4; ð63cÞ

where C is the intersection of the Penrose trapped surface
with the collision surface u ¼ v ¼ 0. Given that we have a
geometry split by the cylinder x2 þ y2 ¼ a2, we are forced
to compute separately the exterior and interior pieces of the
trapped surface S.

A. Exterior trapped surface for D > 4

Let Ψþðη; ξÞ be the function parametrizing the piece of
the Penrose trapped surface which is exterior to the cylinder
x2 þ y2 ¼ a2. The solution to the first equation in (63) with
the first boundary condition is given by

Ψþðη; ξÞ ¼ Φþðη; ξÞ −ΦþðηðξÞ; ξÞ; ð64Þ

with η ¼ ηðξÞ a parametrization of C. Thus the second
boundary condition reads

a2 þ η2

η2
½∂ΨþðηðξÞ; ξÞ�2 ¼ 4; ð65Þ

where we have used the fact that ∂ξΨþðηðξÞ; ξÞ ¼ 0

because ΨþðηðξÞ; ξÞ ¼ 0. On the other hand, since Ψþ is
defined such that Ψþ > 0 inside C and Ψþ ¼ 0 in C, one
must have ∂ηΨþjC < 0. Thus, the later equation reduces to

∂ΨþðηðξÞ; ξÞ ¼ −2
ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2 þ a2
p : ð66Þ

Substituting here the solution (64), it gives the algebraic
equation

μ
ðD − 2ÞðD − 4Þ ffiffiffi

π
p

ΓðD−4
2
Þ

ðD − 3ÞΓðD−3
2
Þ þ 6μ

X∞
n¼1

�
−
a2

η2

�
n PnðDÞðDþ 2n − 4Þcos2nξ

ð2nÞ!!
�
2F1

�
1

2
;−n;

Dþ 2n − 1

2
;−tan2ξ

�

þ 2ðDþ 3n − 3Þ
Dþ 2n − 3 2F1

�
3

2
;−n;

Dþ 2n − 1

2
;−tan2ξ

��
¼ 2ηD−3 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2

η2

q : ð67Þ

To solve the last equation, we assume first a series expansion of ηðξÞ in powers of a2,

ηðξÞ ¼ η0ðξÞ þ η2ðξÞa2 þ
1

2
η4ðξÞa4 þ…; ð68Þ
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second substituting it in Eq. (51), and solve order by order
in a2. At zero order, we have the solution

ηD−3
0 ¼ μ

ðD − 2ÞðD − 4Þ ffiffiffi
π

p
ΓðD−4

2
Þ

2ðD − 3ÞΓðD−3
2
Þ : ð69Þ

Thus η0 is a constant. At second order, we obtain

η2ðξÞ ¼
1

2ðD − 3Þη0
− 6μ

ðD − 2Þ
2ðD − 3ÞηD−2

0

cos2ξ

×

�
2F1

�
1

2
;−1;

Dþ 1

2
;−tan2ξ

�

þ 2D
D − 1 2F1

�
3

2
;−1;

Dþ 1

2
;−tan2ξ

��
: ð70Þ

Note that the hypergeometrical function defined as

2F1ða; b; c; zÞ≡
X∞
n¼0

ðaÞnðbÞn
ðcÞn

zn

n!
; ð71aÞ

ðaÞn ¼ aðaþ 1Þðaþ 2Þ…ðaþ n − 1Þ; ð71bÞ

is equal to a polynomial of finite order when either a or b
are negative integers. In particular,

2F1

�
1

2
;−1;

Dþ 1

2
;− tan2 ξ

�
¼ 1þ tan2 ξ

Dþ 1
;

2F1

�
3

2
;−1;

Dþ 1

2
;− tan2 ξ

�
¼ 1þ 3 tan2 ξ

Dþ 1
: ð72Þ

Then, Eq. (70) is simplified to

η2ðξÞ ¼
1

2ðD − 3Þη0
− 6μ

ðD − 2Þ
2ðD − 3ÞηD−2

0

× cos2 ξ

�
3D − 1þ 7D − 1

Dþ 1
tan2 ξ

�
: ð73Þ

By definition η ≥ 0 and it becomes zero just over the ring
singularity x2 þ y2 ¼ a2, R ¼ 0. However, there are values
of μ and a so that ηðξÞ ¼ η0 þ η2ðξÞa2 þOða4Þ may take
negative values. This indicates that, for each energy μ, there
is a value a0 such that we can be sure there exists no
solution to the trapped surface equations for a2 > a20.
To determine this value, we impose ηðξ ¼ 0Þ ¼ 0. Solving
this algebraic equation for D ¼ 5,6 up to order a2, the value
of a0 is

a20 ¼
6π2μ

84 − π
≃ 0.73μ: ð74Þ

When a2 ¼ a20, the exterior piece of C is closed, and the
ring singularity is over it. For a2 < a20 the exterior piece is
an open surface and should be continued inside the cylinder
x2 þ y2 ¼ a2 by means of an interior piece of C. The two
situations are shown in Fig. 2 for D ¼ 5. Looking at the
figures, it is suspected that the interior piece of the trapped
surface could hide a hole, such that the trapped surface
would have torus topology.

FIG. 2. The shape of the piece of C outside of the cylinder x2 þ y2 ¼ a2 forD ¼ 5with energy μ ¼ 1. The ring singularity is plotted in
red. Left: for a value a < a0, the piece of C outside the cylinder x2 þ y2 ¼ a2 is not closed and must continue inside x2 þ y2 ¼ a2. Right:
for a ¼ a0 the surface C closes entirely outside x2 þ y2 ¼ a2.

6Although the outer piece of the trapped surface can be
computed for D > 5 with the perturbative method we developed
in Sec. IV, the inner one only has sense for D ¼ 5 because the
interior geometry is singular in other dimensions.
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B. Interior trapped surface (for D= 5)

The interior piece of the trapped surface makes sense
only for D ¼ 5, given that in other dimensions there is a
singularity which takes up the whole disk x2 þ y2 ≤ a2,
R ¼ 0.
Let Ψ−ðρ̄; R̄Þ be now the function for the piece of the

trapped surface inside of x2 þ y2 ¼ a2. Parametrizing
the surface C inside x2 þ y2 ¼ a2 as ρ̄ ¼ ρ̄ðR̄Þ, the solution
to the first equation in (63), with the first boundary
condition, is

Ψ−ðρ̄; R̄Þ ¼ Φ−ðρ̄; R̄Þ −Φ−ðρ̄ðR̄Þ; ρÞ: ð75Þ

Since Ψ−ðρ̄; R̄ÞjC ¼ 0, we have that ∂R̄Ψ−ðρ̄ðR̄Þ; R̄Þ ¼ 0.
Thus, the second boundary condition takes the appearance

∂ρ̄Ψ−ðρ̄ðR̄Þ; R̄Þ ¼ −2a2; ð76Þ

where we have used the fact that ∂ηΨ−jC < 0 because Ψ− is
defined such that Ψ− > 0 inside C and Ψ− ¼ 0 in C. Using
now the expression of Eq. (75), one arrives at

∂ρ̄Ψ−ðρ̄ðR̄Þ; R̄Þ ¼ ∂ρ̄Φ−ðρ̄2ðR̄Þ; R2Þ ¼ μ
ffiffiffi
π

p
aD−4

X∞
n¼1

ð−1Þn2nρ̄ðR̄Þ2n−1
2nn!R̄D−5ð1þ R̄2Þ4nþ1

2

Xn
k¼0

�
n
k

�
PðkÞ
n ðDÞR̄2k
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2
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2
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�

−
ΓðD−2þ4n−2k

2
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2
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2
;
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2
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�#
¼ −2a2: ð77Þ

Actually, Eq. (77) is a very difficult algebraic equation to solve; but suppose again a power series expansion

ρ̄ðR̄Þ ¼ ρ̄0 þ ρ̄2R̄2 þ…; ð78Þ

and solve order by order in R̄. We are mainly interested in the leading order ρ̄0, since a solution ρ̄ ≠ 0 would imply a hole in
the trapped surface. For D ¼ 5, we have

μ

a

X∞
n¼1

ð−1Þn2nρ̄2n−10

2nn!

Xn
k¼0

�
n
k

�
PðkÞ
n ð5Þ
ð2nÞ! Γ

�
1þ 4n − 2k

2

�
Γ
�
2kþ 1

2

�
þ 2μ

a

X∞
n¼1

ð−1Þn2nρ̄2n−10

2nn!

×
Xn
k¼0

�
n
k

�
PðkÞ
n ð7Þ
ð2nÞ! Γ

�
1þ 4n − 2k

2

�
Γ
�
2k − 1

2

��
2n −

1þ 4n − 2k
2þ 4n − 2k

2k − 1

2

�
¼ −2a2: ð79Þ

For ρ̄0 ≪ 1, which is clearly fulfilled because we are
dealing with the inside of the cylinder x2 þ y2 ¼ a2, the
equation above reduces to

μ

a
11π

2
ρ0 þOðρ20Þ ¼ 2a2: ð80Þ

Thus, at first order,

ρ0 ¼
4

11π

a3

μ
: ð81Þ

This result shows that, for D ¼ 5, the trapped surface has
topology S1 × S1 ×R for a ≠ 0, as it was previously
suspected.
Note that, for ρ0 ¼ a, we are in a extreme situation where

the interior piece of C contains the ring singularity and is
over the boundary x2 þ y2 ¼ a2 of the interior region.
From Eq. (81), this happens when a reaches the value

a21 ¼
11π

4
μ ≃ 8.63μ: ð82Þ

Then we can assure that there is no Penrose trapped surface
for jaj > a1. Since, from Eq. (74), a0 < a1, we can take a0
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as an upper bound for the Kerr parameter that makes
conditional the formation of the Penrose trapped surface in
the collision.

VII. CONCLUSIONS

We have computed the gravitational shock wave geom-
etry which arises from extremely boosting the Kerr-like line
element in various dimensions. The boost is done in the
direction of the angular momentum and such that the ring
singularity is preserved after the lightlike limit. We have
found a perturbative method which enables us to compute
the profile function of the shock wave inside and outside
the region bounded by the ring singularity. Then, we have
argued that only for D ¼ 5 dimensions a complete solution
for the profile function, covering inside and outside the ring
singularity, is possible.
Although Kerr-like spacetimes have angular momentum,

after performing the lightlike limit the property of a
classical angular momentum is lost. However, the axis
of symmetry of the Kerr-like spacetime is inherited in the
shock wave geometry through the survival of the Kerr
parameter a in the lightlike limit. This fact makes strong
conditions over the result of a head-on collision of two
shock waves of the type considered here.
The Penrose trapped surface formation has been con-

sidered over the head-on collision of two identical shock

waves. Since for D ≠ 5 the shock wave geometry diverges
in extended regions, the Penrose trapped surface only
appears for D ¼ 5 dimensions. For D ¼ 5 we have found
that, if the Penrose surface forms, it has nontrivial top-
ology R × S1 × S1.
Even for D ¼ 5 the Penrose trapped surface depends on

the values of μ (relativistic energy) and a (Kerr-like
parameter), and could not be produced in the collision if
the values of μ and a are not appropriate. In this sense, we
have found an upper bound a20 ≃ 0.73μ for the formation
of the Penrose surface. However, it should be noticed that
the boundary C for a ¼ a0 crosses the region where the
convergence of Eq. (55) must be carefully analyzed.
Therefore, a better upper bound could be found from an
exhaustive study of the shock wave geometry near the ring
singularity.
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