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Gravitational wave bursts are transient signals distinct from compact binary mergers that arise from a
wide variety of astrophysical phenomena. Because most of these phenomena are poorly modeled, the use of
traditional search methods such as matched filtering is excluded. Bursts include short (<10 s) and long
(from 10 s to a few hundred seconds) duration signals for which the detection is constrained by
environmental and instrumental transient noises called glitches. Glitches contaminate burst searches,
reducing the amount of useful data and limiting the sensitivity of current algorithms. It is therefore of
primordial importance to locate and distinguish them from potential burst signals. We propose training a
convolutional neural network to detect glitches in the time-frequency space of the cross-correlated LIGO
noise. We show that our network is retrieving more than 95% of the glitches while being trained on only a
subset of the existing glitch classes, thus highlighting the sensitivity of the network to completely new
glitch classes.
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I. INTRODUCTION

Gravitational waves (GWs) were detected on September
14, 2015 [1] by the Advanced LIGO [2] detectors, thereby
revealing the collision of two black holes for the first time.
Since then, the Advanced LIGO and the Advanced Virgo
[3] detectors have observed more than 90 compact binary
coalescence (CBC) events [4], among which are black
hole–neutron star [5] and binary neutron star collisions [6].
In light of the planned sensitivity improvement of the
Advanced LIGO and Advanced Virgo detectors, a new
family of gravitational wave sources, known as unmodeled
GW transients or bursts, is a prime target candidate for the
next observing run. Bursts include a wide range of
astrophysical phenomena for which accurate waveforms
are not accessible. The computational resources required to
build a template bank covering a wide range of complex
and highly turbulent events prevents us from using matched
filtering methods such as those in CBC searches [7]. Some
of the expected progenitors of gravitational wave transients
are supernovae [8], fallback accretion events [9], accretion-
disk instabilities [10], nonaxisymmetric deformations in
magnetars [11], and gamma-ray bursts [12]. Two classes of
bursts are identified: short (<10 s) and long (from 10 s to a
few hundred seconds). In this paper, we present a new
machine learning tool that complements our previous work
[13] and discriminates transient noises happening in the
detectors from long-duration burst signals.

The main approach to detecting burst events while
making minimal assumptions on the targeted signals relies
on the excess-of-power method. It consists in searching for
excess of power in the time-frequency space of single or
multiple detector data, i.e., to find narrow time-evolving
frequency curves. This problem has already been tackled
by different groups who built the current generation of
pipelines—namely, PySTAMPAS [14], cocoA [15], the
two different versions of STAMP-AS, Zebragard and
Lonetrack [16,17], the long-duration configuration of
coherent WaveBurst [18] and X-SphRad [19].
One of the main hindrances in burst searches is glitches.

Glitches are transient noises caused by instrumental or
environmental sources [20,21] that appear in the detector
data in large quantities. Several families of glitches have
been reported [22], showing different time-frequency
morphologies. Glitches limit the sensitivity of the searches
and can hinder GW detections. Therefore, all of the
aforementioned pipelines deal with glitches in either pre-
or postprocessing steps. In a previous work [13], we trained
a neural network with chirp signals having random param-
eters and showed that our methodology can be used to
detect minute-long GW transients. However, it can also
recover glitches fairly, and a visual inspection is needed to
discriminate them from chirp signals. This work aims to
remove the false alarms caused by glitches through a
convolutional neural network.
Convolutional neural networks (CNNs) were recently

used in burst detection [23]. Skliris et al. [23] built a one-
dimensional CNN to detect generic short-duration signals*vboudart@uliege.be
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from the strain data of the LIGO and Virgo detectors. CNNs
have shown promising results in the identification and
classification of GW bursts from supernovae [24,25], in the
detection of binary black hole mergers [26] as well as long-
duration transients from isolated neutron stars [27], and as
early-alert systems for binary neutron star collisions [28].
CNNs are widely used for pattern recognition [13,29] and
classification tasks [30–32]. Their powerful capability to
identify shapes and structures has led to the definition of
generative adversarial networks [33], thus allowing new
samples to be generated by learning the underlying dis-
tribution of the original data.
In Sec. II, we describe how glitches have been selected to

constitute the training set and how we highlight them in the
cross-correlated time-frequency (TF) maps. Details about
the architecture of our classifier and the training method are
given in Sec. III. We then show the results of the training in
Sec. IV. Section V is dedicated to large-scale tests com-
parable to the analyses conducted during burst searches.
Future prospects and conclusions are given in Sec. VI.

II. METHODOLOGY

Our search for minute-long bursts is based on the excess-
of-power method [34]. We make use of correlated spectro-
grams, also referred to as TF maps, as described in
Ref. [13]. In order to distinguish glitches from possible
burst signals, we will train a neural network to identify
them in the spectrograms. As both can be present in a single
TF map, we need to consider the following cases: (1) a
glitch is present in the map, (2) a burst signal is present in
the map, (3) both of them show up in the spectrogram, and
(4) neither of them show up in the spectrogram.

Accordingly we will build four different datasets to include
all the possible scenarios in the training phase.
The fourth scenario consists in building a dataset with

background TF maps. The data from Hanford (H1) and
Livingston (L1) from the first half of the third observing
run (O3a) are whitened [35] prior to be correlated. Using
time slides [36], we then generate 10000 spectrograms with
a time resolution of 6 s and a frequency resolution of 2 Hz.
As the TF maps span 1000 s and 2048 Hz, their size is
166 × 1025. Since we aim to apply our classifier on
ALBUS’s output, the size of the TF maps is chosen to
be identical to [13].

A. Chirp generation

A methodology to recognize minute-long burst signals
using machine learning techniques with very few assump-
tions was proposed in our previous work [13]. This
approach consists in using the SciPy library [37] to
generate chirp signals in the time domain with random
parameters, covering the entire time-frequency parameter
space. Figure 1 shows some examples of generated chirps.
As has been shown [13], this allows one to train a neural
network with no prior assumption of the targeted signals
while confidently identifying minute-long burst models.
Chirps are injected into noise with nine levels of visibility,
defined as

V ¼
X

i;j

ðSij − NijÞ; ð1Þ

where Nij is a noise-only spectrogram and Sij refers to the
same spectrogram in which a signal has been injected.
The sum is carried over all the pixels ði; jÞ in the map. The

FIG. 1. Examples of chirp signals.
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definition of the visibility is particularly useful to ensure
that chirps are visible in the TF maps, thus preventing the
network from being fooled during the training phase. The
visibility can also be seen as a measure of the anomalous-
ness of the input TF maps. We choose nine intensity levels
in order to cover a quite large intensity range, as seen in
Fig. 15 in the Appendix. We use this intensity criterion to
build our second dataset, which contains 10000 samples.

B. Glitch selection

During the second observing run, glitches happened at a
rate of roughly one per minute in the detectors [38].
Although it amounts to a considerable volume of contami-
nated data, the glitches barely show up in cross-correlated
spectrograms. Indeed, both glitches have to fall into
overlapping time bins while showing a sufficiently high
signal-to-noise ratio (SNR) and sharing some frequency
bandwidth. Even if these conditions greatly reduce the
amount of glitches that contaminate our search, several
thousand glitches can be found out of a couple million TF
maps generated during the background searches.
To constitute our dataset with glitches, we need a way to

inject several glitch classes into time-frequency maps.
However, the only tool that is currently available to produce
realistic glitches can only generate blip glitches [39]. Blips
are one of the 23 classes that have been characterized by
Gravity Spy [22,40]. They have a frequency between 0 and
256 Hz [41,42] which would limit the detection bandwidth
of the classifier if used exclusively in our dataset.
Therefore, we have to rely on the glitches detected thus
far to constitute the training set. We thus select glitches that
have been recorded by Gravity Spy during O3a [43]. We
load the data around the Global Positioning System time of
the chosen glitch in each single detector (H1 and L1) and
shift them so that they fall into the same time bin. In this
way, we maximize the probability of finding cross-corre-
lated glitches that appear clearly in the TF maps. Moreover,
glitches showing higher SNRs do not always lead to
stronger cross-correlated signals in the TF maps. To
circumvent these problems, we choose seven glitch classes
with SNRs ranging from 20 to 10000 in both the Hanford
and Livingston data. This will ensure some variability in the

results of the cross-correlation. Table I summarizes the
useful information.
The total number of selected glitches is 1110 for H1 and

1260 for L1. We randomly choose one glitch from each
detector and build the resulting time-frequency map. We
reproduce this procedure 50000 times. To evaluate whether
the cross-correlation of the chosen glitches has led to a
visible glitch in the output spectrogram, we employ
ALBUS, the neural network dedicated to burst detection
[13]. We showed that ALBUS can recover glitches as well
as chirp signals. We use its output map to introduce a score
quantifying the anomalousness present in the original
spectrogram, which is called the anomaly score (AS).
This score is defined as

AS ¼
X

i;j

Oi;j if Oi;j > 0.5 maxðOÞ; ð2Þ

where O is the ALBUS output map and i and j indicate the
time and frequency dimensions. The anomaly score can be
thought of the sum over the pixels remaining after an
intensity cut to the output map is applied. This threshold
has been chosen to exclude all the values close to zero, as
they are quite numerous given the size of the TF maps and
can have an impact on the final anomaly score. The
anomaly score can also be used to rank detected signals
as seen in Fig. 2, where an extended glitch shows a higher
score than a glitch that has a small frequency range.

TABLE I. Information about the glitches selected from H1
and L1.

Glitch classes Blip, low frequency burst, scattered light,
tomte, whistle, extremely loud, koi fish

SNR ranges 20–30, 30–40, 40–50, 50–100, 100–150,
150–200, 200–300, 300–500, 500–10000

Number per range 30 (if possible)
Injection time 50–950 s
Total H1: 1110 L1: 1260

FIG. 2. Examples of correlated glitches with different anomaly
scores. The left panels show the generated spectrogram, while the
right panels show the output of ALBUS. The top and bottom
glitches have anomaly scores of 21 and 144, respectively.
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After visual inspection, background maps without any
glitch have a maximum score of around 6.5, as seen in
Fig. 3, where 10000 images have been processed. All 15
background images with scores above 8 show a correlated
glitch. We thus set the threshold to confirm the presence of
a correlated glitch at 8 in order to leave a sufficient margin
between high-noise-level TF maps and those containing
glitches. After applying this threshold to our 50000

spectrograms, we end up with only 4744 maps showing
correlated glitches. The dataset has been drastically reduced
but it is still sufficient to achieve a well-behaved training.

C. Combined dataset

The procedure to generate spectrograms containing a
chirp and a glitch is very similar to the method described in
the previous subsection. We generate 45000 spectrograms
with the glitches selected in Table I. Then we inject chirp
signals with nine levels of visibility, as in Sec. II A. Once
the signal has been added to the map, we process the latter
with ALBUS.
At this stage, we cannot rely on the anomaly score as it is

defined. The chirp signals will also be recovered and
contribute to the anomaly score of the map, which can
hide the presence of a glitch. However, as we know where
the chirp is injected, we can discard the corresponding
pixels in the output map. This is done by masking the pixels
corresponding to the footprint of the injected chirp.
Therefore, the anomaly score is still relevant to assess
whether or not a glitch is present in the maps. Out of the
45000 maps, 6068 actually pass the threshold and contain a
correlated glitch and an injected chirp. This thorough check
for glitches is important in light of the training approach
explained in the next section.
Figure 4 shows an example of a spectrogram containing

a chirp and a correlated glitch. The anomaly score of the

FIG. 3. Histogram of the anomaly scores for 10000 background
TF maps.

FIG. 4. Example of a TF map showing a glitch and a chirp signal. The left and center panels, respectively, illustrate the generated
spectrogram and the output of ALBUS. The right panel corresponds to the chirp mask that is used to cancel out the contribution of the
chirp in the estimated anomaly score.
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output map is 49.6, while it drops to 34.5 when the chirp
pixels are masked out.

III. MACHINE LEARNING

In this work, we use a CNN to assess whether a glitch is
present in the time-frequency maps. For this, we feed the
output of ALBUS [13] to a CNN, predicting a glitch
probability. The full architecture can be seen in Fig. 5.
The network is composed of two parts. The first part is
fully convolutional and acts as a feature extractor. Then a
fully connected network uses these features to evaluate a
glitch probability. The sigmoid activation function is

used to obtain an output value between 0 and 1. The
hyperparameters of the network have been chosen via
trial and error. We add dropout [44] to every convolution
layer and the first dense layer with a probability of 30%.
Table II shows an exhaustive list of the parameters used
across all layers.
The training procedure is straightforward. Every

TF map is passed through the network with a glitch
label, as summarized in Table III. The binary cross
entropy (BCE) loss is applied between the predicted
and real label:

L ¼ BCEðLg; PgÞ; ð3Þ

with BCE defined as

FIG. 5. Architecture of the CNN. Conv., convolution; FC, fully connected layers; ReLU, rectified linear unit.

TABLE II. Hyperparameters used in the architecture of our
classifier.

Nb of filters Kernel size Stride Padding

Conv. 1 8 7 × 7 2 × 2 0 × 0
Conv. 2 16 7 × 7 1 × 1 0 × 0
Conv. 3 32 5 × 5 2 × 2 0 × 0
Conv. 4 32 5 × 5 1 × 1 0 × 0
Conv. 5 16 3 × 3 2 × 2 0 × 0
FC 1 29280 � � � � � � � � �
FC 2 1000 � � � � � � � � �

TABLE III. Labels used for the training of the classifier.

TF maps Glitch label

Background 0
Chirp 0
Glitch 1
Combined 1
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BCEðx; yÞ ¼ y logðxÞ þ ð1 − yÞ logð1 − xÞ; ð4Þ

where Lg stands for the glitch label and Pg is the predicted
glitch probability.

IV. RESULTS

A. Training

We select 4000 TF maps in each category, amounting to
16000 images for our dataset. A validation set of 20% is
used throughout the training. We use the ADAMAX

optimizer, a variant of ADAM [45], with a weight decay
of 10−5 and a learning rate of 3 × 10−5. The batch size is
set at 32. The evolution of the loss and the accuracy
of predicting the glitch labels are shown in Fig. 6. Both
the training and validation losses behave smoothly
during the training. We stop the training when the
validation loss starts to rise again, indicating that the
network starts to overfit the data. At the same time,
the accuracy reaches a plateau and no further progress is
observed. After 200 epochs, the validation accuracy
reaches 95.5%. The training time is roughly 2 h on a
Tesla P100 GPU (16 GB).

B. Classification

To assess the identification of glitches, we run the
classifier on the remaining images of each class—namely,
6000 for the background and chirp class, 744 for the
glitch class, and 2068 for the combined class. The
confusion matrix is shown in Fig. 7. The threshold value
to decide whether a TF map contains a glitch is chosen to
be 0.5. Glitches appearing in the data are found with an
accuracy above 95.55%, while background and chirp
images are correctly identified in at least 90.17% of the
cases. Note that the false-alarm rate for background
images is very low, with roughly 0.33% of the TF maps
misclassified.

FIG. 6. Loss and accuracy of the network for a training of 200
epochs.

FIG. 7. Confusion matrix for the glitch label. The test has been
conducted on 2812 TF maps showing glitches (744 glitch images
and 2068 combined images) and 12000 that do not include any
glitch (6000 background images and 6000 chirp images).

FIG. 8. Histogram of the anomaly scores for five years of
background.
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V. LARGE-SCALE TESTS

A. Background analysis

To test whether the trained CNN can be used to reduce the
false-alarm rate of ALBUS during a real search, we
simulated a five-year background search, accounting for
157772 time-frequency maps to process. The background is
produced via time slides [36] with real data from Hanford
and Livingston from the O3a run. Every image is passed to
ALBUS to filter the background components. Its output is
then used to evaluate the anomaly score of the map and
finally passed through the glitch classifier. If the glitch
probability is above 0.5, the TF map is classified as
containing a glitch.

The background distribution of the anomaly scores is
shown in Fig. 8. As most of the images show a small
anomaly score, they will not limit our sensitivity to burst
signals. However, some background candidates get a score
above 6 and should be examined.
Among the highest candidates, we expect to find a

majority of cross-correlated glitches. To compare the
classifier with state-of-the-art glitch retrieval procedures,
we use Gravity Spy [22]. For every image, we check to
see whether Gravity Spy has recorded a glitch in either
the Hanford or Livingston data at that time. All the TF
maps showing an anomaly score above 6 (180 in total)
have been analyzed, and their classification as images
containing a glitch is shown in Fig. 9. Gravity Spy
retrieves 165 glitches while our classifier identifies 157
of them, having 149 glitches in common. Gravity Spy
cancels out candidates with a high anomaly score, but
some of them (16 in total) are missed by our CNN. The
output of ALBUS for some of these TF maps is shown in
Fig. 10. The glitches shown look like classical glitches,
although they present a higher minimal frequency than
those appearing in Figs. 2 and 4. A probable explanation
is that our classifier is sensitive to the bandwidth of the
signals. By cross-correlating only seven classes of
glitches, we have limited the variability in the resulting
TF map, somehow indirectly impacting the detection
capability of the network.
On the other hand, the classifier recognizes eight

glitches at low anomaly scores (the green dots in
Fig. 9) for which Gravity Spy does not detect anything.
Since Gravity Spy takes Omicron [46] triggers as input,
the latter might not have produced triggers for these eight

FIG. 9. Classification of the 180 highest background
candidates.

FIG. 10. Outputs of ALBUS for TF maps in which Gravity Spy has identified a glitch while our classifier has not detected any.
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events. Figure 11 shows the output of ALBUS, i.e., the
input of the classifier, for five of them. The patterns are
narrowband and last 100–150 s. As these artifacts appear
as monofrequency lines, they might be related to the
power line at 60 Hz in the U.S. and its harmonics [38].
Figure 12 shows the spectrogram before and after the
whitening for one of the examples in Fig. 11 and reveals
that the first harmonic (120 Hz) barely appears in the data.
Therefore, the whitening procedure could not clean that
power line.

B. Burst signal analysis

To complete the tests carried out on background images,
we applied our CNN to four expected types of long-
duration burst signals across 22 hrss (root-sum-squared

strain amplitude) intensities. In order to claim a detection,
the output of ALBUS should contain an anomaly, but it
cannot be a glitch. The second condition is met when the
glitch probability (GP) is lower than 0.5. To validate the
first condition, the AS of the output map should be higher
than the anomaly score obtained for the background
images. In Fig. 9, the highest anomaly score that is not
identified as a glitch by Gravity Spy for a background map
is 10.24. The two thresholds used for the analysis are
therefore

GP < 0.5; ð5Þ

AS > 10.24: ð6Þ

Figure 13 shows the efficiency curves for four different
waveforms in two different scenarios. Every dot is the
estimation over 200 injections performed at the same hrss
intensity.
The detection efficiency for the long-duration wave-

forms is highly dependent on the shape of the footprint left
in the TF maps. Figure 14 shows the pattern left by the four
selected waveforms. The detection efficiency for the
magnetar model is very similar whether or not the glitch
probability is used, meaning that the classifier does not
recognize it as a glitch. This is not the case for the three
other models. Indeed, our classifier identifies events of that
kind as glitches most of the time, which is certainly due to
their steep behavior. Moreover, these sorts of chirps might
not be abundant enough in the data since the chirp
generation parameters have been randomized. The classi-
fier might therefore consider only the steep part to classify
them as glitches.

FIG. 12. Example of artifact detected by our classifier. The left
and central panels, respectively, show the generated spectrogram
before and after the whitening procedure, while the right panel
shows the output of ALBUS.

FIG. 11. Outputs of ALBUS for TF maps in which our classifier has identified a glitch while Gravity Spy has not detected any.
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FIG. 13. Detection efficiency for long-duration waveforms (GRBplateauShort [47], ISCOchirpC [48], maXgnetarF [49], NCSACAM-
A [50]). The dash-dotted curves refer to a scenario where the only threshold is the anomaly score, while the glitch probability is also used
in the case of the continuous lines.

FIG. 14. Examples of detection performance on long-duration waveforms (top left panel: maXgnetar-D [49]; top right panel:
ISCOchirp-C [48]; bottom left panel: NCSACAM-A [50]; bottom right panel: GRBplateau [47]). The left image in each panel is the
input TF map, and the right panel shows the output of ALBUS.
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VI. DISCUSSION AND CONCLUSION

The anomaly score has been defined as a statistics to
detect and rank signals in the output map of ALBUS. It can
also be used as the unique detection threshold of our
pipeline, showing encouraging results. Gravity Spy [22]
could then be used to remove the false alarms due to
glitches.
In this paper, we have applied a convolutional neural

network to the identification of detector glitches in the
time-frequency space of the cross-correlated LIGO noise.
The training has been carried out with both glitches and
chirping signals to help the network learn their distinct
morphologies. The network recognizes more than 95% of
the glitches, while it has a low false-alarm rate on random
chirping signals. The performance of the classifier can be
improved by adding more glitch classes to the training data,
increasing accordingly the variability in their cross-corre-
lation output. Indeed, we only select seven glitch classes in
this work, limiting the bandwidth diversity in the data.
In the same way, chirp data have to be adapted to

improve the performances on long-duration models show-
ing a steep pattern in the TF space. The efficiency of our
network can be improved by either overpopulating rapidly

chirping signals in the data or by training directly on a
subset of long-duration waveforms. Future works will
contribute to the improvement of the classifier introduced
in this paper.
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APPENDIX: VISIBILITY LEVELS

Figure 15 shows the nine levels of visibility that have
been used to inject chirp signals into the chirp and
combined training sets.
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FIG. 15. Visibility levels used in this work shown through a unique injected chirp. The values are, from top left to bottom right, 12, 14,
16, 18, 20, 30, 40, 50, and 60.
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