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The measurement of multipole moments of astrophysical objects through gravitational wave (GW)
observations provides a novel way to distinguish black holes from other astrophysical objects. This paper
studies the gravitational wave radiation from an extreme mass ratio inspiral (EMRI) system consisting of a
supermassive Kerr black hole (the primary object) and a spinning stellar-mass compact object (the
secondary object). The quadrupolar deformation induced by the spin of the secondary is different for
different astrophysical objects. We compute the effect of the quadrupolar deformation on the GW phase and
provide an order of magnitude estimate of whether LISA can distinguish different astrophysical objects
through GW phase measurement. We find that although LISA cannot distinguish between a black hole and
a neutron star, it can distinguish black holes from a large variety of highly spinning astrophysical objects
like superspinars and highly deformable exotic compact objects like boson stars for EMRI systems with
relatively large mass ratio (¢ ~ 107*). Furthermore, we show that the effect of spin-induced quadrupolar
deformation on the GW phase for white dwarf and brown dwarf-EMRI systems can be quite significant

even for small values of mass ratio (g < 107°).
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I. INTRODUCTION

The detection of gravitational waves [1,2] paved the way
for a new era in observational astrophysics, which allows us
to probe physics in the strong gravity regime for the very
first time [3-7]. The ground-based gravitational-wave
detectors successfully observed the merger of stellar-mass
black holes and neutron stars. Unfortunately, these detec-
tors are only sensitive to frequencies above ~ 10 Hz due
to the presence of seismic noise (future third-generation
detectors like the FEinstein telescope hope to evade the
seismic noise by going underground and can probe signals
in the frequency band ranging from ~3 Hz to several
kHz [8]). The future space-based gravitational wave detec-
tors like the Laser Interferometer Space Antenna (LISA),
on the other hand, will be unconstrained from such
restrictions and can detect gravitational waves in the
mHz frequency band [9]. It can detect gravitational wave
signals from a wide variety of astrophysical and cosmo-
logical sources [9—-17].

One primary source for LISA observations is extreme
mass ratio inspiral (EMRI), a binary system with a very
small mass ratio (¢ = m;/M ~ 10~7-10~*), where a stellar-
mass object inspirals into a supermassive compact
object [10-12,15,18]. The stellar-mass object (hereafter,
the secondary) completes ~ 10*~10° orbits around the
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supermassive central object (hereafter, the primary) within
the LISA frequency band before plunging [18,19]. The
gravitational waveforms from the system can be used to
extract accurate information about the parameters of the
binary system [11,20] and the geometry surrounding the
primary object [21-34]. Recent studies have shown that
LISA can measure the redshifted mass and spin of the
primary with much better accuracy than current ground-
based detectors and x-ray measurements [11,20].
Furthermore, the EMRI system is an ideal testbed
to analyze the nature of the supermassive object
[21,23-26,29]. The uniqueness and no-hair theorems in
the context of general relativity assert that the astrophysical
objects beyond a certain mass limit are Kerr black holes.
Their geometry and multipole moments depend only on their
mass and angular momentum [21,25,35,36]. However,
recently, black hole alternative models like gravastars
[37,38], boson stars [39—41], and fuzzballs [42,43] have
gained much attention. These objects are collectively known
as exotic compact objects (ECOs) [44]. They are slightly
larger than the black holes with the same mass and angular
momentum and have finite reflectivity. Gravitational waves
produced in the compact binary coalescence process provide
a way to identify these objects as their ringdown signals
differ from that of a black hole [44-51]. Moreover, the
multipolar structure of some of these objects is drastically
different from that of the Kerr black holes [52-58], which
left its imprint on the gravitational waveform. Thus, the
measurement of higher order multipole moments presents an
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opportunity to distinguish ECOs from black holes through
gravitational wave observations [59-63]. Since LISA can
measure the quadrupolar moment of the primary with great
precision (independent of its mass and angular momentum),
the emitted gravitational radiations from the system can
testify for the “Kerr-ness” of the primary [21,25,55]. Other
notable EMRI based tests to identify the nature of primary
include measuring the change in tidal heating [64—66] and
energy flux [67,68] due to the presence of finite reflectivity
and the measurement of tidal Love numbers [69].
Relatively less attention has been given to finding the
nature of the secondary object. This is because the effect of
the secondary’s spin and higher-order multipole moments
is expected to get suppressed by the system’s tiny mass
ratio. Several authors have recently considered the effect of
secondary’s spin on orbital dynamics and gravitational
wave production [70-83]. In particular, Piovano et al
studied the adiabatic evolution of spinning secondary in
circular and equatorial orbit [77,78]. Their study shows that
the gravitational wave dephasing due to the secondary’s
spin could be large enough for detection. Moreover, LISA
can detect a class of exotic compact object models
called the superspinars that can breach the Kerr bound.
Interestingly, some recent studies also considered the effect
of quadrupolar deformation of the secondary in an inter-
mediate-mass ratio inspiral (IMRI) system [84] and
Schwarzschild background [82]. In this paper, we consider
the secondary as a spinning object that inspirals into a
supermassive Kerr black hole in a circular, equatorial orbit.
Moreover, the rotation induces quadrupolar deformation
in the secondary. Several authors have emphasized the
importance of considering second-order effects like quad-
rupolar deformation for the correct modeling of EMRI
waveform [85,86]. The argument follows from the fact that
over the long inspiral period (T; ~M/q) of an EMRI
system, the second-order force terms g> f?2> have a con-

siderable effect on orbital dynamics 6z ~ ¢ /() T} ~ ¢°.

Thus, one cannot neglect the contribution of these terms.
Since the quadrupolar moment carries information about
the object’s internal structure, it can help us identify
the nature of the object. In this paper, we calculate the
corrections in the gravitational wave phase due to the effect
and show that those corrections can be large enough for
LISA to detect and thus can distinguish between black
holes and other astrophysical objects.

The paper is organized as follows: In Sec. II, we briefly
describe the equation of motion of a deformed spinning
object in curved spacetime. In Sec. III, we describe the
orbital motion of the object in Kerr spacetime. Section IV
gives a brief review of the Teukolsky formalism and
gravitational wave emission from the EMRI system. In
Sec. V, we present our main results. Section VI contains our
conclusion. The equations for circular orbits and orbital
frequency of the secondary object are presented in
Appendix A. In Appendix B, we provide a detailed

calculation for the Teukolsky source term for a spinning,
deformed object. Finally, in Appendix C, we compare our
results with the ones existing in the literature.

Notation and convention.—Throughout the paper, we
adopt positive signature convention (—, +, +, +) and geo-
metrical unit ¢ = G = 1. Greek letters a, 4,7, ... are used
to denote four-dimensional spacetime indices, whereas
the bracketed lowercase roman letters (a), (b), (c), ... are
used to denote tetrad indices. Round and square bracket
around a pair of indices denote symmetrization and anti-
symmetrization, respectively: T = (TW + T%)/2,
Tl = (7w — ) /2.

II. DYNAMICS OF EXTENDED OBJECTS

A. Equation of motion

The dynamics of the stellar mass object, immersed in the
gravitational field of the supermassive black hole, can be
adequately described by the multipolar approximation
method [87-89]. It asserts that a set of multipole moments
encode the effect of the internal structure of the secondary
on its motion along a reference worldline z#. Since the
secondary object’s size is much smaller than the curvature
radius of the primary object, only a finite number of terms
are required to describe the motion. Here, we consider
terms up to quadrupolar order, which describes the sec-
ondary object as an extended spinning object subjected to
quadrupolar deformation. Under this approximation, the
energy-momentum tensor of the object can be written as
follows [89,90],

T — /dT {wx;\/__zg(mp%ﬂ)}
Z(T))}

5 (x —
— [ deV, | Srlayp) 2222\
/ ’ [ NS

=

+2V,V; (ﬂaﬂw ‘54("_4\/__2(7)))] +0(), (1)

where v = dz#/dx is the tangent to the object’s worldline,
p" is the momentum of the object, $** is spin tensor, and
J1% is the quadrupole tensor. Here, we choose the proper
time 7 as the affine parameter so that the following
normalization condition is satisfied v#v, = —1. Note that
the quadrupole tensor exhibits all the algebraic symmetries
of the Riemann tensor R, Following Ref. [91], we
introduce a small parameter € to keep track of the terms
with different multipole moment orders. The first bracketed
term on the right-hand side of Eq. (1) is the monopole
term (O(e")), which describes the energy-momentum
tensor of a point particle. The effect of spin and quadrupolar
deformation is specified through the inclusion of the
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second and third bracketed terms, which are O(e') and
O(e?), respectively.

The equation of motion of the object is given by the
Mathisson-Papapetrou-Dixon (MPD) equation, which can
be written as follows [87,89-92]

Dp” 1 G )V ! a
- = _ES/) V'RM, )5 — 6] ﬂ75VﬂRaﬂ75 + O(e?),
DS* 4
dr 2pk) — §Raﬂy[””]yaﬂ +0(e). (2)
T

Here, D/dr = 1"V ,. However, the system of equations
consisting of the MPD equation along with the tangent
equation v* = dz*/dr is underdetermined as the number
of variables (z#, v*, p#, $**) exceeds the number of equa-
tions. Thus, we need to impose some supplementary
conditions. Here, we choose the Tulczyjew spin supple-
mentary condition [90-92]

pS* =0. (3)

The above condition fixes the center of mass of the object.
Moreover, it gives a relation between the 4-velocity v and
the momentum p* which can be written as follows [90]

2R, S SH

o= PH 4 vrap pr, 4
P a2 4 Ry s P )
where,
TR _4 R . lujvlrap 3
pr=u + 3m5 afly Pv ( )

and p* = myut. The parameter m, represents the dynamic
mass of the object, which can be defined as follows
m% = (—p,p*). For convenience, we also introduce the
monopole rest mass my of the object, which can be defined
in the following way, my = —p,v*.

The quadrupole tensor J*% contains information
about the deformation due to spin and tidal forces. In this
paper, we focus on the distortion caused by spin effects.
Thus, we choose the following form of the quadrupole
tensor [90,91,93]

3
Ja/}yﬁ — _ ? p[(l Q/}] [VP‘S] , (6)
d

where, Q% = CQS;fSﬁ” /my is the mass quadrupole tensor.
Here, C is the spin-induced quadrupole moment (SIQM)
parameter. For rotating Kerr black holes, C, = 1 by black
hole no-hair theorem [94]. For rotating neutron stars, the
value of C, varies between ~2-20 depending on the
equation of state [95-97]. Interestingly, for certain exotic
compact objects, like boson stars, the C, can be quite large,
ranging from ~10-150 [52]. For thin-shell gravastar, the

parameter can even take negative values for small values of
compactness parameter n,/R, where m; and R is the mass
and radius of gravastar [57,58]. For instance, the SIQM
parameter takes the value of Cy ~ —0.5 for a polytropic
thin shell gravastar with polytropic index n =1 and
R = 5my [58].

B. Conserved quantities

If the spacetime admits a Killing vector ¢, then the
following quantity [90,91,93]

1
H§ = pﬂé_fﬂ —ES’”“VDS,, (7)

is conserved along the trajectory of the object. Since we are
interested in stationary, axisymmetric spacetime, the asso-
ciated conserved quantities are the energy E and angular
momentum J, corresponding to Killing vector (d,)# and
(9,)", respectively. The conservation of the spin length
§? = 8,5 /2 depends on the Tulczyjew spin supplemen-
tary condition, which can be seen from the following
expression:

g9 _1g DS*
dr 27" dr
2
= S;w < prr — § Raﬂyﬂ Jwaﬂ)
= 0. (8)

Here, we obtain the above result by substituting Eq. (6) in
the second line and then using the Tulczyjew spin supple-
mentary condition. The dynamical mass term m, is not
conserved. To see this, let us consider the following term

P p, 2. Note that, p* = my v + O(e?) [see Eq. (4)],

S = O(e"), and J** = O(e?). From Eq. (2), we can

check that ZZ » = O(e'). By taking total derivative of

Eq. (3), we can show that p, 25" = —gmw Pl = O(e?).

d
D v .
Hence, the term =% p, 25 = O(¢*). Furthermore, using

Eq. (2), we obtain the following relation

Dp, DS* Dp, 4
d P e T de —mopﬂ+m3y/4—§RaﬂyU4]’J]7“ﬁpy

_ dmd papy pafy 3
momd( P — JPPr 1+ O(e?)

md DR

=0(e), ©)

where, we used the fact p*(Dp,/dr) = —m,(dm,/dr) and

%JW&/’ = O(€?). The above equation leads to the follow-
ing relation
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dmd my DRpaﬂy
— L= P geabr L O(e3). 10
dr  6m, dr +0() (10)
As can be seen, the dynamical mass term my, iS not
conserved. However, we can define the mass term m
given by the following expression [90,93]

mgy

m, Emd—6—mOR Jraby (11)

papy

which is approximately conserved along the trajectory:
using Eq. (10) and the fact that (DJ*%" /dz) = O(€?), we
can easily show that dm,/dr = O(e?).

ITI. ORBITAL MOTION OF THE EXTENDED
OBJECT IN KERR BACKGROUND

We start with Kerr black holes in Boyer-Lindquist
coordinate (7, r, 0, ¢) whose line element can be expressed
as follows [98]:

A dr?
ds* = — 5 [dt — asin®0d¢p)* + = [Ar + d@z]

sinZ@

[adt — (r* + a*)d¢)?, (12)

where A = (1’ +a?)—2Mr and X =r?+ a*cos’0
and a is the rotation parameter of the black hole. The
solutions of A =0 give the position of the horizons as
ry = M 4+ VM? — a?, where the upper (lower) sign cor-
responds to the event (Cauchy) horizon. The spacetime is
stationary and axisymmetric; thus admits two Killing
vectors & = ()" and & = (dy)". For convenience, we
introduce an orthonormal tetrad frame to describe the
orbital motion [91],

VA 2
eflo) =-——=(1,0,0,—asin’9), e,(,1> =£(0, 1,0,0),
VE VA
iné
eﬁzw&¢im,e9:%%eawwﬂﬂ% (13)

We define the
relation [77]:

spin vector through the following

where, £@®)(©)(d) ig the Levi-Civita tensor.

A. Equations of motion on the equatorial plane

In the following, we consider the secondary object is
orbiting around the supermassive black hole in an equa-
torial plane (@ = z/2). Moreover, we choose the spin

vector of the secondary S* is parallel to z axis, i.e.,
§la) = (0,0,—-S,0). The negative sign implies that the
secondary is moving in a spin-aligned configuration [91].
Basically, for @ = 7, the dy and 9, are antialigned. Hence this
negative sign is making the spin of the secondary to align
to d, and hence with that of the primary [77]. Using Egs. (3)
and (14), we find that p® = 0, S@@ = 0, SO0 = _§,3),
SOG) = suM, and SWE) = 5u®. It is useful to define
dimensionless variables,

. T . a A E
F=—, a=—, E=—,
M M my
N J S
J = 2 s = = y 15
= M O M~ (15)

where, ¢ = m,/M is the mass ratio. Using Eq. (7), we can
write the energy and angular momentum of the object
as follows:

VA (0)+(&?+6) 3)

E:TW ) w/,
r r
5 A (3 A2 L 53
jZ:\/A(cAl+6)W(O>+(a(r—|—1)0;21-a P47 )w(3), (16)
7 7

where we introduce a parameter w* = p#/m, for conven-
ience. We invert the above expression to write w(®) and w(®)
in terms of E and J,, which is given as follows.

Lo _ (P a)E—al, (1 02> Lo@E(G+1)-T)

FVA P P2VA ’
J,—ak 2\ E
WW_R“Q+%—F. (17)
r r- r

Replacing the above expression in Eq. (11), we find
conserved mass as follows [90]

S

m,=my [1 +@ <1 +3 <JZ ;ZA E>2)] +0O(). (18)

27

We can obtain the expression for w(!) from the following
relation (w(®)2 — (w()? — (w®))2 = m?/m?. The relation-
ship between normalized momenta «(%) and the 4-velocity
(@ turns out to be

3(1-8Cp)o*(u)?
3

2

20 = <1+

0(3):<1_|_3(1_SCQ)62(1+(M(3))2)>14(3)+(’)(€3), (19)

024006-4



PROSPECTS FOR DETERMINING THE NATURE OF THE ...

PHYS. REV. D 107, 024006 (2023)

where u@ follows the relation u'® = mw(@ /m,. The
component of 4-velocity in Boyer-Lindquist coordinate
can be obtained with the following v# = ez‘@v(“) which

gives the equation of motion as follows [90,91]:

where
2 3(1-8Cy)(J. - Ea)c?
2‘:?2<1—f—3>, P Q)ESZ a)o”
7 s
3(1-8Cyp)o?
Qszl_ ,\3Q 5
7
PSZE{(#+a2)+a—;(?+1)]—jz<1+%),
&% o N\2 A/a o\2
a=(l+5+51+= o o el IS
Tl 7 PA\F 7
a% o 1 a o Ala o
=(14+—=+—=(1+= = -=(=+=],
(o () (D)4 ()
a o\? A AX?
= — —_ -5, 5: S, 21
4 (?Jr# 2 76 1)

B. Circular orbit, ISCO, and orbital frequency

In this paper, we focus on circular orbits. For an object
moving in a circular orbit, the radial velocity and accel-
eration vanish simultaneously, leading to the condition
V,=0 and dV,/dir =0. The stability of such orbits
against radial perturbation is dictated by the condition
d*V,/di* < 0. It is more convenient to use an effective
potential term V ; for the calculation, which can be written
as follows [90]

. J.. JZ 2
Ver(?) = |af? - 26 E 475 —5% (22)

N

where, the a, 3, v, 6 is given in Eq. (21). Moreover, we
adopt the variables y = 1/# and x = J. . —a E in place of #
and J. The condition for circular orbit then transformed as
Veir =0 and dVy/dy = 0. Noting that the parameter
o < 1, we can expand the equations mentioned above into
a series of 0. Here, we seek a solution to the equations in the
following form.

E= EO + 6E1 + 621:32, X =%+ ok + 0%k, (23)

where, {E, %y} corresponds to the value of {£,%} for a
spinless object, whereas { £}, &, } and { £,, %, } represent the
linear and quadratic corrections due to spin, respectively.
For stable circular orbit, {E, %} attains the value [99]

- 1-2yFayy lFa/y
EOZ N Xo = .
=3y F 20/ Vo(1=3yF2a/5)

(24)

The upper sign represents a retrograde (counterrotating)
orbit, whereas the lower sign corresponds to a prograde
(corotating) orbit. The equations for {£;,%;} (i = 1, 2) is
presented in Appendix A. We solve these equations numeri-
cally and replace them in Eq. (23) along with Eq. (24) to
obtain the value of {£, £} as a function of y. By replacing
y=1/#and J. = &% + a E, we obtain the value of energy
and angular momentum of the object hovering in a circular
orbit with radius 7.

Determination of the parameters of the innermost
stable circular orbit (ISCO) needs an additional condition
d*V ¢ /dy* = 0 (d*V 5/ di* = 0). Series expansion of this
condition into the series of ¢ is presented in Appendix A.
Similar to Eq. (23), we seek a solution in the following
form.

y = Yo + 0y + 6% (25)

Solving the equations Vi = dVeg/dy = d*V e /dy* = 0
simultaneously, we obtain the parameters {E, %,y} in the
form given by Egs. (23) and (25), which in turn gives us the
energy, angular momentum, and position of the ISCO
{Ei“", J Zi“‘), 750} (see Appendix A for more details).
The angular frequency of the circular orbits is given by

dp/dr _ AU, ~(@+o)b)0,+ar, 0

o ! :
dijdt ~ Aa(J,—(a+06)E)Q, + (P +a*)P,

where in the second step, we use Eq. (20). Replacing
Eq. (23) in Eq. (26) and expanding the expression as

A

Q(7) = Qy(7) + 6 (7) + 02Qy (7), (27)

we obtain the angular frequency of the circular orbit. Here,
Q, corresponds to the angular frequency of a nonspinning
object, whereas Q, and Q, represent linear and quadrupolar
correction due to spin, respectively.

IV. GRAVITATIONAL WAVE FLUXES

In this section, we describe the gravitational wave
radiation from the EMRI system, where the secondary
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object inspirals into the primary following quasicircular,
equatorial orbits. As a result of the system’s tiny mass ratio,
we can study the evolution of the secondary object through
perturbation methods. The system loses energy and angular
momentum due to gravitational radiation, the backreaction
of which (self-force) shrinks the binary separation, and the
system goes through an inspiral phase. In this paper, we use
adiabatic approximation to study the gravitational back-
reaction effects [18,100]. The motivation behind this
formalism is that the orbital timescale 7, (~ M) is much
shorter than the dissipative T; (~M?/m,~T,/q> T,);
thus allowing us to treat the orbital dynamics as geodesics
over a short timescale. Furthermore, the rate of change
of the orbit’s energy is dictated by the time-averaged,
dissipative part of the self-force [100], i.e.,

dE orbit dE
() =) 2
GW

where (-) denotes the averaging over a time period much
larger than 7', but smaller than 7;. We calculate the back-
reaction effect on the orbit by solving the Teukolsky
equation. This gives the adiabatic evaluation of the object
from orbit to orbit. Note that the adiabatic approximation
breaks down as the object crosses the ISCO and transits
onto a geodesic plunge orbit [18]. Our study focuses only
on the adiabatic part of the motion. Much of our dis-
cussions presented in this section and the Secs. IVA
and IV B follow closely from [77]. Interested readers are
referred to [77] for further details.

A. Teukolsky equation

As discussed earlier, we consider that the secondary
object perturbs the background Kerr spacetime. Here, we
adopt Teukolsky formalism to obtain the perturbation
equation and the gravitational wave flux. The information
about the gravitational radiation is encoded in the perturbed
Weyl tensor C,,qs [101]. In particular, the Weyl scalar
Y, = —Cﬂmﬂn”rh”n"mﬂ contains information about the
outgoing part of the radiation. Here, n* and m* are part
of the orthonormal null tetrad, the expression of which is
given in Eq. (B8). Teukolsky showed that ¥, could be
decomposed as functions of Boyer-Lindquist coordinates in
the following manner [101],

(29)

where p = [# —iacos]™!. ,542.(0) is the spin-weighted
spheroidal harmonics with weight —2, which satisfies the

angular Teukolsky equation

1 d d m—2cosf\?
Y ino L) —a202sin20 — (P 2C08Y
Lin&d& (Sm d9> @i ( sin@ >

LS80 (9)=0.  (30)

‘ma

+4adcos@—2+2amd + /1/,,,@]

where, Asme = Eppe — 2ma & +a>a* — 2. Here, E;,; is
the separation constant. Hereafter, we denote _,S% " (6) by

‘maéad

54 (9) for brevity. The eigenfunction of the angular
Teukolsky equation S%?.(6) satisfies the following nor-

‘md
malization condition.
/sin 9d«9d¢|S%@(9)eim‘/’|2 =1. (31)

The radial function R, (7) satisfies the inhomogeneous
Teukolsky equation

d (1dR,,;
A? ( fmw> - V(;’)Rfmé) = jfm(bv (32)

dr \A df
where
K2 +4i( - 1K
V(#) = —$ + 8id) P +Appg
K = (#*+a*)& — am. (33)

The source term 7 ,,,; depends on the energy-momentum
tensor of the secondary object [see Eq. (B4)]. The details
of the calculation for the source term are presented in
Appendix B.

We employ the Green’s function method to obtain R,,,; .
In terms of the linearly independent solutions of the
homogeneous radial Teukolsky equation RZ .(7) and
R} . (7), following purely incoming boundary conditions
at the horizon and purely outgoing boundary condition at
the infinity, respectively, the solution of Eq. (32) can be
written as

1 # Rin . .
Rfm&)(?) =30 {R;[')n&)/ dr fmwjfmw

W . A?
O R
where W = (R - 0:R}Y . — R -0;R% .)/A is the con-

stant Wronskian. The asymptotic behavior of the radial
function Ry,,; is given as follows.

ZH . §3 ol 7 — o0
‘méa
Reme = o . (35)
Z;om(bAz e—z(w—mQJr)r*’ FN ?‘F

where
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r,=r+

] 2?+A In r - ?+] _ 2?+A In r - ?_] (36)
R 2 Fo—=7_

is the tortoise coordinate, and €, = a/(27,) is the
dimensionless angular frequency of the black hole. The

amplitudes 21 are given by the following relation.

fma)

A Rm tuf
Z;Imo; Cfmw/ dr fm(zz o ’ (37)

It
where CL'® are constants; [see Eq. (B2)]. For the energy-

momentum tensor presented in Eq. (1), the amplitudes
takes the following form [see Eq. (B35)]

2z =iz [T a0, 00), (38)

where
1), 0(1)] = |Ag— (A +B)d+(A +B +C)J2
Imé ) = Ay 1 0) 5 2 1 0) 2
d3 d4 11’1 A
(BQ+C1)dA3+C2dA4 lmz)p(r”r(t)ﬂ(t)'

(39)

We have presented the details to calculate these quantities
as well as the explicit form of the coefficients (A;, B;, C;)
(i=0, 1, 2) in Appendix B.

In what follows, we turn our attention to equatorial,
circular orbits. This hugely simplifies the expressions of the
coefficients (A;, B;, C;) [see Eq. (B37) in Appendix B].
Moreover, for circular orbits, we have ¢(7) = Q7 which
simplifies the expression for the amplitude in Eq. (38) as

2o — Al 5o — mQ) at some specific radius r, where

Al = 22C1e 11,5 [ro. 7/2]. At infinity, the Weyl scalar
is related to gravitational wave strain h (h = h —ihy) in
the following manner W, = h/2 = (h, — ihy)/2, where
overdot sign implies derivative with respect to 7. Using
Egs. (29) and (37), we find that the gravitational wave
strain for circular, equatorial orbits can be written in the
following form:

23 < s
=2 Z £ S3ha(0)e 00 0

=2m

The above expression can be used to obtain the time-
averaged energy flux at infinity which can be written as
follows [77]:

Here, we use the property of the amplitude Z{Z o =
(=1)Y 282 to restrict the sum over m in Eq. (40) to
positive m values. Similarly, we can write energy flux at

the horizon as [77]

dE x L A
< > Z Z (xt’m | fmw , ( 42)
=2 m=1
where
w — 256(27, )3k (i + 4€2) (k% 4 1662)(mQ)? (43)

|Coml?

with k = & — mQ,, e = V1 — a%/4#, and
1Coml? = (g + 2)% + da(mQ) — 42> (m€2)?]

x [ o+ 36ma(mQ) — 36a%(mQ)?]

+ (2 + 3)[968% (m2)?

+ 144(mQ)?(1 - &?).

— 48ma(mQ))]

B. Adiabatic evolution of the orbit
and gravitational wave phase

With the expression of energy radiation at the horizon
and infinity in Egs. (42) and (41), respectively, we can
calculate the total energy flux from the following equation.

(]S

=2 m=1

where F,, = (A2 o[>+ apm|AZ 2)/2nq(mQ)?. The
energy and angular momentum of the orbit evolves
adiabatically due to the gravitational backreaction effect
over timescales ~T; [see Eq. (28)]. Here, we assume that
the secondary object’s mass, spin, and internal structure
remain unaltered during evolution. The evolution of the
orbital radius and phase as a result of the backreaction
effect is dictated by the following expression [77]:

T g )(‘;E) , (45)

W o). (46)

where, the expression of £ and Q as a function of # is given
in Egs. (23) and (27), respectively. The solution of Eq. (46)
gives the expression for instantaneous orbital phase, which
is related to the dominant mode gravitational-wave phase
by ®gw(7) = 2¢(7). As discussed earlier, the adiabatic
approximation breaks down as the object crosses the
ISCO radius. Since we focus on the adiabatic evolution
of the orbit, we consider the evolution in the domain
7 € (7#n, #50), Here, #" is the starting point of the inspiral.
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TABLE 1. Fractional truncation error in flux AF,, and
gravitational wave phase A®,,, at #° for different values of
a. Here, we take g = 1074, Cp =10, and y = 2.

a AF un ADyyy

0.0 1.5%x107° 1.4 x 1075
0.3 1.28 x 1078 1.2 x 1075
0.6 2.05 x 1077 9.9 x 107°
0.9 2.05 % 1073 3.2x 1070
0.99 1.02 x 107 1.1 x10°°

V. NUMERICAL METHOD AND RESULTS

In this section, we briefly describe the numerical
methods implemented to calculate the energy flux F.
One of the main tasks to do so is to find the solutions
of homogeneous Teukolsky equation, R . and R ..
Here, we have considered two different methods to calcu-
late these functions: (i) the Mano-Suzuki-Takasugi (MST)
method [102-104] as implemented in Mathematica pack-
age Black hole Perturbation Toolkit [105],
(i1) the Sasaki-Nakamura (SN) method as described
in [77,106]. This is because the MST method, albeit faster,
fails to deliver results with significant numerical precision
for large values of £ (see Ref. [77] for further discussion).
We consider the SN method to calculate the energy flux
in this scenario. In our calculation, we set the numerical
precision to 22 significant digits. Furthermore, we have
calculated the eigenvalue 4,,, and the eigenfunction

ad.(9) of the angular Teukolsky equation Eq. (30) using
Black hole Perturbation Toolkit package.
With R%™ in our hand, we can calculate the total flux

‘ma
using Eq. (44). However, we need to truncate the infinite

sum in those equations. Here, we set 7, = 22 since the
contribution of terms beyond Z > 7, to the total flux is
negligible. In Table I, we have presented the fractional
truncation error in energy flux AF,, = |F/~3 -
FO=2|/F=3 for ¢ =107, Cyp =10, and y =2 and
different values of primary spin a. Here, F“=2* and
F?=22 is the flux considering #, = 23 and £, = 22,
respectively. The fractional truncation error is computed at
75 The errors are even smaller for # > #¢°, We find that
AF i 18 practically independent of Cy, and y. However, as
seen from Table I, it depends on a. For each value of £, m
varies from 1 to £ starting with m = ¢ mode, which is the
leading contributor to the flux. However, to speed up the
computation, we compare m = ¢ mode with m =7¢ —i
(i=1,2,....¢ — 1) mode at 7 and neglect the contribu-
tions of the terms for which F,, > F,,_;, or, equivalently,
\Fpe—i/ (Fpe — Fpe_i)| < 1. Following [77], we truncate
the m series whenever | Fyy_;/ (F o — Fpo—i)| < 1076, This
gives us the energy flux F as a function of 7, @, ¢, y, and C.

Since we are interested in the adiabatic evaluation of the
orbit, we calculate the flux F(#) in the range 7 € (7", 5°)
for different values of y € [-2,2] and fixed values of @, g,
and Cy. Following [77], we choose the starting point of the
inspiral 7" such that all the spinning objects have the same
orbital frequency as a nonspinning (y = 0) secondary
object at 7 = 10. Note that F for y = 0 corresponds to
the flux for a nonspinning secondary object which we
represent by F(%). We have fitted the difference F — F(©)
with a quadratic polynomial of &, by + b 6 + b,6>. We use
the Fit function in Mathematica to fit the numerical data
with the quadratic polynomial. We have checked that value
of by~ 10718(10710) at 7 = 7 (715)  irrespective of the

107!

1072

10!

10°

1072
1073
S
S
1073
1074
—4
10 105
FIG. 1.

The plot of total energy flux for stable, prograde orbits as a function of orbital radius 7 for different values of spin of the

primary object. In the left panel, the energy flux of a non-spinning secondary object F(?) is presented. The middle and right panels show
the linear and quadratic correction coefficients in energy flux due to spin effects. Here, we take ¢ = 1074, Cp = 10.
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10!

1071

% —a=0.0
I —a=0.3
1073 a=0.6
—a=0.9
— a=0.99
107°
0 100 200 300 400 500 600

t (days)

107

0 100 200 300 400

t (days)

FIG.2. The plotoflinear order spin correction coefficients ®(!) as a function of ¢ for stable, prograde orbits. The left panel shows the time
evolution of &) for Co = 10 and different values of a. The right panel shows the same for & = 0.6 and different values of C,,. Here,

we consider the inspiral of a 1M, compact object into a supermassive black hole of mass M = 10*M,. The ®(!) depends only on a.

value of primary spin. Consideration of higher order
polynomial does not change the order of magnitude
of by. Thus the total flux can be written as

F(#,6)=FO ) +6FD(#) +2FO () +0(c®), (47)

where F(U(#) and F?) (#) describe the linear and quadratic
corrections to flux due to spin effect. In Fig. 1, we show the
FO, FW and F@ for stable prograde orbits as a function
of orbital radius 7 for different values of a. Here, we
take ¢ = 107, Cy = 10.

We can calculate the adiabatic evaluation of the orbit by
integrating Eq. (45). The integration starts at #", which
marks the beginning of the inspiral phase. The integration
stops when the object reaches 7" = 715 + ¢ Here, we
choose ¢ = 107, We obtain the instantaneous orbital phase
¢(1) by replacing the solution of Eq. (45) in Eq. (46) and
solving it using Euler’s method [107]. The instantaneous
gravitational wave phase can be obtained through the
relation ®gw(7) = 2¢(7). In Table I, we present the
truncation error in the gravitational wave phase AD,, =
|D5GF — DL/ DGy at 75 for the cutoff value
Cmax = 22 and for ¢ =107%, Cp =10 and y =2 and
different values of primary spin a. As evident, the con-
tribution of the terms beyond £ = ¢, is negligible. The
gravitational wave phase can be expressed in the following
form [77]:

Daw (1) = @ (7) + @1 (1) + g @) (7) + O(c%),  (48)

where ®(©)(7) denotes the phase of a nonspinning secon-
dary object whereas ®(!)(7) and ®?) (%) represent a shift in
phase due to the secondary’s spin, respectively. We have
calculated the value of ®gw(7) for different values of y,
including y = 0 which corresponds to ®(®) (7). The infor-
mation about the dependence of gravitational wave phase

on secondary spin is encoded in ®gy(7) — @ (7). By
fitting the ®gw (1) — ®©(7) with a quadratic polynomial
ay+ ayy + ay®, we obtain the value of ®()(7) and
®)(7). Again, we use the Fit function in Mathematica
to fit the numerical data with the quadratic polynomial in
Eq. (48). Note that we have checked that ay ~ 107'°(1079)
at 7 = M (71°) jrrespective of the spin of the primary
object. Consideration of a higher order polynomial does not
alter the values of ®©, ®(1) and ®®@ significantly. The
coefficient ®©) only depends on the spin of the primary
object and has no dependence on the SIQM parameter C,.
In Fig. 2, we present the linear correction in phase as a
function of time for different values of primary spin a and
secondary’s SIQM parameter C, for prograde orbits. As
seen from the left panel of the figure, the time of adiabatic
evolution up to the ISCO increases with the increase of a.
Furthermore, the right panel of the figure shows ®(!) does
not depend on the Cy. Although we have shown here the
result for a = 0.6, we have explicitly checked that this
behavior persists for other values of a. This confirms that
the body’s internal structure does not affect the gravita-
tional phase up to linear order in the spin.

To see the behavior of quadratic corrections in ®gw (1),
we start with the following ansatz,

@) (7) = ®Y (1) + Co@p (7). (49)

Here, dDJ(fz) (7) is the quadratic correction to GW phase for a
spinning undeformed object, whereas CQ<I>(Qz)(?) is the
correction for the same due to spin-induced quadrupolar
deformation. In the left panel of Fig. 3, we show the
magnitude of these terms for a =0 and a = 0.99.
CQGJS) (1) is represented by solid curves whereas <D)((2)(?)
isrepresented by dashed lines. Here, we consider thata 1M
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10!
10!
Lo S 107! A
o ‘-“_.n‘ e I\_O 3
1o P — |Co @' for a=0.0 | B a—0.6
.. .‘.‘ T &: :
£ @, for 4=0.0 107 N
e 12,1 i — a=0.9
105 :::.. [— |CQ (I)Q | or a=0.99 ’ —_ &:0,99
E |®,@| for a=0.99 5
10
0 100 200 300 400 500 600 0 100 200 300 400 500 600
t (days)

t (days)
FIG. 3. Left: A comparison plot between spin-induced quadrupolar deformation term CQd)(Qz) (represented by solid lines) and second

order spin correction term <D}((2) (represented by dashed lines) as a function of 7 for stable, prograde orbit and @ = 0.0 and a = 0.99.
Right: The plot of (I)(Qz) as a function of ¢ for different values of a. In both of these plots, we consider the inspiral of a 1M, compact object
with Cy, = 10 into a supermassive black hole of mass M = 10*M.

° CQ=1 101 ° CQ=1 101
107, co=10 . Co=10
A CQ=100 100 A CQ=100 100
107!
107! 107!
x _ ] 3
o107 > o
ef & ’el‘ 1072 'el‘ 102
103 7
. 1073 1073
_4 - "
10 1074k 1074
0 100 200 300 400 0 100 200 300 400 500 600
t (days)

0 50 100 150 200

t (days) t (days)

FIG. 4. The plot of (D<Q2) as a function of # for stable, prograde orbits for a = 0.0 (left panel), @ = 0.6 (middle panel), and a = 0.99
(right panel). Here, we consider the inspiral of a 1M, compact object into a supermassive black hole of mass M = 10*M,. As evident,

<I)(QZ) is independent of Cy.

compact object is inspiraling into a 10*M, supermassive
TABLE II. The quadratic correction to accumulated phase at

black hole. The right panel of Fig. 3 shows the dependence )
(2) the end inspiral period due to quadrupolar deformation QDE; (fena)

of @g) (1) on a.InFig. 4, we show the dependence of @,” on for diff | .
the SIQM parameter Cy, for a = 0.0 (left panel), a = 0.6 or different values of 4.
(middle panel), and a = 0.99 (right panel). As can be seen 4 o? @)
(2) . Q.end
from these plots, @, depends only on the spin of the 0 163344
primary object. Moreover, the quadratic correction to the 03 3:171 33
accumulated phase at the end of the inspiral period (I)g) (tena) 0.6 6.65017
0.9 14.8259
increases with the increase of a. The values of <I>g) (tepnq) for 0.99 245308

different values of & is presented in Table II.
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FIG. 5.
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|Col

The contour plot of quadratic corrections due to spin A® in (Cy, y) space for @ = 0.3 (left panel), @ = 0.6 (middle panel),

a = 0.9 (right panel). Here, the green contour represents the threshold A® = 0.1 rad for detecting the corrections due to quadrupolar
deformation. The white dotted line corresponds to y = 1. As evident, the parameter space for which the LISA can probe the effect of
quadrupolar deformation is considerable, and it increases with the increase of a.

A. Measurability of the effects
of quadrupolar deformation

In this section, we discuss whether the effects of
quadrupolar deformation are strong enough for detection.
Recently, Bonga et al. gave a rough estimate of the phase
resolution for the EMRI measurement [32]. Considering
the average signal-to-noise ratio (SNR) for LISA observa-
tion as ~ 30, they showed that distinction of two model
waveforms is possible through LISA observation when the
phase difference between these waveforms A® is greater
than 0.1 radian. From Eqs. (48) and (49), we find that the
effect of quadrupolar deformation would be significant for
LISA observations if the following condition is satisfied

AD = ¢Cpr*®Y (fepg) > 0.1 rad, (50)
where, ¢(Qz)(tend) is the quadratic correction to the accu-
mulated phase at the end inspiral period. As discussed

above, the value of <I>(Qz)(tend) depends only on the spin of

the primary object. For convenience, we denote CI)(QZ)(tend)

as ®(Q2,)end(2z) from now on to show its explicit dependence

on a. In Table II, we present the value of d>g’)end(€1) for
different values of a. We use Eq. (50) to check whether
LISA can distinguish black holes from neutron stars and
exotic objects like boson stars or gravastars.

In Fig. 5, we present our main result. Here, we show the
contour plot of A® in the (y,Cy) plane for a = 0.3 (left
panel), a = 0.6 (middle panel), and a = 0.9 (right panel).
Here, we fix the mass ratio as ¢ = 10™*. As discussed

earlier, the SIQM parameter C, for Kerr black holes is 1,
whereas it can take values ~2-20 for neutron stars and
~10-150 for boson stars. It can also take negative values
for gravastar [57]. Thus, we vary the SIQM parameter in the
range Cy € (0, 150).

The maximum value of the secondary’s spin parameter
¥max depends on the nature of the object. For Kerr black
holes, the spin parameter is restricted by the Kerr bound
X < XYmax.xerr = 1. However, for objects like neutron stars
and white dwarfs, y,.. depends on the mass-shedding
limit. Beyond this limit, the centripetal force on the
particles at the star’s surface surpasses the gravitational
pull, and the star becomes unstable. This puts a limit on the

angular velocity (Q.« = f/m,/R>) of the rotating star
and, consequently, on its spin parameter [108]

19« R
Xmax = 5 = aﬁ >
m; my

where m; is the mass and I = am,R? is the moment of
inertia of the object, and R is its radius. The parameter o
and g depends on the stellar model. For instance, we get
a =0.2045(0.11804) and g = 0.5365(0.46111) for iso-
lated, self-gravitating fluid model with polytropic index
n = 1.5(2.5) [109,110]. As can be seen from the above
equation, y .« depends strongly on the mass-radius relation
of the object. Most of the neutron star mass-radius relation
models estimates y..x 0.7 [111,112]. The fastest-
spinning millisecond pulsar J1748 + 2446ad has a rota-
tional frequency of 716 Hz [113]. It has been noted that
the spin parameter of this pulsar can be as large as y ~ 0.5,

(1)
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FIG. 6. Left: The plot of y,,,, as a function of the mass of the white dwarf for different values of polytropic index n. Right: A simplistic
order-of-magnitude estimate of the maximum value of mass ratio g, of a white dwarf-EMRI system below which there is no tidal
disruption (represented by the shaded region) as a function of white dwarf mass for @ = 0 and @ = 1 (considering corotating orbits).
Here, the black dashed line represents g = 10~*, whereas the black dot-dashed line represents the g = 1073. As can be seen from the
plot, white dwarfs with mass ~ M, can withstand the tidal disruption of the primary object for ¢ = 10~*. However, with smaller mass
ratio values, white dwarfs with smaller masses can withstand tidal disruption.

depending on its mass and equation of state [114].
By taking its mass and radius as my; =2Mg and R =
16 km [113], we find that the value of the spin parameter
for this object is y = 0.43707. Here, we use @ = 0.237 +
0.674(m,/R) + 4.48(m,/R)* following [115].

However, for white dwarfs, R strongly depends on the
mass of the object. Following [109], we rewrite Eq. (51) in
the following manner y,.. = y\/Ro/m,, where R is the
radius of a nonrotating polytrope with equal mass m, and
the parameter y is dependent on the stellar model. For a
self-gravitating fluid with polytropic index n = 1.5(2.5),
we get y = 0.1660(0.0785) [109]. To get an estimate of
Xmax> W€ consider the following mass-radius relation of a
nonrotating white dwarf [116],

R -1/3
0 _0.01125( 2 fm) VA, (52)
Reo Mg

where f(mg) = 1— (m,/1.454M)*3. Using the above
relation, we can find the maximum value of the spin
parameter of a white dwarf as [108]

m. —2/3
xmax:77.68y( ) Fm)le,(53)
MO

in Fig. 6, we plot y ..« as a function of mass of the white
dwarfforn = 1.5and n = 2.5. As evident, white dwarfs can
have y > 1. As illustrated in [108], ¥ Value for more
realistic white dwarf models (e.g., see Ref. [117]) are
expected to lie between these curves. Reference [118]
obtained a lower bound on the mass of the rapidly rotating
white dwarf CTCV J2056-3014 as m,; = 0.56M, by con-
sidering its rotational period 29.6 s is close to the mass-
shedding limit. The radius is found to be R = 10965 km.
This leads to the value of the spin parameter as y = 20.95.
Here, we use @ = 0.2045 corresponding to a self-gravitating

isolated fluid model with polytropic index n = 1.5. Like
white dwarfs, quark stars can also have dimensionless
spin y (slightly) larger than the unity [112]. Furthermore,
Chirenti and Rezzolla constructed stable gravastar models
that can have large spin values y ~ 1.2 [119]. Boson stars can
also have y > 1 [41,52,120]. In [52], Ryan presented sta-
tionary, axisymmetric stable solutions of FEinstein-
Klein-Gordon equation for complex, self-interacting scalar
fields with mass mgp and self-interaction parameter Agg.
Considering the strong self-interaction limit (i.e,
Asp > mip), Ryan showed that the maximum allowed mass
MBS of a boson star (beyond which the configuration
collapses to form a black hole) increases with the increase of
its spin y. For instance, to obtain a boson star with mass
Mgg = 0.15/Agg/m3g, the object should be spun faster
than y = 1.4."

'We like to emphasize that the rotating boson stars are only
stable in restricted regions of parameter space. For a more
detailed analysis of this (in) stability issue, readers are referred
to [41]. There the authors made some studies of the stability of
rotating boson stars by considering a few models. Although in the
nonrelativistic regime, i.e., 2 < 1, where w and u are the angular
frequency and the mass parameter of the complex scalar field,
these stars are stable, but they develop linear nonaxisymmetric
instability (NAI) in the relativistic regime [41,121]. Form = 1 (m
being the azimuthal number) rotating mini boson star (described
by a scalar field with quadratic potential), authors of [41] found
NAI for all values of the parameter space. On the other hand,
when there are nonlinear interactions, apart from the usual mass
terms, in the potential, NAI can be found when % is greater than
some critical values (which in turn related to the compactness
parameter of the star) in the relativistic regime. One may refer
to Egs. (15) and (16) of [41] for these critical values (as well as
the Table (1) of [41] for the stable solutions along with the
corresponding values of compactness parameters) for various
interacting rotating boson star models.
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Moreover, string theory predicts the existence of exotic
compact objects, superspinars, that can breach the Kerr
bound [122]. It is still debatable whether these objects
are stable against linear perturbation. This is because the
nature of these objects is still unknown. Thus, we are still
unsure about the boundary conditions needed to solve the
perturbation equations. A study by Pani et al. shows that
these objects are unstable if perfectly reflecting or per-
fectly absorbing boundary conditions are imposed [123].
However, a more recent study shows that there exists an
infinite set of boundary conditions for which these objects
are stable against linear perturbation [124]. They concluded
that we need more information about the physical nature of
these objects to confirm their stability. For this study, we
assume that these objects can exist in nature and are potential
candidates for the secondary in the EMRI system. For our
study, we set the parameter range for the secondary spin
as y € (0, 10).

In Fig. 5, the green contour line represents the threshold
A® = 0.1 rad for detecting the quadrupolar deformation.
The plot shows that the parameter space that allows
distinction between black holes and exotic compact objects
like boson stars and superspinars is quite significant. The
size of the parameter space which allows this distinction
increases with the increase of primary spin a.

To have a more qualitative understanding of the param-
eter space that allows us to distinguish the exotic compact
objects, we can write Eq. (50) as follows:

300 04011 (12 )(g@(ﬂ%), 54)

The reference parameters  (Guers Cg's Yrefs rer) " =

(10_4,50,2,0.99) are chosen to represent the values of
these parameters for a typical EMRI system with an exotic
compact object as its secondary. Choosing the value of
parameters (q,Cyp,y,a) at the reference point, we can
easily check that it is possible to distinguish exotic compact
objects like boson stars even for a ~ 0.6 (see Table II).
However, for a smaller mass ratio, ¢ ~ 10™>, we can only
distinguish black holes from very fast-spinning exotic
compact objects for larger values of a.

It is improbable to distinguish between a black hole and
a neutron star through EMRI observations. To see this,
we write Eq. (50) as follows,

s o1 )(%)(07)2(%). 55)

Here, we choose the reference parameters as
(qref,Cgf,;(ref,&ref)NS s (107,20,0.7,0.99). The above
equation reflects the fact that even when we choose large
values of SIQM parameter, primary spin (a ~ 1) and
secondary spin (close to the mass-shedding limit

X~ Ymax), the small mass ratio of the system does not
allow us to identify the effect of spin-induced quadrupolar
deformation.

When we consider objects like white dwarfs as possible
candidates for the secondary [125], we have to ensure that
these objects can withstand the tidal disruption caused by
the supermassive black hole [126,127]. This leads to the
concept of the tidal-disruption radius [126,128]

M\ 1/3
R, ~R <—> ,
mS

defined as a critical radius inside which the object is torn
apart by the tidal forces of the primary. The expression for
white dwarf radius R is presented in Eq. (52). We provide a
simplistic order-of-magnitude estimate on the tidal dis-
ruption radius. Furthermore, we consider only the objects
that can reach the ISCO without tidal disruption, which
requires that the tidal-disruption radius should lie inside the
ISCO (consideration of dephasing up to tidal disruption
radius would be quite interesting. However, we are not
considering such a scenario here). Equating Eq. (56) with
the ISCO radius, we can obtain the minimum value of
the black hole mass M ,;, beyond which there is no tidal
disruption [126-128]. We can also define the maximum
mass ratio as ¢p., = M,/ My, below which there is no
tidal disruption. In the right panel of Fig. 6, we plot g« as
a function of white dwarf mass for two different primary
configurations: (a) the primary is nonrotating, and (b) the
primary is an extreme Kerr black hole, and the secondary
object is corotating with the black hole. The shaded region
in the plot signifies the parameter space for which there is
no tidal disruption. The black dashed line represents
g =107, As evident from the plot, for ¢ = 107, the
white dwarf can withstand the tidal forces of the primary
when its mass is very close to Chandrasekhar mass
Mc, = 1.454M 4. However, the parameter space for the
same is much larger for a smaller mass ratio (say for
g = 107>, represented by a black dot-dashed line in
the plot). The SIQM parameter for the white dwarfs can
take very large values Cp~ 10°-10° [129]. Similar to
Egs. (54) and (55), we can write Eq. (50) as

s s (12, )(;g)(y(%) )

to get a quantitative idea about the dephasing of gravi-
tational waves due to the quadrupolar deformation
of white dwarfs. Here, we choose the reference parameters
as  (Grers CF's Xrets Grer) VP s (107,107, 2, 0.99).
Equation (57) suggests that LISA can probe the effect
of quadrupolar deformation of the white dwarfs even
for moderate values of primary and secondary spin
(see Table II).

(56)
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TABLE III. Physical parameters of brown dwarfs 2MASS
J0348 — 6022, 2MASS J1219 + 3128, and 2MASS J0407 +
1546 [130].

2Mass 2Mass 2Mass
Object J0348 — 6022  J1219 + 3128  J0407 4+ 1546
Mass(M) 0.041 0.047 0.067
Radius(Rg) 0.093 0.100 0.100
Period (hr) 1.080 1.14 1.23

Another interesting candidate for the secondary could be
the brown dwarfs. The value of ¢,,,, for these objects is
extremely small <1078 [127,128]. However, the value of
spin and SIQM parameters can be very large. For instance,
consider three brown dwarfs 2MASS 10348 — 6022,
2MASS J1219 + 3128, and 2MASS J0407 + 1546. The
physical parameters of these stars are presented in
Table III (see Table 5 of [130]). Using the relation
x = lwgp/m? = 2zaR?/(m,Pgp), we obtain spin param-
eter of these objects as 102.23, 97.6, and 66.4, respectively.
Here, wgp is the rotational frequency and Ppp is the
rotational period. Following [131,132], we consider
a = 0.275. In order to calculate the SIQM parameter, we
make use of the fact that spin and tidal deformation
parameters are the same for a Newtonian star for any
equation of state, ie., A =04 Here, A =
(I/m})*Cy is the dimensionless rotational Love number
and 19 = 2k\"YRS /(3m3) is the dimensionless tidal Love

number with k)’ as the tidal apsidal constant [133]. A
simple manipulation gives the expression for the SIQM
parameter Cp = 2k"R/(3m,0?). The above relation
gives the SIQM parameter for 2MASS J0348 — 6022,
2MASS J1219 + 3128, and 2MASS J0407 + 1546 as
2.6 x 10°%, 2.5 x 10°, and 1.85 x 10°, respectively. Here,
we consider polytropic equation of state with n = 1.5, for

which £\ = 0.286 [134,135]. Similar to boson stars,

neutron stars, and white dwarf cases, we write Eq. (50) as

@ (n
_ q CQ X 2 (I)Q.end(a)
AGE? _45<10—'0> <2x 106> <8()> < 3.17 (58)

to get a quantitative idea about the dephasing due to brown
dwarf deformation. Here, we choose the reference param-
eters as (Grers CF's Zret rer) PP as (10719,2 % 10°, 80, 0.3).
The above equation suggests that LISA can probe the spin-
induced quadrupolar deformation effect of brown dwarfs.

VI. CONCLUSION AND DISCUSSION

Detection of gravitational waves by LIGO-VIRGO
detectors taught us a valuable lesson: accurately modeling
the coalescence process is as vital as extracting accurate

data to maximize the scientific return from the observation.
Realistic modeling of the binary system is of utmost
importance because LISA will observe hundreds of
EMRI events each year. In this paper, we have considered
a system where a spinning stellar-mass object orbits around
a supermassive Kerr black hole in the equatorial plane and
studied the system’s orbital dynamics and the emitted
gravitational radiation. Moreover, we considered the effect
of spin-induced quadrupolar deformation of the secondary
on the gravitational wave phase. The effect of quadrupolar
deformation is often ignored from the expectation that the
information about the effect gets suppressed by the tiny
mass ratio of the system. In this paper, we have shown that
the impact of quadrupolar deformation on the gravitational
wave phase can be pretty significant for certain astrophysi-
cal objects; thus, ignoring the contribution of such effects
can create considerable estimation biases. In the paper,
we have provided an order of magnitude estimation of the
possible identification of different astrophysical objects by
LISA through GW phase measurement by considering
spin-induced quadrupolar deformation effects.

Moreover, our analysis shows that the gravitational
signals from the EMRI system can distinguish different
astrophysical objects. We show that the quadrupolar defor-
mation adds a correction term A® = qCQ;(z(D(Qz)(tend) to

total accumulated phase, where CI)(Q2>(tend) is the numerical
parameter which depends only on the dimensionless spin a
of the central black hole. The no-hair theorem sets the value
of the SIQM parameter to unity (C, = 1) for a Kerr black
hole. However, for other astrophysical objects, the param-
eter’s value depends on their internal structure, ranging
between 2 and 20 for neutron stars and 10 and 150 for boson
stars, and can even take negative values for gravastars.
Although the spin parameter of the black holes and neutron
stars is restricted by Kerr bound and mass-shedding limit,
respectively; it can take large values (y > 1) for objects like
boson stars, gravastars, superspinars, white dwarfs, and
brown dwarfs. The effect of quadrupolar deformation would
be significant for LISA observation for A® > 0.1 rad [32].
In Fig. 5, we have shown that the condition is satisfied for
a large parameter space (in y — Cy plane). Moreover, the
parameter space increases with the increase of a. This allows
us to distinguish black holes from a large variety of
astrophysical objects, including boson stars, superspinars,
white dwarfs, and brown dwarfs. However, Eq. (55) dictates
that it is impossible to distinguish between a black hole and
from neutron star from EMRI observations due to the small
mass ratio of the system. However, the perturbation analysis
as presented in this paper may remain valid for an inter-
mediate-mass ratio inspiral system, a binary system with
g ~ 1071072, Furthermore, [136] considered second-
order self-force effects to generate the gravitational wave-
forms. They found a good agreement between these
perturbative and numerical relativity waveforms, even for
comparable-mass binary systems. From Eq. (55), we can
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easily check that it is possible to distinguish black holes
from neutron stars in such a scenario. Moreover, from
Egs. (57) and (58), we can see that the effect of spin-induced
quadrupolar deformation on the gravitational wave phase for
white dwarfs and brown dwarfs can be pretty significant
even for smaller values of mass ratio (¢ <107°) and
moderate values of primary and secondary spin.

However, to get a more accurate estimate, we need
to perform a complete Fisher-matrix error analysis follow-
ing [137]. This analysis will also show whether the
measurement of the SIQM parameter correlates with other
parameters.

A possible extension of this work is to study the effect of
tidally induced quadrupolar deformation due to gravito-
electric and gravito-magnetic tidal forces on gravitational
wave production [90]. Like spin-induced quadrupolar
deformation, tidal deformation contains information about
the object’s internal structure and thus can potentially
distinguish different astrophysical objects [58,62,63].
Moreover, for objects like white dwarfs and brown dwarfs,
the tidal love number can be pretty large [138]. Thus, we
can hope to probe the effect of tidal deformation through
LISA observations for these objects even when the
object is not rapidly rotating. Other possible extensions
include the relaxation of this paper’s assumptions, like
equatorial circular orbit and aligned spin. Furthermore, as
we discuss in the introduction, the second-order force
terms can considerably affect the dynamics of the EMRI
system over the long inspiral period. Thus, an exciting
extension of the work includes the contribution of the
second-order self-force effects [86]. Several authors recently
studied such effects for EMRI systems consisting of a
massive Schwarzschild black hole and a point particle
[136,139,140]. Interestingly, the waveforms constructed
considering these effects have good agreement even with
the numerical relativity waveforms for comparable mass
binaries. So, it is important to consider this effect in the
presence of spinning secondary, which we left for the future.

|

2(akgy? + Roy* (—aky + akoy® + 281y — &) + Eo(y*(—a%, — 3%y + %) + £)) =0,
a(ZE% +.§\Co(5.%0y3 - ZEI) - ZE())ACI) +5€0<—9E0y + 2EO + 65(1)7 - 25\(1) = 0

The equation for quadratic corrections {E,,%,} is given by
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APPENDIX A: CIRCULAR ORBIT, ISCO,
AND ANGULAR FRQUENCY

The condition for circular orbit is given by V¢ = 0 and
dVs/dy = 0. We expand the equations up to quadratic
order of spin o. We seek solutions in the form given by
Eq. (23). The equations for a nonspinning object are
given by

—2aEyk0y? —y* (a2 +33) + E3 + 232y +2y—1=0,
—2(2aEfoy +a%y +35(y=3y*) =1) = 0. (Al)

The solutions of these equations gives the value {£,, &}
Linear order corrections {£/,%,} can be found by solving
the following equations

(A2)

Y@y} (Cp(333y% + 1) +2) = 2a%o(E, —231y%) + 2353 ((3=6y)Co +y) + (1 =2y)yCy + 253y + 2%k, (2y — 1)
=5 +2(1-2y)y) +2E1y*(a(2Ey — %)) + %o (1 =3Y)) +2Eo (B2 —y*(a(%oy + %) + 11 (3y - 1))

+E(2y-1)y* +ET =0,
a?y}(Cp(2133y* +5) +10) +2a(—2%,
+2(Eok,(2-9y) + E %(2-9y) + E}

E, =53%0y%) + Eg(4E| — 5%0y> —2%;) —2E)%0) +yCp (3%3y*(5— 12y) — 8y +3)
(By=1) +3y(&5y° +37) + 2&o22(3y — 1) =] +y(3-8y)) = 0.

(A3)

The ISCO requires additional condition, d*V /dy* = 0. For a nonspinning object (zeroth order in spin), this condition

translates as
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—2aEyky — a* + 336y, — 1) = 0.

Linear order corrections in spin is dictated by

2(a(%0(10%0y3 — E1) — Eoky + E§) + %0(Eo(1 = 9y0) + 3%y1 + %1 (69— 1))) = 0.

Quadratic correction follows the equation given below:

(A4)

(AS)

10y3(a%(Cy +2) = 2aky(Eg—2%)) +333Cy) +63a%33y3Co — 12y3(=5a3%y, + Cp +2) +2E (2aE, — az, — 3oy, +311)
—2aEy3 —2aE, %) +3y0(Co +2(=3Eo%, + &0 (2%, —3E)) + EJ + 3} + 1))

+1532y3(1 = 6Cp) +2E % — EF + 633y, + 128031y, — 2 — 2%, =0.

Expanding the parameter y in Egs. (Al)-(A3) as
Eq. (25) and solving them together with the conditions
Eqs. (A4)—(A6), we obtain the values of {£;, %;,y;} (i =0,
1, 2). Replacing these values in Egs. (23) and (25), we
obtain the values of {E, %, y}.

APPENDIX B: THE TEUKOLSKY
SOURCE TERM

In Sec. IV, we have calculated the flux due to the
gravitational wave. We now provide some more details
in this Appendix. Equation (37) gives the amplitude at the
horizon and at infinity

in,up

ZH,OO . CH.OO e d?Rfmgf)jf”‘l(I)

m — Ylmb | A2 :
r+

As discussed in the main text, J,,,; iS the source term
for the radial Teukolsky equation Eq. (32), R),'? are the
solution of homogeneous Teukolsky equation with the

following boundary condition

out 23 idF, in 1 _,—ioF
Rin {B,fm&,r e + B pze” ", T
Cma tran A 2 ,—ik? P P
Bfm(i)A € ’ r—=ry
tran 4.3 ,—ik7, -
w o Dy i e , 7 — o0 (B1)
fmé Dout ?3€ik?* + Din A2e—ik‘;’* > 7
‘md ‘md ’ +>

where, k = (&)—mé +). The constant terms C?,;fg) are
given by

1 B tran

cl = C®  —=_ "tmd (B2)
méd imBn Zmé A RIn tran ’
2i®By,,; 2i0By,,5, D
where following [77], we fix the value of the BY2. and
tran tran __ _ | tran __ 4@° :
D 38 By = 7 — Dy, = =" with

(A6)
[
Co = -12iw + /‘Lfmr?}(lfmr?) + 2) —12a &)(& o) _m)
Ao = 2+/27,[(2 — 6id) — 40%)#% + (Biam — 4
+4adm+ 6id)7,. —a*m? —3iam +2]  (B3)

and BY . satisfies the following relation with the constant

Wronskian W = 2i®@B% . DU In Teukolsky formalism,

‘md™ Cmd®
the source term is given by the following relation [77]

T imi = / ‘ﬁdedébAzei(m_m(M(-jNN +Tian + T i)

(B4)

where

T == (€] ~2iapsin(0) L1 T

Taw=0e{ T [l asin0)p-)si2)| |
+Tiy [‘5;;(3{ <if+p +ﬁ) Lishe

—asin<e>§<ﬁ—p>szz’}]

p p .pK
Tase={# (7a |- 5] ) +o.(ras [~ (5+17:3) ]
p (0 [IK K K> . A
T (5 (3) 205 )| pnosiz

(BS)
with
K = ((?* + a*)® — am),
1 o
p_?—lfzcos(ﬁ)’ p_?’+i&cos(6)’
d
£i=2 " 4 46sin(0) + scot(d). (B6)

00 sin(6)
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and Tyy, Tyy, and Ty 5 are the projection of energy- X/, P Now
momentum tensor along the null tetrad, i.e., "= K(e( ) T 6(1)) A r,
ot — E(eﬂ ot )Z\/_Eflll
A\ (0) Q) A
TNN = n/‘n”ell(a)ev(b)T(a)(b)’ 5
_ (a)(b) m”—ﬁ\/:(e” +i€” ):,[_)\/Eﬁ’l”,
Tyn = mﬂnyeﬂ(a) ev(b)T “ 2\ (3)
C o — (a)(b) z -
Tinin = R eyeun T, (B7) i = o2 ey i) = VTR (B9
The energy-momentum tensor as defined in Eq. (1) takes
where the null-Tetrads are defined as the following form in the Tetrad frame,

5(x—z(z 1
Fa®) — / 40 =2(@) (p<<a>v<b>) _ 2 JO@()((a) R(b”@(c)(d))

V=3 3
8 (x = 2(7) ( (@) ) p
- / dr (eaa e, 'V [e“ e’ }Sﬂ“')v“’l))
N BT a) T (b
2 [ 8 —2(0) ( (@, ) p
-= | dr eae; 'V Vsle® e |l >‘3>
3/ /=9 ( “Th Ty 5[ (a1) (bl):|
4 4
_ / av, (Sy<<a>y<b>>M> ‘% / 42V, ( (@B M), (B9)
Va!/ V')
Then, after simplifying we get
4 4 4
r@o) — [ @ ZE=20) paw) 4 g [2F=2E) qram| 1 g 5. [EE =20 zaaey (B10)
¥ rYeo ’
V) Vam!) v—Y
where,
1
Ppla)b) :5 [U((a)p(b)) - _J(c)<d>(e)((a)R(b)>(C)(d)(e) + w(c)(al)((a)v(b))s(C)(al) - w(c)<bl)((a)5(b))(c)vb1
4 L@ (@) b)) a) 5®) a) 5(0)) m
— ST @)@ (—e{C>Vyw<d><a,>(( 150 + () ) D8 00
a b a
= 0y (a) @300 + Doy )w<d><b.>"’”)] : (B11)
Qrla)b) — _lsr((a)y(b)), o) (b)y — _3,‘15(0)(@7’, P dt ) (B12)
7 3t dz
We have used the expression for the Ricci rotation coefficients in terms of the Tetrad is
@(a)(m) (n) — ei’a)e/(jm)vae/(}n), (B13)
and we have used the following identities,
(a) a _ a (a) a _ a a m a 1
€leea Vrela) = =@ean s ea €y el Vi Vael) = =€l V0@ + @em D owe) ™ = 0w e e @ Y-
(B14)

Note that, 7(®(?) mentioned in the Eq. (B10) should be viewed as a tempered distribution which acts on an arbitrary smooth
function of the form A(x) = h(r,8)e®’="9)_ Then after performing the integral over 7,
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50G) . 2 . 1 . s 80
T@b) = — (P! — Q@b g, 4 TH)B)Ig2) _a;(zt(a)(b)l(s@))& +——0;(Q @3y 1 a@( i(a)(D)j >
NaT i NG ! N J NaT
(B15)

i and j take the following values {70, ¢}, # = Z and 6 = 8(r — #(1))8(0 — 6())5(¢ — ¢(1)) is the three-dimensional
Dirac delta function.
Also, we have used the following,

/ £ (y = x)dy = (=1 £ (x). (B16)

where the superscript [#] of the function denotes the number of derivatives. So if a smooth function g vanishes at 7 = +oo,
then

G307 — 1) = = 0 /°° dt9,(g8 (7 — 15)) = 0,
/°° i 0;98(3 — 1) = — /oo d? g0 (3 — 1p). (B17)

We have used the last equality to obtain Eq. (B15).
Next we have to calculate the quantities in Eq. (B7). In order to do so, we consider the smooth function /(x). Then,

Trnh(x) = Nyw[8® (Py g — i0Q g 5y — 0Ty 5 )Vh(x)] + N ywoi[(Qiy = 2007y 5116 (x)
+ N w05 L5 560 (x). (B18)

where N yy = A%/__g. Also, we have used the notation for the tilde indices following the similar notation mentioned in (B7),

e.g., Pyy = ﬁ”ﬁ”eﬂ(a)e,,(b)P(“)(b), where 7# is defined in (B8). Finally we can write it in the following compact form:

TNNil(x) = 5(3>D%N[NNN71(X)] + D%,N[NNNE(X)L (B19)
where,
D N wwh(x)] = [Py = i0Qy 5 = Ty 5" +im(Qyy = 20T 5 3%) = m* T4y 3 IN ywh()

— (@ — 20Ty j? + 2imI 5 ?)0g (N yyh(x)) + T%5 5 G (N wyh(x)), (B20)
DY, N wwh(x)] = {0:[(Q = 2i0T 5 5" + 2imI" 5 3)53] + BT 5 5 6D IN ywh(x) = 205[T7 5 5763]0y (N ywh(x)).
(B21)

Similarly,

Tiy = 89D IN anh(x)] + D% [N ryh(x)],

Ty = 8V DE  IN-yh(x)] + D L[N iy igh (%)), (B22)

with, N gy = @ &Ny = j”_ Here, D¢ . D% 5. D% ¢ Dk & satisfy similar equations as Egs. (B20) and (B21) with the

appropriate 1ndlces Also we have used the following: 9;0; T N = d&;ﬁ e
With Ty, Ty, and N j 5 in our hand, we can calculated the quantities in Eq. (B5) which turns out to be

jNN:(S D9~[ NN} +D%N[ 1(\(/)1)\/}’ (B23)
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=08, 1]l 4]} 08, 0]+l A1) -
Tinw == a%{‘S}D%k [fz(é)zw} + Dk [fz(é)zw] } + af{‘S}D%k [fz(r;)zw] + Dk [f%q} } +&Dix [fﬁ-ﬁ),w] + Dk [fg)zw} ’
(B25)

where

2/) A : T oad
fin = =L (L] = 2iapsin(0))£1527],

Ap
(0) 4p K —) TQad _ A o K a@}
D) — i—+p+p LS4 —asin(0)—(p—p)S ,
MN ﬁpﬂ{( A P P 2% 1Im ( )A(p ,0> Im
4p

(1) _ LIS 1+ iasin(0)(p — p) S
Tian \/ZO\/Z{( 2Sim +iasin(0)(p — p)Siy }

o _pd(iK _,, K Kl o
Tin p[d?(A) Pt

_ ﬁlK ahw /_7 a®
f(l) — _<p +;X> Slm , fﬁ\_/zl)jl_/[ = _;Slm . (B26)

Replacing Eqs. (B23)—(B25) in Eq. (B4) and doing the integration over @ and ¢ we get the expression for source term,

Timi= [ A2~ (0)I5)+ 0,75 3(5=70)) + UL (0= ) + 1 + 017"+ RO Vo gt

(B27)
where
0 0 0 0
I = D2y (fn) + D2y (i) + D2 (Fn):
1 1 1 2 2
T = DRsFi) + DRelFi): I = DR elFiae)
0 P 0 P2, PR () BPPIA PR ~” oA
IO = DY (F)8(F = (D) + DF(FO 8(F = #(3))) + D (£ )8(F = #(D)),
1 ? £ arh r 1 £ arn
IO =D (FU) 8k #(2)) + D (P800 — #(2)),
2 - 2 PPN
I =Dr (F9 (- #(D))). (B28)

With the source term for Teukolsky equation in our hand, we can calculate the amplitude given in Eq. (37), which turns
out to be

Imd Imd

Zile — it / Y a / ¥ di @D 53— 30N + 0,1V - #(3)) + RIS #D)) + IO + 0,1
Py -0
+ R (IRE (). (B29)
Note that the integrand has to be evaluated at
0=0().0 = p(3).

Next we first do the integration over 7 and utilizing the delta function we get after integrating by parts and throwing away
the surface terms,

Im® Ima

Zhe _ clie / e @ ) — g0, + 5512 + 10+ 0, (1) + R R (7). (B30)

(e8]
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Here 7 is evaluated at 7#(7). Then using Eq. (B28) and doing integrating by parts we arrive at the following expression:
H,00 H, 00
Zimo = Cimi> /_

- {(OMNf%V + Ot ) = (Iwfn + Jianf o) + JMMf(MO)M)}f??Ri"’up(?)

Ima

di e@1-m9) [{ONNfﬁv% + Oianf gy + Ot %}Ri“’“"(?)

Imd
()

2 1 1 0 0 0 in,up /
+ {OMMf(-)M — Ui S g + TS ) + U+ JianF gy + Ty )}5%13 ) (7)
2)

MJ jr g Im&
AT+ (K fS + K f o ) VRRIP (3) + L Ky £ LRI (7 B31
ity T Kanl gy + K i) (03 Rme (F) + 3 Kz v 51 (O3 Rimey (F) |5 (B31)
where,
Kyy =155 Inn =Iny + T3 5705, (B32)
Iyy = —(Q 5 = 2i0T gy + 2imT' 5 5%) + I75 505 + 217 5 570, (B33)
and

Ony = Py —i0Q gy — @*Th [ +im(Qyy = 20T y5?) = m* Tl ¢
—(Qy 5 = 20Ty 57 + 2imI% %) — I8 0% + Iyn0;. (B34)

Other terms in Eq. (B31) can be obtained by replacing the indices appropriately in Eqs. (B32)—(B34). Finally Eq. (B31) can
be written in the following compact form:

(s ] 0 R i(O1—mao d afl d3 d4 inup /A
2o — ol /_oodte(" /){AO—(AI+Bo)d?+(A2+Bl+C0)d?2—(Bz+C1)dAr3+C2d?4 RP(7),  (B35)

where
Ay = Onnfin + Osaf gy + Ostin
A= OMNf,(r;;V + OMMfz(t’/ll)M
Ay = OMMf;;ZI)M’
By = —(JNNf1(\91)\/ + JMNfI(r,Oliv + Jirin 1(;‘2)1(4)7
By = ~(an Sk + T f ),
= ~Janf
Co = KNNfg\(r)z)v + KMNf/(fg;\/ + KMMf;?[)M’
C = KMNf% + KMMf%)M,
Cy = kiiaf . (B36)

In this paper we have set @ = 7. This further simplifies certain terms. On the equatorial plane whenever one of the indices is
set to 6, the corresponding components of the tensor will be zero, i.e.,

Qun=Lrn=Lxk=0.  I%’ =T%" =T’ =0,  a={i.7.0.¢}. (B37)
Hence,

Kyw=T35".  Iaw=Ixnw+T 550  Iyy=—(Q% ;= 20T g5 +2imIiy ") + 175 570; (B38)

and

Owy = Pyy — idQyy — 0Tt ' +im(QPy 5 — 20T 5 57) — m*T? g 3% + Iyyo;. (B39)
Then expressions in Eq. (B36) get simplified.
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TABLE IV. Comparison between our result and [77] for the value of F ©) for different values of orbital radius and .

a=0 a=06 a =099
P FO FO in [77] P FO FO in [77] P FO FO in [77]
10 0.00006133 0.00006152 10 0.0000533997 0.00005354 10 0.0000493777 0.00004950
9 0.000105496 0.0001059 8 0.000158493 0.0001593 8 0.00014153 0.0001422
8 0.000194952 0.0001961 6 0.000643599 0.0006505 6 0.000534583 0.0005396
7 0.000396622 0.0004002 5 0.00156892 0.001597 4 0.00317882 0.003260
6.1 0.000926716 0.0009403 4 0.00474159 0.004905 2 0.0414704 0.0430138

TABLE V. Comparison between our result and [77] for the values of F () for different values of orbital radius and 4.

a=0 a=0.6 a=0.99
P FO FW in [77] P FO FW in [77] P FO FW in [77]
10 0.000013444 0.0000135324 10 8.36333 x 107° 8.41351 x 107° 10 5.8153x107° 5.84959 x 107°
9 0.000027533 0.0000277788 8 0.0000340719 0.0000344465 8  0.0000215679 0.0000217974
8 0.0000620701  0.000062854 6 0.000208892 0.00021392 6  0.000110702 0.000113198
7 0.000159224 0.000162234 5 0.000665169 0.000691733 4 0.000937339 0.00099818
6.1  0.000434991 0.000447657 4 0.00283884 0.00305542 2 0.0116319 0.0179791
APPENDIX C: COMPARISON WITH
PREVIOUS WORKS 107,

In this section, we provide a comparison between ° .
our results with the ones existing in the literature. W 107 t.,
Reference [77] calculated the gravitational wave flux >Z e,
for an EMRI system with spinning (but not deformed) W 102 * .,
secondary. The authors provided the data for the flux for le e, .
g =3 x 107 in [141]. Note that, the value of F©) F1), = ot “ .
and F? does not depend on the ¢ and y. In Tables IV
and V, we present a comparison between our result and [77]
for the values of F(© and F () for certain values of primary 107° 10 20 30 20 50
spin a and orbital radius 7. /M

Furthermore, we compare our results for gravitational
wave flux with those obtained in post-Newtonian (PN) FIG. 7. Relative error between the numerical and PN results as

theory. Within the context of PN theory, gravitational wave
flux can be written as

Fen=Fns+Fso+ Fss+ -, (C1)
where Fyg represents the nonspinning contribution to the
flux, the expression of which is given in Eq. (2.8) of
Ref. [142]. The linear order correction term F gq arises due
to spin-orbital coupling [see Eq. (2.6) in Ref. [143] ] while
the quadratic order correction term Fgqg originates from
spin-spin interactions [see Eq. (2.7) in Ref. [143] or
Eq. (4.12) in Ref. [144]]. In Fig. 7, we plot the relative

A

a function orbital radius 7. Here, we take a = 0.6, ¢ = 1074,
x =1, and Cy = 10.

error between the numerical and PN results Agg = |(F —
Fpn)/F| at different values orbital radius. Here, we take
a=06,¢g=10"y=1,and Co = 10. As expected, our
numerical results agree quite well with PN results when
the orbital separation is large (Agg~ 107 at 7= 50).
However, when orbital separation is small, there is a
mismatch between numerical and PN result (Agg ~ 0.01
at 7 = 10).
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