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A feature shared by many regular black hole spacetimes is the occurrence of a Cauchy horizon. It is then
commonly believed that this renders the geometry unstable against perturbations through the mass-inflation
effect. In this work, we perform the first dynamical study of this effect taking into account the mass-loss of
the black hole due to Hawking radiation. It is shown that the time-dependence of the background leads to
two novel types of late-time behavior whose properties are entirely determined by the Hawking flux. The
first class of attractor-behavior is operative for regular black holes of the Hayward and renormalization
group improved type and characterized by the square of the Weyl curvature growing as v6 at asymptotically
late times. This singularity is inaccessible to a radially free-falling observer though. The second class is
realized by Reissner-Nordström black holes and regular black holes of the Bardeen type. In this case the
curvature scalars remain finite as v → ∞. Thus the Hawking flux has a profound effect on the mass-
inflation instability, either weakening the effect significantly or even expelling it entirely.
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I. INTRODUCTION

The resolution of spacetime singularities, omnipresent in
solutions of general relativity [1], constitutes a key moti-
vation for quantum gravity research. While first principle
investigations of the mechanisms which could lead to
singularity resolution are still scarce [2–6], there have been
a number of phenomenologically motivated proposals for
regular black hole geometries replacing the singular region
by a patch of regular de Sitter space. Examples include the
regular black hole geometries proposed by Dymnikova
[7,8], Bardeen [9], renormalization group improved black
hole spacetimes in the context of the gravitational asymp-
totic safety program [10] (also see [11–13] for recent
developments and more references), Planck stars motivated
from loop quantum gravity [14–16], the Hayward black
hole [17], and extensions proposed by Koshelev et al. [18].1

More recently, regular black hole spacetimes exhibiting a
“Gauss” core have been proposed in [20].
Based on topological considerations, it is clear that any

regular black hole solution exhibiting an asymptotically flat
region and a de Sitter core must have an even number of
horizons.2 In the simplest case, this entails that there is an
(outer) event horizon and an (inner) Cauchy horizon. This

horizon structure is identical to the one of a charged
Reissner-Nordström black hole.
This modification entails a drastic consequence for the

final state of the black hole. When treated at the level of
quantum field theory on a curved spacetime, black holes
emit Hawking radiation, a perfect black body radiation
whose temperature T is proportional to the surface gravity
of the event horizon. As the Hawking radiation carries
away energy, the black hole becomes lighter and T
increases. Extrapolating the semiclassical analysis (assum-
ing that the process is still adiabatic and neglecting the
backreaction of the geometry) this process terminates with
the complete evaporation of the black hole within a finite
time if the geometry comes with a single horizon. The
presence of a inner horizon changes this picture drastically;
in this case the energy loss due to Hawking radiation leads
to the two horizons approaching each other. For static,
spherically symmetric geometries, the final state of the
evaporation process is then a critical black hole remnant
with a typical mass given by the Planck mass [10,17,22].3

Reaching this final configuration requires an infinite time-
span though. In this way, regular black holes may also

1Also see [19] for a review and further references.
2For recent work on the dynamical creation of horizons from

the collapse to a regular black hole see [21].

3In the rotating case, the question about the final state is more
complicated since the Hawking flux may first spin down the
black hole and only subsequently carry away its mass [23].
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provide an elegant solution to the information loss problem
in black hole physics based on remnant formation [24,25].
A central point of critique, challenging the phenomeno-

logical viability of such regular black hole solutions [26,27],
originates from the mass-inflation effect, first investigated in
the context of theReissner-Nordström solution [28]. In short,
the mass-inflation scenario considers a perturbation of the
black hole geometry by outgoing null-radiation modeling,
e.g., gravitational waves created in the black hole formation
process and subsequently reflected by the potential barrier
surrounding the black hole. These perturbations lead to an
exponential growth of the mass function at the Cauchy
horizon, ultimately generating a null singularity. While this
scenario potentially resolves the ambiguities arising from
extending geodesics beyond a Cauchy horizon [28,29], it
also suggests that the geometries are not stable on the
timescales associated with the black hole evaporation proc-
ess. Extrapolating this scenario from theReissner-Nordström
geometry to regular black hole solutions then suggests that
these could also suffer from themass-inflation effect, leading
to a dynamically generated spacetime singularity at the
Cauchy horizon.
In [30], it was established that this conclusion is

premature though. While the extrapolation works for
certain classes of static regular black holes, including the
geometries proposed by Bardeen, the Hayward geometry
and renormalization group improved black hole solutions
are free from mass inflation. In these cases the mass
function at the Cauchy horizon grows polynomially in
time only and the resulting curvature singularity may be
integrable. Technically, this behavior can be traced back
to the presence of a late-time attractor in the evolution
equation for the mass-function at the Cauchy horizon,
rendering this quantity finite at asymptotically late times.
The taming of the mass-inflation effect then suggests that

the dynamics at the Cauchy horizon and the black hole
evaporation process could happen on similar timescales.
Thus, a more complete understanding of the actual dynam-
ics mandates to take the Hawking evaporation process into
account. Our work addresses this question for the first time.
As our main result, we discover two classes of universal
late-time behaviors whose properties are dictated by simple
structural properties of the mass function and the univer-
sality of the Hawking effect. The late-time attractors
governing the dynamics either lead to a polynomial growth
of the squared curvature tensors or even renders these
quantities finite. Interestingly, the latter behavior appears
for the case of Reissner-Nordström geometry once the
Hawking radiation is included. The final state of the black
hole evaporation process is still a cold remnant.
The rest of our work is then organized as follows. The

Ori model for mass-inflation [29] is reviewed in Sec. II.
Sections III and IV contains a detailed discussion of the
model in the context of an evaporating Hayward black hole
and the Reissner-Nordström geometry, respectively. Other

regular black hole geometries can be treated along similar
lines and are discussed in Sec. V. Our conclusions and a
brief outlook are given in Sec. VI. Technical details related
to our analysis are given in three appendices with
Appendix A summarizing the explicit expressions for
the scalar curvature invariants, Appendix B giving the
detailed results for the late-time attractors, and Appendix C
analyzing the properties of radial geodesics in the black
hole geometries.

II. THE ORI MODEL FOR MASS INFLATION

We start by reviewing the background material under-
lying the analysis in the main parts of our work. The line-
element of a (generically nonstatic) spherically symmetric
spacetime can be cast into a 2þ 2 form,

ds2 ¼ gabðxcÞdxadxb þ r2dΩ2; ð1Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2 is the line element on the unit
two-sphere, xa, a ¼ 1, 2, are coordinates in the submanifold
θ ¼ ϕ ¼ const, and rðxcÞ is the radius of the 2-sphere
xa ¼ const. A physically relevant quantity is the quasilocal
Misner-Sharp mass function MðxcÞ defined via

gab∂ar∂br ¼ fðxcÞ≕ 1 −
2MðxcÞ

r
: ð2Þ

For a Schwarzschild black holeMðxcÞ agrees with the mass
function m. Static, regular black hole geometries typically
generalize this relation by promotingM to a function of the
radial coordinate.
The mass-inflation phenomenon occurs when the inner

horizon is perturbed by a cross-flow stream of lightlike
matter. In a realistic gravitational collapse this combination
of outgoing and ingoing flux is produced by the matter of
the collapsing star and by the combined contribution of
ingoing and outgoing gravitational waves [31]. In the
optical geometric limit one can simply consider light-like
pressureless matter and use a coordinate system adapted
to the null-generators of the ingong radiation, so that
v ¼ constant is an ingoing null ray. Ori has shown that
the physics of the instability can be discussed assuming
that the outgoing flux is modeled by an infinitesimally thin,
pressureless null shell Σ. Albeit this assumption is valid in
the optical geometric limit only, the model has the
advantage to be analytically tractable in the v → ∞ limit.
The shell Σ separates spacetime into two regions M�

with (þ) and (−) referring to the regions inside and outside
the shell, respectively. The metric in each sector can then be
written as

ds2 ¼ −f�ðr; v�Þdv� þ 2drdv� þ r2dΩ2: ð3Þ

The lapse function f�ðr; v�Þ in each sector depends on r and
the ingoing Eddington-Finkelstein coordinate v� according
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to (2). The equality of the induced metrics on Σ forces the
radial coordinate r to be equal on both sides of the shell. The
v-coordinates in the two regions are related by

fþðr; vþÞdvþ ¼ f−ðr; v−Þdv−; ð4Þ

alongΣ. This relation allows to express vþ in terms of v− and
we chose to express the dynamics in terms of v≡ v−.
The position of the shell RðvÞ, as a function of v is

governed by the first order differential equation

_RðvÞ ¼ 1

2
f−j

Σ
; ð5Þ

where the dot represents a derivative with respect to v.
Furthermore, the Misner-Sharp mass in the two sectors
separated by the shell are related by [29,32]

1

f2þ

∂Mþ
∂vþ

����
Σ
¼ 1

f2−

∂M−

∂v−

����
Σ

ð6Þ

with the v-derivatives evaluated before substituting the
position of the shell. Using the identity (4), this relation can
be expressed in terms of v,

1

fþ

∂Mþ
∂v

����
Σ
¼ FðvÞ; ð7Þ

with

FðvÞ ¼ 1

f−

∂M−

∂v

����
Σ
: ð8Þ

Equation (7) constitutes a first-order differential equation
determining the dynamics of Mþ in terms of quantities
given outside of the shell. Following Appendix A, Mþ
determines the curvature in the inside region. Thus, there is
a close relation between Mþ and observable quantities in
the inner region of the shell. For later convenience, it is
useful to write the left-hand side of Eq. (7), stressing its
dependence on mþ,

1

fþ

∂Mþ
∂v

����
Σ
¼ 1

PðmþÞ
_mþ: ð9Þ

For the examples discussed in our work PðmþÞ is either
linear or quadratic in mþ with the coefficients of the
polynomial depending on the model details.
Typically, the analysis of mass inflation considers a fixed

background geometry of mass m0, say, and adds a small
perturbation to the mass function. The boundary condition
at the event horizon is fixed through the Price tail behavior,
so that [33,34]

m−ðvÞ ¼ m0 −
β

ðv=v0Þp
ð10Þ

in the region outside the shell. Here β > 0 is a quantity with
the dimension of a mass and v0 sets the initial value of v.
Furthermore, the exponent governing the decay of the
perturbation depends on its angular momentum and one
has p ≥ 11.
The original studies of a fixed background geometry

perturbed by an ingoing influx of energy appear to indicate
that the Cauchy horizon is a generic surface of infinite
blueshift [35]. Further investigations of gravitational wave
perturbations near the Cauchy horizon confirmed the
exponential divergence of the mass function and charged
black holes with spherical symmetry, i.e., the Reissner-
Nordström metric, have been shown to exhibit a curvature
scalar singularity [28]. Furthermore Ori used an exact
solution based on works of Poisson and Israel to show
that the tidal forces at this singularity remain finite [29]. We
stress that, strictly speaking, the Ori model building on the
Price tail behavior (10) is valid for asymptotically late times
v only. Therefore, conclusions drawn from the model in a
regime where v is small and the perturbation significant
compared to the mass m0 have to be interpreted with care
and should be confirmed by an analysis of the full
dynamics [36].
Recently it is been shown in [30] that in fact the

functional dependence of Misner-Sharp mass on mþ
determines the late-time behavior of these geometries. In
particular, while a linear dependence leads to mass-
inflation instability, a nonlinear relation leading to a
quadratic polynomial PðmþÞ in Eq. (9) can tame the
exponential growth of mþ in the late-time regime.

III. MASS-INFLATION IN THE
HAYWARD GEOMETRY

Upon introducing our dynamical framework, we now
specialize to the case of the Hayward geometry [17]. The
background geometry including the Hawking effect is
introduced in Sec. III A and a sketch of the conformal
diagram related to the model is shown in Fig. 1. The late-
time dynamics of the model is discussed in Sec. III B and
we corroborate our findings through a numerical analysis in
Sec. III C. We then briefly comment on the strength of the
curvature singularity in Sec. III D.

A. The dynamical background geometry

For the Hayward geometry, the lapse function is given by

fðrÞ ¼ 1 −
2MðrÞ

r
; MðrÞ ¼ mr3

r3 þ 2ml2
: ð11Þ

Here M is the Misner-Sharp mass and m is the asymptotic
mass of the configuration in Planck units where Newton’s
constant GN ¼ 1. Furthermore, l is a free parameter setting
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the scale where the modifications of the geometry set in.
The Schwarzschild geometry is recovered for l ¼ 0 so that
M ¼ m in this case.
The horizons of the geometry (11) appear as solutions of

the horizon condition

2l2m − 2mr2 þ r3 ¼ 0: ð12Þ

For sufficiently large values m, there is an (outer) event
horizon at rþ and an (inner) Cauchy horizon at r− < rþ.
Their explicit position as function of the parameters m, l
can be found by solving the cubic. The surface gravity at
the horizons is defined as

κ� ¼ � 1

2

∂fðrÞ
∂r

����
r¼r�

; ð13Þ

where the signs are chosen such that κ� > 0. For the critical
mass (indicated by the subscript cr)

mcr ¼
3

ffiffiffi
3

p

4
l; ð14Þ

the two horizons coincide and are located at

rcr ¼
ffiffiffi
3

p
l: ð15Þ

In this case, one obtains a cold remnant.

We now include the effect of the black hole evaporation
through the emission of Hawking radiation. Following
Hawking’s seminal work [37], the event horizon emits
Hawking radiation with temperature

T ¼ 1

4π

∂f
∂r

����
r¼rþ

: ð16Þ

We model this effect as ingoing radiation of negative
energy which decreases the asymptotic mass of the black
hole. The power radiated from the black hole follows from
Boltzmann’s law

P ¼ π2

30
T4A; ð17Þ

where A≡ 4πr2þ is the area of the event horizon. Promoting
the temperature and horizon area to functions of v and
using the adiabatic approximation the mass-loss of the
geometry can be computed from

∂mðvÞ
∂v

¼ −
π2

30
TðvÞ4AðvÞ; ð18Þ

where the area of the event horizon is approximated
dynamically from the location of the apparent horizon in
(12). Equation (18) turns into a closed equation determin-
ing the v-dependence of m. The late-time behavior can be
determined analytically,

mðvÞ ≃mcr þ
10935l4π

8v
þOðv−3=2Þ: ð19Þ

Here we have fixed the integration constant such that mðvÞ
approaches mcr for asymptotically large values v. The full
solution of (18) can be obtained by numerical integration
and is shown in Fig. 2.
At this point, it is instructive to compare Eqs. (10) and

(19). This reveals that perturbations following Price’s law
decay significantly faster than the power-law corrections
to the critical mass. This suggests that it is actually the
Hawking effect which dominates the asymptotic behavior.

B. Mass inflation: Identifying the late-time attractor

We are now in a position to evaluate the late-time
dynamics of the Ori model for the background given by
the (time-dependent) Hayward geometry. This can be
conveniently done by analyzing the equations of motion
using the Frobenius method. It then turns out that the
resulting scaling behaviors are crucially modified by
cancellations of leading and subleading terms obtained
at earlier stages in the expansion. In order to obtain the full
information one therefore has to compute the leading as
well as several subleading terms controlling the late-time
dynamics of the mass function m−ðvÞ and RðvÞ. In order to

FIG. 1. Schematic late advanced-times conformal geometry of
our model. The event horizon (EH) and Cauchy horizon (CH) are
indicated by the dashed lines while the position of the (time-
dependent) apparent horizon (AH) has been added as the solid
curve. Owed to the Hawking flux (indicated by the arrow) these
quantities agree at asymptotically late times v ¼ ∞. The shell Σ
separates spacetime into an inner regionMþ and an outer region
M−. The spherically symmetric geometries in each sector are
characterized by the lapse functions f�, respectively.
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avoid giving bulky formulas, we are displaying the leading
terms in the expansion only and indicate the fact that we are
dealing with asymptotic expressions by the ≃ symbol. The
full expressions and additional technical comments under-
lying the analysis can be found in Appendix B.
We start with the mass-function in the region outside the

shell, m−ðvÞ, adopting the late-time dynamics given in
Eq. (19). Substituting a Frobenius ansatz shows that the
asymptotic time dependence is given by

m−ðvÞ ≃mcr þ
480πm4

cr

v
: ð20Þ

The time-dependent mass function also contains the con-
tribution associated with the shell. The Price law behavior
is subleading to the time dependence induced by the
Hawking effect though. Hence, this contribution is not
visible in the asymptotic analysis.
In the next step, we specialize (5) to the Hayward

geometry,

_RðvÞ ¼ 1

2
−

m−R2

R3 þ 2l2m−
; ð21Þ

and determine the asymptotics of the position of the shell.
At this point, it is instructive to first look at the right-hand
side for v fixed. The function f− vanishes at the (v-
dependent) apparent event and Cauchy horizons. Thus the
shell cannot cross these values. For the final configurations
both r�ðvÞ approach rcr. Thus, we expect that the asymp-
totic position of the shell is given by rcr. The leading
corrections describing the approach of the shell can be
found by making a Frobenius ansatz,

RðvÞ ¼ rcr þ
1

vs
X
n¼0

rnv−n; ð22Þ

where s and rn are numerical coefficients. Substituting this
expansion into Eq. (5) and demanding the existence of a
nontrivial solution fixes s ¼ 1=2. This results in a quadratic
equation for the numerical coefficient r0 which has the
solutions r0 ¼ �3

ffiffiffiffiffiffiffiffi
15π

p
r5=2cr . Thus the late-time asymp-

totics of RðvÞ is

RðvÞ ≃ rcr � 3rcr

�
15πr3cr

v

�
1=2

: ð23Þ

The sign ambiguity indicates that the shell can approach rcr
either from above r > rcr or below r < rcr. Both cases can
be physically viable a priori.
Subsequently, we substitute Eqs. (20) and (23) into (7).

This yields

_mþ
ðR3 þ 2l2mþÞðR3 − 2mþðR2 − l2ÞÞ ¼ FðvÞ ð24Þ

with

FðvÞ≡ _m−

ðR3 þ 2l2m−ÞðR3 − 2m−ðR2 − l2ÞÞ : ð25Þ

This equation exhibits two values for mþ where _mþ
vanishes. Keeping v fixed and finite, these values are given
by the roots of the quadratic polynomial

PðmþÞ ¼ ðR3 þ 2l2mþÞðR3 − 2mþðR2 − l2ÞÞ: ð26Þ

Substituting the asymptotic expansions of RðvÞ and
m−ðvÞ into Eq. (25) gives the following asymptotics
for FðvÞ:

FðvÞ ≃�4mcr

�
5πmcr

v

�
1=2

: ð27Þ

Hence, the right-hand side of Eq. (24) vanishes as v → ∞.
As a consequencemþðvÞ ≃ const is an asymptotic solution.

FIG. 2. Top diagram: illustration of mðvÞ −mcr resulting from
numerically integrating Eq. (18) with initial condition mð1Þ ¼
5mcr and l ¼ 1 (blue line). The black dashed line marks the
asymptotic solution (19). For convenience,mðvÞ approaching the
critical mass mcr (black horizontal line) is depicted in the inset.
Bottom diagram: radial position of the apparent event horizon
rþðvÞ (top curve) and apparent Cauchy horizon r−ðvÞ (bottom
curve). Asymptotically, the horizons approach the critical value
rcr depicted as the black horizontal line.
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In order to fix this constant, we then solve the differential
equation

27l2 _mþ
27l2 − 6

ffiffiffi
3

p
lmþ − 8m2þ

¼ �4mcr

�
5πmcr

v

�
1=2

; ð28Þ

which results from substituting the asymptotic expansions
(20), (23), and (27) into (7) and retaining the terms leading
in 1=v only. Taking into account the sign ambiguity in (23),
the resulting asymptotic solutions for mþ are

masym
þ ¼ −

mcr

2
ð1 ∓ 3 tanh ð6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5πmcrv

p
þ cÞÞ; ð29Þ

where c is an integration constant. This constant drops out
in the limit where v → ∞. Thus, for a shell approaching rcr
from above

lim
v→∞

mþðvÞ ¼ mcr; ð30Þ

while a shell approaching rcr from below leads to the
attractor

lim
v→∞

mþðvÞ ¼ −2mcr: ð31Þ

These correspond to the two roots of (26) when evaluated at
asymptotically late times. In particular, Eq. (31) generalizes
the attractor taming mass inflation in the nondynamical
setting [30], to the case of an evaporating black hole. The
subleading correction to (31) is found by the Frobenius
analysis described in Appendix B and reads

mþðvÞ ≃ −2mcr þ 48

ffiffiffiffiffiffiffiffiffiffiffiffiffi
5πm5

cr

v

s
: ð32Þ

We proceed with analyzing the asymptotics of the
physical quantities including the curvature scalars com-
puted in Appendix A. We distinguish the cases where the
shell approaches rcr from above (upper signs) and below
(lower signs). We start by discussing the upper sign. In this
case the Misner-Sharp mass remains finite

Mþðr; vÞjΣ ≃
2mcr

3
: ð33Þ

Consequently, the curvature invariants remain finite as well
and evaluate to

C2jΣ ≃
2160π

mcrv
; KjΣ ≃

81

32m4
cr
: ð34Þ

The v-independent terms in this expansion agree with the
curvature scalars evaluated at the critical radius of the
critical configuration. Hence, any perturbation which falls

onto rcr from above does not have any destabilizing effects
on the geometry.
For the lower sign, the asymptotic behavior drastically

differs. Substituting the asymptotic expansions into the
general expression of the Misner-Sharp mass and evaluat-
ing at the position of Σ, we have

Mþðr; vÞjΣ ≃ −v: ð35Þ

WhileMþðr; vÞ is generically finite, it diverges in the limit
v → ∞ when evaluated at r ¼ rcr due to a cancellation of
the leading terms in the denominator. This divergence is
much milder than the one encountered in the standard
mass-inflation effect where Mþ grows exponentially in v.
The divergence (35) also propagates into the scalar

curvature invariants. In particular

C2jΣ ¼ 19683v6

4096m10
cr
; KjΣ ¼ 59049v6

4096m10
cr
: ð36Þ

Thus, again, the divergence is power law and not expo-
nential. Remarkably, the results (35) and (36) are universal
in the sense that they are independent of any free parameter.
Hence any solution entering into this late-time scaling
regime must follow this attractor behavior.

C. Mass inflation: Full numerical treatment

Following up on the asymptotic analysis of the previous
section, we proceed with a numerical investigation of the
dynamics. We start by constructing m−ðvÞ in the outer
sector of the shell by superimposing the mass loss due to
Hawking radiation and the perturbation due to the shell

m−ðvÞ ¼ mHawkingðvÞ −
β

vp
: ð37Þ

HeremHawkingðvÞ is obtained from solving Eq. (18) numeri-
cally with the boundary condition limv→∞mHawkingðvÞ ¼
mcr according to Eq. (19). For concreteness, we take β ¼ 1,
l ¼ 1, and p ¼ 11. The resulting function m−ðvÞ is then
depicted in Fig. 3. This shows that the Price tail perturba-
tion is only operative at values v much smaller than the
time-scale set by the Hawking effect. This is in agreement
with the result of the previous subsection that the late-time
behavior ofm−ðvÞ is controlled by the Hawking effect only.
Givenm−ðvÞ, we solve Eq. (5) to trace the position of the

shell in the background geometry. We consider a shell
situated between the apparent event horizon and Cauchy
horizon. Choosing the initial mass of the unperturbed
configuration as mHawkingð1Þ ¼ 5mcr and imposing initial
conditions at vinit ¼ f1; 104; 106g, typical trajectories RðvÞ
are displayed in Fig. 4. The solutions exhibit several phases
which are universal in the sense that they are independent
of the initial conditions. At early times, the shell falls
towards smaller values of r, approaching the apparent
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Cauchy horizon of the time-dependent geometry.
Subsequently, the solutions trail r−ðvÞ until they settle
on the late-time attractor (23). Note that for late times we
have _RðvÞ > 0 indicating that the late-time dynamics is
actually governed by the minus sign in Eq. (23).
Specifying (7) to the Hayward geometry then leads to the

following equation determining the mass function mþðvÞ
inside the shell

_mþ ¼ ð2l2mþ þ R3ÞðR3 − 2ðR2 − l2ÞmþÞ
ð2l2m− þ R3ÞðR3 − 2ðR2 − l2Þm−Þ

_m−: ð38Þ

Substituting the solutions for m−ðvÞ and the dynamics
RðvÞ, allows to solve this equation numerically. For the

latter, we adopt select the shell moving along the top (blue)
curve in Fig. 4. Depending on the initial value for minitþ , the
numerical integration identifies two classes of solutions.
Solutions starting with minitþ < mcritþ terminate at finite v.
Solutions where minitþ ≥ mcritþ exist for all values v and
follow the attractor (31) at late times. A series of solutions
taken from the class minitþ ≥ mcritþ are illustrated in Fig. 5.
Notably, the information on the initial conditions is wiped
out rather quickly as the shell settles on r−ðvÞ. As a result
the dynamics becomes essentially universal for v ≥ 100.
For late times the solutions settle on the attractor (32).
Given the explicit expression for mþðvÞ, it is now

straightforward to determine the resulting Misner-Sharp
massMþðvÞjΣ and the explicit form of the curvature scalars
(A4) and (A5). This data is shown in Figs. 6 and 7,
respectively. The Misner-Sharp mass undergoes a transition
from small to rather large values as the shell impacts onto
r−ðvÞ. This can be traced back to the denominator in (11)
becoming small (but not zero though). This behavior is
transmitted into the curvature scalars which undergo a rapid
increase during this transition before remaining at large
constant values. This feature reflects the exponential grows
of the Misner-Sharp mass reported in [38,39]. It precedes
the attractor behavior for the curvature reported in the
previous section.
At this point we stress that strictly speaking initial

conditions for the dynamics should only be imposed at
late time where the Ori model is capable of providing an
accurate description of dynamics. The global analysis in
this section clearly reveals that extrapolating the Ori model
to early times may lead to misleading conclusions about the
late-time behavior. This is particularly striking for solutions
which hit a singularity before actually reaching the late-
time attractor of the model.

FIG. 3. Illustration of the background geometry m−ðvÞ −mcr
resulting from (37) for β ¼ 1 (blue curve) and β ¼ 0 (dashed) for
l ¼ 1 in a log-log-plot. The solid line gives the asymptotic
behavior (19). Inset: m−ðvÞ for β ¼ 1 (blue curve) and β ¼ 0
(dashed) with the solid line showing mcr. The perturbation due to
the Price tail corrections vanishes at very short timescales so that
the lines agree for v≳ 10.

FIG. 4. Typical trajectories RðvÞ describing the motion of shells
with initial conditions marked by the blue dots at v ¼ 1 (blue
series), v ¼ 104 (orange) and v ¼ 106 (green) in a background
where mHawkingð1Þ ¼ 5mcr. The apparent event and Cauchy
horizons are depicted as opaque gray lines while rcr is given
by the dashed line. All shells settle at rcr at asymptotically
late times.

FIG. 5. Time evolution of mþðvÞ arising from solving (38) in
the background provided by (37) and the shell moving along
the thick blue curve depicted in Fig. 4. Initial conditions are
imposed at v ¼ 1 and chosen such that mþð1Þ is larger than the
critical value required for the solutions reaching the late-time
attractor (31). The dashed line indicates the asymptotic scaling
behavior (32).
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D. Strength of the curvature singularity

It is interesting to discuss the implications of our findings
with regard to possible extensions of the geometry beyond
the Cauchy horizon. In the standard Poisson-Israel model
[28], as first realized by [29] and further discussed by [40],
the Cauchy singularity does not meet the necessary con-
ditions to be strong in the Tipler sense [41]. In particular the
tidal distortion experienced by an observer crossing the
singularity is finite. In fact it is not difficult to find a
coordinate transformation that renders the metric regular in
the future sector of the shell [36]. However, the singularity
is still strong in the Królak sense because the expansion of
the null congruence is (negatively) diverging at the Cauchy
horizon [40].
In the case of regular black holes the exponential

divergence of the classical Poisson-Israel model is modified
into a power-law divergence of the type ∼v6p, with v → ∞
where p ≥ 11, and the singularity is Królak-weak [30].
Equation (36) confirms this picture once the effect of the
Hawking flow, corresponding to p ¼ 1 in the notation (10),
is taken into account. This supports the idea that the
strength of the inner horizon singularity in regular
black holes is much milder than in the standard case.
Moreover, it is completely fixed by the properties of the
Hawking radiation at late advanced times. On the other
hand, because our geometry is very close to the extremality,
it is not difficult to show that, at variance with the

nonextremal case, this singularity is never reached in a
finite amount of proper time because τ ∝ v as discussed in
Appendix C.
In this context, it is interesting to note that the weakening

of the singularity induced by the mass-inflation effect has
also been observed for Reissner-Nordström black holes in
the presence of a positive cosmological constant, see [42]
and references therein. At the classical level, the cosmo-
logical constant induces an exponential damping of the
perturbations close to the Cauchy horizon which then
competes with the instability, lowering the degree of
divergence in (some components of) the stress-energy
tensor. As a consequence, it was argued that spacetime
may admit an extension beyond the Cauchy horizon.
This picture is challenged once the problem is elevated
to the level of quantum field theory in curved spacetime. It
was found in [43] that the quantum stress-energy tensor
actually restores the mass-inflation singularity. This indi-
cates that quantum effects may play a crucial role in
determining whether spacetime can be continued across
the Cauchy horizon. The corresponding investigation is
beyond the scope of this article and will be left for
future work.

FIG. 6. Time-evolution of the Misner-Sharp mass evaluated in
the inner sector of the shell. The rapid increase in the curvature is
triggered by the shell aligning with the dynamical Cauchy
horizon. The attractor behavior taming MþðvÞjΣ sets in when
the background reaches the final stage of black hole evaporation
and is preceded by a rapid decrease of MþðvÞjΣ. The late-time
attractor (35) is added as the dashed line. The wiggles exhibited
by MþðvÞ should be interpreted as numerical artifacts. Their
occurrence can be traced by to the denominator structure of
MþðvÞ where the dynamics is essentially governed by the
cancellation of two numerical quantities of order unity to very
high precision. Hence, MþðvÞ is particularly sensitive to small
errors in the numerical solutions of the differential equations.
While this shows up in local wiggles, this does not affect the
overall dynamics though.

FIG. 7. Time evolution of the curvature scalars (A4) and (A5)
evaluated in the inner sector of the shell. The rapid increase in the
curvature is triggered by the shell aligning with the dynamical
Cauchy horizon. The power-law scaling (36) has been added as a
dashed line. Again the wiggles on the curve should be understood
as numerical artifacts resulting from precise cancellations of
quantities computed numerically.
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IV. MASS INFLATION FOR THE REISSNER-
NORDSTRÖM GEOMETRY REVISITED

An important insight obtained from the previous section
is that the late-time behavior of m−ðvÞ and RðvÞ is
controlled by the Hawking effect. In particular, the dynam-
ics induced by the time-dependent background changes
the late-time behavior from _RðvÞ < 0 to _RðvÞ > 0. This
qualitative change warrants revisiting the mass-inflation
effect in the (classical) Reissner-Nordström geometry,
where it has been established initially using a static back-
ground [28,29]. The analysis follows the steps of the
previous section. As the main result, we demonstrate that
the mass inflation is absent once the dynamics of the
background is introduced.

A. Geometry and late-time attractors

The line-element of the Reissner-Nordström geometry is
again of the form (1) with the lapse function

fðrÞ ¼ 1 −
2m
r

þQ2

r2
; M ¼ m −

Q2

2r
: ð39Þ

HereQ is the electric charge of the configuration. Similarly
to the Hayward geometry, the Reissner-Nordström geom-
etry possesses an event horizon and a Cauchy horizon
situated at

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −Q2

p
: ð40Þ

For m2 ¼ Q2 the two horizons coincide and one obtains an
extremal black hole with

mcr ¼ Q; rcr ¼ Q: ð41Þ

For m2 > Q2 the event horizon again emits Hawking
radiation with temperature given by (16). This leads to a
mass loss described by (18).
The dynamics of the shell and geometry in its interior

sector is again captured by Eqs. (5) and (7). Adapting these
to the geometry (39), one arrives at the following system of
coupled differential equations

_R ¼ R2 þQ2 − 2Rm−

2R2
;

_mþ ¼ R2 þQ2 − 2Rmþ
R2

FðvÞ; ð42Þ

where

FðvÞ ¼ R2 _m−

R2 þQ2 − 2Rm−
: ð43Þ

Note thatwehave suppressed thev-dependenceofm− arising
from the Hawking effect and the Price tail perturbation.

Determining the asymptotics of the resulting solutions
based on the Frobenius method is then rather straightfor-
ward. The mass function approaches mcr with the leading
corrections falling off proportional to 1=v,

m−ðvÞ ≃mcr þ
30πm4

cr

v
þOðv−3=2Þ: ð44Þ

The shell approaches rcr according to

RðvÞ ≃ rcr −
2

ffiffiffiffiffiffiffiffi
15π

p
r5=2crffiffiffi

v
p þOðv−1Þ: ð45Þ

The last relation already anticipates that the shell crosses
rcr and subsequently approaches the critical radius from
RðvÞ < rcr. Based on these relations, one obtains that

FðvÞ ≃ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15πm3

cr

v

r
þOðv−1Þ; ð46Þ

i.e., FðvÞ vanishes asymptotically. This has profound
consequences for the mass function in the inner sector
of the shell. Consistency of (42) requires that

mþðvÞ ≃mcr þ
30πm4

cr

v
; ð47Þ

which goes hand-in-hand with ðQ2 þ R2 − 2RmþÞ≃
Oðv−3=2Þ.
The crucial difference to the Hayward model then comes

with the explicit form of the scalar curvature invariants
tabulated in Table II. For the Reissner-Nordström case the
denominators appearing inKjΣ and C2jΣ remain finite. As a
result the asymptotic limit of both curvature scalars remains
finite as v → ∞,

KjΣ ≃
8

m4
cr
þOðv−1=2Þ;

C2jΣ ≃
2880π

mcrv
þOðv−3=2Þ: ð48Þ

This is in striking difference with the standard mass-
inflation effect where the curvature grows exponentially
in v.
We now solve the system of equations (42) numerically,

using a superposition of the Hawking radiation and Price
tail perturbation for m−ðvÞ. We first consider a shell with
initial conditions imposed at v ¼ 1, even though this is out
of the validity-range of the Ori model. The motion of this
shell is quantitatively identical to the Hayward case shown
in Fig. 4. The shell starts from its initial point, quickly falls
towards the apparent Cauchy horizon, and eventually traces
r−ðvÞ into the asymptotic scaling regime.
The function mþðvÞ obtained from the early-time initial

conditions is then displayed in Fig. 8. This shows that
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mþðvÞ first approaches a constant plateau whose value
depends on the initial conditions imposed for mþ.
Subsequently, the solution terminates in a singularity when
the shell impacts on the apparent Cauchy horizon. As
illustrated in the left column of Fig. 8, the divergence ofmþ
induces a divergence in the curvature scalars. Thus,
imposing initial conditions at early times leads to solutions

which terminate before reaching the late-time attractor
identified in the Frobenius analysis.
On the right column of Fig. 8, this picture changes

radically since the initial conditions are imposed at late-
times within the validity range of the Ori model. In order to
illustrate this, we solve the same dynamical system with
initial conditions imposed at v ¼ 106. At this point the

FIG. 8. Illustration of the mass-inflation effect for the Reissner-Nordström black hole including the Hawking flux in the background
geometry. Initial conditions are imposed at early times v ¼ 1 (left column) and late times v ¼ 106 (right column). The top, middle, and
bottom row show the time evolution of mþðvÞ, KjΣ and C2jΣ, respectively. The early time dynamics depicts the evolution of mþðvÞ
evaluated for the shell moving along RðvÞ generated from the initial condition Rð1Þ ¼ 7.5 for varying initial conditions formþ. Notably,
mþðvÞ first moves along a plateau before exhibiting a rapid increase when the shell impacts on the apparent Cauchy horizon. This
process induces a singularity in mþðvÞ situated at approximately v ≈ 14.5. The divergence of mþ induces a divergence in the curvature
scalars when the shell impacts on the apparent Cauchy horizon. The dynamics following from initial conditions imposed at late times
differs drastically: in this casemþðvÞ reaches the attractor regime (47), indicated by the dashed line. As a resultKjΣ remains constant and
C2jΣ vanishes at asymptotically late times, cf. (48).
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black hole background and in particular m−ðvÞ and RðvÞ
are already very close to the attractor regime. As shown in
the top-right diagram of Fig. 8, this induces the late-time
attractor behavior for mþðvÞ. As a consequence the
curvature scalars shown in the middle-right and bottom-
right diagram of the figure remain finite. Thus the Reissner-
Nordström black hole does not develop a dynamical
singularity once the effect of Hawking radiation is taken
into account.

V. OTHER REGULAR BLACK HOLE
GEOMETRIES

We complete our analysis by discussing two additional
proposals for regular black holes, the renormalization
group (RG)-improved black hole solutions [10] and the
Bardeen black hole [9,44]. In these cases the lapse
functions take the explicit form

f¼ 1−
2mr2

r3þωð2rþ9mÞ ; M¼ r3

r3þωð2rþ9mÞ ; ð49Þ

and

f ¼ 1 −
2mr2

ðr2 þ a2Þ3=2 ; M ¼ r3

ðr2 þ a2Þ3=2 ; ð50Þ

respectively. In order to simplify the analysis we set ω ¼ 1
and a ¼ 1. While this leads to significant simplifications
when analyzing the structure of the equations, fixing the
overall scale of the problem still allows to extract the
generic features of the dynamics.
The analysis of the Ori model for these spacetimes

proceeds completely analogous to the previous sections. In
particular, the late-time expansion of the mass-function
m−ðvÞ and the motion of the shell are universal in the sense
that the leading and subleading terms do not contain free
integration constants. The motion of the shell again follows
the behavior shown in Fig. 4. The decisive element in the

analysis is then given by the structure of the dynamical
equation (7) determining the mass-function in the inner
sector of the shell. For the RG-improved black hole the
resulting first-order equation for mþðvÞ is

_mþ¼ð9mþþR3þ2RÞðð9−2R2ÞmþþR3þ2RÞ
ð9m−þR3þ2RÞðð9−2R2Þm−þR3þ2RÞ _m− ð51Þ

while for the Bardeen black hole one has

_mþ ¼ ðR2 þ 1Þ3=2 − 2R2mþ
ðR2 þ 1Þ3=2 − 2R2m−

_m−: ð52Þ

Two observations are in order. Firstly, (51) gives rise to a
polynomial PðmþÞ which is quadratic in mþ. Moreover, a
comparison to the curvature invariants given in Table II
shows that the factor 9mþ þ R3 þ 2R is the one appearing
in the denominators of K and C2. A consistent solution for
mþ then requires that this factor vanishes proportionally to
v−1. This causes a power-law divergence in KjΣ and C2jΣ
which is qualitatively identical to the one found for the
Hayward black hole. Thus the late-time behavior of the two
geometries follows the same universality class.
In the case of the Bardeen black hole a consistent solution

of (52) again requires that ðR2 þ 1Þ3=2 − 2R2mþ ∝ v−1. The
crucial difference in this case is that this factor does not
constitute the denominator in the curvature scalars. As a
result KjΣ and C2jΣ remain finite in the inner sector of the
shell. This is identical to the late-time behavior found the
Reissner-Nordström black hole. Thus, these two geometries
also give rise to the sameuniversal late-time behavior close to
the Cauchy horizon. The two geometries come with one
crucial difference though; the Reissner-Nordström geometry
hosts a spacetime singularity at its center while the Bardeen
geometry satisfies the limiting curvature hypothesis
everywhere. Thus the Bardeen black hole constitutes a
prototypical example of a regular black hole where the
mass-inflation effect does not induces a curvature singularity

TABLE I. Properties of the late-time attractor controlling the scaling of the curvature in the inner sector of the
shell. The evaluation of the RG-improved black holes and the Bardeen black hole is given for the model parameters
ω ¼ 1 and a ¼ 1. The column Kj∞Σ gives the scaling of the Kretschmann scalar evaluated in the limit v → ∞. Note
that the late-time behavior organizes itself in terms of two distinguished universality classes. For the Hayward and
RG-improved geometry KjΣ ∝ v6 while for the Reissner-Nordström and Bardeen geometry the curvature scalar
remains finite.

fðrÞ FðvÞ Kj∞Σ PðmþÞ
Early solutions reach
late-time attractor

Reissner-Nordström 1 − 2m
r þ e2

r2 ≃ −
ffiffiffiffiffiffiffiffiffiffiffi
15πm3

cr
v

q
∝ v0 Linear No

Hayward solution [17] 1 − 2mr2

r3þ2ml2 ≃ −
ffiffiffiffiffiffiffiffiffiffiffi
80πm3

cr
v

q
∝ v6 Quadratic Yes

RG improved black holes [10] 1 − 2mr2

r3þωð2rþ9mÞ ≃ − 84.5v−1=2 ∝ v6 Quadratic Yes

Bardeen black hole [9,44] 1 − 2mr2

ðr2þa2Þ3=2 ≃ − 19.2v−1=2 ∝ v0 Linear No
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at asymptotically late times. For convenience, we have
summarized the key features of the two universality classes
and their representatives in Table I.

VI. SUMMARY AND OUTLOOK

In this work we studied the Ori model for mass inflation
for regular black holes. As a novel feature, our analysis
includes the mass-loss of the background geometry due to
the emission of Hawking radiation. As a result, the
asymptotic state of the geometries is an extremal black
hole where the event and Cauchy horizons coincide at
asymptotically late times. These configurations come with
a finite mass, vanishing surface gravity, and zero Hawking
temperature, i.e., they correspond to a cold remnant.
We demonstrated that the fact that the asymptotic

geometry is an extremal black hole has profound conse-
quences for the late-time dynamics of the mass-inflation
effect. The function FðvÞ controlling the dynamics of the
mass function in the inner sector of the shell vanishes
asymptotically, see Table I. This is at variance with the
analysis of the same model on a static, noncritical back-
ground [30] where FðvÞ asymptotes to a constant propor-
tional to the surface gravity at the Cauchy horizon. As a
consequence of this modification, we discover two classes
of universal late-time behavior. In the first class curvature
scalars including the Kretschmann invariant exhibit a
power-law instead of an exponential growth. This class
is realized by the Hayward and RG-improved black holes.
In the second class the curvature scalars remain finite at
asymptotically late times. This occurs for the Reissner-
Nordström solution and Bardeen-type black holes. The fact
that the final configuration is an extremal black hole
furthermore suggests that radial geodesics do not encounter
these singularities in a finite proper time.
A crucial question raised in [38,39], is whether the

dynamical system can actually reach this salient late-time
attractor. Our numerical analysis indicates that the dynam-
ics of the shell and the Hawking effect operate on different
timescales. The impact of the shell onto the apparent
Cauchy horizon occurs on much shorter timescales as
the evaporation of the black hole. This feature is universal
and does not depend on details of the black hole geometry,
cf. Fig. 4. Imposing the perturbation at late times, where we
expect that the Ori model gives a valid description, we
demonstrated that the salient late-time attractor quenching
the mass-inflation singularity is reached in all geometries
investigated in this work. These include the Hayward black
hole, RG improved black hole, the Reissner-Nordström
geometry, and Bardeen-type black holes.
For future investigations, it would be interesting to

understand whether there is a mechanism taming the
growth of the mass function triggered by the shell
impacting on the Cauchy horizon. Refs. [45,46] proposed
to achieve this by converting the Cauchy horizon to a
degenerate horizon with vanishing surface gravity akin to

the horizon structure appearing in the final states of the
dynamical geometries studied in this work. It would be
interesting to actually identify a theory of modified gravity
which naturally gives rise to such configurations. One of
the best explored phase spaces, comprising black hole type
solutions in quadratic gravity, does not support such
features [47–52].
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APPENDIX A: CURVATURE INVARIANTS

In order to determine the physics consequences of
perturbations on the geometry one should study the
dynamics of physical observables. Quantities that naturally
lend themselves to such a study are scalar quantities
constructed from contractions of curvature tensors as,
e.g., the Kretschmann scalarK ≡ RμνρσRμνρσ and the square
of the Weyl tensor C2 ≡ CμνρσCμνρσ. In four spacetime
dimensions these quantities are related by the identity

C2 ¼ K − 2RμνRμν þ 1=3R2: ðA1Þ

For vacuum solutions of general relativity, satisfying
Rμν ¼ 0, C2 and K agree. Since the Reissner-Nordström
solution and regular black hole solutions are not Ricci flat,
these quantities can be different and in principle also
exhibit different asymptotic scaling behaviors.
The metrics considered in this work take the form

ds2 ¼ −fðr; vÞdv2 þ 2drdvþ r2dΩ2; ðA2Þ

where it is convenient to express the lapse function fðr; vÞ
in terms of the Misner-Sharp mass Mðr; vÞ through

fðr; vÞ ¼ 1 −
2Mðr; vÞ

r
: ðA3Þ

The curvature scalars obtained from (A2) then take the
form

K ¼ 48M2

r6
−
64MM0

r5
þ 32ðM0Þ2

r4

þ 16MM00

r4
−
16M0M00

r3
þ 4ðM00Þ2

r2
; ðA4Þ

and
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C2 ¼ 4ðr2M00 − 4rM0 þ 6MÞ2
3r6

: ðA5Þ

Here the prime indicates derivatives with respect to r.
It is instructive to evaluate these curvature scalars for the

(regular) black hole geometries discussed in the main part
of this work. The results are compiled in Table II. The
coefficients ki appearing in the Kretschmann scalar for the
RG-improved black hole are

k1 ¼ −4r9ð27mþ rÞ;
k2 ¼ 2r6ð2187m2 þ 432mrþ 26r2Þ;
k3 ¼ 2r3ð−2187m3 þ 972m2rþ 252mr2 þ 16r3Þ;
k4 ¼ 2ð19683m4 þ 11664m3r

þ 3078m2r2 þ 360mr3 þ 16r4Þ: ðA6Þ

We observe that for the Reissner-Nordström geometry the
curvature scalars diverge at r ¼ 0 owed to the vanishing of
the denominator at this point. This signals the presence of a
curvature singularity in the geometry. Regular black holes
change the structure of this denominator in such a way that
K andC2 are bounded everywhere as long asm > 0 and the
model parameters are chosen properly. If m < 0 the

denominators appearing in the Hayward and RG-improved
cases may vanish though. It is this mechanism which
underlies the power-law divergences of Kj∞Σ and C2j∞Σ
reported in Table I.
The r-dependence ofK andC2 obtained for the Hayward

geometry (11) is shown in Fig. 9. This illustrates the
generic feature that K and C2 do not agree for a regular
black hole geometry due to extra contributions in Einstein’s
equations. While K increases monotonically, reaching a
finite value at r ¼ 0, theC2 invariant exhibits zeros at r ¼ 0
as well as one specific point located between the event and
Cauchy horizons.

APPENDIX B: FROBENIUS ANALYSIS
OF THE LATE-TIME ATTRACTOR

This appendix collects the technical details and sublead-
ing terms required in the consistent Frobenius analysis of
the late-time attractor. The results for the Hayward black
hole are discussed in detail in the text. The analogous
formulas for the Reissner-Nordström geometry (RN), RG-
improved black holes (RG), and the Bardeen black hole (B)
are obtained along the same lines and summarized in
Table III.

TABLE II. Specific form of the curvature scalars (A4) and (A5) evaluated for the Reissner-Nordström black hole
(top line) and the three regular black hole geometries. The explicit form of the line element is given in the equations
indicated in the second column. The coefficients ki parametrizing the curvature for the RG-improved black hole are
given in Eq. (A6).

Geometry fðrÞ K C2

Reissner-Nordström Eq. (39) 8ð6m2r2−12mQ2rþ7Q4Þ
r8

48ðQ2−mrÞ2
r8

Hayward Eq. (11) 48m2ð32l8m4−16l6m3r3þ72l4m2r6−8l2mr9þr12Þ
ð2l2mþr3Þ6

48m2r6ðr3−4l2mÞ2
ð2l2mþr3Þ6

RG-improved Eq. (49) 16m2ð3r12þk1ωþk2ω2þk3ω3þk4ω4Þ
ð9mωþr3þ2rωÞ6

16m2r2ð54mr2ωþ18mω2−3r5þ2r3ωÞ2
3ð9mωþr3þ2rωÞ6

Bardeen Eq. (50) 12m2ð8a8−4a6r2þ47a4r4−12a2r6þ4r8Þ
ða2þr2Þ7

12m2r4ð3a2−2r2Þ2
ða2þr2Þ7

FIG. 9. Curvature scalars (A4) (top) and (A5) (bottom) evaluated for the Hayward geometry (11) with l ¼ 1.
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The line element specifying the Hayward geometry is
given in Eq. (11). The Frobenius analysis for the mass
function m−ðvÞ in the outer sector of the shell, taking into
account the mass loss from Hawking radiation gives

m−ðvÞ ≃mcr þ
480πm4

cr

v
þ 5120m4

cr

�
5πmcr

v

�
3=2

þm7
cr

v2
ðm̃þ nonanalyticÞ: ðB1Þ

Here the constant m̃ is not determined by the expansion.
The occurrence of such a free parameter is expected, since
we are approximating the solution to a first-order differ-
ential equation which comes with one integration constant
fixing the solution. It is then remarkable that the first three
terms in the expansion (B1) are universal in the sense that
they are independent of these initial conditions. We also
observe that the Frobenius expansion at Oðv−2Þ requires
the contributions of nonanalytic terms in order to ensure the
cancellation of contributions appearing at Oðv−3Þ in the
expansion. Tracking these terms is beyond the scope of this
work. While they may lead to logarithmic corrections to the
scaling laws, they will not modify the power-law behavior
of the quantities analyzed in this section.

In the next step, we analyze the late-time behavior of
RðvÞ. The numerical analysis indicates that the shell
approaches rcr from below, i.e., from radii r < rcr. We
then select the corresponding sign in the leading term of the
large-v expansion. This sign propagates also into the
subleading coefficients, so that this branch of solutions
has the expansion

RðvÞ≃rcr−3rcr

�
15πr3cr

v

�
1=2

−r2cr
1þ585πr2cr

2v

þr3=2cr ð27ð11686400π2−3m̃Þr4crþ30720πr2cr−512Þ
4096

ffiffiffiffiffiffiffiffi
15π

p
v3=2

:

ðB2Þ

In order to ensure that the hierarchy of equations is solved
consistently without contributions of higher-order terms
missing in the expansion, we included the next term in (B2)
and verified that it does not enter into the equations
determining the coefficients in the expansion.
The next task is to determine the scaling of mþ from

Eq. (24). Here, we use the asymptotic form

mþðvÞ ≃ −2mcr þ
m1ffiffiffi
v

p þm2

v
: ðB3Þ

TABLE III. Late-time expansion of the functions controlling the dynamics of the Ori model in the inner sector of the shell. The
expansion order of each function is sufficient to arrive at the leading terms in the scaling behavior of the Misner-Sharp mass MþðvÞjΣ
and the curvature scalars K and C2 evaluated at the position of the shell.

m−ðvÞ
RN mcr þ 30πm4

cr
v þ 720π3=2

ffiffiffiffi
15

p
m11=2

cr

v3=2
þ ðm̃þ nonanalyticÞ m7

cr

v2

RG (ω ¼ 1) mcr þ 1.35 × 103v−1 þ 1.60 × 108v−3=2 þ ðm̃þ nonanalyticÞv−2
B (a ¼ 1) mcr þ 2.86 × 103v−1 þ 9.51 × 105v−3=2 þ ðm̃þ nonanalyticÞv−2

RðvÞ
RN rcr −

2
ffiffiffiffiffiffi
15π

p
r5=2crffiffi
v

p − ð660πr2crþ1Þr2cr
2v − 1

4096
ð81m̃r4cr − 315532800π2r4cr − 30720πr2cr þ 512Þð r3cr

15πv3Þ
1=2

RG (ω ¼ 1) rcr − 7.35 × 102v−1=2 − 2.95 × 105v−1 þ ð2.83 × 108 − 2.72 × 10−3m̃Þv−3=2
B (a ¼ 1) rcr − 81.3v−1=2 − 1.06 × 104v−1 þ ð2.02 × 106 − 1.42 × 10−2m̃Þv−3=2

FðvÞ
RN −

ffiffiffiffiffiffiffiffiffiffiffi
15πm3

cr
v

q
RG (ω ¼ 1) −84.5v−1=2
B (a ¼ 1) −19.2v−1=2

mþðvÞ
RN mcr þ 30πm4

cr
v þ 720

ffiffiffiffi
15

p
π3=2m11=2

cr

v3=2

RG (ω ¼ 1) −8.04þ 4.11 × 103v−1=2 þ 9.18 × 105v−1

B (a ¼ 1) 1.30þ 2.86 × 103v−1

MþðvÞjΣ
RN mcr

2

RG (ω ¼ 1) −1.18v
B (a ¼ 1) 5.20

KjΣ
RN 8

m4
cr

RG (ω ¼ 1) 2.40 × 10−4v6

B (a ¼ 1) 1.44

C2jΣ
RN 2880π

mcrv
RG (ω ¼ 1) 8.00 × 10−5v6

B (a ¼ 1) 3.70 × 10−2
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In order to determine the free coefficients m1 and m2, two
auxiliary considerations are in order. First, we use (B1) and
(B2) to determine the scaling of the auxiliary function FðvÞ

FðvÞ ≃ −4mcr

�
5πmcr

v

�
1=2

: ðB4Þ

Note that in this case, it actually suffices to retain the
leading term in the expansion. The second observation is
that for the late-time attractor (31) we must have

R3 þ 2l2mþðvÞ ≃
d1
v
; ðB5Þ

in order to have a consistent power-law solution compatible
with the parametrization (B3). This fixesm1 ¼ 48

ffiffiffiffiffiffiffiffiffiffiffiffiffi
5πm5

cr

p
.

With this knowledge, we can return to the full equation (24)
and solve the first nontrivial order to fix m2. This results in
the asymptotic expansion

mþðvÞ≃−2mcrþ48

ffiffiffiffiffiffiffiffiffiffiffiffiffi
5πm5

cr

v

s
þ2240πm4

crþ8m2
cr

v
: ðB6Þ

As an important corollary, we note that this implies that

d1 ¼
128m4

cr

27v
: ðB7Þ

Comparing Eq. (B5) with the definition of the Misner-Sharp
mass in the inner sector of the shell, Eq. (11), and the results
for the curvature scalars given in Table II, we note that it is
actually the coefficient d1 which sets the asymptotic scaling
behavior of these quantities. Remarkably, (B7) is universal in
the sense that it does not depend on initial conditions or any
free parameters related to the dynamics of the solution. This
establishes that the late-time behavior of the perturbed
geometry is actually universal.
The Frobenius analysis for the Reissner-Nordström

geometry literally proceeds along the same lines. In
principle, the method is also applicable to the other
geometries discussed in the main sections. In these cases
the analysis is complicated by a proliferation of square-
roots originating from the analytic expressions for the
positions of the horizons. Following the strategy of
determining the Frobenius coefficients exactly for arbitrary
model coefficients ω and a leads to a significant increase in
numerical complexity when simplifying expressions. In
order to bypass this obstacle we then fix ω ¼ 1 and a ¼ 1
and convert the analytic expression to high-precision
floating numbers (tracking 50 digits). Based on the insights
from the Hayward case, this allows to track the cancellation
of leading and also subleading terms in the late-time
expansion. The intermediate results leading to the late-
time attractor described in Table I are collected in Table III
for completeness.

APPENDIX C: GEODESIC EQUATIONS

In order to determine the geodesic structure of spacetime,
we consider the motion of radially infalling observers and
compute the relation between the coordinate v and the
observer’s proper time τ. Starting from the line element
(A2), the v-component of the geodesic equation is

v̈ ¼ −
1

2

∂f
∂r

_v2; ðC1Þ

where the dot represents a derivative with respect to proper
time. The normalization for the four-velocity of the radial
observer furthermore supplies the relation

L ¼ 1

2
ðf _v2 − 2_r _vÞ ¼ ϵ

2
: ðC2Þ

with ϵ ¼ 0, 1 for lightlike or timelike geodesics, respec-
tively. For a static geometry where f is independent of v,

∂L
∂ _v

¼ const; ðC3Þ

is conserved along geodesic motion.
To understand the implications of the curvature singu-

larities induced by the late-time attractors identified in
Table I, we solve these equations for timelike geodesics
close to the Cauchy horizon. Considering (C1), for a static,
noncritical black hole, we first note that near the inner
horizon

−
1

2

∂f
∂r

≃ κ− > 0: ðC4Þ

Equation (C1) is then readily solved in this limit, yielding
the relation

τ ¼ 1

κ−
e−κ−v þ const: ðC5Þ

The important insight from this result is that a massive
observer can reach the singularity at v ¼ ∞ in finite proper
time. Hence the strength of the singularity becomes an
important question when asking whether a geodesic can be
continued beyond this point [30].
In the presence of Hawking radiation this analysis is

radically altered though. In this case the late-time structure
of spacetime is given by an extremal black hole where
κ− ¼ 0. Therefore, Eq. (C1) gives the linear relation

τ ¼ cvþ const: ðC6Þ

with c an integration constant. The crucial difference to
(C5) is that the timelike geodesic requires an infinite
amount of proper time to reach v ¼ ∞.
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