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The semiclassical gravity sourced by the quantum expectation value of the matter’s energy-momentum
tensor will change the evolution of the quantum state of matter, which can be described by the Schrödinger-
Newton (SN) equation. Understanding the phenomenology of the SN equation is important for
experimentally testing the quantumness of gravity. In the SN theory, semiclassical gravity contributes
a gravitational potential term depending on the matter’s quantum state. This state-dependent potential
introduces the complexity of the quantum state evolution and measurement in SN theory, which is different
for different quantum measurement prescriptions. Previous theoretical investigations on the SN-theory
phenomenology in the optomechanical experimental platform were carried out under the so-called post/
preselection prescription. This work will focus on the phenomenology of SN theory under the causal-
conditional prescription, which fits the standard intuition of the continuous quantum measurement process.
We found that under the causal-conditional prescription, the quantum state of the test mass mirrors is
conditionally prepared by the continuous projection of the outgoing light field in an optomechanical
system. Hence a quantum-trajectory-dependent gravitational potential is created, which significantly
changes the system evolution. This work provides an extensive analysis of this new picture of system
evolution, and shows that various experimentally measurable signatures predicted by SN theory under
causal-conditional prescription cannot be distinguished from that predicted by quantum gravity unless
a very extreme experimental parameter region is assumed. Therefore, our new understanding of SN
phenomenology provides an important caution toward the experimental verification of quantum gravity.

DOI: 10.1103/PhysRevD.107.024004

I. INTRODUCTION

Einstein’s general theory of relativity reveals the nature
of gravity as a spacetime curvature Gμν that coupled to the
matter energy-stress tensor Tμν, which can be summarized
as Einstein’s field equation Gμν ¼ 8πTμν. In Einstein’s
theory, both spacetime geometry and matter are classical.
However, the physical law that governs matter evolution is
quantum mechanics, which means that the energy-stress
tensor should be an operator T̂μν in the quantum world.
Therefore, quantizing the spacetime geometry Gμν is one
natural approach to establishing a consistent description of
gravity [1–3], which is yet to be successful. On the other
hand, there is also an alternative semiclassical approach in

which the spacetime geometry remains classical, while it is
sourced by the quantum expectation of the stress-energy
operator, i.e., Gμν ¼ 8πhψ jT̂μνjψi (jψi is the quantum state
of matter which evolves with the spacetime) as originally
proposed by Möller and Rosenfeld [4,5].
Although quantum gravity seems the most natural

and logical way forward, and despite many arguments
against classical gravity (in particular its inconsistency with
Everett’s relative-state interpretation raised by Page [6–8]),
classical gravity has not been ruled out completely. Unlike
the other three fundamental interactions, there is currently
no direct experimental evidence for the quantumness of
the gravitational field due to the demanding condition
for such a test. Therefore, it is meaningful to test the
quantumness of the gravitational field. In history, similar
discussions on the quantumness of electromagnetic (EM)
field also motivated the works on experimentally testing
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the so-called semiclassical EM theory [9–15], which
was once thought to be indistinguishable from quantum
electrodynamics [16–19].
Recent developments in quantum optomechanics pro-

vides an experimental platform for testing physical
phenomena at a new interface between quantum and
gravitational physics. [20–22]. This platform allows the
preparation, manipulation, and characterisation of macro-
scopic objects near Heisenberg Uncertainty, and spans a
wide range of experimental scenarios, including levitated
nanospheres [23–25], nanomechanical oscillators [26–34],
membranes [35], and suspended test masses [36–38].
Experimental opportunities motivate the study of the

phenomenology of the semiclassical gravity of macro-
scopic, nonrelativistic objects. In this paper, we shall focus
on the Schrödinger-Newton theory [39–44]

iℏ
∂jΨi
∂t

¼ HjΨi þ VNðjΨiÞjΨi ð1Þ

in which the quantum state jΨi of a system of particles, as
can be represented by the multiparticle joint wave function,
is subject to a Newton gravitational potential V that in turn
depends on the state jΨi. In Refs. [45,46], the effect of VN
is elaborated for a macroscopic test mass (a solid), when its
center-of-mass (COM) position uncertainty is less than the
zero-point position uncertainty of atoms near their lattice
sites. In phase space, the quantum uncertainty (in terms of
the position-momentum covariance matrix) of the COM
evolves at a shifted frequency from that of the expectation
values. Further works discussed possible experimental
signatures of the SN theory [45–48].
The nonlinearity in VðjΨiÞ brings an ambiguity to SN

theory when describing quantum measurements, and in this
process breaking the time-reversal symmetry of standard
quantum mechanics. Let us consider a scattering amplitude
problem: suppose we prepare a system at an initial state jii,
let it evolve for duration T, and would like to compute the
probability that it will be found at jfi. Even though the SN
equation appears to be time-reversal symmetric, since in
general, jii does not evolve into jfi, when inserting the jΨi
in V, one needs to specify whether to make jΨi agree with
jii at the initial time, or to make jΨi agree with jfi at the
final time. In other words, if we denote with Û the evolution
operator, then the relation pi→f ¼ jhfjÛjiij2 ¼ jhijÛjfij2
will not hold since Û depends on the quantum state due
to the nonlinearity: Ûðt; t0Þ ¼ Ûjψiðt; t0Þ [46]. In standard
quantum mechanics, the wave function collapse has three
different, but equivalent prescriptions/interpretations: pre-
selection, postselection, and conditional collapse, as dis-
cussed by Aharonov et al. in a milstone paper [49,50].
However, the equivalence of these prescriptions depends
on the linearity of quantum mechanics, that is, such an
equivalence will be broken in SN theory. For example,

for post/preselection prescription, we have ppre=post
i→f ¼

jhfjÛjψii=f jiij2 and clearly ppre
i→f ≠ ppost

i→f.
In this paper, we will introduce a version of the so-called

causal-conditional prescription of SN theory [51], which
differs from the pre/postselection prescriptions, leading to
significantly different phenomenology. In the nonrelativ-
istic limit of this prescription, Newton’s potential will be
determined by the instantaneous conditional quantum state
of the system. In the other words, a quantum-trajectory-
dependent gravitational potential is created, which leads to
different SN phenomenology from that predicted by many
previous works [45,51–54].
As an example, consider a system of two macroscopic

mirrors (A and B), interacting via their mutual gravita-
tional interaction, with each of the center-of-mass position
xA and xB monitored by a separate optical field. In previous
theoretical proposals [52,54], it was assumed that, under
SN theory, the motion of mirror A, driven by quantum
radiation-pressure fluctuations, will have a vanishing
quantum expectation, therefore will not drive the motion
of mirror B. This argument predicts zero correlation
between the two out-going optical fields yA and yB. In
this way, any correlation between the two output fields can
be used to verify the quantum nature of gravity.
However, as we shall see in this paper, under the causal-

conditional prescription, the continuous quantum meas-
urement of mirror motions can actually induce correlations
between the two out-going fields. We can in fact argue that
some degrees of correlation between the two optical fields
must exist in SN theory, in which the quantum state jΨi
used in generating Newton’s potential is updated according
to measurement results. In the specific case of the two
mirrors under causal-conditional prescription, the condi-
tional state of mirror A, hence the conditional expectation
of EðxAjyAÞ, evolves in a way that depends on measure-
ment results yA, hence A exerts a classical gravitational
force on B that is correlated with yA, which in turn
establishes a correlation between yA and yB. As it turns
out, in comparison with zero correlations, the classical
correlation predicted by the causal conditional prescription
is much more difficult to distinguish from the quantum-
gravity-induced correlations of light fields when the two
mirrors are interacting via weak quantum gravity. This
result provides an important caution toward experimental
verification of the quantum nature of gravity.
This paper is structured as follows. Section II will give a

general discussion of the continuous quantum measure-
ment under different prescriptions for SN theory. Then in
Secs. III and IV, the optomechanical systems with the
strong SN effect (semiclassical self-gravity scenario) and
the weak SN effect (semiclassical mutual-gravity scenario)
will be thoroughly analyzed, respectively. Section V will
discuss the physical origin of the semiclassical gravity-
induced light field correlations from the aspect of nonlinear
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quantum mechanics. Finally, in Sec. VI summary and
discussions of this work will be presented.

II. CONTINUOUS QUANTUM MEASUREMENT
IN SN THEORY

The first step to study the SN phenomenology is to
establish a theoretical description of the continuous quan-
tum measurement in SN theory. As we have mentioned in
the Introduction, the quantum state evolution and meas-
urement induced state collapse in a nonlinear quantum
mechanical theory are different from the standard quantum
mechanics. This is because the symmetry of pre and
postselection prescriptions in the standard quantum
mechanics is no longer valid, which has been extensively
discussed and applied to the analysis of the measurement of
a single test mass mirror exerted by its self-gravity in [45]
with the following Hamiltonian:

Ĥ¼ p̂2

2M
þ1

2
Mω2

mx̂2þ
1

2
Mω2

SNðx̂− hx̂iÞ2−ℏαâ1x̂; ð2Þ

where α is the measurement strength that proportional
to the coherent amplitude of the pumping light and â1
is the amplitude operator of the optical fluctuations. The

ωSN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm=6

ffiffiffi
π

p
x3zp

q
is the SN frequency [45], in which

the m; xzp are the mass and zero-point displacement of the
crystal lattice oscillation in the test mass mirror.
In the cases of the pre/postselection (as discussed in

[46]), the evolution operator Ûjψi¼exp½−iR t
0 ĤðjψmðtÞiÞdt�

depends on the initial/final mechanical quantum state. This
means that hx̂i in the above Hamiltonian can be treated as
hψmðti=fÞjx̂ðtÞjψmðti=fÞi throughout the entire continuous
measurement processes, which is a deterministic c-number.
Therefore this approach linearised the problem.
However, for continuous measurement, a more intuitive

prescription is the casual conditional prescription (see
Fig. 1), which can be represented by:

jψmðtfÞi ¼ ÛΔt
jψN−1iP̂N−1Û

Δt
jψN−1i…P̂1Û

Δt
jψ0ij0io ⊗ jψmðtiÞi;

ð3Þ

where the ÛΔt
jψji is the SN evolution of quantum state in a

infinitesimal duration Δt when the mechanical state is jψ ji,
the P̂j is the projection operator acting on the light field at
time t0 þ jΔt. The projective measurement on the light
field will prepare the joint entangled optomechanical state
ÛΔt

jψ jijψ ji ⊗ j0ij onto a conditional mechanical quantum

state jψ jþ1i with measurement record yi. This causal-
conditional prescription is equivalent to the pre/postselec-
tion prescription only in standard quantum mechanics.
This inequivalency can be seen from the fact that in the
SN theory ÛΔt

jψNi…ÛΔt
jψ0i ≠ Ûjψ0iðtN; t0Þ.

A direct result of the causal-conditional prescription
is the dependence of the gravitational field on the
stochastic quantum trajectory [55] since the gravitational
field in the SN theory is sourced by the conditional
quantum expectations of the mirror’s physical quantities.
In contrast, under the pre/postselection prescription,
the gravitational field throughout the continuous
quantum measurement process has a deterministic evo-
lution, which will exhibit a different phenomenology.
Interestingly, the gravitational field evolution under the
causal-conditional prescription is somewhat similar to the
quantum gravity, where the gravitational field is sourced
by the mirror exerted by the stochastic quantum radiation
pressure noises. These points will be elaborated in the
following sections using the optomechanical systems as
an example.
Optomechanical system is the most promising exper-

imental platform for testing macroscopic quantum mechan-
ics [22,26,27,56–58]. In the following, we will give a
complete analysis on the phenomenology of semiclassical

FIG. 1. Upper panel: different prescription of state evolution and
measurement in the Schrödinger-Newton theory: (a) the post-
selection prescription; (b) the causal-conditional prescription
where the measurement-evolution processes satisfy Eq. (3), where
the conditional mechanical quantum state prepared continuously
follows a quantum trajectory; (c) the preselection prescription.
Lower panel: spacetime diagram for quantum measurement,
where the thick blue line represents the worldline of the mirror.
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gravity on the optomechanical system, in particular under
the causal-conditional prescription. We will discuss two
different scenarios: (1) the optomechanical system influ-
enced by the mirror’s the semiclassical self-gravity, where
the SN effect is relatively strong since the gravity inter-
action happens at length scale ∼xzp; (2) the optomechanical
system with two mirrors interacting via mutual semiclass-
ical gravity, where the SN effect is relatively weak since
the gravity interaction happens at the mirror separation
length scale.

III. OPTOMECHANICAL SYSTEM INFLUENCED
BY SELF-GRAVITY

A. Results of the pre/postselection prescription:
an overview

For an optomechanical quantum measurement system,
the signatures of SN theory can be studied through
the traditional preparation-evolution-verification process
sketched in [45]. In this scenario, the mirror is first
prepared onto a mechanical squeezed state, then under-
goes an SN free evolution and finally performs quantum
tomography on the evolved state. The signature of the SN
effect manifests itself in the free evolution stage, where
the (Gaussian) Wigner function of the squeezed mechani-
cal state rotates in the phase space around its mean value
ðhx̂ic; hp̂icÞ at frequency ωq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m þ ω2

SN

p
(see Fig. 2).

The scenario this work focus on is similar to that discussed
in [46], where we directly measure the spectrum of the
outgoing optical field that interacts with the quantum test
mass mirror exerted by the semiclassical gravitational
field described by the SN theory.
In [46], the signatures of the SN theory are studied under

the pre/postselection prescription. Under the preselection

prescription, the difference of the spectrum of the outgoing
field between SN gravity and quantum gravity, defined as
ΔSa2a2ðωÞ ¼ SSNa2a2ðωÞ − SQGa2a2ðωÞ can be derived as:

ΔSa2a2ðωÞ≈βðβþ2Þ γ2m
γ2mþ4ðω−ωqÞ2

; β¼ α2

Mℏγmωq
;

ð4Þ

where a high Q—oscillator is assumed, i.e., γm ≪ ωq. This
difference exhibits a Lorentzian peak structure around ωq.
While for the postselection prescription, the signature of

the SN theory is, on the contrary, a Lorentzian dip in the
difference of the spectrum of the outgoing field between SN
gravity and quantum gravity around ωq:

ΔSa2a2ðωÞ ≈ −βðβ þ 2Þ γ2m
ð1þ βÞ2γ2m þ 4ðω − ωqÞ2

: ð5Þ

Besides, the outgoing field spectrum has another peak at
around ωm. The SN observational feature at around ωq is
because the conditional mean position of the mechanical
quantum state under the continuous quantum measurement
does not coincide with the hx̂ipre=post under the pre/
postselection prescription. This means that during the
quantum measurement process, the conditional quantum
expectation value of mechanical state feels a restoring force
∝ −mω2

SNðhx̂ipre=post − hx̂icÞ (see Fig. 3).
As we shall see in the next section, the outgoing field

spectrum in the case of the causal-conditional prescription

FIG. 2. A single cavity optomechanical system with semi-
classical self-gravity. The mirror is in the classical gravitational
potential created by the quantum expectation value of its stress-
energy tensor, thereby having a Schrödinger-Newton correction
to its pendulum frequency. This effect does not exist when gravity
follows quantum mechanical law.

FIG. 3. Physical picture of the phenomenology under different
prescriptions. Upper panel: in the pre/postselection prescriptions,
the gravitational potential is contributed by a fixed source
with hx̂ipre=post ¼ hψmðti=fÞjx̂ðtÞjψmðti=fÞi, while the conditional
quantum expectation of the mirror position during the measure-
ment process hx̂ic ≠ hx̂ipre=post, which contributes to a restoring
force. Lower panel: under the causal-conditional prescription, the
hx̂ic always locates at the potential minimum, which does not feel
a restoring force.
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will be different: the peak/dip around ωq does not exist. We
plot the comparison of the outgoing field spectrum of these
three different quantum measurement prescriptions in
Fig. 4. The numerical analysis is based on the sampling
parameters listed in Table I.

B. Causal-conditional prescription for the
semiclassical self-gravity

1. Output optical spectrum

Following the above causal-conditional prescription,
we can obtain the following stochastic master equation
(SME) for describing the evolution of conditional mechani-
cal state under continuous quantum measurement in the
SN theory. The projective measurement result of the
optical quadrature fields at homodyne angle θ is given
as ŷθ ¼ 1=

ffiffiffiffiffiffi
Δt

p R
tþΔt
t âθðt0Þdt0, where âθ ¼ cos θâ1 þ

sin θâ2 and â1ðâ2Þ is the amplitude (phase) quadrature
of optical field, which satisfies: yθ ¼ αhx̂i sin θ ffiffiffiffiffiffi

Δt
p þ

ΔW=
ffiffiffiffiffiffiffiffi
2Δt

p
. For later use, we redefine ãθ as ŷθ=

ffiffiffiffiffiffi
Δt

p
thereby:

ãθ ¼ αhx̂ic sin θ þ dW=
ffiffiffi
2

p
dt: ð6Þ

The corresponding stochastic master equation is

dρ̂ ¼ −
i
ℏ
½Ĥ0; ρ̂�dt −

α2

4
½x̂; ½x̂; ρ̂��dtþ iαffiffiffi

2
p cos θ½x̂; ρ̂�dW

þ αffiffiffi
2

p sin θfx̂ − hx̂i; ρ̂gdW −
iγm
2ℏ

½x̂; fp̂; ρ̂g�dt; ð7Þ

where

Ĥ0 ¼
p̂2

2M
þ 1

2
Mω2

mx̂2 þ
1

2
Mω2

SNðx̂ − hx̂iÞ2; ð8Þ

is the Hamiltonian of a mechanical oscillator under its self-
gravity in the SN theory, the second and third term on the
right hand side (rhs) is the standard Lindblad term and the
Ito-term, respectively. The last term describes the mechani-
cal thermal dissipation. This mechanical dissipation term
is important since the system can not reach a stationary
stochastic process without it. Physically it is due to the fact
that the interaction of light field with the mechanical
motion (when the pumping field is on-resonance with
the cavity) can only redistribute quantum information
without dynamical energy exchange.

FIG. 4. The spectrum of the outgoing field Sa2a2 (quantum
noise only) in the Schrödinger-Newton theory for different
prescriptions around original mechanical frequency ωm and the
SN-modified frequency ωq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m þ ω2

SN

p
. All these spectrums

are normalized by the standard quantum mechanics one. It is
clear that the causal-conditional approach has a feature at the ωm
rather than ωq. The lowest panel shows the ratio between the
outgoing spectrum of SN theory under the causal conditional
prescription and the quantum gravity, where the thermal noise is
considered.

TABLE I. The parameters of the optomechanical system with a
single mirror exerted by its semiclassical self-gravity.

Parameters Symbol Value

Mirror mass M 0.2 kg
Mirror bare frequency ωm=ð2πÞ 4 × 10−3 Hz
SN frequency ωSN=ð2πÞ 7.8 × 10−2 Hz
Quality factor Qm 107

Mechanical damping γm=ð2πÞ 4 × 10−10 Hz
Optical wavelength λ 1064 nm
Cavity Finesse F 300
Intra-cavity power Pcav 480 nW
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Using Eq. (7), the conditional expectation and variance
of x̂ and p̂ are respectively given as:

dhx̂ic ¼
hp̂ic
M

dtþ
ffiffiffi
2

p
αVc

xx sin θdW;

dhp̂ic ¼ −Mω2
mhxicdt − γmhp̂icdtþ

ffiffiffi
2

p
αVc

xp sin θdW

þ ℏαffiffiffi
2

p cos θdW; ð9Þ

and

_Vc
xx ¼

2Vc
xp

M
− 2α2sin2θVc2

xx;

_Vc
xp ¼ Vc

pp

M
þMω2

qVc
xx − 2α2sin2θVc

xxVc
xp

− α2 sin θ cos θℏVxx;

_Vc
pp ¼ −2Mω2

qVc
xp − 2α2sin2θVc2

xp − 2α2 sin θ cos θℏVxp

−
α2cos2θℏ2

2
þ 1

2
α2ℏ2; ð10Þ

where ωq≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
mþω2

SN

p
and Vc

AB¼hψ jcÂ B̂þB̂ Â jψic=2−
hψ jcÂjψihψ jB̂jψic with Â; B̂ being Hermitian operators.
It is important to note that the oscillation frequency of the

conditional expectation value of the mechanical displace-
ment hx̂ic is ωm rather than ωq under the causal-conditional
prescription, which is different from the pre/postselection
prescription. This can be understood from the fact that the
gravitational field at time t in this case is sourced by the
conditional mechanical state jψmðtÞic, which also follows a
random trajectory. The hxic in this case is always located
at the potential minimum thereby feeling no restoring
force. In contrast, the gravitational field under the pre/
postselection prescriptions is sourced by the deterministic
evolving mechanical state Ûjψmðti=fÞijψmðti=fÞi, therefore
feels a restoring force as discussed in the previous sub-
section. This is an important difference, which will change
the features of the outgoing light spectrum.
With the above equations, the conditional mean dis-

placement can be formally solved as (assuming that the
phase quadrature is measured θ ¼ π=2):

hx̂ðtÞic ¼ e−γmt=2xð0ÞðtÞ þ
ffiffiffi
2

p
α

Z
t

0

dWðsÞe−γmðt−sÞ=2

×

�
Vc
xx cosωmðt − sÞ þ Vc

xp

Mωm
sinωmðt − sÞ

þ
�

Vc
xp

4MωmQ2
m
þ Vc

xx

2Qm

�
sinωmðt − sÞ

�
; ð11Þ

where xð0ÞðtÞ ¼ x0 cosðωmtÞ þ ðp0=MÞ sinðωmtÞ is the free
mechanical motion which will be forgotten for t ≫ 1=γm,
the terms that ∝ ð1=Qm; 1=Q2

mÞ relates to the mechanical

dissipation while the second line is purely contributed from
the quantum measurement process.
When the system reaches the steady state, the steady

solution of Eq. (10):

Vc
xx ¼

ℏffiffiffi
2

p
Mωq

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

pp ;

Vc
xp ¼ Vc

px ¼
ℏ
2

Λ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

p ;

Vc
pp ¼ ℏMωqffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

pp ; ð12Þ

with Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏα2=ðMω2

qÞ
q

. These formulas give us a glimpse
on the experimental requirements to distinguish quantum
gravity and semiclassical gravity. In the case of quantum
gravity, the self-gravity does not affect the center of mass
motion of mirror (detailed derivation is shown in Sec. I of
the Supplemental Material [59]). Therefore, all the ωq in
the above formula should be replaced by ωm, therefore
taking Vc

xx as an example:

Vc SN
xx

VcQG
xx

¼ ωm

ωq

2
641þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

QG

q
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Λ4
SN

p
3
75
1=2

; ð13Þ

where we redefine ΛSN=QG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏα2=ðMω2

q=mÞ
q

. It is diffi-

cult to test the quantumness of gravity when the opto-
mechanical interaction is very strong: ΛQG=SN ≫ 1, since

we have Vc SN
xx =VcQG

xx ≈ ωmΛQG=ωqΛSN ¼ 1. This target
could be achieved only when the ΛSN=QG takes a moderate
value and ωm=ωq is not close to one. The moderate ΛSN=QG

indicates that the optomechanical interaction can not be too
strong, thereby low-temperature technology is required to
suppress the thermal environmental effect.
Combining Eqs. (6) (11) and (12), we can compute the

auto correlation function of hã2ðtÞã2ðtþ τÞi and moreover
the power density spectrum. After some tedious but
straightforward algebra, the result in the high-Q limit is

Sa2a2ðΩÞ ¼
4

γ2m þ 4ðΩ−ωmÞ2

×

�
α2

Vxp

M

�
1−

Ω2

ω2
m

�
þ α4

�
V2
xp

M2ω2
m
þ Ω2

ω2
m
V2
xx

��

þ 1; ð14Þ

where only the quantum noise is given here for illustrative
purposes. It is clear that there is no quantum radiation
pressure noise-induced pole around ωq in this case, which
is different from the pre/postselection scenario where the
SN signature appears around ωq due to the reason dis-
cussed before. At the resonance point Ω ¼ ωm, the
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difference between the SN spectrum and QG spectrum has
a simple formula:

ΔSSN−QGa2a2 ðωmÞ
SQGa2a2ðωmÞ

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Λ4
SN

pq Λ4
QGQ

2

1þ Λ4
QGQ

2

�
ω2
SN

ω2
q

�

ð15Þ
For a strong optomechanical coupling,we haveΛQG=SN ≫ 1

which suppressed the difference. For a weak optomechan-
ical coupling with ΛSN=QG ∼ 1, the difference could be
significant for a high Q oscillator when we ignore the
thermal noise as shown in the third panel of Fig. 4. However,
this differencewill be almost completely diminish even if the
temperature satisfy T=Q ∼ 10−13 K.
The outgoing optical phase spectrum (normalised by the

spectrum without gravity effect at ωm) under the different
prescriptions is depicted in Fig. 4. The upper panel shows
the spectrum around ωm and the signal peak appears at ωm
under the causal-conditional prescription, which corre-
sponds to the resonant oscillation frequency of the hx̂i.
The postselection prescription also has a featured signal
near ωm. The spectrum around ωq is shown in the middle
panel, where there is no featured signal for the causal-
conditional prescription. Moreover, taking into account the
thermal noise will make it very difficult to distinguish the
spectrum for quantum gravity and semiclassical gravity
under causal conditional prescription.

2. Ponderomotive squeezing

Another phenomenon in this optomechanical system
under the causal-condition prescription is the ponder-
omotive squeezing [60]. Ponderomotive squeezing
is the radiation-pressure induced correlation between
the phase and amplitude quadratures of the outgoing
optical field, which was experimentally demonstrated in
[29,31,37,38,61]. When the self-gravity is quantum, to the
leading order, the Hamiltonian has the same form as that
when there is no gravity effect, so does the ponderomotive
squeezing spectrum.
However, when the self-gravity is semiclassical with

Hamiltonian described by Eq. (2), there will be a different
ponderomotive squeezing spectrum under the causal-
conditional prescription (see Fig. 5). This difference
happens when the self-gravity effect is strong ωSN ≥ ωm,
which will diminish in case the gravity effect is weak,
e.g., in the mutual gravity case shown later.
We perform the following steps to calculate the ponder-

omotive squeezing effect under the causal-conditional
prescription. The output optical field has a spectrum given
as Saθaθ ¼ Sa1a1 cos

2 θþSa2a2 sin
2 θþ2Re½Sa1a2 �sinθcosθ.

The âθ is the θ-quadrature of the output field, in which
âθ ¼ â1 cos θ þ â2 sin θ with â1=2 represents the amplitude/
phase quadrature of the output field, and the θ is the
homodyne angle. Optimization to the θ leads to the

quadrature with minimum uncertainty (i.e., the ponder-
omotive squeezing) shown in Fig. 5. Taking into account
the thermal noise effect, this result shows that the quantum
gravity and semiclassical gravity can be distinguished using
the ponderomotive squeezing spectrum for the optomechan-
ical system with mirror exerted by its self-gravity, only
when the environmental temperature takes an extremely
low value.

IV. OPTOMECHANICAL SYSTEM WITH
TWO MIRRORS INTERACTING VIA

MUTUAL GRAVITY

A. General discussions

Two mirrors can be coupled via mutual gravitational
force. In the discussion below, we ignore the self-gravity
effect and only consider the mutual gravity for illustrative
purpose. In the SN theory, the corresponding Hamiltonian
can be written as [52]:

ĤSN¼
X
A=B

�
p̂2
A=B

2m
þmω2

m

2
x̂2A=B−Cðx̂A=B−hx̂B=AicÞ2

�
: ð16Þ

Here, we have C ¼ mΛ̃Gρwith Λ̃ decided by the geometric
shape of the mirror, and ρ is the mirror matter density. In
the quantum gravity theory, the corresponding interaction
Hamiltonian is

Ĥint ¼ −
Gm2

jx̂A − x̂Bj
; ð17Þ

with a detailed derivation given in Sec. I of the
Supplemental Material [59]. The system evolution in the

FIG. 5. Ponderomotive squeezing spectrum for the optome-
chanical system with a single mirror exerted by its self-gravity.
Solid curves: Ponderomotive squeezing in the semiclassical SN
theory, under the causal-conditional prescription. Dashed curves:
ponderomotive squeezing when the gravity is quantum. The red
spot denotes the frequency where there will be a distinctive
feature. Thermal effect is also considered which shows that the
semiclassical gravity and quantum gravity can only be distin-
guished when the parameters setting is very extreme.
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quantum gravity scenario follows the standard quantum
mechanics, and the analysis can be performed in the
Heisenberg picture (details can be found in [52,53]).
Under the causal-conditional prescription, the quantum

expectation value here is for the conditional quantum state
of the mirrors. Since different measurement schemes of the
optical fields will lead to different conditional mechanical
quantum states, the configuration topology of the opto-
mechanical device is important, as we will show later.
In this work, two different configurations will be studied:
(1) Folded interferometer configuration where the projec-
tive measurement is performed on the common and differ-
ential optical fields [53] (see Fig. 6). As we shall see, the
folded interferometer configuration can be mapped onto a
single-mirror problem. (2) Linear cavity configuration
where the projective measurement is directly performed
on the outgoing optical field reflected by each cavity [52]
(Fig. 8), which can not be mapped onto a single-mirror
problem and the quantummeasurement induced correlation
mentioned in the Introduction will appear. In both cases,
the interaction Hamiltonian between the optical fields and
the mechanical motion takes the same form

Ĥint ¼ −ℏαðâ1Ax̂A þ â1Bx̂BÞ; ð18Þ
where we assumed that the linear optomechanical coupling
strengths α of both mirrors are the same. We also assume
that both cavities have no detuning to the frequency of their
pumping lasers, which means there is no dynamical back-
action in the optomechanical system.
Another important point that needs to be discussed is

the treatment of environmental noises such as thermal
noise. It is known that all environmental noises are
fundamentally speaking quantum mechanical since these
environmental degrees of freedom are quantum mechani-
cal. Since the classical gravity can not convey quantum
mechanical information, the quantum environmental
effect will only apply to the fluctuation of the A/B mirror
on its own thereby does not contribute to the mutual
correlation between the output fields shown in Fig. 8.
Mathematically, there will be additional thermal terms
in the evolution equation for the second-order correlation
functions (see the Appendix), while the evolution for
the first-order moments is unchanged. Note that in this
case, the mutual correlation of two mirrors satisfies
Vc
ðx=pÞAðx=pÞB ¼ 0, which means that the Ricatti equation

that describes the evolution of the second-order moments
can be treated separately.

B. Folded interferometer configuration

The conditional mechanical quantum state in the SN
theory can also be prepared by projecting the optical field in
the common and differential mode basis. For example, in a
folded interferometer configuration, the optical field being
measured is: ĉ¼ 1=

ffiffiffi
2

p ðâAþ âBÞ and d̂ ¼ 1=
ffiffiffi
2

p ðâA − âBÞ.
The common and differential motional degrees of freedom
are: x̂� ¼ 1=

ffiffiffi
2

p ðx̂A � x̂BÞ and p̂� ¼ 1=
ffiffiffi
2

p ðp̂A � p̂BÞ.

Written in terms of these common and differential
optical/mechanical modes, the Hamiltonian Eq. (16) can
be transformed into:

Ĥ� ¼ p̂2
�

2m
þ
�
mω2

m

2
− C

�
x̂2� � 2Cx̂�hx̂�i − ℏαĉ1=d̂1x̂�;

ð19Þ
where C is the mutual-gravity Schrödinger-Newton coef-
ficient, ĉ1=d̂1 means ĉ1 or d̂1. This Hamiltonian shows
that the common and differential modes are completely
decoupled from each other, which means we can treat them
independently.
Using the stochastic master equation, the conditional

expectation value can be obtained as:

dhx̂þi ¼
hp̂þi
m

dtþ
ffiffiffi
2

p
αVc

xþxþdWc þ
ffiffiffi
2

p
αVc

xþx−dWd;

dhp̂þi ¼ −mω2
mhxþidtþ 2Cðhx̂þic − hψmjx̂þjψmiÞdt

þ
ffiffiffi
2

p
αVc

xþpþdWc þ
ffiffiffi
2

p
αVc

pþx−dWd;

dhx̂−i ¼
hp̂−i
m

dtþ
ffiffiffi
2

p
αVc

x−x−dWd þ
ffiffiffi
2

p
αVc

x−xþdWc;

dhp̂−i ¼ −mω2
mhx̂−idtþ 2Cðhx̂−ic þ hψmjx̂−jψmiÞdt

þ
ffiffiffi
2

p
αVc

x−p−
dWd þ

ffiffiffi
2

p
αVc

x−pþdWc; ð20Þ

FIG. 6. Upper panel: Folded interferometer configuration. The
optical field is projected into the common mode ĉ and differential
mode d̂. The common and differential motions of these two
mirrors are correspondingly prepared into the quantum states, of
which the evolution can be separated. Lower panel: the gravi-
tational potential felt by the quantum trajectories of common and
differential motions under the pre/postselection prescription.
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where dWc=d are the Ito-terms for measuring the optical
common/differential fields. The form of hψmjx̂�jψmi
depends on the measurement prescription. Under pre and
postselection prescriptions, we have hψmðtiÞjÛ†

jψmðtiÞi×

ðt; tiÞx̂�ÛjψmðtiÞiðt; tiÞjψmðtiÞi and hψmðtfÞjÛjψmðtfÞi×
ðt; tiÞx̂�Û†

jψmðtfÞiðt; tiÞjψmðtfÞi, respectively. However,

under the causal-conditional prescription, we have
hψmjx̂�jψmi ¼ hx̂�ic. Therefore the mutual gravity terms
in Eq. (20) can be simplified to be zero and 4Chx̂−ic for
hp̂þi and hp̂−i, respectively. This means that the condi-
tional mean of the common and differential modes will
evolve with frequency ωm and ω− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m − 4C=m

p
.

The above equations for the quantum trajectory
are physically transparent, see the lower panel of
Fig. 6. Under the pre/postselection prescription, the
random quantum trajectory of mirror A/B with the mean
displacement hx̂A=Bic will feel a harmoniclike potential
Ugðhψmjx̂A=BðtÞψmiÞ generated by the classical gravita-
tional force of mirror B/A at pre/postselection state and
their suspension systems, which follows a deterministic
evolution. From Fig. 6, it is clear that the potential force
felt by common/differential motion trajectory will drive
common/differential motion trajectory themselves, which
contributes to the C-dependence term in Eq. (20). These
terms will change the resonant frequency of the two
motional modes. However, under the causal-conditional
prescription, the potential also follows a quantum trajec-
tory. Therefore there is no additional restoring force
contributed by the mutual gravity for the common motion,
which is different from the case of the differential motion.
This leads to a different result compared to that predicted

in [53], which focuses on the quantum gravity and the
semiclassical gravity is only briefly discussed without
specifying the detailed quantum measurement processes.
In [53], the features of quantum gravity manifest in the
ponderomotive squeezing of the outgoing field. They show
that there is a frequency shift between the ponderomotive
squeezing spectrum for the common and differential output
fields in the quantum gravity theory, while there is no such
frequency shift for the semiclassical gravity. In the follow-
ing, a similar calculation will be performed for both
quantum gravity and the Schrödinger-Newton theory under
the causal-conditional prescription.
Following the method in [53], we can measure the

ponderomotive squeezing effect in this mutual-gravity
optomechanical system. For the common/differential out-
put channel, optimization to the homodyne angle θ leads to
the quadrature with minimum uncertainty (i.e., the ponder-
omotive squeezing) shown in Fig. 7 [62], where we show
the minimum quadrature uncertainty (in terms of the
squeezing level) of the output ĉ and d̂ states when T=Qm ¼
10−5 K under the causal-conditional prescription. As
shown clearly in Fig. 7, one can not distinguish semi-
classical gravity from quantum gravity by investigating the

FIG. 7. Upper panel: the squeezing spectrum of the outgoing
field from common and differential modes, including both the
quantum gravity case and the SN case, calculated using the
casual-conditional prescription. Middle panel: the dependence of
maximum squeezing level on intracavity power Pcav and the
mechanical quality factor Qm. Lower panel: the (almost zero)
difference between ponderomotive squeezing level ΔSSN−QGsq in
SN theory and that in quantum gravity, where we focus on the
peak value at Ω ¼ ωm. We only choose a subregion of parameter
space in the middle panel with the difference is around 10−7 dB,
while the value in other region of parameter space is much
smaller.
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ponderomotive squeezing spectrum under the causal-condi-
tional prescription, that is, the frequency shift still exists for
the semiclassical gravity. This result can be understood
from the similarity between Eq. (20) and the Heisenberg
equation of motion for the mirrors in the quantum gravity
theory [53]. In addition, there is a very tiny (almost
indistinguishable) difference on the numerical value of
the squeezing level for the semiclassical gravity and
quantum gravity, which originates from the difference of
steady solution of second-order conditional moments in
these two cases (for example, the ωq in Eq. (12) should be

replaced by ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m − 2C=m

p
;ω−Þ for the differential mode

in the SN theory and quantum gravity, respectively).
For completeness, we present the calculation details

and the results for the semiclassical SN theory under
the pre/post selection prescription in the Supplemental
Material [59], which would certainly have a different
ponderomotive squeezing spectrum compared to that
under the causal-conditional prescription. Moreover, only
the spectrum under the preselection prescription fits the
results in [53], where there is no frequency shift between
the ĉ and d̂-spectrum.
In summary, in contrast to the conclusion made in [53],

the ponderomotive squeezing is not an ideal figure of merit
for testing the semiclassical gravity theory under the
conditional prescription and the quantum gravity.

C. Linear cavities configuration

Now we switch to the linear cavities configuration
shown in Fig. 8, whose main physical scenario can be
summarized as follows. If the gravity is quantum and
thereby can mediate quantum information, there will be a
quantum correlation between the two output light fluctua-
tions, which has been studied in [52]. In contrast, the work
in [52] argues that if the gravity is classical and sourced by
the quantum expectation value of the energy-momentum of
the mirror A, then the mirror B will not feel the fluctuating
gravity force sourced by A. This is because the mean value
of the first mirror position is zero. Finally, the work in [52]
concludes that there will be no correlation between the two
output light noises.
However, although there is no quantum correlation

between the two output light fields, there will be quantum
measurement induced classical correlations under the
causal-conditional prescription. Continuous monitoring
of the mechanical degree of freedom via projective meas-
urement on the optical fields collapses the joint optome-
chanical quantum state and thereby preparing the so-called
conditional quantum state of the mirror motion denoted
as jψci. The mean value of the mirror displacement x̄c ¼
hψcjx̂jψci and momentum p̄c ¼ hψcjp̂jψci will follow a
stochastic quantum trajectory [28], which is determined by
the measurement records (see Fig. 8). Therefore even if the
gravity is classical (i.e., the mirror motion is described
by SN theory), the “stochastic motion” of the ðx̄c; p̄cÞ of

mirror A in the phase space can still source a gravitational
force acting on the mirror B (vice versa), which then can be
further recorded by the light field monitoring the position
of mirror B. In this way, the two light fields establish a
classical correlation via the classical gravitational inter-
action sourced by the quantum trajectory induced by
the wave function collapse, which will be quantitatively
studied as follows.
Let us suppose we measure the arbitrary quadratures of

the outgoing optical fields:

âoutθA ¼ âout1A cos θA þ âout2A sin θA;

âoutθB ¼ âout1B cos θB þ âout2B sin θB: ð21Þ

In the following text, for brevity we omit the superscript
“out” and all the âθA=B means the outgoing field quad-
ratures. Their corresponding measurement result is denoted
as ãθA=B. In this case, the quantum trajectories satisfy the
following equations:

dxA=B ¼ Gq
mxA=Bdtþ GgxB=Adtþ

ffiffiffi
2

p
αVA=BdW; ð22Þ

where xA=B ¼ ½hx̂A=Bic; hp̂A=Bic�T , dW ¼ ½dWA; dWB�T .
The Gq

m is the mechanical response under the
Schrödinger-Newton theory:

Gq
m ¼

�
0 1=M

−Mω2
q −γm

�
; Gg ¼

�
0 0

Mω2
g 0

�
; ð23Þ

and

FIG. 8. Correlations induced by quantum measurement. The
projection of the joint optomechanical state onto the optical
Hilbert space can produce a mechanical quantum trajectory,
which can source the semiclassical gravity and affect the motion
of the other mirror. The correlation between the mechanical
motion of the two mirrors will manifest itself in the correlation of
the outgoing fields.
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VA ¼
�

VxAxA sinθA VxAxB sinθB
VxApA

sinθAþðℏ=2ÞcosθA VxBpA
sinθB

�
;

VB ¼
�
VxAxB sinθA VxBxB sinθB
VxApB

sinθA VxBpB
sinθBþðℏ=2ÞcosθB

�
: ð24Þ

In the mutual gravity case, we redefine ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m − ω2

g

q
,

where ωg ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2C=M

p
. The γm term here represents the

mechanical loss due to the coupling with the thermal bath,
where the corresponding thermal force term is discussed in
detail in the Supplemental Material [59].
The second order correlations for the A and B mirrors

are [63]:

D̂VA ¼ −2α2½V2
xAxB ; VxAxBVpAxB ; V

2
xBpA

�T
D̂VB ¼ −2α2½V2

xAxB ; VxAxBVpAxB ; V
2
xBpA

�T ð25Þ

where VA ¼ ½VxAxA ; VxApA
; VpApA

�T and the D̂VA represents
the same equation as Eq. (12) (similar for the VB) for
arbitrary measurement angle θA, θB. The concrete form of
the evolution equation of the second order correlation
functions Eq. (25) can be found in Sec. IV of the
Supplemental Material [59]. The right-hand side is the

contribution of the mutual correlations between these two
mirrors. As we shall show in the Supplemental Material
[59], the evolution equations for these mutual correlations
do not depend on the elements of VA=B, which is different
from the quantum gravity case. Therefore, in the ideal case,
if these two mirrors are prepared in the uncorrelated initial
state, then the mutual correlations are always zero. In this
case, the steady value of the second-order correlation has
the same form as the one given in Eq. (12).
The mutual correlation induced by the classical mutual

gravity between the two mirrors’ quantum trajectories now
actually comes from the dhpiA=B ⊃ Mω2

ghxiB=Adt [i.e., the
Gg term in the Eq. (22)], where the hx̂iB=A has randomness
induced by the quantum measurement of light field. For
example, if we measure the phase quadrature of the two
outgoing light fields:

ã2A=B ¼ αhxA=Bic þ dWA=B=
ffiffiffi
2

p
dt; ð26Þ

their mutual correlation is only contributed by the classical
gravitational interaction between the two quantum trajec-
tories. More explicitly, the conditional mean displacement
can be formally solved as:

hx̂AðtÞic ¼ e−γmt=2xð0ÞA ðtÞ þ
ffiffiffi
2

p
α

Z
t

0

dWAðsÞ
�
VxAxA cosωmðt − sÞ þ VxApA

sinωmðt − sÞ
Mωm

�

þ
ffiffiffi
2

p
α

Z
t

0

dWAðsÞ
�
VxAxA cosω−ðt − sÞ þ VxApA

sinω−ðt − sÞ
Mω−

�

þ
ffiffiffi
2

p
α

Z
t

0

dWBðsÞ
�
VxBxB cosωmðt − sÞ − VxBpB

sinωmðt − sÞ
Mωm

�

þ
ffiffiffi
2

p
α

Z
t

0

dWBðsÞ
�
VxBxB cosω−ðt − sÞ − VxBpB

sinω−ðt − sÞ
Mω−

�
; ð27Þ

where ω− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m − 2ω2

g

q
. The hx̂BðtÞic can be given in a

similar way, where the only difference is to add a minus
sign to all the cosω−ðt − sÞ and sinω−ðt − sÞ terms.
For simplicity, we only write down the form in the
Qm → ∞ approximation. It is clear that the quantum
trajectory of mirror A is driven by the projective
measurement on both the two outgoing fields. Sub-
stituting Eq. (27) into Eq. (26), it is easy to see that
there will be a correlation between ã2A and ã2B since
ã2A=B is also depend on dWB=A. Moreover, there is also
correlation if we measure two different outgoing field
quadratures ã1A and ã2B. This measurement-induced
correlation is different from the quantum optical corre-
lation that was studied in [52] when the gravity is
quantum, since classical gravity can not convey quan-
tum information.

Measurement of ðã2A; ã2BÞ— The optical correlation
spectrum induced by the quantum measurement of ã2A, ã2B
is (we keep the leading term ∝ α4):

SSNaA2aB2ðΩÞ ¼
2ℏ2α4ω2

g

M2
jχmðΩÞχgðΩÞj2

ω2
q −Ω2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

p

×

�
Λ4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

p þ 2Ω2

ω2
q

�
; ð28Þ

where χ−1m ðΩÞ¼−Ω2þω2
m−iΩγm, χ−1g ðΩÞ ¼ −Ω2 þ ω2

− −

iΩγm and Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏα2=Mω2

q

q
. Later on, we will characterise

the correlation between the two outgoing fields by the
correlation level defined in Eqs. (30) (35), which also
depends on the outgoing spectrum. For example, the
spectrum of the phase of the outgoing field ãA:
SaA2aA2ðΩÞ when we measure ðã2A; ã2BÞ:
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SSNaA2aA2ðΩÞ ≈ 1þ ℏ2α4

M2
jχmðΩÞχgðΩÞj2

×
ω4
g þ ðΩ2 − ω2

qÞ2 þ γ2mðΩ2 þ ω2
qÞ=2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

p

×

�
Λ4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

p þ 2Ω2

ω2
q

�
; ð29Þ

where we also have SSNaA2aA2ðΩÞ ¼ SSNaB2aB2ðΩÞ because of
symmetry.
To characterize the quantum measurement induced

correlation, we define the correlation level at each fre-
quency Ω to be (in terms of dB):

CSN
A2B2

ðΩÞ ¼ −10Log10

�
1 −

jSSNaA2aB2ðΩÞj2
SSNaA2aA2ðΩÞSSNaB2aB2ðΩÞ

�
: ð30Þ

With Eqs. (28) and (29), the terms in the square bracket of
the above Eq. (30) is approximately equal to:

CSN
A2B2

ðΩÞ≈−10Log10

×

�
1−

�
2ω2

gðω2
q−Ω2Þ

ω4
gþðω2

q−Ω2Þ2þ γ2mðΩ2þω2
qÞ=2

�
2
�
:

ð31Þ

This approximate formula shows that there will be a strong
correlation at Ω ¼ ðωm;ω−Þ, while zero correlation at
Ω ¼ ωq, which well fits the peak features shown in
Fig. 9 calculated using the exact formula.
The analytical formula of the difference of the correla-

tion level CA2B2
between the SN theory under causal-

conditional prescription and the quantum gravity is too
cumbersome to show. Another way that can manifest
the difference of SN theory under causal-conditional

prescription and the quantum gravity is to study the
difference of the SaA2aA2 of these two theories, which has
an approximate analytical form represented as (the exact
formula is a bit cumbersome):

ΔSN−QG

�
SSNaA2aA2 − SQGaA2aA2

SQGaA2aA2

�

≈
�

ω̃2

ω̃4 þ 4ðωm=ωgÞ2
�
3 4γ2m
ω2
g
; ð32Þ

where ω̃2 ≡ ðΩ2 − ω2
qÞ=ω2

g and SSNaA2aA2 is the spectrum of
the outgoing field ã2A when the ã2B is measured given by
Eq. (29). This difference is negligibly small.
Measurement of ðã1A; ã2BÞ— The optical correlation

spectrum induced by the quantum measurement of ã1A, ã2B
can be derived as (we keep the leading term ∝ α2):

SSNaA1aB2ðΩÞ ¼ SQGaA1aB2ðΩÞ ≈
ℏα2ω2

g

M
χmðΩÞχgðΩÞ: ð33Þ

Note that, in this case, the difference between SSNaA1aB2ðΩÞ
and SQGaA1aB2ðΩÞ is precisely zero. This can be understood as
follows: from Eqs. (22)–(24), one can see that the only term
that proportional to dWB in the quantum trajectory of
mirror-A has the coefficient equal to ℏ=2 when θA ¼ 0 and
θB ¼ π=2, which is independent from the second order
correlation matrix VA=B. However, the difference between
the SN theory under causal conditional prescription and the
quantum gravity theory manifests in the VA=B. Therefore,
the correlation between the ðâA1; âB2Þ has no difference
under SN theory comparing to the quantum gravity theory.
In this case, the difference of the correlation level will be
dominated by the difference of the outgoing spectrum.
The outgoing spectrum in the SN theory when we

measure the ðã1A; ã2BÞ is:

SSNaB2aB2ðΩÞ ≈ 1þ ℏ2α4

M2
jχmðΩÞχgðΩÞj2

×

�
ω4
g þ

ðω2
q −Ω2Þ2 þ γ2mðΩ2 þ ω2

qÞ=2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

p

×

�
Λ4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

p þ 2Ω2

ω2
q

��
; ð34Þ

Similarly, supposing the outgoing field quadratures
ã1A and ã2B are measured, the correlation level can be
defined as:

CSN
A1B2

ðΩÞ ¼ −10Log10

�
1 −

jSSNaA1aB2ðΩÞj2
SaA1aA1ðΩÞSaB2aB2ðΩÞ

�
; ð35Þ

where SaA1aA1ðΩÞ ¼ 1 since the outgoing amplitude
quadrature does not carry the information of mirror

FIG. 9. The correlation spectrum between the output optical
fields from the left and right cavities induced by the classical
gravity, where the effect of thermal noise has been considered. It
is easy to see that there is almost no difference between the
quantum gravity case and the classical gravity case under the
causal-conditional prescription.
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displacement. With Eqs. (33) and (34), the correlation level
can be approximately written as:

CSN
A1B2

ðΩÞ

¼ −10Log10

�
1 −

�
1þ ðω2

q − Ω2Þ2 þ γ2mðΩ2 þ ω2
qÞ=2

ω4
gð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

p
Þ

×

�
Λ4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

p þ 2Ω2

ω2
q

��
−1
�
; ð36Þ

which demonstrates that the correlation level reaches
maximum value when Ω ¼ ωq as exhibits in Fig. 9.
When we measure the ðã1A; ã2BÞ, the correlation spectrum
and the spectrum SaA1aA1 of the SN theory and the quantum
gravity are precisely equal. Therefore, the difference of
SaB2aB2 between the SN theory and the quantum gravity can
exactly characterise the difference of the correlation level
CA1B2

between the two theories. When Λ ≫ 1, the result
has a simple form:

ΔSN−QG

�
SSNaB2aB2 − SQGaB2aB2

SQGaB2aB2

�
≈
1

2

ω̃2

ω̃4 þ 1

γ2m
ω2
g
≪ 1; ð37Þ

while the result for Λ ≪ 1 has a complicated form but also
a negligible magnitude.
The above analysis shows that, the classical gravity

induced correlation spectrum in the SN theory is almost
indistinguishable from the quantum gravity induced corre-
lation spectrum, under the causal-conditional prescription.
Furthermore, considering the effect of thermal noise and
finite quality factor Qm, we plot the correlation spectrum
CSN
A2B2

ðΩÞ and CSN
A1B2

ðΩÞ in Figs. 9 and 10 using the sample
parameters listed in Table II. The thermal noise enhances
the indistinguishability of the SN theory from the quantum
gravity. Under the preselection prescription, there will be
no correlation of the output light fields when the gravity
field is classical. For completeness, the correlation

spectrum under the postselection prescription is shown
in the Supplemental Material [59], which is certainly
different from that in quantum gravity theory.

FIG. 10. The correlation between the output optical fields from
the left and right cavities induced by the classical gravity, where
the effect of thermal noise has been considered. Upper panel: the
dependence of the maximum correlation value on the mechanical
quality factor. Middle panel: the dependence of the correlation on
the mechanical quality factor Qm and the intracavity power Pcav.
It is almost identical to the result predicted by quantum gravity.
Lower panel: the (almost zero) difference between the correlation
level in SN theory and that in quantum gravity theory. We only
choose a sub-region of parameter space in the middle panel with
the difference is around 10−6–10−7 dB, while the value in other
region of parameter space is much smaller.

TABLE II. The parameters of the optomechanical system with
two mirrors interacting via mutual SN gravity.

Parameters Symbol Value

Mirror mass M 10−3 kg
Mirror bare frequency ωm=ð2πÞ 0.5 Hz
SN frequency ωg=ð2πÞ 2 × 10−4 Hz
Quality factor Qm 3 × 107

Mechanical damping γm=ð2πÞ 1.67 × 10−8 Hz
Environmental temperature T 300 K
Optical wavelength λ 1064 nm
Cavity Finesse F 4000
Intracavity power Pcav 2000 W
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V. THE CORRELATION AND ENTANGLEMENT
IN NONLINEAR QUANTUM MECHANICS

The above discussion on the linear cavity systems shows
a correlation of the outgoing light fields, which is similar
to the entanglement in the standard quantum mechanics.
Looking into this phenomenon, this section devotes itself to
a discussion of this correlation at the conceptual level.
Suppose we have two quantum systems A and B at an

initial product state jΨii ¼ jΨiA ⊗ jΨiB. In the standard
quantum mechanics without interaction between A and B,
the state evolution follows:

jΨii → ÛABjΨiA ⊗ jΨiB ¼ ÛAjΨiA ⊗ ÛBjΨiB; ð38Þ

where we have ÛAB ¼ ÛA ⊗ ÛB. The final state is still a
product state without entanglement. When these systems
are coupled in the standard quantum mechanical way (say
we have Ĥ ¼ ĤA þ ĤB þ ĤAB), the ÛAB is not separable
and the final state will be an entangled state:

jΨii → ÛABjΨiA ⊗ jΨiB ¼
X
i

cijΨiAi ⊗ jΨiBi: ð39Þ

This formula means that the projective measurement on
jΨiAi will immediately collapse the joint quantum state
onto jΨiBi, which exhibits a correlation between the
measurement result of systems A and B. A system con-
sisting of two optomechanical devices coupled via quantum
gravity is in this category.
Moreover, if we have a nonlinear quantum mechanics

such as Schrödinger-Newton theory, the state evolution
follows:

jΨii → ÛABjΨAi ⊗ jΨBi
¼ ÛAðjΨBiÞjΨAi ⊗ ÛBðjΨAiÞjΨBi; ð40Þ

where we have used the example Hamiltonian

Ĥ ¼ ĤA þ ĤB þ ĤA
intðjΨBiÞ þ ĤB

intðjΨAiÞ; ð41Þ

with

ÛAB ¼ exp

�
−
i
ℏ
½ĤA þ ĤA

intðjΨBiÞ�t
�

⊗ exp

�
−
i
ℏ
½ĤB þ ĤB

intðjΨAiÞ�t
�
: ð42Þ

The final state is still a product state, however only in
mathematical appearance. In reality, the quantum states of
A and B are correlated subtly as shown in Eq. (40):
measurement on the system state jΨA=Bi would induce
the change of evolution operator ÛB=AðjΨA=BiÞ, thereby
affecting the evolution of jΨB=Ai. Therefore, although

Eq. (40) has the mathematical form of a pure product
state, there is still a correlation between the system A and
B, which only exists in the nonlinear quantum mechanics
such as the SN theory.
Under the preselection prescription, since we do not

measure the initial state in a real experiment, we have the
interaction Hamiltonian as ĤB=A

int ðjΨA=Bðt¼ 0ÞiÞ. Therefore,
this means the final states jΨA=BðtfÞi do not depend on
each other thereby existing no correlation. However,
under the postselection or causal-conditional prescription,
the interaction Hamiltonian is ĤB=A

int ðjΨA=BðtfÞiÞ or

ĤB=A
int ðjΨA=BðtfÞicÞ (jΨA=BðtfÞic is the conditional final state

generated by continuous quantum measurement), respec-
tively. Therefore there will be correlations between the two
systems due to the above-discussed reasons. Further inves-
tigation of the correlations in nonlinear quantum mechanics
is beyond the scope of this work and will be written
elsewhere.

VI. DISCUSSION AND SUMMARY

Testing the gravitational law in the quantum era now
becomes a blooming field, where many proposals were
raised in recently years [64–70]. These proposals covered
many different aspects and the phenomenologies in the
quantum/gravity interface, and triggered many discussions
and even debates on these phenomenologies [71–74]. This
work devotes a deeper understanding of the phenomenol-
ogies of Schrödinger-Newton theory in the quantum
optomechanical system, which is motivated by the theory
of semiclassical gravity. We pointed out that the nonlinear
term in the Schrödinger-Newton equation breaks the
time-symmetry of quantum measurement in the standard
quantum mechanics and brings additional complexity. We
specifically analyzed the Schrödinger-Newton phenom-
enology under the causal-conditional prescription by estab-
lishing the stochastic master equation in the Schrödinger
picture. We apply the master equation to study the behavior
of the optomechanical systems exerted by the single
mirror’s self-gravity force and mutual gravity between
the two mirrors, under the continuous quantum measure-
ment. Our results show that, different from the predictions
of the previous work [45,46,52,53], the semiclassical
gravity effect under the causal-conditional prescription is
very difficult to be distinguished from the quantum gravity
effect with ponderomotive squeezing or correlation/
spectrum of outgoing fields, even in the case of optome-
chanical system exerted by the single mirror’s (relatively
strong) classical self-gravity when we considered the
thermal environment. The previously predicted feature
[46] at ωq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m þ ω2

SN

p
diminishes, mainly because that

the continuous quantum measurement induces the collapse
of the joint mirror-light wave function and creates a
stochastic quantum trajectory of the mirror state. This
quantum trajectory can also participate in the classical
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gravitational interaction process and create correlations, as
we have discussed in Sec. IV. Since the causal-conditional
prescription fits our intuition about the continuous quantum
measurement process, the phenomenology obtained in this
work is an important reference for the experiment: the
phenomena observed using the methods proposed in
[45,46,52,53] could not be the sufficient condition to
recognize quantum gravity or rule out SN theory, under
the current experimental state-of-arts and the weak gravi-
tational interactions. It is possible to test the quantum
nature of gravity using the ponderomotive squeezing
spectrum of the optomechanical system exerted by the
mirror’s self-gravity only if the environmental temperature
takes extremely low values.
Another point that worthy to be discussed is the semi-

classical gravity itself. Semiclassical gravity is usually
criticized since it has contradictions to the many-worlds
interpretations [6], and some inconsistencies when combin-
ing a quantum world with a classical space-time theater
[7,42]. However, as Steven Carlip pointed out [42],
“theoretical arguments against such mixed classical-quan-
tum models are strong, but not conclusive, and the question
is ultimately one for experiment.”. In particular, the strong
argument by Page and Geilker on the contradiction between
semiclassical gravity and the many-world interpretation
may diminish if the wave function collapse can be
explained within the quantum mechanics, which is still
an open question. As a side-remark, Stamp et.al recently
proposed an alternative approach for reconciling quantum
mechanics and gravity, which is called correlated-world-
line (CWL) theory [75–77]. The CWL theory is funda-
mentally a quantum gravity theory, of which the feature is
that the different paths in the path-integral are correlated via
gravity. In the infra-limit, the CWL theory will reduce to
the Schrödinger-Newton theory [78], which will be dis-
cussed elsewhere. Therefore, pursuing the experimental/
theoretical research in testing the quantumness of gravity is
still very important, despite those criticism of semiclassical
gravity.
Lastly, we want to clarify the difference between our

work and the works on modelling the gravitational inter-
action via the feedback mechanism [79–81], which has
some superficial similarities. These models have different
variations such as KTM model [80] and TM model [81].
The underline concepts of these different variations are
the same, therefore we only take KTM model as an
example [82]. Our model here is fundamentally different
from these works. In short, the KTM model is a new

modelling of gravitational interaction, while ours is a
careful investigation of original semiclassical gravity effect
(Schrödinger-Newton theory) in a quantum optomechan-
ical experiment. Concretely, (1) the gravity field in the
KTM model is modelled via a two-step (continuous
measurement and feedback control process) mechanism.
Basically both these two steps are modeled as the intrinsic
properties of the gravity field, as clearly summarized in
[79]. For example, the “continuous measurement process”
in the KTM model is performed mutually between two
gravitationally interacting masses, not by any external
experimental apparatus. This nature of the KTM model
is represented by Fig. 1 in [79]. In contrast, our modelling
of the gravity field in the Schrödinger-Newton theory is the
original semiclassical gravity. The continuous measure-
ment process in our model is the quantum measurement
process performed by the external experimental apparatus,
such as the optical cavity and the photo-detector.
(2) Furthermore, these differences lead to different phe-
nomenology. For example, the gravitational interaction in
the KTM model itself is a decoherence channel, with the
decoherence rate γα ¼ 4ℏGm1m2=d3 for two masses (with
masses m1 and m2) interacting via the KTM gravity. This
gravitational decoherence is a property of the KTM gravity
model, and the γα is interpreted as the “information gain
rate” between these two test masses during their mutual
gravitational interactions. However, our work is based on
the original semiclassical gravity model, where we do not
have this gravitational decoherence term. The gravitational
interaction in our theory only provides a classical inter-
action. At the same time, the similar “information gain rate”
in our model comes from the interaction of the test masses
with the optical field that probes their displacements. Our
“gain rate” does not depend on the gravitational constantG,
but depends on the strength of the optomechanical inter-
action between the cavity field and the test mass mirrors.
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