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After generalizing the Regge-Teitelboim formulation of gravity to include the case where the
background embedding space is not flat, we examine the dynamics of the four-dimensional k ¼ 0

Robertson-Walker (RW) manifold embedded in various five-dimensional backgrounds. We find that when
the background is five-dimensional de Sitter space, the RW manifold undergoes a transition from a
deaccelerating phase to an accelerating phase. This occurs before the inclusion of matter, radiation or
cosmological constant sources, and thus does not require a balance of different components. We obtain a
reasonable two-parameter fit of this model to the Hubble parameter data.
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I. INTRODUCTION

There has been much interest in applications of alter-
native theories of gravity to cosmology (for a review, see
Ref. [1]), and in particular, toward using it to explain away
dark matter [2–5]. Perhaps even more pressing is the
need for an alternative gravity theory explanation of dark
energy [6–12]. Here we present a new approach to the
latter, whereby dark energy appears as an artifact of extra
dimensions. The approach is based on a generalization of
a formulation of gravity developed long ago by Regge
and Teitelboim (RT) [13–19]. RT gravity is a fully diffeo-
morphism invariant theory, which has similarities to the
original development of string theory, as well as current
research on certain matrix models in the low energy
continuum limit, [20–22] which has found application to
cosmology [23–25]. The classical dynamics of RT gravity
can be regarded as an extension (rather than a modification)
of general relativity. This is since solutions of Einstein
equations also satisfy the field equations of RT gravity.
More generally, RT gravity may introduce new sources to
the Einstein equations, which are not attributable to the
energy-momentum tensor, but rather are a result of embed-
ding our four-dimensional space-time in some fixed higher-
dimensional background [26]. It is then natural to ask
whether such new source terms could be responsible for
phenomena such as cosmic acceleration. We explore this
possibility in this article, and exhibit an example which
gives a good fit to current observational data.
The dynamical degrees of freedom of RT gravity are

associated with the embedding of our four-dimensional
space-time manifold in some fixed higher dimensional
background. The original formulation of Regge and

Teitelboim makes the simplifying assumption that the
higher dimensional background space is flat. This has
severely restricted the dynamics of the embedded manifold
in previous applications. For example, it did not lead to a
realistic model of cosmic acceleration in a previous search
[26]. Here we generalize the formalism to curved back-
grounds, which allows for a wider range of application.
After generalizing RT gravity, we shall apply it to

cosmology by embedding a four-dimensional Robertson-
Walker (RW) manifold in three different five-dimensional
background spaces. We specialize to the k ¼ 0 RW metric
since this case is currently favored (although the other cases
can also be considered as well). The five-dimensional
backgrounds we examine are: (i) R4;1, (ii) AdS5, and
(iii) dS5. Embeddings of the RW manifold into these
spaces were obtained by Akbar [27], and shall be applied
here. As a first approximation, we obtain the evolution of
the scale factor on the RW manifold in the absence of
matter, radiation or cosmological constant sources. We get
that the acceleration of the scale factor is negative for all
time for cases (i) and (ii). On the other hand, for case
(iii) we find that a transition from the deaccelerating
phase to an accelerating phase occurs at a finite time.
The evolution in this case is determined by two free
parameters, the curvature of the background de Sitter space
and the strength of the RT source term. The two parameters
allow for a fit to the Hubble parameter data. Unlike in the
ΛCDM model, neither the matter density nor the cosmo-
logical constant play a role in the fit, meaning that their
contributions should be significantly weaker than the RT
source term, and furthermore, that they can have arbitrary
strength relative to each other. So here we are able to avoid
the coincidence puzzle of the ΛCDM model, where the
matter contribution at the current time is coincidentally of
the same order of magnitude as the cosmological constant
contribution.
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The outline for the rest of the article is as follows: We
generalize RT gravity to the case of curved backgrounds
in Sec. II, and apply it to cosmology in Sec. III. Some
concluding remarks are given in Sec. IV.

II. GENERALIZED REGGE-TEITELBOIM
GRAVITY

We begin with a very brief discussion of RT gravity,
or more precisely, its generalization to the case where
the d−dimensional background space Md, d > 4, is not
necessarily flat. We denote a local set of coordinates onMd
by Ya, a; b; � � � ¼ 0;…; d − 1, and its associated metric
tensor gabðYÞ. Next embed a four-dimensional space-time
manifold M4 in Md. This can be done by introducing the
set of functions Ya ¼ YaðxÞ, where xμ, μ; ν; � � � ¼ 0;…; 3,
span M4. The metric tensor gμνðxÞ on M4 is defined to be
induced from gabðYÞ. So

gμνðxÞ ¼ gabðYÞ∂μYa
∂νYb; ð1Þ

∂μ denoting differentiation with respect to xμ. As is usual
gνλ is required to be invertible, and metric compatible
on M4, ∇μgνλ ¼ 0, and ∇μ being the covariant derivative
on M4. The latter leads to the identity:

gab∇λ∂μYa
∂νYb þ 1

2

∂gab

∂Yc ð∂μYa
∂νYb

∂λYc þ ∂νYa
∂λYb

∂μYc

− ∂λYa
∂μYb

∂νYcÞ ¼ 0 ð2Þ

To derive this compute ∇λgμν þ∇μgνλ −∇νgλμ using (1),
and apply metric compatibility and the Leibniz rule.
RT gravity assumes the usual Einstein-Hilbert action SEH

for the gravitational field, however the dynamical degrees
of freedom are the embedding functions, not gμν. So upon
including a source term Ssource, one has

S ¼ SEH þ Ssource; SEH ¼ 1

16πG

Z
M
d4x

ffiffiffiffiffi
jgj

p
R; ð3Þ

with the scalar curvature constructed from (1). Field
dynamics is obtained from variations of Ya. This gives

∂μð
ffiffiffiffiffi
jgj

p
Eμνgab∂νYbÞ−1

2

ffiffiffiffiffi
jgj

p
Eμν∂gbc

∂Ya ∂μY
b
∂νYc¼0; ð4Þ

Eμν ¼ Gμν − 8πGTμν; ð5Þ

Gμν and Tμν being the Einstein tensor and stress-energy
tensor, respectively. As in Einstein gravity, Tμν must be
covariantly conserved. To see this one can first rewrite the
field equations as

∇μðEμνgab∂νYbÞ − 1

2
Eμν ∂gbc

∂Ya ∂μYb
∂νYc ¼ 0; ð6Þ

and then expand the first term using the Bianchi identity to
obtain

− 8πG∇μTμνgab∂νYb

þ Eμν

�
∇μðgab∂νYbÞ − 1

2

∂gbc

∂Ya ∂μYb
∂νYc

�
¼ 0: ð7Þ

Finally, contract with ∂λYa and apply (2) to get ∇μTμ
λ ¼ 0.

The field equations (4) are obviously satisfied for
solutions to Einstein equations, Eμν ¼ 0 (in which case
the above derivation of ∇μTμ

λ ¼ 0 is no longer necessary).
More generally, Eμν need not vanish. Thus, RT gravity is
less constrained than general relativity [14]. Alternatively,
we can argue that the Einstein equations effectively pick up
additional source terms, which we denote by Tμν

RT, which
are not associated with the standard stress-energy tensor but
rather are due to the embedding in the background space,

Gμν ¼ 8πGðTμν þ Tμν
RTÞ; ð8Þ

Obviously, Tμν
RT is covariantly conserved since Tμν is. (8)

can be regarded as the definition of the source terms
Tμν
RT ¼ 1

8πGE
μν. Note that the field equations (4) only

involve Tμν
RT and the embedding functions. Tμν does not

separately contribute to (4). Therefore any nontrivial
solution one obtains for Tμν

RT will not depend on the choice
of the stress-energy tensor Tμν.

III. APPLICATION TO COSMOLOGY

Next we want to apply this dynamical system to the case
where the embedded manifold M4 is that of standard
cosmology, i.e., it is given by the RW metric tensor. Here
we will specialize to the currently favored case of k ¼ 0

ds2 ¼ −dt2 þ aðtÞ2dxidxi; ð9Þ

where t ¼ x0 and aðtÞ is the scale factor. As a first
approximation let us consider source free RT gravity,
i.e., Tμν ¼ 0. From (8) we know that the Einstein tensor
need not vanish. Tμν

RT in (8) needs to be computed from the
particular choice of embedding, however from consistency
with homogeneity and isotropy, we anticipate that its
form should be analogous to that of a perfect fluid in
the comoving frame

T00
RT ¼ ρRT T11

RT ¼ T22
RT ¼ T33

RT ¼ aðtÞ2pRT; ð10Þ

with ρRT and pRT being functions of t. Since it is
covariantly conserved we have

_ρRT þ 3
_a
a
ðρRT þ pRTÞ ¼ 0; ð11Þ

the dot denoting a t–derivative.
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Substituting (9) into (4) gives

∂tðF1ðtÞgab∂tYbÞ − 1

2
F1ðtÞ∂tYb

∂tYc ∂gbc

∂Ya

¼ F2ðtÞ
�
∂iðgab∂iYbÞ − 1

2
∂iYb

∂iYc ∂gbc

∂Ya

�
; ð12Þ

where

F1ðtÞ ¼ 3a _a2 F2ðtÞ ¼ 2äþ _a2

a
ð13Þ

(12) will produce equations for _a and ä which can be
written in the form of k ¼ 0 Friedmann equations

_a2

a2
¼ 8πG

3
ρRT ð14Þ

ä
a
¼ −

4πG
3

ðρRT þ 3pRTÞ; ð15Þ

allowing us to identify ρRT and pRT in (10). The resulting
expressions for ρRT and pRT will in general depend on the
background space and the choice of embedding, as we
illustrate in the examples that follow.
As stated previously, the background spaces we consider

are R4;1, AdS5, and dS5. Following [27], we use the same
expression for the embedding in all three cases:

0
BBBBBB@

Y0

Y1

Y2

Y3

Y4

1
CCCCCCA

¼

0
BBBBBB@

bðtÞ
x1

x2

x3

hðtÞ

1
CCCCCCA
; ð16Þ

where the functions bðtÞ and hðtÞ need to satisfy certain
constraints in order to recover the k ¼ 0 Robertson-Walker
metric on the embedded four-dimensional manifold.
We next deduce ρRT and pRT for the three different cases.
(1) Flat five-dimensional background R4;1

A trivial system results if one chooses Cartesian
coordinates for R4;1 and maps to M4 using (16),
as this restricts the scale factor in (9) to be one.
Alternatively, a nontrivial function aðtÞ can result
from a different coordinatization on R4;1, such as is
in [27,28] where

ðds2ÞR4;1 ¼ −ðdY0Þ2 þ ðY0 þ Y4Þ2ððdY1Þ2 þ ðdY2Þ2
þ ðdY3Þ2Þ þ ðdY4Þ2: ð17Þ

It can be checked that the five-dimensional curvature
resulting from this metric is zero. Now using (16)
to map to (9) one gets that bðtÞ and hðtÞ should
satisfy

bðtÞ þ hðtÞ ¼ aðtÞ _b2 − _h2 ¼ 1: ð18Þ

Substituting (16) in (12) gives

∂tð _bF1Þ ¼ 3F2a ð19Þ

∂tð _hF1Þ ¼ −3F2a: ð20Þ

The sum of these two equations leads to a constant
of motion ∂tð _aF1Þ ¼ 0, from which we get the
following expression for ρRT

ρRT ¼ c0
a3 _a

; ð21Þ

c0 being a constant. The Friedmann equation (14)
then gives _a3 ∝ 1

a, and so there is no acceleration as a
increases. One gets a simple solution for the scale
factor in this case: aðtÞ ∝ t3=4 for að0Þ ¼ 0. This
coincides with the time evolution of the scale factor
in the presence of a perfect fluid with equation
of state p ¼ − 1

9
ρ. The same result was observed

in [29] for a different choice of embedding.
(2) AdS5 background

Here we cover a patch of AdS5 using Poincaré
coordinates. The background metric is

ðds2ÞAdS5 ¼ −
ðY4Þ2
L2

ðdY0Þ2

þ ðY4Þ2
L2

ððdY1Þ2 þ ðdY2Þ2 þ ðdY3Þ2Þ

þ L2ðdY4Þ2
ðY4Þ2 ; ð22Þ

the constant L denoting the AdS5 radius of curva-
ture. Utilizing the embedding (16), the k ¼ 0 RW
metric (9) is recovered provided that

h ¼ La a2 _b2 − L2
_a2

a2
¼ 1: ð23Þ

Substituting (16) in (12) gives

∂tða2 _bF1Þ ¼ 0 ð24Þ

L2
∂t

�
_a
a2

F1

�
þ
�
a _b2þL2

_a2

a3

�
F1¼−3aF2: ð25Þ

From (14) and (24) we then get

ρRT ¼ c0
a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 _a2 þ a2

p : ð26Þ
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Note that the form (21) resulting from the flat
background is recovered in the limit L → ∞, or
more precisely when j _a

a j ≫ 1
L.

(3) dS5 background
Using the so-called flat slicing the metric for

dS5 is

ðds2ÞdS5 ¼ −ðdY0Þ2 þ e2Y
0=LððdY1Þ2 þ ðdY2Þ2

þ ðdY3Þ2Þ þ e2Y
0=LðdY4Þ2; ð27Þ

L again being the radius of curvature. Now (9) is
recovered from the embedding (16) for

eb=L ¼ a L2
_a2

a2
− a2 _h2 ¼ 1: ð28Þ

After substituting (16) in (12)

L2
∂t

�
_a
a
F1

�
þ a2 _h2F1 − 3a2F2 ¼ 0 ð29Þ

∂tða2 _hF1Þ ¼ 0: ð30Þ

From (14) and (30) we then get

ρRT ¼ c0
a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 _a2 − a2

p ð31Þ

c0 is real which means we need that j _a
a j > 1

L. The
expression (21) is once again recovered for j _a

a j ≫ 1
L.

To summarize, the source term ρRT for the three different
backgrounds has the form1

ρRT ¼ c0
a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 _a2 − k5a2

p ; ð32Þ

where k5 defines the curvature of the five-dimensional
background space: k5 ¼ 0;−1, 1 for R4;1, AdS5, and dS5,
respectively. Moreover, from (14) one has that

_a2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 _a2 − k5a2

q
¼ constant ð33Þ

pRT can be determined from the conservation law (11)
leading to a time-dependent2 equation of state

pRT ¼ −
a
3 _a

_ρRT − ρRT ¼ aðL2ä − k5aÞ
3ðL2 _a2 − k5a2Þ

ρRT. ð34Þ

The evolution of the scale factor for the three cases
k5 ¼ 1; 0;−1 is obtained from (33). As stated previously, for
k5 ¼ 0 one gets aðtÞ ∝ t3=4. We resort to numerical inte-
gration to obtain solutions for the other two cases, k5 ¼ �1.
The results for all three cases are plotted in Fig. 1, using the
initial condition að0Þ ¼ 0. All three cases agree for small t,
i.e., aðtÞ ∝ t3=4 as L _a

a → ∞, and so ä < 0. For cases k5 ¼ 0

and −1, we find that ä < 0, for all t. The situation is more
interesting for k5 ¼ 1, corresponding to the de Sitter back-
ground. In this case, ä vanishes at finite t, when L _a

a ¼
ffiffiffi
2

p
,

thus signaling a transition from the de-accelerating phase to
an accelerating phase. We get that L _a

a goes asymptotically to
one in the t → ∞ limit, where the scale factor undergoes an
exponential expansion at leading order,

aðtÞ → a1et=Lð1 − a2e−8t=L þ � � �Þ; as t → ∞; ð35Þ

a1 and a2 being positive constants. From (34) we can obtain
the equation of state for the RT source as a function of time.
The ratio pRT=ρRT, standardly denoted by w, goes from − 1

9
,

near t ¼ 0, to− 1
3
, at the transition, to −1, in the limit t → ∞.

Note that unlike in the ΛCDM model, here we get a
transition from the de-accelerating phase to an accelerating
phase even without the inclusion of a matter component
or cosmological constant component to the Friedmann
equations.
Finally, we proceed with a fit of the k5 ¼ 1 case to

observational data. (33) gives an algebraic relation between
the Hubble parameter H ¼ _a=a and the redshift parameter
z ¼ a0=a − 1, where a0 is the scale parameter at the current
time. It is

L2H2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2H2 − 1

p
¼ c̃0ð1þ zÞ4; ð36Þ

where c̃0 ¼ 8πG
3
L2a−40 c0. In Fig. 2(a) we fit the real solution

to Eq. (36) to observed results for H versus z using the

dS5

AdS5 R4,1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
a0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
t

FIG. 1. Plot of t vs a for three different five-dimensional
background spaces: R4;1, AdS5, and dS5. (Here we set L ¼ 1).

1Here we have done a rescaling of the constant c0 for the case
k5 ¼ 0.

2The case k5 ¼ 0 is an exception. After using (33) one gets the
simple relation pRT ¼ − 1

9
ρRT.
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data in Table I. The best fit occurs for c̃0 ≈ :26 and
1=L ≈ 72 km s−1 Mpc−1. For H evaluated at z ¼ 0 one
gets Hð0Þ ≈ 74 km s−1Mpc−1. Our fit in Fig. 2(a) is
compared to that of ΛCDM, where the expression
for the Hubble parameter is given by H ¼
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ zÞ3Ωm þΩΛ

p
, with Ωm ¼ :3, ΩΛ ¼ :7, and

H0 ≈ 68.92 km s−1Mpc−1. H=ð1þ zÞ (which is propor-
tional to _a) versus z is plotted in Fig. 2(b), using our fit
for H in Fig 2(a). It shows that the transition from a
de-acceleration phase to acceleration phase occurs at
z ≈ :675, which is similar to the value predicted by ΛCDM.

IV. CONCLUDING REMARKS

We now summarize some of the features of this model.
After generalizing RT gravity to curved backgrounds,
we found universal formulas for the effective density
and pressure, (32) and (34), respectively, resulting from
embedding the k ¼ 0 RW manifold in three different five-
dimensional background spaces. We suspect that the results
found here could be dependent on the choice of embedding
(in addition to the choice of background space), although we
have not found any specific examples of this. In this regard,
only a limited number of embeddings of the Robertson-
Walker manifold are currently known (for example [27,37]).
For other choices of embeddings of the k ¼ 0 RW manifold
we find that the Regge-Teitelboim field equations collapse to
Einstein equations, i.e., Tμν

RT ¼ 0.
A reasonable fit to the Hubble parameter data was

obtained in the case where the background was de Sitter
space. This result holds even without considering the usual
stress-energy contributions to the Einstein equations, which
on the other hand, play an essential role for ΛCDM. Such
components can easily be included in our model by adding
appropriate terms to (13) and consequent equations. For
the case of nonrelativistic matter, one ends up with the
following modification to (36)

L2H2

ð1þ zÞ3 −
c̃0ð1þ zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2H2 − 1

p ¼ c̃1; ð37Þ

which we derive in the Appendix. Here c̃1 is an additional
constant which quantifies the nonrelativistic matter
component. The inclusion of the additional parameter
c̃1 does not appear to improve the previous fit in any
significant manner.

0.0 0.5 1.0 1.5 2.0 2.5

100

150

200

250

z

H

0.0 0.5 1.0 1.5 2.0 2.5

62

64

66

68

70

72

74

z

H
/(1
+z
)

FIG. 2. The solid purple curve in figure (a) represents a fit of Eq. (36) with the Hubble parameter data, while the dashed red curve
is ΛCDM. H is given in units of km s−1 Mpc−1. The best fit occurs for c̃0 ≈ :26 and 1=L ≈ 72 km s−1 Mpc−1. From figure (b) the
minimum of H=ð1þ zÞ for the best fit occurs at z ≈ :675, corresponding to the transition from a de-accelerating phase to an
acceleration phase.

TABLE I. Data used for fit in Fig. 2. Columns 1-4 are z, H,
error in H and citation respectively. Columns 2 and 3 are in units
of km s−1 Mpc−1. Data was selected with σH < :15H.

z H σH

0 74.03 1.42 [30]
0.17 83 8 [31]
0.1791 75 4 [32]
0.1993 75 5 [32]
0.38 81.5 1.9 [33]
0.4783 80.9 9 [34]
0.51 90.4 1.9 [33]
0.5929 104 13 [32]
0.61 97.3 2.1 [33]
0.6797 92 8 [32]
0.7812 105 12 [32]
0.8754 125 17 [32]
1.037 154 20 [32]
1.3 168 17 [31]
1.43 177 18 [31]
1.53 140 14 [31]
2.34 222 7 [35]
2.36 226 8 [36]
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The presence of the square root in (36) [and also in (37)]
gives a lower bound on the Hubble parameter,HðzÞ > 1=L,
which is in agreement with observation.
The fit we obtained to the Hubble parameter data holds

for values of z up to approximately 2.36. Concerning
z > 2.36, the deviation of our fit in Fig. 2 with that of
ΛCDM grows when extrapolating to higher z. However,
our fit did not include contributions from the stress-energy
tensor, which can play a more significant role at large z.
For example, if one considers a nonrelativistic matter
density ρm, which is proportional to a−3, then its relative
contribution is ρm=ρRT ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2H2 − 1

p
=ðzþ 1Þ, which

grows like LH=z for large z. Also, there is no reason to
assume that the 5d de Sitter background is valid for all z.
A more challenging issue is that of stability. If one

wishes to allow for all possible such four-manifolds in a
stability analysis then one needs to consider embeddings
in a much bigger space. It was shown in [38] that a
91-dimensional target space is necessary for a global
embedding of a general 4d manifold (although there it
was assumed that the background space is flat). On the
other hand, if one restricts to say a five-dimensional
background one can still recover many of the known
physical four-manifolds, such as the Schwarzschild
space-time. A stability analysis is further complicated
by the fact that a nonperturbative treatment is required,
as a weak field approximation in terms of embedding
coordinates is out of reach, as was pointed out in [14].
These are among the issues which are open for further
investigation/speculation.

APPENDIX: DERIVATION OF (37)

For the inclusion of an energy-momentum source
assume as usual that

T00 ¼ ρ T11 ¼ T22 ¼ T33 ¼ aðtÞ2p; ðA1Þ

in the comoving frame with ρ and p consistent with the
conservation law

_ρþ 3
_a
a
ðρþ pÞ ¼ 0 ðA2Þ

Substituting this along with (9) into (4) again gives (12),
but with additional contributions to the functions F1 and F2

F1ðtÞ ¼ 3a _a2 − 8πGa3ρ F2ðtÞ ¼ 2äþ _a2

a
þ 8πGap

ðA3Þ

Then upon repeating the analysis for cases 1–3 in Sec. III
one gets the following Friedmann equation

_a2

a2
¼8πG

3

�
ρþ c0

a3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 _a2−k5a2

p
�
¼8πG

3
ðρþρRTÞ ðA4Þ

Finally, for the case of nonrelativistic matter we set p ¼ 0

in the conservation equation (A2) to get ρ ¼ c1a−3.
Equation (37) then follows for k5 ¼ 1 and c̃1 ¼ 8πGL2

3a3
0

c1.
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