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In the pursuit of primordial non-Gaussianities, we hope to access smaller scales across larger comoving
volumes. At low redshift, the search for primordial non-Gaussianities is hindered by gravitational collapse,
with which we often associate a scale kNL. Beyond these scales, it will be hard to reconstruct the modes
sensitive to the primordial distribution. When forecasting future constraints on the amplitude of primordial
non-Gaussianity, fNL, off-diagonal components are usually neglected in the covariance because they are
small compared to the diagonal components. We show that the induced non-Gaussian off-diagonal
components in the covariance degrade forecast constraints on primordial non-Gaussianity, even when all
modes are well within what is usually considered the linear regime. As a testing ground, we examine the
effects of these off-diagonal components on the constraining power of the matter bispectrum on fNL as a
function of kmax and redshift, confirming our results against N-body simulations out to redshift z ¼ 10. We
then consider these effects on the hydrogen bispectrum as observed from a PUMA-like 21-cm intensity
mapping survey at redshifts 2 < z < 6 and show that not including off-diagonal covariance overpredicts
the constraining power on fNL by up to a factor of 5. For future surveys targeting even higher redshifts, such
as Cosmic Dawn and the Dark Ages, which are considered ultimate surveys for primordial non-
Gaussianity, we predict that non-Gaussian covariance would severely limit prospects to constrain fNL from
the bispectrum.

DOI: 10.1103/PhysRevD.107.023528

I. INTRODUCTION

Over the past few decades, inflation has been established
as the leading paradigm for describing the early Universe. It
proposes a period of rapidly accelerated expansion during
the first fraction of a second after the Universe came to be
[1–3]. At the classical level, such an expansion can explain
why the Universe looks nearly identical in every direction
(i.e., it is homogeneous and isotropic), while at the quantum
level it gives rise to the tiny density fluctuations that we
observe in the cosmic microwave background radiation
(CMB), which eventually grow into the large-scale
structure (LSS) of the Universe. By precisely mapping
the anisotropies in the CMB, we have determined the

fluctuations to be very close to Gaussian-distributed, which
matches the predictions of even the simplest theories of
inflation [4]. However, in order to sift through the vast
landscape of consistent inflationary theories, we are
required to look beyond such general predictions. One
avenue to discriminate theories of inflation, is through the
study of primordial non-Gaussianities (pnGs) (see Ref. [5]
and references therein). Signatures of pnGs would appear
as nonzero higher n-point functions of the initial condi-
tions, where the three-point function, the so-called bispec-
trum, is generally the most sensitive. A measurement of
pnGs can tell us a great deal about the dynamics driving the
expansion (see Ref. [6] for a recent overview). To give an
example, a detection of a local-type pnG in future experi-
ments would exclude single-field models of inflation
altogether [7,8], while generic values of flocNL in multifield*t.s.floss@rug.nl
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models are≳Oð1Þ or higher. On the other hand, a detection
of an equilateral-type pnG of order feqNL ≥ 1 would
imply strong coupling of the inflaton, since it is typically
generated by self-interactions of the inflaton field.
Furthermore, particles (fields) present in the primordial
Universe leave their unique imprint in the distribution of
fluctuations through pnGs, effectively making inflation a
particle collider at the highest conceivable energy scale [9].
Hence, a detailed study of primordial non-Gaussianity is
imperative in order to advance our understanding of the
Universe as a whole.
While the most stringent constraints on pnGs are derived

from measurements of the CMB bispectrum, future CMB
experiments will be limited by its two-dimensional nature
and its damping of primary fluctuations. In our search for
signatures of pnGs, we are therefore required to look for
alternative probes. Surveys of the large-scale structure of the
Universe provide us with a huge observable volume, all
the way into the cosmological Dark Ages, by mapping the
distribution of galaxies and neutral hydrogen. While the
anisotropies in the CMB are pristine (i.e., linearly related to
the primordial fluctuations), the density field has since
evolved. Gravity, being intrinsically nonlinear, breaks the
linear relation between density fluctuations and primordial
initial conditions, giving rise to a number of complications.
First, even if the primordial fluctuations are purelyGaussian,
the nonlinear gravitational evolution introduces secondary
non-Gaussianities (snGs), typically many orders of magni-
tude stronger than any primordial signal. Thus, an accurate
modeling of snGs is required in order to properly extract
information about pnGs. Furthermore, snGs introduce non-
Gaussian covariance in the measurements, reducing the
amount of unique information present in the data. Although
the impact of non-Gaussian covariance has been appreciated
at low redshifts [10–19], its relevance for high-redshift
surveys has typically been neglected [20–26]. As upcoming
surveys aim to close in on important thresholds such as
flocNL ∼ 1, it is important to assess the assumptions made in
forecasting their performance. In this paper, we show that by
not including non-Gaussian covariance in forecasts of the
constraining power of the hydrogen bispectrum observed by
a PUMA-like 21-cm intensity mapping experiment [23,27],
one can underestimate the uncertainty in the linear regime by
up to factors of ∼5 and ∼2 for local- and equilateral-type
non-Gaussianity, respectively.
Conventions and Notation: We denote a spatial vector as

ki and its magnitude as jkij ¼ ki. Sums of momenta are
written as k1…n ¼

P
n
1 ki; e.g., k1 þ k2 ¼ k12. Momentum

integrals are compactly written as
R d3ki

ð2πÞ3 ¼
R
ki
, and δD

denotes the Dirac delta function. In order to compare to
simulations of the matter bispectrum, our cosmology equals
the fiducial cosmology of the QUIJOTE suite [28], which
closely resembles the 2018 Planck constraints [29]. For the
analysis of the PUMA survey, we use the 2015 Planck
constraints [30] to match previous forecasts.

II. THEORETICAL FRAMEWORK AND SETUP

In order to estimate the signal-to-noise ratio for high-
redshift survey observables, we need to introduce a few
concepts. We are ultimately interested in constraining the
early Universe through primordial non-Gaussianities; thus,
we start off by defining correlations of primordial fluctua-
tions—i.e., our signal of interest. Next, we introduce
density perturbations, whose correlations at different posi-
tions in the sky are the building blocks of what we
actually observe in high- (and low-) redshift surveys.
Their dynamics driven by gravity determine the noise
we need to overcome.

A. Initial conditions

Quantum fluctuations during the inflationary epoch cause
the expansion to end at slightly different times in different
places, giving rise to tiny scalar density fluctuations ζ that
source linear perturbations in the matter density field. In this
way, linear fluctuations of the density field trace the
primordial initial conditions of the Universe. Even a small
non-Gaussianity in the distribution of primordial fluctua-
tions serves as an important way to discriminate between
different models of inflation. Furthermore, it allows one to
directly probe the particle content and interactions of the
inflationary epoch [9,31]. Since such non-Gaussianities are
constrained to be small by CMB observations [4], in this
work we consider only the first non-Gaussian statistic,
which is the bispectrum. Hence, we require only the first
two statistical moments of the primordial density distribu-
tions. In Fourier space, these are the power spectrum PζðkÞ
and bispectrum Bζðk1; k2; k3Þ, defined as

hζk1ζk2i ¼ ð2πÞ3δDðk12ÞPζðk1Þ; ð1Þ

hζk1ζk2ζk3i ¼ð2πÞ3δDðk123ÞBζðk1; k2; k3Þ: ð2Þ

Different inflationary mechanisms give rise to distinct sizes
and shapes of bispectra. It is customary to classify these
bispectra into three main templates, the so-called local,
equilateral, and orthogonal templates, whose expressions
are given in Appendix A. The local shape typically arises in
models ofmultifield inflation and peaks in squeezed triangle
configurations k1 ≪ k2 ∼ k3, while the equilateral shape
peaks for equilateral configurations k1 ¼ k2 ¼ k3. Finally,
the orthogonal shape, along with the equilateral one, is a
natural prediction of the effective field theory (EFT) of
(single-field) inflation [32] and peaks for both equilateral
and flattened configurations k1 ¼ k2 þ k3.

B. Matter field and correlators

The primordial initial conditions serve as the seed for the
distribution of matter in the Universe. We can therefore
study the initial conditions of the Universe by studying
fluctuations of the matter density field, ρ, defined as
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δðt;xÞ ¼ ρðt;xÞ=ρ̄ðtÞ − 1, with ρ̄ being the mean density
in a volume. Similar to the primordial case, we define
correlations of δðxÞ in Fourier space as

hδk1δk2i ¼ ð2πÞ3δDðk12ÞPδðk1Þ; ð3Þ

hδk1δk2δk3i ¼ ð2πÞ3δDðk123ÞBδðk1; k2; k3Þ; ð4Þ

hδk1δk2δk3δk4i ¼ ð2πÞ3δDðk1234ÞTδðk1; k2; k3; k4Þ; ð5Þ

where we assume all fluctuations to be at equal times.
In this work, we also need the four-point correlation
function in Fourier space, known as the trispectrum, for
the computation of the non-Gaussian covariance. Even in
the absence of a primordial bispectrum, or higher-order
primordial correlators, fluctuations in the matter field grow
via gravitational instability and become nonlinear, thereby
sourcing the matter bispectrum, trispectrum, and higher-
order correlations. The dynamical equations for δ describ-
ing this process can be solved perturbatively (see, e.g.,
Ref. [33] for a review). This allows one to compute
correlators analytically up to a mildly nonlinear scale
kNL. One way to estimate this scale is by computing

kNLðzÞ ¼
�
1

6π2

Z
∞

0

dkPL
δ ðk; zÞ

�
−1=2

; ð6Þ

where PL
δ is the linear matter power spectrum as defined in

Eq. (B4). We use this scale to confine ourselves to the linear
regime [34]. The gravitationally induced bispectrum and
trispectrum in this framework are presented in Appendix B.
To complement the perturbative approach, we resort to

N-body simulations of the Universe at large scales, solving
the dynamical equations for δ numerically (see Ref. [36] for
a review). The advantage ofN-body simulations is that they
allow us to directly measure correlations of δ even at
nonlinear scales, and to test analytic predictions. The
drawback is that they are computationally expensive to
run. We make use of publicly available QUIJOTE simulations
[28] for our estimates of signal-to-noise ratio at low redshift
(i.e., up to z ¼ 3). For higher redshifts, as the nonlinear scale
is pushed to very small scales, instead of fully solving
dynamical equations we resort to Monofonic [37],
which computes particle positions by solving third-order
Lagrangian perturbation theory (3LPT) equations. Further
details on how simulation data are used can be found in
Appendix C.

C. Fisher information and estimated uncertainty

In this section, we introduce the quantities we use to
estimate the uncertainty on the amplitude of primordial
non-Gaussianity, fNL, from observations of the bispectrum.

1. Fisher matrix

A common way to quantify the information content of an
observable is through the Fisher matrix. It encodes both the
amount of information available from a measurement to
constrain a parameter and the correlation between different
parameters. Given N measurements of an observable,
which for us will be the matter or hydrogen bispectrum,
and a set of parameters we want to constrain, p, the Fisher
matrix is defined as

Fab ¼
X
TT 0

∂BT

∂pa
ðCÞ−1TT 0

∂BT 0

∂pb
; ð7Þ

where T’s are triangle configurations in which the bispectra
are measured or calculated, B is the data vector of the
bispectra, and CTT 0 is the covariance of B, defined as

CTT 0 ¼ hBTBT 0 i − hBTihBT 0 i: ð8Þ

The estimated uncertainty on a parameter pa is then
defined as

σpa
¼ ðF−1Þ1=2aa ; ð9Þ

where F−1 indicates the matrix inverse of F.

2. N-body measurements

When using numerical simulations, we measure the
matter bispectrum on a finite-sized box with periodic
boundary conditions, such that in this case δk is a discrete
Fourier transform of the density contrast. The bispectrum
estimator then is defined as [38]

B̂ðk1; k2; k3Þ≡ k3F
Ntr

X
q∈k

δKðq123Þδq1δq2δq3 ; ð10Þ

with kF ¼ 2π=L being the fundamental frequency in a
cubic box of side L, and Ntr gives the number of
“fundamental triangles” formed by the vectors qi satisfying
the condition q123 ¼ 0 that belong in the “triangle bin”
defined by the triplet of bin centers (k1, k2, k3) and bin
width Δk [39].
The advantage of using N-body simulations is that the

full covariance can be estimated numerically from a sample
of simulations using Eq. (8), where now the average h·i is
over different realizations of the same simulation.
It is also straightforward to compute the Gaussian

contribution only—i.e., the case where different modes
are uncorrelated. This contribution is given by the product
of three power spectra [40],

CG
TT 0 ≃

ð2πÞ3k3F
V123

s123P̂ðk1ÞP̂ðk2ÞP̂ðk3ÞδTT 0 ; ð11Þ
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where T, T 0 denote triangle bins, V123 ≃ 8π2k1k2k3Δk3 is
the volume of the bin, s123 ¼ 1, 2, and 6 for scalene,
isosceles, and equilateral triangles, respectively, and
P̂ðkiÞ’s are power spectrum measurements.

3. Limit of infinitely thin bins

At high redshifts, the nonlinear scale kNL is pushed to
smaller scales. At fixed bin width Δk, this implies a wider
range of scales explored, and consequently a larger data
vector and covariance. In order to keep the calculations
within reasonable computational cost, one solution is to
widen the range of bins, and to sample wave numbers in log
space. Alternatively, we choose to approach the limit of
infinitely thin bins and promote the sums to integrals, such
that the Fisher matrix becomes

Fab ¼
Z
TT 0

∂BT

∂pa
C−1
TT 0

∂B0
T

∂pb
; ð12Þ

where now the matter, or hydrogen, bispectrum is estimated
using perturbation theory, as explained in the appendixes.
Calculating Eq. (12) now implies knowledge of the
dependence on triangle configurations T, T 0 of the inverted
full covariance matrix, which is typically hard to compute.
In Appendix D, we outline a strategy that is based on
splitting the covariance into Gaussian and non-Gaussian
contributions, C ¼ CG þ CnG, and expanding the inverse
as a Neumann series. We then approximate this series such
that the Fisher matrix in the limit of thin bins becomes

Fab ¼
ðFG

abÞ2
FG
ab þ δFnG

ab

; ð13Þ

where FG
ab is the Fisher matrix computed using only the

Gaussian covariance CG to compute the inverse covariance,
and δFnG

ab is the non-Gaussian correction computed using as
inverse the product of matrices −C−1

G CnGC−1
G .

4. Model for non-Gaussian covariance

The goal of this paper is to compute how σ varies for fNL
whether we are considering only the Gaussian term CG or a
more complete modeling of the covariance including non-
Gaussian terms. As explained above, when using N-body
simulations, the Gaussian and the full covariance are
computed numerically. In the case of thin bins, we need
to introduce a model of the bispectrum covariance. Inserting
Eq. (10) into Eq. (8), the computation involves the correlator
of six fields in Fourier space, which can be combined in four
different ways: the Gaussian term is the product of three
power spectra (the PPP term), given by Eq. (11). Non-
Gaussian terms are represented by either the product of
two bispectra (the BB term), or the product of a power
spectrum and a trispectrum (the PT term), or finally the
connected six-point function, the so-called pentaspectrum.

The pentaspectrum is negligible in most practical cases (see
Ref. [18] for a rough estimate). The key point of this paper is
to account for the BB and PT terms in signal-to-noise
estimates at high redshifts. The BB term, again assuming
that correlators are slowly varying in the k-shells, can be
written as

CBB
nG ≃ BTBT 0 ðΣ11

TT 0 þ 8 permÞ; ð14Þ

where Σij
TT 0 is a mode-counting factor that again depends on

the shape of the triangles. The PT term is similarly written.
We calculate these terms for the matter bispectrum pre-
dictions using Eqs. (B4), (B3), and (B5). For the hydrogen
bispectrum, we use the following model for the covariance:

C ≈ CG þ 2CBB
nG ; ð15Þ

where the PT term is approximated to be equal to the BB
term, which is a good approximation for squeezed triangles
for which the non-Gaussian terms are largest [18].

III. CONSTRAINING fNL AT HIGH REDSHIFTS

The primary goal of this work is to show the importance
of including non-Gaussian terms in the covariance when
estimating the uncertainty to the primordial non-Gaussian
amplitude fNL in high-redshift surveys.
One could be tempted to neglect the non-Gaussian

covariance at high redshifts on scales larger than kNL at
that redshift. In this linear regime, one might expect modes
of different wavelength to be mostly uncorrelated, such that
the covariance is diagonal and Gaussian terms dominate.
As we show in what follows, this intuition fails: off-
diagonal terms become important well within what is
typically considered the linear regime based on Eq. (6).

A. Uncertainty on fNL from the matter bispectrum

As a testing ground, we first consider the matter
bispectrum in real space as our observable and compute
the estimated uncertainty of the primordial non-Gaussian
amplitude fNL for the primordial bispectra of the local,
equilateral, and orthogonal types as defined previously. In
this setup, fNL is the only parameter. When using finite-
sized bins, we evaluate the derivative ∂B=∂fNL averaging
over the bins [see Eq. (C1) of Appendix C], while in the
case of infinitely thin bins, the derivative is analytically
computed directly from the templates in Eqs. (A1)–(A3).
Figure 1 shows the ratio of the estimated uncertainty

computed with non-Gaussian over Gaussian covariance as
a function of the maximum wave number kmax. The
uncertainty computed using the infinitely thin bin approxi-
mation is shown with solid lines, while simulation mea-
surements are shown with diamonds. Solid lines are
computed up to the nonlinear scale kNL at that redshift.
The uncertainty on local-type non-Gaussianity is most
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affected by the introduction of off-diagonal covariance,
increasing by a factor of ∼5 at kmax ≈ kNL for redshifts
lower than z ¼ 10 and even higher at higher redshifts. This
is because the off-diagonal covariance is the largest for
squeezed triangle configurations, where the local-type non-
Gaussianity has most of its signal [18,41]. Equilateral non-
Gaussianity is less affected, since most of its signal comes
from equilateral triangle configurations whose covariance
is large only when approaching nonlinear scales. Still, the
loss is almost a factor of 2 at z≲ 10. For a discussion and
the results of the orthogonal bispectrum, we refer to
Appendix C.
It is important to note that these results do not imply that

the uncertainty does not improve overall, since we are still
able to access more modes as we increase kmax. Rather, our
analysis shows that off-diagonal non-Gaussian covariance
reduces the amount of information gained by probing

smaller scales, or in other words, the signal-to-noise
saturates. We show a clear representation of this fact in
Fig. 2, where we directly plot the uncertainty of fNL,
including non-Gaussian terms, as a function of kmax at
different redshifts for a fictitious matter field survey.

B. Uncertainty on fNL from the
hydrogen bispectrum

To make contact with actual future observations, we
consider a realistic PUMA-like intensity mapping survey
setup. PUMA is a proposed 21-cm intensity mapping
experiment aimed at measuring the distribution of neutral
hydrogen through the 21-cm hyperfine transition between
redshifts 2 and 6. One of the key science drivers for
PUMA is to provide better constraints on primordial non-
Gaussianity with respect to the CMB [27] (see also Fig. 5 in
Ref. [6] for a comparison to other future surveys).
As compared to the simplified scenario considered in

Fig. 1, the calculation of the estimated uncertainty in this
case involves several complications. First of all, neutral

FIG. 1. Estimate of relative increase in error on fNL due to non-
Gaussian covariance as a function of kmax. The diamonds present
results obtained using the QUIJOTE simulations (z ¼ 0, 3) or 3LPT
(z ¼ 10). Note the different scales on the vertical axes. The local
bispectrum is expected to be significantly affected when account-
ing for nondiagonal covariance even at very high redshifts. Solid
lines are estimated up to the nonlinear scale kNL at each redshift.
For z ¼ 0 and 3, the simulation results are also shown up to the
nonlinear scale, while for z ¼ 10 they are shown up to the scale at
which shot noise becomes a significant contribution to the
covariance.

FIG. 2. The estimated uncertainty on fNL as a function of kmax in
the matter field at different redshifts, when including non-
Gaussian covariance. The volume of the survey is taken to be
1 ðGpc=hÞ3. Each redshift is shown up to the corresponding
nonlinear scale kNL. The solid black line shows the (redshift-
independent) uncertainty assuming only Gaussian covariance.
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hydrogen is a biased tracer of the matter field. This
introduces additional nonlinearities, and we need to define
a set of nuisance (bias) parameters that are fixed through
observations (see Ref. [43] for a review). Second, we need
to compute correlators in redshift space, taking into account
the survey geometry and foregrounds. Lastly, the presence
of primordial non-Gaussianity introduces additional bias
parameters. This last effect famously appears already at the
power spectrum level for the local template, known as
scale-dependent bias (see Refs. [44–46] and Ref. [47] for a
recent review). For this reasons, forecasts of σðfNLÞ depend
sensitively on many assumptions, and would need to
include the tracer power spectrum in order to be realistic.
Here we limit ourselves to calculate the uncertainty using
the tracer bispectrum only, rather than performing a full
forecast, since our goal is to show the loss of constraining
power due to the inclusion of non-Gaussian covariance on
the bispectrum [48]. For our computations, we follow the
setup presented in Ref. [23]. The 21-cm intensity mapping
is complicated by foregrounds, especially on large scales in
the line-of-sight direction. Therefore, the largest scale is
effectively set by a foreground cut in the line-of-sight
direction (kk;min ¼ 0.01 h=Mpc). The analysis is limited to
linear scales by choosing kmaxðzÞ to be fractions of kNLðzÞ,
namely 0.5kNLðzÞ and 0.75kNLðzÞ, where the nonlinear
scale is given in Eq. (6). We also include the foreground
wedge, further reducing the amount of modes. Besides fNL,
the hydrogen bispectrum is a function of seven parameters:
three bias parameters, two shot-noise parameters, the
dimensionless linear growth rate f, and the velocity
dispersion σv. We compute the fiducial value of these
parameters as a function of redshift following [23,50], and
the expression for the hydrogen bispectrum is found in
Eq. (E4) within Appendix E. We also calculate the hydro-
gen power spectrum, given in Eq. (E3), as we use it to
compute the Gaussian covariance. To compute the non-
Gaussian covariance, we use the model of Eq. (15). We
then proceed in computing the Fisher matrix, which is
estimated in the thin bins form of Eq. (13). We marginalize
over all seven nuisance parameters entering the bispectrum.
For more details, we refer to Appendix E.
Figure 3 shows the ratio of the estimated uncertainty

computed using a non-Gaussian covariance over a
Gaussian approximation for the local- and equilateral-type
non-Gaussianities as a function of redshift for a PUMA-like
experiment. We compute the uncertainty for two different
values of kmax, corresponding to 0.5kNL (dashed lines) and
0.75kNL (solid lines), as we expect Eq. (6) to be less
accurate for tracers. Our results show that even for a more
conservative choice of kmax ¼ 0.5kNL, the effect is signifi-
cant. The increase in uncertainty ranges from a factor of 2
to a factor of 5 for local-type non-Gaussianity. We therefore
conclude that previous forecasts on constraining fNL at
high redshift are too optimistic [20,22–25], and non-
Gaussian covariance will have to be considered in order

to produce more realistic forecasts. A similar estimation for
a generic biased tracer was performed in Ref. [51] up to
z ¼ 10 and shows qualitative agreement with Fig. 3.

IV. DISCUSSION AND CONCLUSIONS

We studied the impact of non-Gaussian terms in the
covariance on measurements of cosmological correlators.
Specifically, our aim was to quantify the effect on the
estimated uncertainty of the primordial non-Gaussian
amplitude fNL when using the bispectrum at high redshift
as an observable. Because off-diagonal components are
small compared to the diagonal, most studies have typically
neglected this covariance. We showed that, when looking at
the information content, there is a significant impact on the
constraining power on primordial non-Gaussianity due to
this non-Gaussian mode coupling, even at high redshifts
and well below the nonlinear scale as defined in Eq. (6).
We have first computed the effect of non-Gaussian

covariance on σfNL using the matter bispectrum in real space,
and then performed a more realistic estimation using the
hydrogen bispectrum as measured from a PUMA-like
experiment. This proposed 21-cm intensity mapping experi-
ment has the potential to constrain primordial bispectra to
reach beyond constraints set by the CMB. However, our
analysis shows that not accounting for the full covariance can
overestimate the constraining power of the hydrogen bispec-
trum measured by PUMA up to a factor of 5 for local-type
non-Gaussianity and 2 for equilateral-type. For local-type
non-Gaussianity, the primary observable is actually the tracer
power spectrum, thanks to the so-called scale-dependent
bias, which we do not include in our analysis. Nevertheless,
our results imply that combining it with the bispectrum does
not help as much as it is expected to considering a Gaussian
covariance only. Moreover, they motivate including the

FIG. 3. Estimate of relative increase in error on the non-
Gaussian amplitude fNL due to non-Gaussian covariance of the
hydrogen bispectrum, as a function of redshift for a PUMA-like
experiment when marginalizing over the seven additional param-
eters of the hydrogen bispectrum. We show the results for kmax ¼
0.75kNL (solid lines) and kmax ¼ 0.5kNL (dashed lines).
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bispectrum–power spectrum cross covariance in the joint
analysis, which is also a non-Gaussian contribution [18].
Overall, our result suggestswe should reconsider some of the
existing forecasts and make sure the projected numbers are
not overly optimistic for future high-redshift surveys such as
PUMA,MegaMapper [52], and theMaunakeaSpectroscopic
Explorer [53].
Future constraints on primordial non-Gaussianities will

depend on our ability to extract information from large-scale
structures. Intuitively, the main obstacle to constrain pri-
mordial spectra is set by the nonlinear scale, which estimates
when loop corrections become important. Herewe show that
for the Fisher information on fNL, it is important to account
for non-Gaussian bispectrum covariance, even for modes
that are still considered linear. The results are comparable to
what was found for measurements of the CMB bispectrum,
where lensing-induced off-diagonal covariance is the main
limitation as we start to measure smaller scales and increase
the number of accessible modes.
For the CMB, it was shown that the lensing-induced

covariance can be accounted for by delensing the data
before applying the standard estimators [42]. The analogy
here would be to “degravitate” the data, a technique that is
well established in studies of the baryon acoustic oscil-
lations in galaxy surveys [54]. In fact, this approach has
been shown to improve constraints on primordial non-
Gaussianity from the bispectrum [55]. It might be possible
to explore this option at high redshifts, where the physics is
still perturbatively tractable. At lower redshifts, however, it
likely suggests that existing estimators are suboptimal, or
that we have adopted inefficient summary statistics that
need to be revisited. Similar conclusions were drawn in
Ref. [56]. Applying reconstruction methods [57] or using
simulations (e.g., through simulation-based inference [58])
[59–63], both active fields of investigation, will certainly
help to establish to what degree we have to modify our
analysis tools in search of signs of primordial non-
Gaussianity.
The code used to produce the results in this work is

publicly available [64].
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APPENDIX A: PRIMORDIAL BISPECTRA

The local, equilateral, and orthogonal bispectrum tem-
plates are given by

Bloc
ζ ðk1; k2; k3Þ ¼

6

5
flocNLðPζ;1Pζ;2 þ Pζ;1Pζ;3 þ Pζ;2Pζ;3Þ;

ðA1Þ

Bequil
ζ ðk1; k2; k3Þ ¼

18

5
fequilNL ð−ðPζ;1Pζ;2 þ 2 permsÞ

− 2P2=3
ζ;1 P

2=3
ζ;2 P

2=3
ζ;3

þ ðP1=3
ζ;1 P

2=3
ζ;2 Pζ;3 þ 5 permsÞÞ; ðA2Þ

Bortho
ζ ðk1; k2; k3Þ ¼

18

5
forthoNL ð−3ðPζ;1Pζ;2 þ 2 permsÞ

− 8P2=3
ζ;1 P

2=3
ζ;2 P

2=3
ζ;3

þ 3ðP1=3
ζ;1 P

2=3
ζ;2 Pζ;3 þ 5 permsÞÞ; ðA3Þ

where we have introduced the shorthand notation Pζ;1 ¼
Pζðk1Þ. Note that although Eq. (2) demonstrates that the
primordial bispectrum can in principle depend on the full
three-momenta, for the above primordial shapes there is no
angular dependence, and they only depend on the magni-
tudes of the triangle’s momenta (i.e., the shape of the
triangle).

APPENDIX B: STANDARD PERTURBATION
THEORY AT TREE LEVEL

Within the perturbative regime, gravitational interactions
can be treated within the framework of standard perturba-
tion theory (SPT). For an extensive review, we refer to, e.g.,
Ref. [33]. Here, we will present only the results relevant to
our work. Since we require the gravitational trispectrum,
we expand the density field to third order:

δkðzÞ ¼ δð1Þk ðzÞ þ δð2Þk ðzÞ þ δð3Þk ; ðB1Þ

where the superscript denotes the order of the perturbation.
Solving the evolution equations order by order in pertur-
bations, one finds (dropping the explicit time dependence)

PRIMORDIAL NON-GAUSSIANITY AND NON-GAUSSIAN … PHYS. REV. D 107, 023528 (2023)

023528-7



δð2Þk ¼
Z
q
F2ðq; k − qÞδð1Þq δð1Þk−q;

δð3Þk ¼
Z
q1;q

F3ðq1; q2; k − q12Þδð1Þq1 δ
ð1Þ
q2 δ

ð1Þ
k−q12 : ðB2Þ

These higher-order perturbations will induce the gravita-
tional correlations. At tree level, then, the bispectrum of the
density field due to gravitational interactions is found to be

BsnG
δ ðk1; k2; k3Þ ¼ hδð1Þk1

δð1Þk2
δð2Þk3

i þ 2 perms

¼ 2F2ðk1; k2ÞPL
δ ðk1ÞPL

δ ðk2Þ þ 2 perms;

ðB3Þ

where the linear power spectrum is defined as

hδð1Þk1
δð1Þk2

i ¼ ð2πÞ3δDðk12ÞPL
δ ðk1Þ

¼ ð2πÞ3δDðk12ÞMðk1; zÞPζðk1Þ: ðB4Þ

Here, M is the linear transfer function. The tree-level
trispectrum consists of two contributions:

TsnG
δ ðk1; k2; k3; k4Þ ¼ T1122

δ ðk1; k2; k3; k4Þ
þ T1113

δ ðk1; k2; k3; k4Þ; ðB5Þ

with the two contributions given by

T1113
δ ðk1;k2;k3;k4Þ ¼ hδð1Þk1

δð1Þk2
δð1Þk3

δð3Þk4
iþ3 perms

¼ 6F3ðk1;k2;k3Þ
Y3
i¼1

PL
δ ðkiÞ

þ3 perms;

T1122
δ ðk1;k2;k3;k4Þ ¼ hδð1Þk1

δð1Þk2
δð2Þk3

δð2Þk4
iþ5 perms

þ4½F2ð−k1;k13ÞPL
δ ðk13Þ

þF2ð−k1;k14ÞPL
δ ðk14Þ�PL

δ ðk1ÞPL
δ ðk2Þ

þ5 perms: ðB6Þ

The kernels F2 and F3 determine how modes of different
wavelength are coupled by gravity. For their explicit form,
see, e.g., Ref. [33]. Beyond tree level, the higher-order
perturbations will also induce a correction to the power
spectrum, known as the one-loop power spectrum:

hδð2Þk1
δð2Þk2

i ¼ ð2πÞ3δDðk12ÞP1−loop
δ ðk1Þ: ðB7Þ

APPENDIX C: DETAILS ON SIMULATIONS

In order to verify our computations of non-Gaussian
covariance, we compare our results to simulations. For red-
shifts z ¼ 0 and 3, we use the QUIJOTE simulation suite [28].

QUIJOTE consists of 15000N-body simulations using a
fiducial cosmology, enough to obtain an accurate covariance
matrix up to the scales of interest in this work. The
simulations consist of 5123 particles in a box with sides
1000 Mpc=h, setting the fundamental mode to kF ¼
ð2π=1000Þ ≈ 0.0063 h=Mpc. To construct the covariance
matrix, we use the power spectrum and bispectrum mea-
surements as provided in the suite, which use a binning of
Δk ¼ 3kF, kmin ¼ 3

2
kF, and an interpolation grid of size

3603. For redshift z ¼ 10, we use ∼4000 realizations of
initial conditions (ICs) generated using third-order
Lagrangian perturbation theory (3LPT) with the
Monofonic code [37]. Since at higher redshifts the power
spectrum and bispectrum are smaller, shot noise becomes
increasingly dominant. The z ¼ 10 realizations are therefore
generated with 5123 particles in a box of 250 Mpc=h, setting
the fundamental mode to kF ¼ ð2π=250Þ ≈ 0.025 h=Mpc.
Measurements of the power spectrum and bispectrum are
done using the codes Pylians [65] and PySpectrum
[66], respectively, with the same settings as used for the
QUIJOTE measurements. Having measured the power spec-
trum and bispectrum from many realizations of the simu-
lation, we obtain the covariance matrix through Eq. (8).
When inverting the covariance matrix from simulations,
we include the Hartlap factor to unbias the numerical
matrix [67].

1. Evaluation of bin-averaged primordial bispectra

In order to compute the Fisher information for primordial
bispectra from the simulations, we need the bin-averaged
derivatives of the theoretical bispectrum with respect to fNL
that appear in Eq. (7):

∂B̂ðk1;k2;k3Þ
∂fNL

¼ 1

V123

Z
k1

d3q1

Z
k2

d3q2

Z
k3

d3q3

∂Bðq1;q2;q3Þ
∂fNL

¼ 1

V123

Z
k1

d3q1

Z
k2

d3q2

Z
k3

d3q3

×

�Y3
i¼1

Mðqi;zÞ
�
Bζðq1;q2;q3ÞjfNL¼1; ðC1Þ

where the hat denotes a bin-averaged quantity, and the
volume of the bin is given by

V123 ¼
Z
k1

d3q1

Z
k2

d3q2

Z
k3

d3; q3; ðC2Þ

and the integrals denote a binning similar to that of the
simulation measurements—i.e., over spherical shells with
centers ki and width ½ki − 3kF=2; ki þ 3kF=2�.

2. Orthogonal shape

When computing the bin-averaged orthogonal shape
bispectrum, one realizes that it becomes negative for certain
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triangle configurations. For the coarse binning (Δk ¼ 3kF)
of the simulation data we use, the bin-averaged bispectrum
in Eq. (C1) suffers from cancellations within the bin,
removing part of the signal. Since remeasuring the bispec-
trum in QUIJOTE simulations with finer binning goes
beyond the scope of this paper, we decided to omit these
results. Nonetheless, our predictions in the thin bin
approximation are presented in Fig. 4 and for z ¼ 0 agree
well with the simulation results presented in Ref. [56].

APPENDIX D: DETAILS ON THE FISHER
MATRIX IN THE THIN BINS LIMIT

To produce our theoretical predictions of the loss of
constraining power due to non-Gaussian covariance, we
take the continuous limit of Eq. (7) while approximating
the inverse covariance matrix.
As explained in the main text, this allows us to probe a

wide range of scales at low computational cost. The main
complication for Eq. (12) is to explicitly compute the
inverse covariance as a function of triangle configurations.
To this end, we expand the inverse using a Neumann series:

C−1 ¼
X∞
n¼0

ð−C−1
G CnGÞnC−1

G ; ðD1Þ

such that we never have to invert the non-Gaussian covari-
ance matrix that contains off-diagonal terms. Hence, the
Fisher matrix becomes the sum of infinitely many terms:

Fab ¼
X∞
n¼0

X
TT 0

∂BT

∂pa
ðð−C−1

G CnGÞnC−1
G ÞTT 0

∂BT

∂pb
: ðD2Þ

Since the terms in this sum are increasingly complicated to
compute (in the continuous limit, every matrix multipli-
cation becomes an integral over triangle configurations),
we choose to approximate the expansion using

Fab ¼
X
TT 0

∂BT

∂pa
ðC−1

G ÞTT 0
∂BT

∂pb

þ
X∞
n¼1

ðPTT 0
∂BT
∂pa

ð−C−1
G CnGC−1

G ÞTT 0
∂BT
∂pb

Þn
ðPTT 0

∂BT
∂pa

ðC−1
G ÞTT 0

∂BT
∂pb

Þn−1

¼ FG
ab þ

X∞
n¼1

ð−1Þn ðδFnG
ab Þn

ðFG
abÞn−1

; ðD3Þ

which can be recognised as the expansion of Eq. (13). The
approximation of Eq. (D3) seems to work reasonably well
in the range of kmax which we compare with simulation
results (see Fig. 1 in the main text). On the other hand, our
key result is that these non-Gaussian terms are actually
important; therefore, we expect our approximation to break
down. This motivates further work in defining a proper
estimator for primordial non-Gaussianity in the presence of
non-Gaussian covariance terms.

APPENDIX E: DETAILS ON THE
PUMA ANALYSIS

We perform the analysis of the impact of non-Gaussian
covariance on the PUMA survey along the lines of Ref. [23].
We use a binning of Δz ¼ 0.1 between 2 < z < 6. The
largest available scale is set by the volume VsðzÞ of the
redshift bin through kminðzÞ ¼ kFðzÞ ¼ 2π=LðzÞ, where
LðzÞ ¼ VsðzÞ1=3, VsðzÞ¼ 4π

3
ðrðzþΔzÞ3− rðz−ΔzÞ3Þ and

rðzÞ is the comoving distance to redshift z in units
of Mpc=h.

1. Foregrounds

The largest scale is set by a foreground cut in the line-of-
sight direction (kk;min ¼ 0.01 h=Mpc), removing much of
the dependence on the choice of redshift binning. We limit
ourselves to linear scales by choosing kmaxðzÞ to be
0.5kNLðzÞ or 0.75kNLðzÞ. We model the foreground wedge
by excluding all modes for which

kk <
rðzÞHðzÞ
cð1þ zÞ sin ð0.66NwθFOVðzÞÞ × k⊥: ðE1Þ

FIG. 4. Similar plots to Figs. 1 and 2, but now for orthogonal
non-Gaussianity.
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HereHðzÞ is the Hubble parameter, θFOVðzÞ ¼ λ21ðzÞ=Deff ,
λ21ðzÞ is the redshifted 21-cm wavelength in meters, and
Deff ¼ ð ffiffiffiffiffiffiffi

0.7
p

× 6 mÞ is the effective dish size of the
PUMA setup. Nw determines the severity of the foreground
wedge. We apply a pessimistic wedge cut of Nw ¼ 3 and a
foreground cut kk;min ¼ 0.01 h=Mpc, in order to show that

the loss of constraining power due to non-Gaussian
covariance persists in such a setup. Finally, the largest
and smallest accessible scales in the perpendicular direction
are set by

k⊥;maxðzÞ¼
2πDmax

λ21ðzÞrðzÞ
; k⊥;minðzÞ¼

2π

rðzÞθFOVðzÞ
; ðE2Þ

where Dmax ¼ 700 m is the largest baseline of the PUMA
setup. We show all the relevant scales together in Fig. 5.

2. The hydrogen power spectrum and bispectrum

The calculation of hydrogen correlation functions in
redshift space is significantly more involved than the matter
field case from the modeling point of view. Besides
nonlinearities in the matter field, we need to account for
the biased relation between the hydrogen and matter
distributions, redshift space distortions, and stochasticity
introduced by the discreteness effects and Poisson noise.
A complete explanation of these modeling efforts can be
found in Ref. [23]. Here we quote the hydrogen power
spectrum and bispectrum for reference, defined as

PHIðz; kÞ ¼ PNðz; kÞ þ TbðzÞ2DP
FOGðz; kÞ

× ½Z1ðz; kÞ2PL
δ ðz; kÞ þ PεðzÞ�; ðE3Þ

and

BHIðz; k1; k2; k3Þ ¼ TbðzÞ3ðDB
FOGðz; k1; k2; k3Þ

�Y3
i¼1

Z1ðz; kiÞBpnG
δ ðk1; k2; k3Þ

þ 2Z1ðz; k1ÞZ1ðz; k2ÞZ2ðz; k1; k2ÞPL
δ ðz; k1ÞPL

δ ðz; k2Þ þ 2 perm

�

þ PεεδðzÞ
�X3
i¼1

Z1ðz; kiÞPL
δ ðz; kiÞ

�
þ BεðzÞ; ðE4Þ

where PN is the instrumental noise, TbðzÞ is the brightness
temperature of the 21-cm signal at a given redshift,
Pε; Pεεδ; Bε are stochastic noise contributions, Z1, Z2 are
the first- and second-order redshift space kernels, BpnG

δ is
the primordial contribution to the matter bispectrum as used
in Eq. (C1), and DB

FOG models the finger-of-God (FOG)
dumping effect. For the explicit expressions of these
quantities, we refer to Ref. [23]. The redshift space kernels
contain bias parameters fb1; b2; bs2 ; bΨ; bΨδg, as well as
the linear growth rate f due to redshift space distortions
(RSDs). The scale-dependent biases fbΨ; bΨδg can be
modeled in terms of fb1; b2; fNLg (though see Ref. [68]
for a study of this approximation). This means that

primordial non-Gaussianity enters not only through
BpnG
δ , but also through the terms involving Z1, Z2 that

contain the scale-dependent biases. Finally, the FOG factor
is modeled using the velocity dispersion σv. In this work,
we are only interested in the signal-to-noise ratio for fNL
coming from the hydrogen bispectrum; hence, the total
number of parameters including the stochastic noise con-
tributions equals 8:

p ¼ ffNL; b1; b2; bs2 ; f; σv; Pεεδ; Bεg: ðE5Þ

We calculate the Fisher matrix of the eight parameters
that enter the hydrogen bispectrum, with and without

FIG. 5. Smallest and largest accessible scales as a function of
redshift for the PUMA survey. The smallest overall scale kmax is
determined by the nonlinear scale. The largest overall scale kmin is
set by the volume of the redshift bin and hence depends on the
choice of binning. The smallest and largest scales in the
perpendicular direction, k⊥;max and k⊥;min, are set by properties
of the experiment. Finally, we apply a foreground cut kk;min ¼
0.01 h=Mpc in the line-of-sight direction that effectively replaces
kmin, removing most dependence on the choice of binning.
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non-Gaussian covariance at each redshift bin using
the weighted estimator approach described above [40].
Contrary to Ref. [23], we do not account for theoretical
errors on the bias parameters in our analysis, which adds
additional covariance (including off-diagonal) to account
for uncertainties in the bias model along the lines of
Ref. [69]. Once we have the Gaussian and non-Gaussian
Fisher matrices, we marginalize over the seven nuisance

parameters by inverting the Fisher matrix at every redshift.
The marginalized uncertainty for fNL is then given by

σfNLðzÞ ¼ ðF−1ðzÞÞ1=2fNLfNL
: ðE6Þ

The ratio of the estimated uncertainty including non-
Gaussian covariance over Gaussian covariance is shown
in Fig. 3.
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