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We test the assumption of entropy conservation between big bang nucleosynthesis and recombination by
considering a massive particle that decays into a mixture of photons and other relativistic species. We
employ Planck temperature and polarization anisotropies, COBE/FIRAS spectral distortion bounds, and
the observed primordial deuterium abundance to constrain these decay scenarios. If between 56% and 71%
of the decaying particle’s energy is transferred to photons, then Neff at recombination is minimally altered,
and Planck data alone allows for significant entropy injection. If photons are injected by the decay, the
addition of spectral distortion bounds restricts the decay rate of the particle to be ΓY > 1.91 × 10−6 s at
95% C.L. We find that constraints on the energy density of the decaying particle are significantly enhanced
by the inclusion of bounds on the primordial deuterium abundance, allowing the particle to contribute at
most 2.35% (95% C.L.) of the energy density of the Universe before decaying.
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I. INTRODUCTION

An underlying assumption of the standard cosmological
model is that the comoving entropy density of relativistic
species is conserved. However, many alternative scenarios
include entropy injection into the thermal bath of relativistic
particles. Extreme entropy injection is needed to completely
repopulate the relativistic bath after an early matter-
dominated era [1–4]. Minor entropy injections that only
make small alterations to the radiation density have been
proposed to alter the relic darkmatter abundance after thermal
freeze-out [5,6], change the prerecombination expansion
history [7–9], and even relax the Hubble tension [10,11],
which is a discrepancy between the present-day expansion
rate inferred from local measurements and that inferred from
the cosmic microwave background (CMB) [12–14].
Significant entropy injections, such as those used to

transition out of an early matter-dominated era, must be
complete before neutrino decoupling in order to avoid
altering the light-element abundances predicted by standard
big bang nucleosynthesis (BBN) and impacting the CMB
anisotropies. Therefore, significant entropy injection is
generally constrained to have completed at temperatures
hotter than about 4 MeV [15,16].
Minor entropy injections can occur during or after

BBN, but are heavily constrained by their influence
on the expansion rate, baryon-to-photon ratio, and

photodisintegration of light nuclei [17–23]. Such scenarios
have been thoroughly considered in the context of decaying
axionlike particles [24–27] for which observations of
primordial light-element abundances and the CMB provide
stringent constraints. However, these investigations focus
on specific axion models and therefore cannot place
comprehensive constraints on general entropy injection.
In this work, we test the assumption of entropy con-

servation between BBN and recombination by considering
a generic massive particle that decays into a mixture of
photons and other relativistic species (e.g., dark radiation).
We explore the bounds that can be placed on the particle
decay rate, ΓY , and the contribution that the particle makes
to the energy composition of the Universe before it decays.
Since these constraints depend on what relativistic species
this massive particle decays into, we also explore what
bounds can be placed on fγ , the fraction of the decaying
particle’s energy that is transferred to photons.
We restrict our analysis to particles with rest energies less

than 3.2 MeV such that the maximum energy of any decay
products is less than the binding energy of beryllium
(1.59 MeV). Photons generated by decaying particles with
larger masses would photodisintegrate light nuclei and alter
the abundances of primordial elements such as deuterium,
helium, and lithium. Photodisintegration of deuterium has
been shown to place very stringent constraints on such
entropy injections [22,23,27–31]. We note that the injection
of photons with energies between 1.59 and 2.22 MeV
would destroy beryllium and not deuterium, leading to a
potential solution to the lithium problem (e.g., [32]).
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Although the inference of the primordial lithium abundance
from observations of metal-poor stars is subject to uncer-
tainties in stellar modeling [33,34], these observations do
establish a minimum primordial lithium abundance, and
therefore rule out energy injections that cause the lithium
abundance to fall below this level. We do not need to
consider such bounds under the assumption that the mass of
the decaying particle is less than 3.2 MeV.
For a particle that is in kinetic equilibrium with the

Standard Model to not contribute to the photodisintegration
of beryllium and be nonrelativistic at temperatures less
than 1 MeV, it must have a mass in the range of
2.7 MeV≲m≲ 3.2 MeV.1 However, this tight mass win-
dow can be relaxed if the decaying particle is part of a
hidden sector that is not thermally coupled to the Standard
Model [36–40]. Hidden sector particles could decay into
dark radiation [41,42] or Standard Model particles [43–45].
If the hidden sector was originally in kinetic equilibrium

with the Standard Model particles and then decoupled
while all of the Standard Model particles were relativistic,
the hidden sector could be significantly colder than
the visible sector. For example, THS=TSM ≈ 0.465 when
TSM ¼ 1 MeV if the Y particles are the only relativistic
component of the hidden sector at decoupling. In this case,
a hidden sector boson with a mass of 1.3 MeV≲m <
3.2 MeV would be nonrelativistic at proton-neutron freeze-
out and be light enough such that any entropy injection
from the decay would not result in photodisintegration of
beryllium. It is also possible that the hidden sector was
never in kinetic equilibrium with the Standard Model, in
which case the hidden sector could be arbitrarily cold. We
assume the hidden sector to be sufficiently cold such that
the decaying particle is nonrelativistic by neutron-proton
freeze-out. Under this assumption, our calculations do not
depend on the specific mass of the decaying particle.
To constrain a generic decaying particle we employ

Planck measurements of the CMB temperature and
polarization anisotropies [46], the most recent measure-
ment of the primordial deuterium abundance [47], and the
COBE/FIRAS limit on spectral distortions [48,49]. Entropy
injection before recombination will alter the effective
number of relativistic species, Neff , resulting in a change
in the expansion rate. Alterations to the prerecombination
expansion history may be constrained by observations of
CMB anisotropies [50]. Specifically, altering the expansion
rate via Neff affects the amplitude of small scale perturba-
tions [51,52] and introduces a phase shift to the baryon-
photon acoustic oscillations [53–55]. Observations of the
primordial deuterium abundance are an excellent way to
provide additional constraining power on nonstandard
models, with measurements now reaching 1% precision
[47]. Finally, scenarios that inject photons before

recombination may be constrained by CMB spectral dis-
tortions [56–58].
We combine the constraining power of CMB anisotropy

data, deuterium measurements, and CMB spectral distor-
tions by employing a Markov Chain Monte Carlo (MCMC)
analysis. In doing so, we derive bounds on the amount and
type of radiation that can be injected by a decaying hidden
sector particle.
In many ways, our investigation generalizes the work of

Millea et al. [25] who considered nonphotodisintegrating
injections from axionlike particles that decay solely into
photons between BBN and recombination. The specific
coupling of these axionlike particles to photons restricts the
possible parameter space that can be explored. We remain
agnostic regarding a specific particle model. In doing so,
this work has three key distinctions from Millea et al. [25]:
(1) we are able to derive a broadly applicable bound on the
maximum level of entropy injection allowed between BBN
and recombination, (2) we can consider a particle that
decays into photons and dark radiation, and (3) our full
analysis of CMB anisotropies allows us to investigate the
effects that entropy injection has on standard cosmological
parameters, includingH0. We determine that minor entropy
injection from a hidden sector particle is not a promising
avenue for addressing the Hubble tension. A more exotic
change to the Universe’s radiation content, such as the
inclusion of strongly interacting radiation [11], is needed to
significantly increase the value of H0 inferred from
observations of the CMB.
The structure of this paper is as follows. In Sec. II, we

describe the model for our decaying particle. In Sec. III, we
explore the primary effects that the decay has on Neff and
the primordial abundances of helium and deuterium, and
we review the expected constraints from spectral distor-
tions. We outline the choice of priors and likelihood
functions for our MCMC analysis in Secs. IV and V
discusses the results of these analyses. We conclude with
a summary in Sec. VI, and we include an Appendix that
contains a derivation of our analytical model and technical
details of our modifications to the public code known as
CLASS (Appendix A), a derivation for the postdecay Neff
(Appendix B), and supplemental MCMC results
(Appendix C).

II. DECAYING PARTICLE MODEL

We consider a subdominant hidden sector Y particle that
decays into photons and other relativistic particles (e.g.,
dark radiation) sometime between BBN and recombina-
tion. The equations governing the background evolution for
the energy density of the Y particle (ρY), photons (ργ), and
other ultrarelativistic species (ρur) are

d
dt

ρY þ 3HρY ¼ −ΓYρY; ð1Þ1A massive boson transitions from evolving as a−4 to a−3 at a
pivot temperature of Tp ¼ m=2.7 [35].
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d
dt

ργ þ 4Hργ ¼ fγΓYρY; ð2Þ

d
dt

ρur þ 4Hρur ¼ ð1 − fγÞΓYρY; ð3Þ

where ΓY is the decay rate of the Y particle, H ≡ _a=a is the
Hubble parameter (with the overdot referring to a proper
time derivative), and fγ dictates what fraction of the
decaying particle’s energy is transferred to photons.2 We
define the reheat temperature, TRH, by

ΓY ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3m2
pl

�
π2

30
g�T4

RH

�s
; ð4Þ

wherempl is the Planck mass and g� is the effective degrees
of freedom of Standard Model relativistic particles. Since
we are only considering reheat temperatures after BBN
(TRH < 0.01 MeV), g� ¼ 3.38.
We assume neutrinos are composed of two massless

species and one massive species with m3 ¼ 0.06 eV. For
simplicity, we also assume the abundance of m3 does not
change due to the Y decay; while the injection of photons
from the Y particle does cause a nonstandard abundance of
m3 (see Appendix A), no new active neutrinos are produced
from the Y decay. Since we assume that the Y particle
decays after neutrino decoupling, any active neutrinos
produced by the decay would lead to a nonthermal
distribution, which would impact the matter power spec-
trum [60–63]. However, the minimal assumption of m3 ¼
0.06 eV is well below cosmological bounds on the sum of
neutrino masses [64]. Therefore, while we assume no new
active neutrinos are produced by the Y decay, we do not
expect relaxing this assumption to have a significant impact
on our results.
We include the two massless neutrinos in ρur and denote

the energy density of the massive neutrino as ρncdm (non-
cold dark matter). Since the massive neutrino is relativistic
prior to recombination, the total radiation energy density is
ρr ¼ ργ þ ρur þ ρncdm for the reheat temperatures that we
consider.
We parameterize how much energy density the Y particle

contributes to the Universe via the maximum of ρY=ρr,
denoted as maxðρY=ρrÞ. Under the assumption of radiation
domination, this ratio can be expressed as

max

�
ρY
ρr

�
¼ e

1
2
ðΓ̃Y−1Þ ρY;i

ρr;i
Γ̃−1=2
Y ; ð5Þ

where ρx;i ≡ ρxðaiÞ for species x, Γ̃Y ≡ ΓY=Hi,
Hi ≡HðaiÞ, and ai is the initial scale factor of our
numerical solution (see Appendix A for a derivation).
We set ργ;i such that the energy density of photons after

Y-induced entropy injection corresponds to the fiducial
Ωγ;0 determined by the measured CMB temperature of
T0 ¼ 2.7255 K. This initial condition for ργ is set by the
parameterΩ0

γ;0 such that the initial photon energy density is
ργ;i ¼ Ω0

γ;0ρcrit;0a
−4
i . The value of Ω0

γ;0 can be calculated
directly from our decay parameters maxðρY=ρrÞ and fγ
(see Appendix A). We choose ai to occur after electron-
positron annihilation so the initial values for ργ;i and ρur;i are
related by

ρur;i þ ρncdm;i ¼
7

8
ð3.044Þ

�
4

11

�
4=3

ργ;i; ð6Þ

where we enforce the effective number of neutrinos to be
3.044 predecay. The value of ρncdm;i is entirely determined
by ργ;i (see Appendix A), and the initial Hubble rate will
be dominated by ρr;i ¼ ργ;i þ ρur;i þ ρncdm;i. From this, a
value for ρY;i can be directly calculated from the para-
meters maxðρY=ρrÞ and ΓY via Eq. (5). Therefore, we
can fully describe the decay of the Y particle with the
parameters maxðρY=ρrÞ, fγ , and ΓY . Figure 1 depicts a
solution to Eqs. (1)–(3) for select values of Γ̃Y , fγ ,
and maxðρY=ρrÞ.

FIG. 1. Numerical solution of Eqs. (1)–(3) for Γ̃Y ¼ 10−6,
fγ ¼ 0.6, and maxðρY=ρrÞ ¼ 0.1. The Y particle, taken to be
nonrelativistic, initially evolves as ρY ∝ a−3 until the expansion
rate equals the decay rate near a=ai ≈ 103. Both ργ and ρur scale
as ρ ∝ a−4 up until there is significant injection from the Y decay
at a=ai ≈ 103. Photons and other ultrarelativistic species gain
60% and 40% of the decay products, respectively. Then, ργ and
ρur continue again as a−4 after entropy injection. The comoving
energy densities (ρa4) for photons and other relativisitc particles
are plotted in the bottom panel to emphasize this evolution.

2More precisely, the terms on the right-hand side of these
equations are proportional to mYnY [59], but mYnY ¼ ρY if the Y
particle has negligible kinetic energy.
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III. EFFECTS OF DECAYING PARTICLE

The decaying Y particle’s imprint on the CMB
anisotropy spectrum is primarily determined by two effects:
the decay products change Neff at recombination and they
change the primordial helium (YHe) and deuterium (D/H)
abundances by altering the expansion rate and baryon-
to-photon ratio at BBN. In this section, we discuss these
effects as well as distortions in the CMB frequency
spectrum induced by the Y decay. We compute the
CMB temperature anisotropy power spectrum and spectral
distortions with the Cosmic Linear Anisotropy Solving
System (CLASS) [65]. For a discussion of the modifications
made to CLASS during the implementation of our model, see
Appendix A.

A. Postdecay Neff

Since the decay of the Y particle injects free-streaming
radiation before recombination, the effective number of
relativistic species,Neff , will deviate from the fiducial value
of 3.044. After electron-positron annihilation, entropy
conservation dictates that the temperature ratio between
neutrinos and photons is Tν=Tγ ¼ ð4=11Þ1=3. Entropy
injection from the Y decay will alter this temperature ratio
by adding either photons or other relativistic species. We
can parametrize this change in Tν=Tγ as a change in Neff

defined by

ρur þ ρncdm ¼ 7

8
Neff

�
4

11

�
4=3

ργ: ð7Þ

To relate the postdecay Neff to our model parameters, we
first define

g≡ ρr;fa4f
ρr;ia4i

; ð8Þ

where ρr;ia4i and ρr;fa4f are the comoving radiation energy
densities before and after the Y-induced entropy injection,
respectively. One would expect the change in comoving
radiation energy density as a result of the Y decay to be
directly dependent on ρY when H ∼ ΓY . Indeed, g is a
simple function of maxðρY=ρrÞ. This can be seen in Fig. 2
where we numerically calculate g for various values of
maxðρY=ρrÞ defined by Eq. (5) and fit the function with a
fourth order polynomial.3

We can employ g to determine the ratio of comoving
energy densities before and after the Y decay for the
individual decay species:

gγ ≡
ργ;fa4f
ργ;ia4i

;

¼ 1þ fγðg − 1Þ
�
1þ 7

8
ð3.044Þ

�
4

11

�
4=3

�
; ð9Þ

gur ≡
ρur;fa4f
ρur;ia4i

;

¼ 1þ ð1 − fγÞðg − 1Þ
Nur

�
3.044þ 8

7

�
11

4

�
4=3

�
: ð10Þ

Here, Nur ¼ 2.0308 is the effective number of ultrarela-
tivistic species before the Y decay, excluding the single
massive neutrino (see Appendix A).
The single massive neutrino species is still relativistic at

recombination and contributes to Neff . As shown in
Appendix B, it follows that the postdecay Neff is

Neff ¼
1

gγ
½3.044þ Nurðgur − 1Þ�: ð11Þ

This relationship is shown in Fig. 3 where we plot contours
of the postdecay Neff for a range of decay scenarios
described by fγ and maxðρY=ρrÞ (red dotted lines). Most
notably, there is a “sweet spot” fraction of fγ ≃ 0.59 that
maintains Neff ¼ 3.044 after the decay for all values of
maxðρY=ρrÞ (shown by the solid red line). Figure 3
shows that fγ < 0.59 corresponds to an increase in Neff

since the decay of the Y particle increases the relative
energy density of ultra-relativistic species. Conversely,

FIG. 2. Relationship between maxðρY=ρrÞ defined by
Eq. (5) and the ratio of comoving radiation energy densities
before and after Y entropy injection (black line). This relationship
is independent of the reheat temperature of the Y particle. We fit
this trend with a fourth order polynomial gðxÞ ¼ 0.0274x4−
0.1525x3 þ 0.6458x2 þ 2.0727xþ 1, where x ¼ maxðρY=ρrÞ for
shorthand (red dashed line).

3If all of the Y energy density was instantaneously transferred
to ρr, then g would equal 1þmaxðρY=ρrÞ. However, as can be
seen from Fig. 1, most of the change in ρra4 occurs after ρY=ρr is
maximized. As a result, g − 1 > maxðρY=ρrÞ.
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fγ > 0.59 decreases ρur=ργ and thereby results in a
decrease in Neff .
Some combinations of fγ and maxðρY=ρrÞ will not be

favored by Planck data. This is demonstrated by the orange
contour in Fig. 3, showing the 2018 Planck TT, TE, EEþ
lowE reported bounds on Neff [46]. For scenarios in which
fγ deviates from the “sweet spot” value, Planck Neff

bounds require smaller values of maxðρY=ρrÞ. However,
it is important to note that naively applying these Planck
Neff bounds to our model parameters would be incorrect, as
doing so would ignore the fact that there is a degeneracy
between Neff and the primordial helium abundance, YHe,
which is also affected by the Y particle and its decay
products.
To understand this degeneracy with YHe, we must first

understand how changes in Neff affect the CMB anisotropy
spectrum. Increasing Neff increases the prerecombination
expansion rate and therefore decreases the sound horizon
rs ∝ 1=H. In order to maintain the precisely measured
angular size of the sound horizon, θs, one must increase H0

in order to decrease the angular diameter distance to the
CMB such that θs is fixed. Meanwhile, the photon diffusion
length scales as rD ∝

ffiffiffiffiffiffiffiffiffi
1=H

p
and so increasing Neff while

simultaneously keeping θs fixed leads to an increase in the
angular size of the diffusion length, θD [51,52]. In
summary, an increase in Neff results in more Silk damping
on small angular scales (and vice versa).
Altering the helium abundance can mitigate the effects

of changing Neff on the dampening tail. Decreasing YHe

results in more free electrons at recombination, which
decreases the Compton mean free path, resulting in less
photon diffusion and thus less damping of small-scale
anisotropies. This behavior is depicted in Fig. 4. The
dotted orange line shows an increase in Neff resulting in
more damping on small scales compared to ΛCDM (for
fixed ωb, zeq, and θs, where ωb ≡Ωb;0h2 is the present-day
baryon energy density and zeq is the redshift of matter-
radiation equality). Simultaneously decreasing YHe as
Neff increases, shown by the blue dashed line, can mitigate
the damping. The phase shift observed in Fig. 4 is a
lingering effect of changing Neff ; free-streaming relativistic
particles generate a unique phase shift in the acoustic
peaks [53–55].
Therefore, even though our model parameters fγ and

maxðρY=ρrÞ conspire to produce a nonzero ΔNeff , altering
YHe in a inverse manner (i.e., raising YHe as Neff decreases,
or vice versa) can mitigate the effects of Silk damping that a
changing Neff causes. Interestingly, our model already
necessitates an increase in YHe by altering the expansion
rate and baryon-to-photon ratio at BBN.

B. Change in primordial abundances

Since the injection of photons from the Y decay
necessitates a decrease in ργ predecay, any fγ ≠ 0 decay
alters the baryon-to-photon ratio at the time of BBN, ηBBN.
If η0 is the baryon-to-photon ratio at recombination inferred
by η0 ¼ 6.0 × 10−10ðωb=0.022Þ, then the increased ratio
prior to the decay of the Y particle is

FIG. 3. Postdecay Neff contours determined by fγ and maxðρY=ρrÞ via Eq. (11) are shown by the dotted red lines. The fiducial Neff
value of 3.044 is maintained as long as the photon fraction is fγ ¼ 0.5913 (solid red line). We include the 2018 Planck TT, TE,
EEþ lowE 95% confidence limits on Neff (orange shaded region) to illustrate the Y particle parameter space that is naively consistent
with CMB observations. Additionally, constraints on ηBBN derived from observations of the deuterium abundance [47] are shown by the
blue shaded region. The dashed purple lines show the values of ηBBN calculated via Eq. (12).
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ηBBN ¼ g3=4γ η0: ð12Þ

Given that gγ is completely determined by fγ and
maxðρY=ρrÞ via Eq. (9), we are able to place constraints
on our decay parameters via constraints on ηBBN. This
relationship is shown in Fig. 3 where we calculate ηBBN as a
function of fγ and maxðρY=ρrÞ for a fixed value of ωb ¼
0.02238 (dashed purple lines). The blue contour shows the
parameter space that is allowed by the bounds ηBBN ¼
ð6.119� 0.100Þ × 10−10 derived from observations of the
primordial deuterium abundance [47]. Since large fγ values
correspond to significant photon injection, any increase in
maxðρY=ρrÞ at a large fγ leads to a significant change in
ηBBN. On the other hand, we can see that large values of
maxðρY=ρrÞ are allowed by bounds on ηBBN as fγ → 0

since fewer photons are being injected by the decay and so
gγ approaches unity (i.e., ηBBN → η0).
Much like the bounds on Neff discussed in Sec. III A,

these bounds on ηBBN seen in Fig. 3 are only meant to
depict an approximation for the allowed parameter space;
the true bounds will be subject to uncertainties in ωb, which
are taken into account later. Furthermore, the inference of
ηBBN from deuterium assumes a standard expansion history
during BBN. Decay scenarios with large maxðρY=ρrÞ and
short lifetimes that end soon after the end of BBN
(τY ≈ 104 sec) will contribute a non-negligible energy
density during BBN.
We therefore altered the BBN code PArthENoPe v3.0 [66] to

include the contribution of ρY to the expansion rate during

BBN. We modified PArthENoPe to accept a new input
parameter, ρBBNY , which is the value of ρY at a reference
temperature of T ¼ 0.1 MeV, and we assume the Y particle
is nonrelativistic at all temperatures less than 1 MeV so that
ρY ∝ a−3. This ρBBNY parameter is entirely determined by
our decay parameters maxðρY=ρrÞ and ΓY . Using our
modified version of PArthENoPe, we created lookup tables
for CLASS that read in ηBBN and ρBBNY and produce values
for the helium and deuterium abundances. These tables
were created with ΔNeff ¼ 0 (our initial conditions ensure
that Neff ¼ 3.044 at BBN) and a neutron lifetime
of τ ¼ 879.4 s.
Since the Y particle is nonrelativistic during BBN and

evolves as ρY ∝ a−3, its contribution to H cannot be
modeled with a constant ΔNeff . Instead, one can think
of the contribution of ρY to the expansion rate during BBN
as an evolving ΔNeff ; at any given temperature, there is a
nonzero ΔNeff that matches the nonstandard Hubble rate
due to the inclusion of ρY [67]. This behavior is demon-
strated in Fig. 5. The black solid lines track the abundances
of deuterium (D/H) and helium (YHe) as a function of ηBBN
for a specific decay scenario in which the Y particle decays
away right after the end of BBN (TRH ¼ 0.01 MeV).
If we then match the Hubble rate at a temperature of
T ¼ 1 MeV using a ΔNeff ¼ 0.0865 (blue dashed line),
then we mostly recover the correct YHe since the abundance
of helium is primarily set by neutron-proton freeze-out

FIG. 4. Effects on the CMB temperature power spectrum from
varying Neff and YHe at fixed ωb, zeq, and θs. Increasing Neff
compared to ΛCDM results in more damping on small scales
(orange dotted line). This effect can be mitigated by decreasing
YHe (blue dashed line). The beat frequency seen in these residuals
is a direct consequence of the free-streaming nature of neutrinos
producing a unique phase shift in the CMB acoustic peaks.

FIG. 5. Dependence of primordial abundances on ηBBN for a
decay scenario that decays right after the end of BBN (black solid
line). Matching the nonstandard Hubble rate during BBN as a
result of ρY with a constant nonzero ΔNeff does not reproduce the
same abundances. Matching Hubble at T ¼ 1 MeV when neu-
tron-proton freeze-out occurs (blue dashed line) is a good
approximation for YHe, but underestimates D/H. Matching
Hubble at T ¼ 0.07 MeV when helium production freezes out
(green dotted line) is a good approximation for D/H, but over-
estimates YHe.
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near T ¼ 1 MeV. However, the abundance of deuterium is
set when helium production freezes out around
T ¼ 0.07 MeV. So, matching at T ¼ 1 MeV correctly
approximates YHe, but fails to yield the correct D/H. In
a similar manner, matching at T ¼ 0.07 MeV with
ΔNeff ¼ 1.6944 (green dotted line) results in a good
approximation for the deuterium abundance, but grossly
overestimates the correct abundance of helium. Therefore,
the contribution of ρY to the Hubble rate during BBN
cannot be captured by a simple constant change to Neff .
The abundances of deuterium and helium are both

sensitive to ηBBN and the expansion rate. Increasing the
expansion rate during BBN leads to an increase in both YHe
and D/H, while increasing ηBBN results in larger YHe and
smaller D/H. Any Y decay scenario in which the decay
products consist of photons sees an increase in both ηBBN
and H, and thus an increase in YHe. On the other hand,
the abundance of deuterium is predominately sensitive
to changes in ηBBN. So, even though ρY increases the
expansion rate during BBN, we expect an overall decrease
in D/H for any fγ ≠ 0 decay scenario.
Finally, we note that all fγ ≠ 0 scenarios result in a larger

YHe compared to ΛCDM while changes in Neff are
symmetric about fγ ≈ 0.59 (see Fig. 3). Therefore, we
expect an asymmetry in the small-scale Silk damping
resulting from decays of different fγ . Decays with
fγ > 0.59 will have a lack of small scale damping from
a decreased Neff , but an increased YHe compensates by
enhancing Silk damping. On the other hand, scenarios with
fγ < 0.59 will have combined damping effects of both an
increased YHe and Neff . This asymmetry suggests a
preference for decay scenarios with fγ > 0.59.

C. Spectral distortions

Deviations from the blackbody spectrum of the CMB,
known as spectral distortions (SDs), are the result of energy
injection into the photon bath of the CMB at a late enough
time such that the photons do not thermalize before
recombination [68–70]. The form of these SDs depends
on the time of energy injection; the era of μ distortions
occurs roughly in the redshift range of 5 × 104 < z <
2 × 106, while y-type distortions result from injection at
z < 5 × 104 [57,71]. For z > 2 × 106, thermalization proc-
esses are very efficient and so any energy injection results
in a temperature shift to the observed blackbody. Since we
will be considering reheat temperatures that correspond to a
range of about 105 < z < 4.5 × 107, μ distortions will have
the most constraining power.
We calculate the distortions in CLASS using a new SD

module based on the work of Lucca et al. [57]. This module
calculates μ and y distortions by

d̃ ¼ Δργ
ργ

����
d
≡

Z
dQ=dz
ργ

· J dðzÞdz; ð13Þ

where d indexes the distortion type,4 dQ=dz is the energy
injection rate, and J dðzÞ is a branching ratio that dictates
the contribution of an energy injection to a specific
distortion type. The energy injection rate can be recast
as a rate with respect to proper time, t, via

dQ=dz
ργ

¼ −
_Q

ð1þ zÞHργ
; ð14Þ

and we define the energy injection rate of our decaying
model as

_QðtÞ ¼ ρYðtÞfγΓYe−ΓYt: ð15Þ

The distortion parameters are then determined by Eq. (13)
and setting μ ¼ 1.4μ̃ and y ¼ ỹ=4.
The COBE/FIRAS satellite measured the blackbody

spectrum of the CMB and determined upper bounds on
the distortions to be jμj < 9 × 10−5 and jyj < 1.5 × 10−5

(95% C.L.) [48,49]. In Fig. 6, we calculate jμj for a
range of fγ and TRH values using CLASS and depict the
parameter space allowed by the COBE/FIRAS bound
by the green shaded region. Here we see that the
COBE/FIRAS bound on μ allows photon injection for
reheat temperatures hotter than about 9 × 10−4 MeV, but
requires that fγ quickly approaches zero for TRH ≲ 9 ×
10−4 MeV (ΓY ≲ 3.08 × 10−7 s).

FIG. 6. Example of expected μ distortion constraints for a
value of maxðρY=ρrÞ ¼ 0.01. The green shaded region shows
the parameter space allowed by the COBE/FIRAS constraint
jμj < 9 × 10−5. Reheat temperatures cooler than TRH ≈ 9 ×
10−4 MeV are only allowed by SDs if fγ → 0.

4Lucca et al. [57] uses “a” to index distortion type, but we
choose to use “d” in order to avoid confusion with scale factor.
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Since the CMB angular scales that are accessible to
Planck (l≲ 2500) are dominated by modes that enter the
horizon at a temperatures below 2 × 10−5 MeV, we can
neglect perturbations related to the Y particle for cases in
which fγ ≳ 0.01 because those values will only be allowed
by SDs when TRH ≳ 9 × 10−4 MeV. However, scenarios
with fγ ¼ 0 are not restricted in reheat temperature by SDs,
and therefore require consideration of the Y perturbation
equations as well as corrections to the ultrarelativistic
species perturbations. We reserve the inclusion of these
perturbations for a subsequent analysis and, in this work,
focus solely on fγ ≥ 0.01. Nevertheless, our results can
be extended to smaller values of fγ , provided that
TRH > 9.5 × 10−4 MeV (ΓY > 3.43 × 10−7 s). For these
decay rates, the posteriors for all parameters are the same
when comparing fγ fixed at either fγ ¼ 0.01 or fγ ¼ 0 (see
Fig. 11 in Appendix C).

IV. ANALYSIS METHOD

We derive constraints for ΓY, maxðρY=ρrÞ, and fγ by
conducting a MCMC analysis using MONTEPYTHON-v3

[72,73] with our modified version of CLASS. This analysis
is implemented with a Metropolis-Hastings algorithm and
flat priors on the base six cosmological parameters
fωb;ωcdm; θs; As; ns; τreiog. We assume neutrinos are com-
posed of two massless and one massive species with
m3 ¼ 0.06 eV. In order to account for the fact that the
Y particle decaying into photons changes Tν=Tγ , we
provide CLASS with a corrected temperature of the massive
neutrino (see Appendix A). We employ Planck high-
lTTTEEE, low-lTT, and low-lEE likelihood functions
[64] and refer to the combination of these data as Planck.
As discussed in Sec. III B, the Y decay affects the

abundances of YHe and D/H through its influence on
ηBBN and the expansion rate during BBN. Current measure-
ments of the deuterium abundance have reached a
∼1% precision level with ðD=HÞ ¼ ð2.527� 0.030Þ ×
10−5 [47]. However, we note that this bound only includes
measurement uncertainty (i.e., σMEAS ¼ 3.0 × 10−7). Cooke
et al. [47] cite uncertainties associated with BBN calcu-
lations for two different values of the dðp; γÞ3He cross
section; using the computationally inferred cross section
leads to a 2σ discrepancy with CMB measurements
of ηBBN, while utilizing the measured cross section sug-
gested by Adelberger et al. [74] yields ηBBN ¼ ð6.119 �
0.100Þ × 10−10. Millea et al. [25] fold in uncertainty
associated with nuclear reaction rates to D/H by assuming
σNUCL ¼ 4.5 × 10−7 and adding uncertainties in quadrature
such that σDH ¼ 5.4 × 10−7. It is unclear which dðp; γÞ3He
cross section is used for this uncertainty, and Millea et al.
[25] assume a linear relationship between D/H and η.
Therefore, we translate the ηBBN¼ð6.119�0.100Þ×10−10

bounds reported by Cooke et al. [47] into an uncertainty in
D/H.We calculateD/H for a range of ηBBN with ourmodified

version of PArthENoPe for ΔNBBN
eff ¼ 0 and a neutron

lifetime of 879.4 sec. We find that D=H ∝ η−1.65BBN for the
range of ηBBN relevant to this work and that this fit is
relatively insensitive to small changes in NBBN

eff . We use this
power law to infer a new fractional uncertainty on D/H
(σDH=DH ¼ 1.65 × σηBBN=ηBBN). Doing so results in
ðD=HÞ ¼ ð2.527� 0.068Þ × 10−5. We create a Gaussian
likelihood function in MONTEPYTHON for D/H for which the
mean and standard deviation are set to be μDH ¼ 2.527 ×
10−5 and σDH ¼ 6.83 × 10−7, respectively. We denote this
Gaussian likelihood as D/H.
Finally, we calculate the spectral distortions μ and y in

CLASS according to Sec. III C. Similar to our constraint on
D/H, we add a Gaussian likelihood for both μ and y. These
Gaussian likelihood functions were taken to have a mean of
zero and a 2σ deviation equal to the respective upper
bounds jμj < 9 × 10−5 and jyj < 1.5 × 10−5 determined by
COBE/FIRAS.We refer to the combination of these μ and y
likelihoods as SD.
We used the Gelman-Rubin [75] criterion jR − 1j < 0.04

to asses convergence of our MCMC chains.5 Post-
processing of chains was done using GETDIST [76] and
removing the first 30% of points as burn-in.

A. Initial priors

Figure 3 demonstrates that naive bounds from Neff
would leave maxðρY=ρrÞ unconstrained if fγ is such that
Neff ¼ 3.044 after the Y decay. The addition of ηBBN
bounds, however, suggests that maxðρY=ρrÞ would be
limited to less than 0.05. Therefore, we choose to
sample maxðρY=ρrÞ ¼ ½0; 0.07� when including the D/H
likelihood. Otherwise, when only considering Planck
or Planckþ SD, we sample maxðρY=ρrÞ ¼ ½0; 0.8� in
order to sufficiently explore the asymptotic behavior
around the “sweet spot” fγ shown in Fig. 3. A value of
maxðρY=ρrÞ ¼ 0 corresponds to standard ΛCDM.
As discussed in Sec. III C, the smallest scale

accessible to Planck enters the horizon at a temperature
of about 2 × 10−5 MeV. Therefore, a full perturbation
analysis of the Y particle and its decay products is
required for reheat temperatures TRH ≲ 2 × 10−5 MeV.
We retain this for a subsequent analysis and instead restrict
our current work to TRH > 2 × 10−5 MeV. Furthermore,
CLASS begins evolving a given perturbation mode
outside the cosmological horizon with adiabatic initial
conditions. In order to avoid the Y decay influencing these
initial conditions, we choose to only consider TRH ≥ 9.5 ×
10−4 MeV so that Y-induced entropy injection is complete
by the time CLASS begins evolving perturbation modes
relevant to Planck (k≲ 0.18 Mpc−1 or l≲ 2500).

5All ΛCDM runs have jR − 1j < 0.01. This bound of 0.04 was
selected due to the non-Gaussian nature of the posteriors of our
decay parameters.
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Assuming BBN has completed by T ≈ 0.01 MeV, this
restriction on TRH leads to a prior of TRH ¼ ½9.5 ×
10−4; 10−2� MeV (ΓY ¼ ½3.43 × 10−7; 3.80 × 10−5� s−1).
Spectral distortions will confine fγ to be very small as

TRH approaches 9.5 × 10−4 MeV. Therefore we would like
to sample small values of fγ for colder reheat tempera-
tures, but explore fγ of order unity when TRH ≫
9.5 × 10−4 MeV. A flat prior of fγ ¼ ½0; 1� fails to suffi-
ciently sample small values of fγ as TRH → 9.5×
10−4 MeV, but using a flat prior on log10 fγ does not
properly depict the parameter space of large fγ .
Furthermore, small values of fγ , such as fγ ¼ 10−5, would
be indicative of a finely tuned decay scenario. To avoid
these scenarios and achieve sufficient sampling, we choose
to sample fγ ¼ ½0.01; 1�. The initial priors used in our
analysis are summarized in Table I.

V. RESULTS

Figure 7 shows the resulting posterior distributions of the
decay parameters as well as ωb, ωcdm, As, ns, H0, YHe, and
D/H, with 68% and 95% C.L. contours for Planck,
Planckþ SD, and Planckþ SDþ D=H datasets. Table II
summarizes the mean and 2σ errors for each parameter. For
the posteriors of all base six cosmological parameters, see
Fig. 12 in Appendix C.
In Fig. 7, it can be seen that the Planck data favors

changes in ωb, ωcdm, As, andH0 in order to accommodate a
Y decay scenario. For cases in which fγ is greater than the
“sweet spot” value of 0.5913, Neff is less than 3.044, which
results in a larger zeq compared toΛCDM. The Planck data,
being very sensitive to zeq via the early ISWeffect, favors a
decrease in ωcdm in order to restore zeq to its fiducial value.
Furthermore, the Y induced entropy injection directly alters
the prerecombination expansion history and therefore the
size of the sound horizon, rs. In the case of fγ > 0.5913, rs
is increased compared to ΛCDM. The decrease in ωcdm that
is required to maintain a fixed zeq results in a larger angular
diameter distance, dA. However, the rate of change for rs is
greater than that of dA and thus leads to an increase in the
angular size of the sound horizon θs. Since θs sets the
anisotropy peak locations, the Planck data tend to reduce
this increase in θs by decreasing H0.
This process of fixing zeq and θs is illustrated in Fig. 8.

The top left panel of Fig. 8 depicts the power spectra for

two decay scenarios described by maxðρY=ρrÞ ¼ 0.2,
TRH ¼ 3.16 × 10−3 MeV, and either fγ ¼ 0.4 (dotted red
line) or fγ ¼ 0.7826 (dashed blue line). These values of fγ
correspond to equivalent deviations in either direction
about the sweet spot fγ ¼ 0.5913. Then, in the top right
panel of Fig. 8, we alter ωcdm in order to fix zeq and change
h≡H0=ð100 km s−1 Mpc−1Þ to compensate for the change
in θs. Even though θs is fixed, there is a lingering offset in
peak locations. As mentioned in Sec. III A, this phase shift
is caused by the addition of extra free-streaming radiation
[53–55]. Furthermore, the alteration of ωcdm results in an
amplification or suppression of all modes. Therefore,
Planck data adjusts the amplitude As. The bottom panel
of Fig. 8 shows a continuation of the top right panel, with
corrections to ωcdm and h, but now with an additional
change in As such that the first peak height is the same as
that of the best-fit ΛCDM spectrum.
The lingering small-scale damping effects of Neff and

YHe discussed in Sec. III A are now seen in the bottom
panel of Fig. 8. The case of fγ ¼ 0.7826 (Neff < 3.044) has
a lack of small scale damping compared to ΛCDMwhereas
the fγ ¼ 0.4 (Neff > 3.044) case has too much damping on
small scales. Changing the spectral index, ns, can com-
pensate for this nonstandard Silk damping [52].
Nonstandard damping can also be compensated by changes
in ωb such that the number of free electrons increases or
decreases and alters the mean free path of photons.
However, changing ωb has the unintended consequence
of affecting the height ratio of odd and even peaks and is
therefore a costly approach to accommodating a Y decay
scenario.
The corrections to ωcdm, h, As, ns, and ωb, described

above are apparent in the Planck 1D posteriors of Fig. 7.
However, note that there is an asymmetry in these correc-
tions. The 1D posterior of ωcdm, for example, is not
symmetric about the ΛCDM distribution. This asymmetry
is due to the increase in YHe discussed in Sec. III B. For
fγ > 0.5913, the decrease in Neff is partially compensated
by an increase in YHe. Therefore, decreasing ns or ωb can
compensate for values of fγ > 0.59, making these scenar-
ios more viable than the naive Planck bounds on Neff
would imply.
On the other hand, if fγ < 0.5913, then Neff > 3.044,

leading to toomuch damping on small scales. Planckwill try
to compensate by increasing ns or ωb. However, YHe is still
larger compared to ΛCDM in this fγ < 0.5913 regime. So,
any increase in ns or ωb is fighting against the combined
damping effects of increasing bothNeff and YHe. Therefore,
Planck tends to favor fγ > 0.59 rather than fγ < 0.59.
This asymmetric effect can also be seen in the residuals

of the bottom panel of Fig. 8. The case of fγ ¼ 0.7826
has smaller residuals on small scales than that of the
fγ ¼ 0.4 scenario because the increased YHe is helping to
compensate for the lack of damping caused by a decreased

TABLE I. Summary of priors used for decay parameters with
each likelihood combination.

Planck, Planckþ SD Planckþ SDþ D=H

fγ [0.01, 1]
TRH [MeV] ½9.5 × 10−4; 10−2�
maxðρY=ρrÞ [0, 0.8] [0, 0.07]
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Neff . The fγ −maxðρY=ρrÞ plane in Fig. 7 further demon-
strates the Planck preference for fγ > 0.5913. When only
Planck data is considered, maxðρY=ρrÞ is unconstrained as
long as fγ is near the “sweet spot” value that maintainsNeff ≃
3.0 after the Y-induced entropy injection. However, the
Planck 1D posterior peaks at fγ ¼ 0.632 rather than fγ ¼
0.5913 (gray dashed line), which would give Neff ¼ 3.044.

In theory, Planck would accept even larger maxðρY=ρrÞ
at the sweet spot fγ until reaching a limit that corresponds
to the Planck bounds on YHe; Planck 2018 high-lTT, TE,
EEþ low-lEE places a 2σ upper bound of YHe ¼ 0.283
[46]. Indeed, we obtain similar results when using a prior of
maxðρY=ρrÞ¼ ½0;1.2�. However, exploring the maxðρY=ρrÞ
corresponding to this YHe Planck upper bound is

FIG. 7. 1D and 2D posterior distributions of decay and cosmological parameters for different combinations of Planck high-
lTT;TE;EE, low-lTT, and low-lEE (Planck) data, CMB spectral distortions (SD) bounds, and bounds on the observed deuterium
abundance (D/H). We include the 1D posteriors for ΛCDM constrained by Planck (dashed black line). The dotted gray line traces
fγ ¼ 0.5913, which maintains Neff ¼ 3.044 at recombination.
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unnecessary since the addition of our D/H bounds greatly
constrains YHe.

6 Since marginalizing over fγ leaves
maxðρY=ρrÞ unconstrained for Planck and Planckþ SD,
we do not report an upper bound on maxðρY=ρrÞ for these
likelihoods in Table II. We also note that the steep dropoff
seen at large YHe in the posteriors shown in Fig. 12 results
from the MCMC sampling reaching the maxðρY=ρrÞ ¼ 0.8
upper bound of our selected prior.
The inclusion of SD constraints with Planck anisotropy

data (Planckþ SD) has the added power of restricting TRH
to hotter reheat temperatures, as expected. SDs constrain
the reheat temperature to be TRH > 2.24 × 10−3 MeV
(ΓY > 1.91 × 10−6 s−1) at 95% C.L. Otherwise, SDs pro-
vide no additional constraining power on cosmological
parameters.
It is clear from Fig. 7 that the addition of a bound on D/H

greatly constrains Y decay scenarios compared to
Planckþ SD. First, the D/H constraint favors fγ → 0 to
minimize changes in ηBBN. This agrees with our assessment
in Fig. 3. The combination of this preference for fγ → 0

with the Planckþ SD 1D posterior for fγ that peaks around
fγ ≈ 0.632 results in a relatively flat fγ posterior for
Planckþ SDþ D=H.
The constraint on D/H disfavors large values of

maxðρY=ρrÞ. Nonzero values of fγ mean new photons will
be injected by the Y decay and therefore the photon density
at BBN will be decreased accordingly. D/H prefers to
minimize this effect by restricting maxðρY=ρrÞ to be less
than 0.0235 (95% C.L.). This limit on maxðρY=ρrÞ prop-
agates to all other parameters; large values of YHe are no
longer permitted and any corrections to the base six
parameters that Planck favored are no longer needed because

Neff is not deviating much from the standard value of 3.044.
Therefore, the full Planckþ SDþ D=H combination is in
excellent agreement with ΛCDM values for the base six
parameters fωb;ωcdm; θs; As; ns; τreiog and H0 (see
Table II).
The posterior of ΓY for Planckþ SDþ D=H extends to

smaller decay rates than that of Planckþ SD. This is a
symptom of the D/H bounds heavily constraining
maxðρY=ρrÞ. Small decay rates (ΓY ≲ 10−6 s−1) were dis-
favored by Planckþ SD because maxðρY=ρrÞ was free to
vary up to a value of 0.8. However, by restricting
maxðρY=ρrÞ to smaller values, the addition of D/H
made smaller decay rates more probable. Therefore, the
combination of SDþ D=H constraints leads to a slightly
broader posterior on ΓY than that obtained from SDs alone.
Otherwise, the addition of D/H has no influence on ΓY .
While the combination of ΓY and maxðρY=ρrÞ does
influence how much the Y particle increases the expansion
rate during BBN, the D/H abundance is far more sensitive
to changes in ηBBN than changes to H.
While stringent, the addition of bounds on D/H does not

make constraints from Planck obsolete. Figure 9 shows a
comparison of the 2D posterior bounds on fγ and
maxðρY=ρrÞ for different implementations of constraints.
The hatched region corresponds to the overlap between the
Neff and ηBBN contours seen in Fig. 3. These limits were
predicted using a fixed value of ωb, so this hatched region
can be considered the most naive bounds on fγ and
maxðρY=ρrÞ. The dashed orange lines illustrate the 68%
and 95% contours resulting from constraining fγ and
maxðρY=ρrÞ with a Gaussian likelihood constructed with
the 2018 Planck bounds ofNeff ¼ 2.92þ0.36

−0.37 and a Gaussian
likelihood created with the bounds ηBBN ¼ ð6.119�
0.100Þ × 10−10. These contours were also created for a
fixed value ofωb. Herewe see that marginalizing the bounds

TABLE II. Mean and 2σ errors on decay and cosmological parameters from MCMC analysis with different combinations of datasets.

ΛCDM Planck Planckþ SD Planckþ SDþ D=H

fγ � � � 0.66þ0.26
−0.21 0.66þ0.32

−0.17 � � �
log10ðΓY=s−1Þ � � � � � � > −5.72 > −6.15
log10ðTRH=MeVÞ � � � � � � > −2.65 > −2.86
maxðρY=ρrÞ � � � � � � � � � < 0.0235
H0 ½km s−1 Mpc−1� 67.3þ1.2

−1.2 66.2þ2.8
−3.0 66.2þ2.9

−3.0 67.4þ1.7
−1.5

YHe 0.24683þ0.00013
−0.00012 0.2508þ0.0050

−0.0041 0.2508þ0.0055
−0.0042 0.24696þ0.00026

−0.00021

105D=H 2.522þ0.056
−0.056 1.52þ0.96

−0.93 1.58þ0.92
−0.97 2.484þ0.077

−0.087

10−2ωb 2.234þ0.030
−0.029 2.225þ0.040

−0.042 2.226þ0.041
−0.043 2.232þ0.030

−0.029

ωcdm 0.1202þ0.0027
−0.0027 0.1172þ0.0065

−0.0067 0.1172þ0.0061
−0.0067 0.1208þ0.0037

−0.0034

100θs 1.04186þ0.00058
−0.00058 1.0424þ0.0013

−0.0011 1.0424þ0.0013
−0.0011 1.04176þ0.00066

−0.00075

ln 1010As 3.045þ0.033
−0.031 3.036þ0.036

−0.037 3.037þ0.036
−0.038 3.045þ0.033

−0.031

ns 0.9642þ0.0087
−0.0087 0.959þ0.015

−0.016 0.959þ0.015
−0.016 0.965þ0.010

−0.0096

τreio 0.054þ0.016
−0.015 0.053þ0.015

−0.015 0.054þ0.016
−0.015 0.054þ0.016

−0.015

6Additionally, the accuracy of the approximation in Eq. (5)
begins to diminish as maxðρY=ρrÞ → 1. See Appendix A.
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on Neff and ηBBN through an MCMC approach extends the
allowedmaxðρY=ρrÞ − fγ parameter space compared to that
of the naive bounds onNeff and ηBBN. The filled contours in
Fig. 9 show the 2D posteriors for maxðρY=ρrÞ and fγ when
constraining with a full Planck likelihood rather than just a
Gaussian likelihood on Neff , as well as Gaussian likelihood
with 1σ bounds ðD=HÞ ¼ ð2.527� 0.068Þ × 10−5. The full
Planck analysis not only accounts for uncertainties in
cosmological parameters such as ωb and ns, but also
includes the interplay between YHe and Neff discussed in
Sec. III A. The Planck preference for fγ ≈ 0.632 permits
values of fγ that are otherwise ruled out by the bounds on
just Neff and ηBBN. Therefore, the effects of the Y decay on
Neff and YHe still manifest in the Planckþ D=H posteriors
even though maxðρY=ρrÞ is significantly restricted com-
pared to the Planck posteriors.
Finally, we note that even though this analysis consid-

ered the range of fγ ¼ ½0.01; 1�, our results can be extended

to smaller values of fγ for the limited range of ΓY ¼
½3.43 × 10−7; 3.80 × 10−5� s−1. Figure 11 in Appendix C
demonstrates that the posteriors for all parameters are
indeed identical when comparing fγ ¼ 0 and fγ ¼ 0.01
for TRH ¼ ½9.5 × 10−4; 10−2� MeV (ΓY ¼ ½3.43 × 10−7;
3.80 × 10−5� s−1). We show a subset of these Planckþ
SD posteriors in Fig. 10 and include the 1σ and 2σ bounds
onH0 (vertical bands) reported by the SH0ES collaboration
[77]. When only considering Planckþ SD, both the fγ ¼ 0

and fγ ¼ 0.01 cases favor values ofH0 larger than the best-
fit ΛCDM value of H0 ¼ 67.3 km s−1Mpc−1. While the
addition of D/H bounds will restrict maxðρY=ρrÞ in the
fγ ¼ 0.01 case so that the H0 posterior is in further
disagreement with SH0ES, fγ ¼ 0 decays will not affect
ηBBN and thus we do not expect the addition of D/H
constraints to substantially change the Planckþ SD con-
straints for fγ ¼ 0 seen in Fig. 10. For fγ ¼ 0, the only
additional constraints that D/H would place on maxðρY=ρrÞ

FIG. 8. Power spectra for decays with maxðρY=ρrÞ ¼ 0.2, TRH ¼ 3.16 × 10−3 MeV, and either fγ ¼ 0.4 (dotted red line) or fγ ¼
0.7826 (dashed blue line). Top left: power spectra of two decay scenarios compared to spectrum of best-fit ΛCDM parameters (solid
black line) with no other parameters being altered. Top right: ωcdm and h are simultaneously altered in order to fix zeq and θs,
respectively. Bottom: A change in As, in addition to ωcdm and h, brings the spectra of these decays scenarios close to the best-fit ΛCDM
spectrum. The remaining small-scale residuals are asymmetric; the fγ ¼ 0.7826 case is aided by the increase in YHe and therefore has a
smaller residual than the fγ ¼ 0.4 case.
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would come from the increased expansion rate during BBN
changing D/H. This change in H, however, has a small
effect on D/H and can be reduced by decreasing TRH.
Therefore, it is likely that the Planckþ SDþ D=H poste-
riors for fγ ¼ 0 decays with colder reheat temperatures
would not significantly differ from those for Planckþ SD
shown in Fig. 10. As mentioned in Sec. III C, investigating
reheat temperatures TRH ≲ 9 × 10−4 MeV would require
consideration of perturbations. It is not yet clear if the
inclusion of Y perturbations and corrections to the pertur-
bations of ultrarelativistic species would relax the Planckþ
SDþ D=H bounds on an fγ ¼ 0 decay.

VI. SUMMARY AND CONCLUSIONS

In this work, we test the robustness of the common
assumption of entropy conservation between BBN and
recombination by considering the decay of a massive
hidden sector Y particle. We assume the hidden sector is
sufficiently cold compared to the visible sector of Standard
Model particles such that the particle is nonrelativistic
during BBN. These decay scenarios alter the effective
number of relativistic species at recombination, Neff , as
well as the baryon-to-photon ratio and expansion rate at
BBN. By employing observations of Planck temperature
and polarization anisotropies, CMB spectral distortions,
and the primordial deuterium abundance, we determine
constraints on the decay rate of the Y particle (ΓY), its
maximum contribution to the energy density of the

Universe (maxðρY=ρrÞ), and the fraction of the Y particle’s
energy density that is transferred to photons (fγ).
If the Y particle decays into a mixture of photons and

other ultrarelativistic particles such as dark radiation, then
there is a sweet spot photon fraction, fγ ¼ 0.5913, that
will keep Neff fixed at the fiducial 3.044. However, the
injection of photons from the Y particle leads to an
increase in ηBBN due to the requirement that T0 ¼
2.7255 K (see Appendix A). This increase in ηBBN
increases YHe which results in Planck observations of
the CMB temperature and polarization anisotropies pre-
ferring a larger photon fraction, with the 1D posterior for
fγ peaking at 0.632. For fγ between 0.555 and 0.707,
CMB anisotropies permit significant entropy injections in
which the energy density of the Y particle equals at least
half of the radiation density prior to its decay. If fγ
deviates from the sweet spot value, then cosmological
parameters like ωcdm, H0, As, ωb, and ns must be altered
from their standard ΛCDM values in order to match the
observed Planck temperature power spectrum.
Upper limits on μ and y spectral distortions of the CMB

restrict the decay rate of the Y particle to ΓY ¼ 1.91 ×
10−6 s−1 (95% C.L.) such that maximum lifetime of the Y
particle is 5.25 × 105 sec. The Primordial Inflation
Explorer, which proposes to measure the CMB blackbody
spectrum with three orders of magnitude better sensitivity
than the results of COBE/FIRAS [78], would enhance

FIG. 10. Comparison between H0 posteriors of Planckþ SD
likelihood for TRH ¼ ½9.5 × 10−4; 10−2� MeV and either fγ ¼ 0

(dotted maroon outline) or fγ ¼ 0.01 (filled purple contour) with
68% and 95% C.L. contours. We include the 1D H0 posterior for
ΛCDM constrained by Planck (dashed gray line) and the vertical
band shows the 1σ and 2σ bounds determined by SH0ES
(H0 ¼ 73.30� 1.04 km s−1 Mpc−1).

FIG. 9. Comparison of the bounds on fγ and maxðρY=ρrÞ from
different implementations of constraints. The hatched region is
the overlap of the Neff and ηBBN contours in Fig. 3 which held ωb
fixed. The dashed orange lines show the 68% and 95% contours
from a Gaussian likelihood constructed with the 2018 Planck
bounds of Neff ¼ 2.92þ0.36

−0.37 and a Gaussian likelihood created
with the bounds ηBBN ¼ ð6.119� 0.100Þ × 10−10. Using the
entire Planckþ D=H likelihood (filled 68% and 95% contours)
incorporates any uncertainty in cosmological parameters and the
asymmetric preference Planck has for large fγ .
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bounds on μ and y distortions and therefore place even
more restrictive bounds on the lifetime of the particle.
The deuterium abundance, D/H, proves to have the most

constraining power on Y-induced entropy injection. We
apply bounds of D=H ¼ ð2.527� 0.068Þ × 10−5, whichwe
translate from bounds on the baryon-to-photon ratio
reported by Cooke et al. [47]. This uncertainty in D/H
includes measurement uncertainty and uncertainties in
nuclear reaction rates.7 This bound on deuterium limits
the energy density of theY particle to be nomore than 2.35%
(95%C.L.) the total energy density of radiation.Using the fit
described in Fig. 2, this upper bound corresponds to
g < 1.05, which translates to a 5% increase in the comoving
energy density of radiation. Limits onD/Hwill likely tighten
as more absorption systems are observed and as laboratory
measurements of nuclear reaction rates improve.
Photodisintegration of light nuclei by the injection of

photons can generate even tighter constraints on entropy
injection scenarios. Balázs et al. [27] recently performed an
analysis in which they explored the constraints that could be
placed on axionlike particles with masses greater than
2.2 MeV decaying into photons between BBN and recom-
bination by employing CMB anisotropy and spectral dis-
tortion data aswell as detailed BBN constraints via ηBBN and
photodisintegration of nuclei. The addition of photodisin-
tegration restricts the maximum energy density of the
axionlike particle, ρa, to be ρa=ρtot < 10−3. A decaying
particle with a mass below 3.2 MeV evades these photo-
disintegration limits; the stringent BBN bounds on
maxðρY=ρrÞ derived here only consider the effects of a Y
decay on ηBBN and the expansion rate during BBN. We find
maxðρY=ρrÞ < 0.0235 (95% C.L.), demonstrating that a
small level of entropy injection could be possible in the
regime of a sub-3.2 MeV decay for which photo-
disintegration bounds are irrelevant.
Even though bounds on deuterium proved to be the most

restrictive on a general entropy injection scenario, we
demonstrated that there exist subtleties in the dependence
of the decay on degeneracies between Neff and YHe that
require a full CMB analysis (Fig. 9). Furthermore, we
investigated the effects that entropy injection has on
standard cosmological parameters, including H0. In doing
so, we find that any injection that includes photons is
heavily restricted by observations of the CMB and D/H
such that H0 ¼ 67.4þ1.7

−1.5 km s−1Mpc−1 (95% C.L.).

We marginalized results over the range of 0.01 ≤ fγ ≤ 1
and therefore we cannot speak with absolute confidence
regarding an fγ ¼ 0 injection scenario. If fγ ¼ 0, then
spectral distortions would not restrict the Y particle lifetime
(see Fig. 6), allowing for reheat temperatures at which the
scales accessible to Planck enter the horizon. It would
therefore be necessary to consider perturbation dynamics for
theY particle and how its decay products affect the evolution
of other perturbations. However, we are able to extend our
results to fγ ¼ 0 for a limited range of reheat temperatures;
when considering TRH ¼ ½9.5 × 10−4; 10−2� MeV (ΓY ¼
½3.43 × 10−7; 3.80 × 10−5� s−1), we can neglect any
influences the Y particle has on perturbations. For this
limited range of reheat temperatures, we show that the
posteriors for fγ ¼ 0 and fγ ¼ 0.01 are identical when
constraining with Planck anisotropies and spectral distor-
tions (Fig. 11). While the addition of bounds on D/H would
restrict maxðρY=ρrÞ in the fγ ¼ 0.01 case, decays with fγ ¼
0 would leave ηBBN unaltered and only minimally affect the
deuterium abundance by increasing the Hubble rate during
BBN.Therefore, scenarioswith theY particle decaying fully
into dark radiation are less restricted than the fγ ≠ 0 cases
studied in this work. Such decays into dark radiation
increase H0 and begin to mitigate the Hubble tension.
When considering only Planck anisotropies and spectral
distortions, fγ ¼ 0 decays in this limited range of decay
rates result in H0 ¼ 68.1þ1.9

−1.8 km s−1Mpc−1 (95% C.L.),
which only slightly reduces the Hubble tension. As was
demonstrated by the progression of early-dark-energy
models [81–83], however, the inclusion of perturbations
can lead to significant changes in results. For long-lived Y
scenarios, altering perturbations could potentially relax the
bounds on the injection of dark radiation and alleviate the
Hubble tension even further. We reserve an in-depth inves-
tigation of the fγ ¼ 0 case for a future work.
We have demonstrated that the injection of new radiation

between BBN and recombination, be it photons or other
ultrarelativistic species, such as dark radiation, is highly
constrained: a massive particle whose decay products
include photons can make up at most 2.35% of the energy
density of the Universe. This stringent limit implies that
cosmological parameters, including the Hubble constant,
cannot be adjusted by introducing changes in the photon
abundance between BBN and recombination. Our results
uphold the standard cosmological picture and the
assumption that entropy is conserved.
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APPENDIX A: INITIAL CONDITIONS FOR CLASS

Here we describe how to recast our set of descriptive
parameters for the Y decay model into a set of initial
conditions. We start by making the approximation that
HðaÞ ≈Hiða=aiÞ−2 during radiation domination. This
assumption, along with taking ρY ¼ ρY;i when a ¼ ai,
allows us to analytically solve Eq. (1):

ρYðaÞ ¼ ρY;i

�
ai
a

�
3

e
1
2
Γ̃Y ½1−ða=aiÞ2�: ðA1Þ

Additionally, we define the reheat scale factor by
ΓY ≡Hiðai=aRHÞ2: aRH=ai ¼ Γ̃−1=2

Y , where Γ̃Y ≡ ΓY=Hi.
It follows from Eq. (A1) that the maximum value for ρY=ρr
occurs at aRH=ai. Therefore, an analytical expression for
maxðρY=ρrÞ can be found by evaluating Eq. (A1) at aRH
and taking ρrðaRHÞ ¼ ρr;iðai=aRHÞ4:

max

�
ρY
ρr

�
¼ e

1
2
ðΓ̃Y−1Þ ρY;i

ρr;i
Γ̃−1=2
Y : ðA2Þ

Equation (A2) defines the maxðρY=ρrÞ decay parameter
used throughout this work. This analytical expression for
maxðρY=ρrÞ deviates from the exact numerical maximum
of ρY=ρr as maxðρY=ρrÞ approaches unity. Comparing
Eq. (A2) to the numerically calculated maxðρY=ρrÞ
for various decay scenarios, we find that Eq. (A2) is
accurate within 1% for maxðρY=ρrÞ < 0.079 and within
10% for maxðρY=ρrÞ < 0.945. Seeing that a value of
maxðρY=ρrÞ > 1 translates to a period Y domination, it
is consistent that our radiation domination approximation
would begin fail as maxðρY=ρrÞ approaches 1.
In order to determine a value for ρY;i from Eq. (A2), we

need to find the initial condition ρr;i ¼ ργ;i þ ρur;i þ ρncdm;i.
For decay scenarios with fγ ≠ 0, we must decrease the
photon energy density predecay such that the photon
injection from the Y decay results in a present day temper-
ature of T0 ¼ 2.7255 K. Since we only consider reheat
temperatures after BBN (TRH ≲ 0.01 MeV), we must
decrease ργ at the time of neutrino decoupling and therefore
we must also rescale the initial energy density of ultra-
relativistic species, ρur;i. To do so, we parametrize the initial
energy densities by Ω0

x;0 such that ρx;i ¼ Ω0
x;0ρcrit;0a

−4
i for

species x. In Eq. (8), we define the ratio of comoving
radiation energy density before and after decay as

g≡ ρr;fa4f
ρr;ia4i

; ðA3Þ

where the i and f subscripts denote before and after decay,
respectively. This g parameter is entirely dependent on

maxðρY=ρrÞ defined by Eq. (A2). Let us denote the
comoving energy density of species x as ρ̄x;j ¼ ρx;ja4j .
Then the change in comoving radiation density is

Δρ̄r ¼ ρ̄r;f − ρ̄r;i ¼ ðg − 1Þρ̄r;i: ðA4Þ
From this, we can specify the change in individual species
with the photon fraction as

Δρ̄γ ¼ fγðg − 1Þρ̄r;i; ðA5Þ

Δρ̄ur ¼ ð1 − fγÞðg − 1Þρ̄r;i: ðA6Þ

Now we can determine the g factor for each species that
receives energy injection from the decay:

gγ ¼
ρ̄γ;f
ρ̄γ;i

¼ ρ̄γ;i þ Δρ̄γ
ρ̄γ;i

¼ 1þ Δρ̄γ
ρ̄γ;i

¼ 1þ fγðg − 1Þ ρr;i
ργ;i

;

ðA7Þ

gur ¼
ρ̄ur;f
ρ̄ur;i

¼ ρ̄ur;i þ Δρ̄ur
ρ̄ur;i

¼ 1þ Δρ̄ur
ρ̄ur;i

¼ 1þ ð1 − fγÞðg − 1Þ ρr;i
ρur;i

: ðA8Þ

We assume the minimal convention in which neutrinos are
composed of twomassless species (ur) and one massivewith
mncdm ¼ 0.06 eV. The massive neutrino, or noncold dark
matter (ncdm), will be relativistic at early times and therefore
contribute to the initial radiation energy density. If we denote
Nur as the contribution to Neff from the ultrarelativistic
species and Nncdm as the contribution from the massive
neutrino, then we enforce that Nur þ Nncdm ¼ 3.044 at the
time of BBN. With these definitions, we can write

ρr;i
ργ;i

¼ ρncdm;i þ ρur;i þ ργ;i
ργ;i

¼ ρncdm;i

ργ;i
þ ρur;i

ργ;i
þ 1

¼ 7

8
Nncdm

�
4

11

�
4=3

þ 7

8
Nur

�
4

11

�
4=3

þ 1

¼ 7

8
ð3.044Þ

�
4

11

�
4=3

þ 1; ðA9Þ

and

ρr;i
ρur;i

¼ ρncdm;i þ ρur;i þ ργ;i
ρur;i

¼ ρncdm;i

ρur;i
þ 1þ ργ;i

ρur;i

¼ Nncdm

Nur
þ 1þ 8

7

1

Nur

�
11

4

�
4=3

;

¼ 3.044 − Nur

Nur
þ 1þ 8

7

1

Nur

�
11

4

�
4=3

;

¼ 1

Nur

�
3.044þ 8

7

�
11

4

�
4=3

�
: ðA10Þ
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It follows that the ratio of comoving energy density for each
species is

gγ ¼ 1þ fγðg − 1Þ
�
1þ 7

8
ð3.044Þ

�
4

11

�
4=3

�
; ðA11Þ

gur ¼ 1þ ð1 − fγÞðg − 1Þ
Nur

�
3.044þ 8

7

�
11

4

�
4=3

�
: ðA12Þ

If Ωγ;0 is the photon energy density corresponding to
T0 ¼ 2.7255 K, then the initial values are found by
ρx;i ¼ Ω0

x;0ρcrit;0a
−4
i and

Ω0
γ;0 ¼

Ωγ;0

gγ
¼ Ωγ;0

1þ fγðg − 1Þ½1þ 7
8
ð3.044Þð 4

11
Þ4=3� ; ðA13Þ

Ω0
ur;0 ¼

Ωur;0

gur
¼ 7

8
Nur

�
4

11

�
4=3

Ω0
γ;0: ðA14Þ

In Eq. (A14),Ωur;0 ¼ ð7=8ÞNpost
ur ð4=11Þ4=3Ωγ;0, whereN

post
ur

is the effective number of ultrarelativistic species after decay
(seeAppendix B). Since g is purely a function ofmaxðρY=ρrÞ
(Fig. 2), we can determine the initial conditions ργ;i and ρur;i
directly fromour decay parametersfγ andmaxðρY=ρrÞ. In the
case of fγ ¼ 0 (no decays into photons), we do not need to
decrease ργ at early times. Indeed, plugging fγ ¼ 0 into
Eq. (A13) leads to Ω0

γ;0 ¼ Ωγ;0 and the initial condition is
simply ργ;i ¼ Ωγ;0ρcrita−4i . The contribution to Neff from the
ultrarelativistic neutrino species before decay is determined
by Nur ¼ 3.044 − Nncdm, where Nncdm is the contribution
that the massive neutrino makes to Neff prior to
recombination.
Massive neutrino (ncdm) calculations performed by

CLASS derive the number density, energy density, and
pressure of massive neutrinos based on the input tempera-
ture Tncdm;0=Tγ;0. By default, CLASS assumes this tempera-
ture to be Tncdm;0 ¼ 0.71611Tγ;0 in order to obtain a
mass-to-density ratio of m=ωncdm ¼ 93.14 eV. However,
this default value inherently assumes that both Tncdm and
Tγ scale as T ∝ a−1 after electron-positron annihilation.
While this scaling is indeed true for Tncdm, any Y decay
scenario that injects photons will result in Tγ not consis-
tently scaling as a−1. The photon temperature at some scale
factor, ai, which occurs between electron-positron annihi-
lation and energy injection from the Y decay, will depend
on the initial photon energy density determined by
Eq. (A13). Specifically,

Tγ;iai ¼
�Ω0

γ;0

Ωγ;0

�
1=4

Tγ;0a0; ðA15Þ

where a0 is the present-day scale factor. Assuming that
Tncdm;i ¼ 0.71611Tγ;i after electron-positron annihilation
and before the Y particle alters the evolution of Tγ ,

Tncdm;0 ¼ 0.71611
�Ω0

γ;0

Ωγ;0

�
1=4

Tγ;0: ðA16Þ

If there is no photon injection from the decay, then Ω0
γ;0 ¼

Ωγ;0 and we recover the default assumption of CLASS. We
emphasize that this change in the energy density of massive
neutrinos is a result of the Y decay altering the scaling of
Tγ . As discussed in Sec. II, we assume that the Y decay
does not produce any new active neutrinos.
The contribution that the massive neutrino makes toNeff ,

which we denote as Nncdm, is

Nncdm ¼
�

0.71611

ð4=11Þ1=3
�

4

¼ 1.0132: ðA17Þ

This value is used to determine the number of ultra-
relativistic species predecay, Nur, by enforcing 3.044 ¼
Nur þ Nncdm at BBN.

APPENDIX B: POSTDECAY Neff

We define the postdecay Neff to be the number of
relativistic species immediately after entropy injection from
the Y decay has completed. For the reheat temperatures that
we consider in this work, this means that massive neutrinos
are still relativistic and therefore contribute to Neff
immediately after decay. As discussed in Appendix A,
the contribution that the massive neutrino makes to Neff

before the decay is Nncdm¼ð11=4Þ4=3ð0.71611Þ4¼1.0132.
While the Y particle does not inject any new massive
neutrinos, the ratio of ρncdm=ργ will change due to the
decay creating new photons. Therefore, the contribution
that the massive neutrino makes to Neff will change
postdecay. This postdecay number of massive neutrinos is

Npost
ncdm ¼ Nncdm

gγ
¼

�
11

4

�
4=3 ð0.71611Þ4

gγ
; ðB1Þ

where gγ is defined by Eq. (A11). Additionally, the
effective number of ultrarelativistic species will change
due to the Y decay. If Nur is the effective number of
relativistic species before decay, then we denote the
contribution of the ultrarelativistic species to the postdecay
Neff as N

post
ur . It follows that

Ωur;0 ¼ Ω0
urgur;

7

8
Npost

ur

�
4

11

�
4=3

Ωγ;0 ¼
7

8
Nur

�
4

11

�
4=3

Ω0
γ;0gur;

Npost
ur ¼ Ω0

γ;0

Ωγ;0
gurNur;

Npost
ur ¼ gur

gγ
Nur; ðB2Þ

where gur is defined by Eq. (A12). Therefore, the total
postdecay Neff is
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Npost
eff ¼Npost

ncdmþNpost
ur ¼ 1

gγ

��
11

4

�
4=3

ð0.71611Þ4þgurNur

�
¼ 1

gγ
½3.044þNurðgur−1Þ�; ðB3Þ

where Nur ¼ 2.0308. Since both gγ and gur are ultimately functions of maxðρY=ρrÞ and fγ , we are able to calculate the
postdecay Neff directly from our decay parameters.

APPENDIX C: ADDITIONAL MCMC RESULTS

FIG. 11. Comparison between posteriors of Planckþ SD likelihood for TRH ¼ ½9.5 × 10−4; 10−2� MeV and either fγ ¼ 0 (dashed
outline) or fγ ¼ 0.01 (filled) with 68% and 95% C.L. contours. The posteriors of fγ ¼ 0 vs those of fγ ¼ 0.01 are identical in all
parameters except for a slight difference in ΓY . The fγ ¼ 0 case is completely unconstrained by SDs and therefore equally favors long
and short particle lifetimes whereas the fγ ¼ 0.01 case disfavors long lifetimes due to the constraints placed by SDs.
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FIG. 12. 1D and 2D posterior distributions of decay and full set of cosmological parameters for different combinations of Planck high-
lTT, TE, EE, low-lTT, and low-lEE (Planck) data, CMB spectral distortions (SD) bounds, and constraints on the deuterium abundance
(D/H). We include the 1D posteriors for ΛCDM constrained by Planck (dashed black line). The dotted gray line traces fγ ¼ 0.5913,
which maintains Neff ¼ 3.044 at recombination.
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