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Could new physics break the mirror symmetry of the Universe? Utilizing recent measurements of the
parity-odd four-point correlation function of BOSS galaxies, we probe the physics of inflation by placing
constraints on the amplitude of a number of parity-violating models. Within canonical models of (single-
field, slow-roll) inflation, no parity asymmetry can occur; however, it has recently been shown that
breaking of the standard assumptions can lead to parity violation within the effective field theory of
inflation (EFTI). In particular, we consider the ghost condensate and cosmological collider scenarios—the
former for the leading and subleading operators in the EFTI and the latter for different values of mass and
speed of an exchanged spin-1 particle—for a total of 18 models. Each instance yields a definite prediction
for the inflationary trispectrum, which we convert to a late-time galaxy correlator prediction (through a
highly nontrivial calculation) and constrain using the observed data. We find no evidence for inflationary
parity violation (with each of the 18 models having significances below 2σ), and place the first constraints
on the relevant coupling strengths, at a level comparable with the theoretical perturbativity bounds. This is
also the first time cosmological collider signatures have directly been searched for in observational data. We
further show that possible secondary parity-violating signatures in galaxy clustering can be systematically
described within the effective field theory of large-scale structure. We argue that these late-time
contributions are subdominant compared to the primordial parity-odd signal for a vast region of parameter
space. In summary, the results of this paper disfavor the notion that the recent hints of parity violation
observed in the distribution of galaxies are due to new physics.
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I. INTRODUCTION

Cosmic inflation probes physics at energy scales vastly
above those of terrestrial experiments, providing a unique
window into fundamental physics. While the inflationary
period cannot be observed directly, quantum fluctuations
produced therein source perturbations in the metric, which
manifest themselves in the distribution of matter and
gravitational waves today. As such, careful analysis of
late-time observables, such as the cosmic microwave
background (CMB) and large-scale structure (LSS), can
be used to shed light on primordial physics.
The simplest models of inflation predict a Gaussian

spectrum of primordial perturbations [1–3], and thus a
Gaussian distribution for the CMB (neglecting secondary

effects), and LSS (within the linear regime). In this
scenario, the early Universe is controlled by a single scalar
field, known as the inflaton, whose dynamics are set
by a quadratic action on a (nearly) de-Sitter background,
e.g., [4,5]. A wide variety of extensions to this exist,
involving, for example, additional fields (either massive
or massless, and of varying spin, e.g., [6]), modified kinetic
terms (such as those motivated by UV completions involv-
ing extra dimensions, e.g., [7]), and nonstandard vacua. In
recent years, a particularly useful framework to categorize
this landscape has emerged, in the form of the effective
field theory of inflation (hereafter EFTI) [8] (see [9] for a
recent review). In the vein of other effective field theories,
this systematically predicts the various operators that can
appear in the low-energy action, consistent with various
symmetry principles. To probe inflation, we can thus search
for the late-time signatures of these terms.
A generic prediction of many nonstandard inflationary

theories is a modification of the primordial spectrum of
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density perturbations, for example by introducing skewness
to the initially Gaussian distribution (see [10,11] for a
review). In its simplest form, this sources a three-point
correlator (or bispectrum) of the primordial curvature
perturbation, the shape of which is fixed by the inflationary
Lagrangian. By winding forward the cosmological clock,
one can calculate the impact on late-time statistics, which
takes the form of a nontrivial CMB and LSS three-point
function. Since the early 2000s, various attempts have been
made to constrain such models using both the CMB, and,
more recently, spectroscopic surveys, usually by measuring
a set of characteristic non-Gaussian amplitudes, fNL, which
can be related to couplings in the EFTI, e.g., [12–20].
While no detections have been yet made, bounds will
continue to tighten with upcoming experiments such as the
Simons Observatory [21] and the Dark Energy Spectro-
scopic Instrument (DESI) [22], and there is some hope of
probing interesting regimes such as the fNL ≈ 1 limit in the
future (which is a natural boundary for many models of
multifield inflation).
The rich landscape of inflationary physics sources much

more than just primordial three-point functions. At next
order, one may consider kurtosis, i.e. the primordial four-
point correlator (or trispectrum). This can be generated via
a number of physical channels, such as particle exchange
during inflation, e.g., [6,23]. As before, the EFTI predicts
specific correlator templates with accompanying ampli-
tudes. Some work has been performed to constrain these
with the CMB (usually via the gNL and τNL amplitude
parameters), e.g., [24–27], but the field is still in its infancy,
and is hampered by the comparably low signal to noise of
higher-point statistics in nature.
An intriguing feature of scalar four-point functions (such

as the primordial curvature perturbation) is that they are
chiral, i.e. one can define a handedness to the shapes which
flips under mirror reflection. This was first pointed out in
the galaxy-survey context in [28] (see also [29–31]). If the
primordial Universe preserves parity symmetry, there
should be no difference between left- and right-handed
shapes, thus the parity-odd part of the four-point function
should vanish. In the late Universe, large-scale physics is
set by gravity and hydrodynamics, which (at least in
conventional theories) conserve parity, but interesting
violations could occur during inflation. Indeed, the creation
of the known baryon-antibaryon imbalance requires some
form of primordial charge-parity asymmetry, e.g., [32–35].
To understand inflationary parity violation, we can

once again look to the EFTI. Assuming a scale-invariant
Universewith a Bunch-Davies vacuum, populated by a set of
arbitrary scalar fields (with interactions that fall off suffi-
ciently fast as the modes are stretched outside the horizon
during inflation), the parity-odd primordial trispectrum
vanishes at tree level [31,36]. Any significant detection
would thus indicate violation of one of the above assump-
tions, and could hint at a variety of nonstandard inflationary

scenarios. Intriguing examples of this include nonstandard
vacua such as ghost condensation [37,38], (strong) violation
of scale invariance, or the exchange of massive spinning
particles [31,36]. As for the bispectrum, each scenario arises
from specific terms in the EFTI Lagrangian, whose signa-
tures can be searched for in late-time observables.
If we wish to probe the inflationary peculiarities

described above, we require parity-sensitive observables.
In general, late-time observables fall into two categories:
those sensitive to tensor perturbations (i.e. gravitational
waves) and those sensitive to scalar perturbations (i.e.
gravitational potentials). Quantities in the first class include
CMB polarization (including V modes), e.g., [39–49],
galaxy shapes [50], galaxy spins [51,52], and directly
observed stochastic gravitational waves [53]. Through their
dependence on chiral gravitational waves, these can have
parity-sensitive power spectra, for instance, the CMB TB
correlator [54–56]. In contrast, the second class of observ-
ables, including CMB T and E modes and LSS density
fields, depend only on inflationary scalars, thus parity-
sensitivity appears only in the trispectrum and beyond
(since a parity transformation is equivalent to a rotation for
the power spectrum and bispectrum) [29,36,57,58]. In this
work, we consider the latter case, noting that the physical
origins of scalar- and tensor-type parity violation can be
distinct, and there has been no robust detection of gravi-
tational wave signatures to date.
In this work, our primary observable is the galaxy four-

point correlation function, which is the configuration-space
analog of the galaxy trispectrum. The parity-even and
parity-odd contributions to this (as defined in [28]) were
measured for the BOSS galaxy survey in [59] and [60,61]
respectively, and, intriguingly, there are some hints of a
nonzero signal in the latter, roughly at the 3σ level. Naively
interpreted, this could be a smoking gun of nonstandard
inflationary physics, sourced by models such as those
considered above. We caution that this is not the only
possible explanation. Though conventional post-reheating
physics is thought to be parity conserving (at least on the
large scales relevant to galaxy clustering, r ≥ 20h−1 Mpc
here), more esoteric suggestions such as Chern-Simons
modified gravity [62] could lead to a late-time signal.
Furthermore, the measurements themselves are wrought
with complexity, as is their interpretation. Little work has
been devoted to the impact of data systematics (such as
window functions and galactic dust) on the higher-point
functions, and modeling the noise properties of the data is
no mean feat. In the latter case, knowledge of the (con-
nected) eight-point function is strictly required, and the
detection significance varies wildly with different
approaches to its estimation [60,61].
Potential hints of cosmic parity breaking motivate careful

study of its possible origins. In [60], a single inflationary
modelwas considered, involving a nondecayingUð1Þ gauge
field coupled to the inflaton via a Chern-Simons interaction,
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as proposed in [46,57]. This has a number of theoretical
problems, in particular, the (admittedly small) anisotropy
imprinted in the two-point function, and the inherent
tachyonic instability, which leads to the exponential ampli-
fication of higher-point functions. Indeed, no evidence was
found for this model in the former work. Here, we consider
two types of parity-breaking motivated by the EFTI and for
which the theoretical prediction is under perturbative con-
trol: ghost inflation [37] and the exchange of a spin-1 particle
(part of the cosmological collider setup, e.g., [6,63,64]),
following the derivations of [36]. In particular, wewill place
constraints on the corresponding inflationary couplings, and
additionally assess whether these scenarios could be respon-
sible for the observed parity excess. Further, we will
compare our constraints to the rough magnitudes expected
from the EFTI via perturbativity bounds, allowing us to
assess whether such constraints are parametrically relevant.
This paper provides the first bounds on such models of
inflation; however, the constraining power will only grow in
the future with the advent of new surveys and new datasets.
While not the main focus of this paper, it is interesting

to note that modern EFT techniques in cosmology—
namely the effective field theory of large-scale structure
(EFTofLSS; [65,66], see [9] for a recent review
and [67–70] for applications to data)—allow one to para-
metrize any late-time sources of parity violation in a model-
independent way, giving rise to templates that are
compatible with all the symmetries of the large-scale
structure barring point reflection (assuming the equivalence
principle). The measurement of [60,61] could be used to
put constraints on the amplitude of these templates, which
may then be translated to bounds on the “microphysical”
parameters of any late-time model. The power of such EFT
techniques is that they allow us, again in a model-
independent manner, to estimate the size of parity violation.
The final result of this work is to show that these would-be
signatures are much smaller than the parity-even contribu-
tions from gravitational collapse to the galaxy four-point
function if the spatial nonlocality scale associated with
them is of the same order as the nonlinear scale of structure
formation. With the same assumptions, we also show that
they would be subdominant to primordial contributions if
we are in the regime of mild primordial non-Gaussianity.
Again, we stress that these conclusions hold regardless
of the fact that these signatures would require some form of
parity-violating gravity (or hydrodynamics) operating at
late times. In summary, the results of this paper yield three
possible explanations for the results of [60,61]: (1) infla-
tionary physics uncorrelated with the models tested herein;
(2) late-time physics with a huge correlation length;
and (3) systematics in the data or analysis procedure.
The remainder of this paper is structured as follows. In

Sec. II, we discuss parity-violating inflation, and introduce
the models considered in this work and their corresponding
primordial trispectra. Section III discusses the observable

utilized herein (the galaxy four-point correlation function),
before we present theoretical predictions for its form in
Sec. IV. Our main results, including amplitude constraints,
are given in Sec. V. Section VI discusses the parametriza-
tion of late-time parity violation within the EFTofLSS,
before we conclude in Sec. VII. Details of the calculations
are presented in the Appendix.

II. INFLATIONARY PARITY VIOLATION

In this section we introduce two candidate models for
parity-violating inflation: the ghost condensate [37,38] and
the cosmological collider [6,31,63,64,71–78]. This follows
from [36], which studied these two scenarios as examples
of models that evade general theorems about parity viola-
tion in the scalar sector, and can give rise to a parity-odd
trispectrum for the comoving curvature perturbation ζ.
The first case can be seen as a limit of the effective field

theory of inflation (EFTI), e.g., [8,9] in which the quantum
fluctuations, π, of the clock (which on superhorizon scales
are simply proportional to ζ) have a dispersion relation
ω2 ∝ k4. An example of UV completion is a scalar field ϕ
with a Lagrangian that is a function P of X ≡ −ð∂μϕÞ2
such that excitations π about the “trivial” background
ϕ ¼ 0 are unstable, but those around the background
ϕ ¼ μt are not. If dP=dX vanishes on the background, π
will have a nonrelativistic dispersion relation [37,38]. Note
that ghost condensation naturally arises as a low energy
limit of models with Lorentz invariance violation in the
inflaton sector [79].
In the second instance, one considers the impact of

massive spinning particles, σij���, coupled to the clock. Even
if these particles decay on superhorizon scales, they can be
created from the vacuum and exchanged by π fluctuations
in the bulk of de Sitter spacetime, and leave an impact on
the statistics of the curvature perturbation ζ that is not
degenerate with local operators in the EFTI if their mass,
mσ , is comparable to the Hubble scale, H.
Below, we briefly recapitulate the interactions studied in

[36], summarize the corresponding templates for the parity-
odd trispectrum (which will be used to predict the parity-
odd galaxy correlator in Sec. IV), and discuss bounds on
their size from requirements of perturbativity. In all cases,
we assume the standard EFTI symmetries, and work in the
close-to-de-Sitter limit, in which templates are scale invari-
ant, with any deviations slow roll suppressed.

A. The inflationary Lagrangian and inflaton
interactions

In the case of ghost inflation, the primordial Universe is
described by a single clock π (hereafter known as the
Goldstone mode), which obeys the quadratic action

Sππ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Λ4

2
_π2 −

Λ̃2

2

ð∂2πÞ2
a4

�
; ð1Þ
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where a is the scale factor, and the scales Λ and Λ̃ control
the normalization of the power spectrum (using ζ ¼ −Hπ
on superhorizon scales):

k3PζðkÞ≡ Δ2
ζ ¼

H2ðHΛ̃Þ12Γð3
4
Þ2

πΛΛ̃2
ð2Þ

for a scale-invariant power spectrum Δ2
ζ . On subhorizon

scales, π follows the dispersion relation ω ¼ Λ̃k2=Λ2; it is
this nonlinear relation that results in the different pheno-
menology of the theory to standard single-field inflation.
At tree level, the only contribution to a parity-odd

trispectrum of the Goldstone mode (i.e. the part of
hππππi antisymmetric under reflections) can come from
contact diagrams. The authors of [36] studied the following
two interactions, appearing at leading and subleading order
in the effective field theory expansion respectively:

SðLOÞππππ ¼ 1

MPO

Z
d4x

ffiffiffiffiffiffi
−g

p
a−9ϵijk∂m∂nπ∂n∂iπ∂m∂l∂jπ∂l∂kπ;

ð3Þ

SðNLOÞππππ ¼ 1

Λ2
PO

Z
d4x

ffiffiffiffiffiffi
−g

p
a−9 _πϵijk∂i∂lπ∂l∂j∂2π∂k∂2π; ð4Þ

where ϵijk is the antisymmetric tensor, which gives rise to
the parity violation. It is important to keep in mind that
these two operators fully exhaust only the subset of quartic
operators that in the flat-space limit of the EFTI are
invariant under the nonlinear part δπ ¼ λixi of the sponta-
neously broken Lorentz boosts. A full classification includ-
ing Wess-Zumino terms is left for future work: in this
analysis we focus on (3) and (4) as the simplest trispectrum-
inducing couplings that arise due to deviations from a
Bunch-Davies vacuum with a linear dispersion relation.
Regarding the cosmological collider, in this work we

focus on the same setup studied in [36], i.e. the parity-odd
four-point function arising from the exchange of a massive
spin-1 field σi. This has the Feynman diagram

ð5Þ

for the s-channel exchange. The parity-even and parity-odd
vertices are, respectively,

SPEππσ ¼ λ1

Z
d4x

ffiffiffiffiffiffi
−g

p
a−3∂i _π∂i∂jπσj; ð6Þ

SPOππσ ¼ λ3

Z
d4x

ffiffiffiffiffiffi
−g

p
a−4ϵijk∂i∂lπ∂j∂l _πσk; ð7Þ

where λ1 has dimensions of energy and λ3 is dimension-
less.1 The quadratic actions for π and σi, instead, are
given by

Sππ ¼
H4

4c3sΔ2
ζ

Z
d4x

ffiffiffiffiffiffi
−g

p ½ _π2 − c2sa−2ð∂iπÞ2�; ð8Þ

Sσσ ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½ð _σiÞ2 − c21a
−2ð∂iσjÞ2

− ðc20 − c21Þa−2ð∂iσiÞ2 −m2
σðσiÞ2�; ð9Þ

where all indices are raised and lowered with δij, c0;1 are
the speeds of sound of the longitudinal and transverse
components of σi and mσ is the mass of the spin-1 field. In
the exchange diagram of (5) only the �1 helicities are
exchanged. Without loss of generality we can then set
c1 ¼ 1, so that cs > 1 (cs < 1) means that the π fluctua-
tions are moving faster (slower) than the spinning particle.
It is important to keep in mind that the operators of (6)

and (7) do not exhaust all the possible signatures of parity
violation in the cosmological collider:

(i) Here we are considering only operators that the
nonlinear realization of boosts does not tie to
quadratic mixings between π and the helicity-0
mode of σi. The space of interactions between
two π fluctuations and one σi is larger than this.

(ii) Even with this restriction there are two other operators
at leading order in the effective field theory expansion:
λ2a−1π̈∂i _πσi and λ4a−2ϵijk∂iπ̈∂j _πσk. Hence the space
of signatures of parityviolation involves the λ1λ3, λ2λ3,
λ1λ4 and λ2λ4 exchanges, in principle.

(iii) Parity violation can also arise if there is a split
of the �1 helicities of σi exchanged in the diagram
of (5) [31]. This can happen for example via the
dimension-3 operator a−1ϵijkσi∂jσk at leading order
in the effective field theory expansion (or, in a UV-
complete framework, a Chern-Simons-like inter-
action, e.g., [29]).

As discussed in the Introduction, the purpose of this work is
to show how already with currentsurveys we can put
constraints on the presence and interactions of massive
particles during inflation. Since we expect that BOSS data
will not give parametrically different constraints if we
consider the scenarios in the three points above (for
example if we had considered the λ2λ3, λ1λ4 or λ2λ4
exchanges), focusing on this example will suffice for our

1Notice that here we assume that σi transforms as a vector
under parity.
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purpose until data from future surveys like DESI and
Euclid are available (and indeed the various templates are
likely highly correlated). Another reason why we focus on
the λ1λ3 exchange is that it is the only interaction among the
four that has been explicitly bootstrapped in [9], leading to
a closed-form expression for the resulting ζ trispectrum.We
further note that other templates are possible if one loosens
the symmetries imposed on the EFTI, e.g., allows for strong
departures from scale invariance.
In this regard, let us also discuss our choice of spin and

mass of the exchanged particle. Spin-s particles must
satisfy the Higuchi bound m2

σ > sðs − 1ÞH2 [80], implying
that the signature in ζ correlators of very massive particles
with high spin that is not degenerate with EFTI operators is
exponentially suppressed (in addition to the suppression in
the squeezed limit due to their fast decay as the universe
expands) [6]. In this work we focus on spin-1 particles
since, in this case, any mass is allowed. It would be
interesting to study the signature of higher-spin particles in
the setup of [71]: there the authors invoke strong couplings
with the clock in order to evade the Higuchi bound, turning
the cosmological collider into “cosmological condensed

matter”.2 In keeping with the exploratory nature of our
paper, we leave also this to future work.

B. Trispectrum templates

We now summarize the trispectrum templates of the
above models, i.e. the predictions for

hζðk1Þζðk2Þζðk3Þζðk4Þic
≡ ð2πÞ3δDðk1234ÞTðk1;k2;k3;k4Þ
≡ ð2πÞ3δDðk1234ÞT̃ðk1;k2;k3;k4Þ þ 23 perms:; ð10Þ

where the second definition is explicitly symmetrized.
Before doing so, we emphasize that we follow the
recent inflationary analyses of BOSS data [15–17] and
consider only scale-invariant templates for primordial non-
Gaussianities.

1. Ghost condensate

The presymmetrized trispectra from the operators of (3)
and (4), which we will denote with a subscript MPO and
Λ2
PO respectively, are given by

T̃MPO
ðk1;k2;k3;k4Þ ¼

128iπ3Λ5ðHΛ̃Þ1=2
MPOΛ̃5Γð3

4
Þ2 ðΔ2

ζÞ3
ðk1 · k2 × k3Þðk2 · k4Þðk1 · k4Þðk2 · k3Þ

k
3
2

1k
3
2

2k
3
2

3k
3
2

4

ImT ð11Þ
0;0;0;0ðk1; k2; k3; k4Þ;

T̃Λ2
PO
ðk1;k2;k3;k4Þ ¼

512iπ3Λ5ðHΛ̃Þ3=2
Λ2
POΛ̃

6Γð3
4
Þ2 ðΔ2

ζÞ3ðk1 · k2 × k3Þðk1 · k2Þk−
3
2

1 k
1
2

2k
1
2

3k
1
2

4T
ð13Þ
0;0;0;1ðk1; k2; k3; k4Þ; ð11Þ

where the function T is defined as

T ðnÞ
ν1;ν2;ν3;ν4ðk1; k2; k3; k4Þ ¼

Z þ∞

0

dλ λnHð1Þ
3
4
−ν1

ð2ik21λ2ÞHð1Þ
3
4
−ν2

ð2ik22λ2ÞHð1Þ
3
4
−ν3

ð2ik23λ2ÞHð1Þ
3
4
−ν4

ð2ik24λ2Þ: ð12Þ

The Hankel functions in the two integrals are exponentially convergent at large λ. We notice that T ðnÞ
0;0;0;0ðk1; k2; k3; k4Þ is

purely imaginary and T ðnÞ
0;0;0;1ðk1; k2; k3; k4Þ is purely real, in keeping with the imaginary nature of parity-odd trispectra. We

also see that there is no dependence of the trispectra on the Mandelstam-like variables

s ¼ k1 þ k2; t ¼ k1 þ k3; u ¼ k2 þ k3;

s ¼ jk1 þ k2j; t ¼ jk1 þ k3j; u ¼ jk2 þ k3j; ð13Þ

given that the trispectrum arises from contact diagrams (i.e.
without particle exchange). Finally, we notice that both
templates contain the ubiquitous k1 · k2 × k3 factor, which

is the only parity-violating structure possible for scale- and
rotation-invariant trispectra.

2. Cosmological collider

To parametrize the mass of the spin-1 particle σ, we
introduce the variable

ν≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
m2

σ

H2

r
; ð14Þ

2See also [81–89] for other ways of having light spinning
particles during inflation [more precisely particles belonging to
unitary representations of the de Sitter group different than the
“principal series” m2

σ ≥ ðs − 1=2Þ2, a strong breaking of the shift
symmetry of the clock, and symmetry breaking patterns different
than that of the EFTI].
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which is real for mσ ≤ 3H=2. In this case, the trispectrum arising from the diagram of (5) can be bootstrapped
for arbitrary cs using the tools developed in [90] and is given by

Tλ1λ3ðk1;k2;k3;k4Þ ¼
�Y4
a¼1

PζðkaÞ
�
c4sλ1λ3
2H3

sin π

�
νþ 1

2

�
ðs2 − k21 − k22Þðs2 − k23 − k24Þðk1 − k2Þðk3 − k4Þ

× ðk3 · k2 × k4Þ½k12I3ðcsk12; sÞ þ icsk1k2I4ðcsk12; sÞ�½k34I4ðcsk34; sÞ þ icsk3k4I5ðcsk34; sÞ�
þ ½ð1; 2Þ ↔ ð3; 4Þ� þ tþ u; ð15Þ

where PζðkÞ ¼ Δ2
ζ=k

3, we have defined kab ≡ ka þ kb. The six permutations in the above trispectrum are

f1; 2; 3; 4; 1þ 2g þ f3; 4; 1; 2; 3þ 4g þ f1; 3; 2; 4; 1þ 3g þ f2; 4; 1; 3; 2þ 4g þ f1; 4; 2; 3; 2þ 3g þ f2; 3; 1; 4; 1þ 4g;
ð16Þ

and we require the functions In, defined as

Inða; bÞ ¼ ð−1Þnþ1
Hffiffiffiffiffiffi
2b

p
�

i
2b

�
n ΓðαÞΓðβÞ
Γð1þ nÞ × 2F1

�
α; β; 1þ n;

1

2
−

a
2b

�
ð17Þ

with α ¼ 1
2
þ n − ν and β ¼ 1

2
þ nþ ν. These are such that Tλ1λ3 is purely imaginary, as required for a parity-odd

trispectrum. Notably, the trigonometric prefactor vanishes if mσ ¼ 0 or mσ ¼
ffiffiffi
2

p
H, i.e. there is no contribution if the

exchanged particle is massless or conformally coupled.
For later use, we reexpress (15) in fully symmetrized form:

T̃λ1λ3ðk1;k2;k3;k4Þ¼−ic4s
λ1λ3
2H

ðΔ2
ζÞ4 sinπ

�
νþ1

2

�
k−21 k−12 k−13 k−14 ðk̂1 · k̂2Þðk̂3 · k̂4Þðk1−k2Þðk3−k4Þ

× ðk̂2 · k̂3× k̂4Þ½k12J3ðcsk12;sÞþcsk1k2J4ðcsk12;sÞ�½k34J4ðcsk34;sÞþcsk3k4J5ðcsk34;sÞ�; ð18Þ

noting that Tλ1λ3 is fully symmetric by definition, and
introducing the rescaled integrals

Jnða;bÞ ¼
�
1

2b

�
nþ1=2 ΓðαÞΓðβÞ

Γð1þ nÞ 2F1

�
α;β; 1þ n;

1

2
−

a
2b

�
:

ð19Þ

In the following we will restrict our analysis to the range of
masses 0 ≤ mσ ≤ 3H=2, though it would be interesting to
extend the study of [36] to masses above 3H=2 and see
whether BOSS data are sensitive to the resulting oscillatory
features in the trispectrum.Wewill also consider three choices
for the (relative) speed of sound: cs ¼ 0.1, 1, 10. At fixed λ1
and λ3, the overall size of the trispectrum scales as 1=cs for
cs ≫ 1, andc4s forcs ≪ 1, thusweexpect our constraints to be
the strongest in the case where the Goldstone mode π and the
spinning particle move approximately with the same speed.

C. Perturbativity bounds

A priori, it is not certain whether the BOSS data
considered below will be able to place strong constraints
on the above coupling amplitudes, nor what one even

means by “strong.” In this light, it is worth discussing the
theoretical bounds on our trispectra that come from
perturbativity, i.e. the constraint that perturbation theory
during inflation should be convergent.

1. Ghost condensate

To enforce perturbativity, we require that the probability
distribution functional of ζ is only weakly non-Gaussian.3

We estimate the overall size, which we will call τNL, of the
kurtosis as

τNL ∼
T
P3
ζ

: ð20Þ

The requirement of perturbative non-Gaussianities can then
be recast as, e.g., [36]

τNLΔ2
ζ ≲ 1: ð21Þ

3An equivalent way to derive these constraints is requiring that
at horizon crossing we are below the EFT cutoff as determined by
the two operators (3) and (4).
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In these definitions we are cavalier with overall numeri-
cal factors and the shape dependence: forgetting the former
will not lead to a parametric underestimation or overesti-
mation of τNL, and we do not expect wild variations in the
size of the trispectrum depending on the shape of the
tetrahedron. From (3) and (4) we then find

τðMPOÞ
NL ∼

Λ5H1=2

MPOΛ̃9=2 ; τ
ðΛ2

POÞ
NL ∼

Λ5H3=2

Λ2
POΛ̃

9=2 : ð22Þ

In Sec. V we will put bounds on the combinations on the
right-hand sides of these equations, and check whether
BOSS data have a constraining power parametrically close
to the perturbativity bound,

τðMPOÞ
NL ≲ 108; τ

ðΛ2
POÞ

NL ≲ 108: ð23Þ

Before proceeding, it is interesting to point out that using
(2) we can express the Hubble rate in terms of the measured
amplitude of the power spectrum, and find an expression
for τNL only in terms of the microphysical scales Λ, Λ̃,MPO

and Λ2
PO. More precisely we find the scalings

τðMPOÞ
NL ∼

1

MPO

ffiffiffiffiffiffiffi
Λ26

Λ̃21

5

s
; τ

ðΛ2
POÞ

NL ∼
1

Λ2
PO

ffiffiffiffiffiffiffi
Λ28

Λ̃18

5

s
; ð24Þ

where we have neglected overall numerical factors.
It is then important to emphasize that the nonlinear
realization of boosts imposes cubic interactions of π,
which lead to a bispectrum for ζ. This bispectrum can
be decomposed into the equilateral and orthogonal
templates [14] and the contribution coming from the least
irrelevant operator, i.e. _πð∂iπÞ=a2, has fNL of order
Λ2=ðHΛ̃Þ ∼ ðΛ4=ðΔ2

ζΛ̃
4ÞÞ2=5.

It is also instructive to compare the parity-odd trispec-
trum contributions to the parity-even ones. The leading
parity-even trispectrum in the ghost condensate is given
by [91]

SðPEÞππππ ¼ M4
PE

Z
d4x

ffiffiffiffiffiffi
−g

p
a−4ð∂iπÞ2ð∂jπÞ2: ð25Þ

Let us compare this to (3). If we assume that all scales are
of the same order, MPE ∼MPO ∼ Λ̃ ∼ Λ, and using that
∂i ∼ ðHΛÞ1=2 at horizon crossing due to the modified
dispersion relation, we get

hπ4iPO
hπ4iPE

����
crossing

∼
1

M4
PEMPO

ðHΛÞ9=2
ðHΛÞ4=2 ∼ Δ2

ζ ; ð26Þ

meaning that in this case the parity-even trispectrum would
dominate over the parity-odd one. Requiring that these non-
Gaussianities are compatible with current bispectrum and
parity-even trispectrum bounds would put a constraint on

the combination Λ=Λ̃ (from the bispectrum) and on a
combination of Λ, Λ̃ and MPE (from the parity-even
trispectrum). However, given that we are free to choose
MPO and Λ2

PO this does not affect our conclusions about the
parity-odd trispectrum. Things would be different if one
could tie, via naturalness arguments, the scales MPE, MPO

andΛ2
PO to Λ and Λ̃: in this case via the constraints from the

bispectrum and the (even and odd) trispectrum we could
put a bound directly on all the energy scales scales in our
model. We leave the exploration of naturalness in ghost
inflation to future work.

2. Cosmological collider

As discussed at the end of Sec. II B, the size of non-
Gaussianity from the diagram of (5) depends on cs. More
precisely we have

τðλ1λ3ÞNL ∼

8>>><
>>>:

c4sΔ2
ζλ1λ3
H for cs ≪ 1;

Δ2
ζλ1λ3
H for cs ¼ 1;

Δ2
ζλ1λ3
Hcs

for cs ≫ 1:

ð27Þ

Thanks to scale invariance this holds for any value of ν. In
Sec. V we will quote constraints on the combination
λ1λ3=H for cs ¼ 0.1, 1, 10 at different values of ν.
Given that the dependence on cs is particularly strong
only for cs ≪ 1, perturbativity then requires that, at each ν
value,

λ1λ3=H ≲ 1020ðcs ¼ 0.1Þ; or λ1λ3=H ≲ 1016ðcs ≥ 1Þ:
ð28Þ

Before concluding this section and shifting our attention
to the computation of the parity-odd galaxy four-point
function, we wish to comment on the fact that additional
constraints on λ1 and λ3 come from the requirement of not
having strong coupling at horizon crossing. It is straight-
forward to estimate this requirement by computing the EFT
cutoffs associated with the interactions (6) and (7) if cs ¼ 1
and ν is close to 3=2. These are [36]

Λ1 ∼H4=3=ðΔ2
ζλ1Þ1=3; Λ3 ∼H=ðΔ2

ζλ3Þ1=4; ð29Þ

hence the requirement that H=Λ1 ≲ 1, H=Λ3 ≲ 1 is

equivalent to requiring that τðλ1λ3ÞNL Δ2
ζ ≲ 1. We expect that

for cs ≠ 1 and generic ν the same will apply, hence we do
not discuss these constraints further.
An important constraint, instead, would come from the

fact that accompanying the parity-odd contribution ∝ λ1λ3
there will be two parity-even contributions ∝ λ21 and ∝ λ23.
One should in principle put bounds on these three con-
tributions simultaneously: however, we expect the contri-
bution from gravitational nonlinearities at late times will
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make the parity-even pieces harder to constrain. We will
return to this point in Sec. VII.

III. GALAXY CORRELATION FUNCTIONS

As demonstrated in Sec. II, nonstandard physics in
inflation can source parity-violating signatures in the
primordial curvature perturbation ζ. As observers, however,
we do not have direct access to correlators of ζ, but must
infer them through their late-time manifestations. For the
models considered in this work, a crucial question therefore
is which physical observables are sensitive to inflationary
parity violation. The usual suspects are the CMB and LSS:
to capture large-scale scalar signatures like the above we
require a four-point function, such as that of the CMB
temperature, hT4i, or the galaxy overdensity, hδ4gi.
In this work, we probe inflationary signatures using the

four-point function of spectroscopic galaxy surveys. In
general, one can work either in Fourier space (via the galaxy
trispectrum) or configuration space (via the four-point corre-
lation function, hereafter 4PCF). From a modeling perspec-
tive, the trispectrum is preferred since there is a simple relation
between the curvature perturbation andδg; however, the4PCF
can and has been straightforwardly measured, thus it will be
the focus of our attention in this work.
The galaxy 4PCF is defined as the configuration-space

average of the overdensity field:

ζðr1; r2; r3Þ ¼ hδgðxÞδgðxþ r1Þδgðxþ r2Þδgðxþ r3Þic;
ð30Þ

assuming homogeneity. For efficient measurement, it is
useful to restrict to the isotropic component of the 4PCF
(i.e. that averaged over rotations), and project the statistic
into a basis of spherical harmonics, defined by [92,93]

ζisoðr1; r2; r3Þ ¼
X
l1l2l3

ζl1l2l3ðr1; r2; r3ÞPl1l2l3ðr̂1; r̂2; r̂3Þ;

ð31Þ

where the basis functions (related to the tripolar spherical
harmonic functions introduced in [94]) are given by

Pl1l2l3ðr̂1; r̂2; r̂3Þ ¼ ð−1Þl1þl2þl3
X

m1m2m3

�
l1 l2 l3

m1 m2 m3

�

× Yl1m1
ðr̂1ÞYl2m2

ðr̂2ÞYl3m3
ðr̂3Þ; ð32Þ

involving spherical harmonics and the Wigner 3j symbol.
The 4PCF multiplets ζl1l2l3ðr1; r2; r3Þ can be directly
estimated from data (using the ENCORE code [93]),4 and
are related to the full field via

ζl1l2l3ðr1; r2; r3Þ

¼
Z

dr̂1 dr̂2dr̂3 ζðr1; r2; r3ÞP�
l1l2l3

ðr̂1; r̂2; r̂3Þ: ð33Þ

These coefficients depend on three angular momentum
indices, li (which satisfy triangle conditions), and three
radial bins, ri. Further, the basis functions are rotationally
invariant, and, for even (odd) l1 þ l2 þ l3 are parity even
(parity odd). Henceforth, we will analyze the parity-odd
multiplets ζl1l2l3ðr1; r2; r3Þ; in the absence of parity-
violating physics in the early or late Universe, these are
expected to be zero.
Our primary dataset will be the observed SDSS-III BOSS

DR12 galaxies [95–97], comprising approximately 8 × 105

galaxies at redshift z ≈ 0.57, split across the Northern and
Southern galactic cap. We additionally make use of a set of
2048 MultiDark-Patchy (hereafter PATCHY) mock catalogs
[98,99], created in order to model the noise properties of the
BOSS sample, and 84 NSERIES mocks [100], which were
introduced for BOSS pipeline validation. In all cases, we use
the measured multiplets with li ≤ 4 (satisfying the triangle
conditions) and ten radial bins in ½20; 160�h−1 Mpc, giving a
total of 1288 elements in the data vector. The 4PCF
measurements and corresponding analysis pipeline has been
made publicly available onGitHub5 and further details of the
dataset (including details of systematic weights and survey
geometry correction) are presented in [60] (see also [61]),
building on the results of [59,93].

IV. FROM INFLATION TO GALAXY SURVEYS:
THEORETICAL MODELING

One ingredient remains in our recipe for constraining
inflation with galaxy surveys; analytic predictions for the
galaxy 4PCF depending on the EFTI coupling amplitudes.
In this section, we will consider the relation of inflationary
and late-time physics and summarize the key theoretical
templates (analogously to Sec. VII of [60]). We caution that
a by-product of working in configuration space (and in a
somewhat unintuitive basis) is that the theoretical predic-
tions are quite grotesque: as such, we relegate the finer
details to the Appendix.

A. Relating δ4g and ζ4

At lowest order in gravitational evolution, the galaxy
density at some redshift z is related to the curvature
perturbation via

δgðk; zÞ ¼ Z1ðk̂; zÞMðk; zÞζðkÞ; ð34Þ

where MðkÞ is the transfer function [including the DþðzÞ
growth factor] and Z1ðk̂; zÞ is the perturbative (Kaiser)

4github.com/oliverphilcox/encore. 5github.com/oliverphilcox/Parity-Odd-4PCF.
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kernel b1ðzÞ þ fðzÞðk̂ · n̂Þ2, for linear bias b1, growth rate f, and line of sight n̂. We suppress the z argument henceforth.6

The galaxy trispectrum is straightforwardly obtained in terms of the primordial trispectrum:

�Y4
i¼1

δgðkiÞ
	

c

¼
�Y4
i¼1

Z1ðk̂iÞMðkiÞ
�
ð2πÞ3δDðk1 þ k2 þ k3 þ k4ÞT̃ðk1;k2;k3;k4Þ þ 23 perms:; ð35Þ

using the definition (10), and, via a Fourier transform, the (unprojected) 4PCF

ζðr1; r2; r3Þ ¼
�Y4
i¼1

Z
ki

Z1ðk̂iÞMðkiÞ
�
eiðk1·r1þk2·r2þk3·r3Þð2πÞ3δDðk1 þ k2 þ k3 þ k4ÞT̃ðk1;k2;k3;k4Þ þ 23 perms:

Finally, we can project this onto the basis functions defined in (32), yielding

ζl1l2l3ðr1; r2; r3Þ ¼
Z

dr̂1 dr̂2dr̂3 P�
l1l2l3

ðr̂1; r̂2; r̂3Þ
�Y4
i¼1

Z
ki

Z1ðk̂iÞMðkiÞ
�
eiðk1·r1þk2·r2þk3·r3Þ

× ð2πÞ3δDðk1 þ k2 þ k3 þ k4ÞT̃ðk1;k2;k3;k4Þ þ 23 perms:;

where we restrict to odd l1 þ l2 þ l3 to ensure parity antisymmetry.
In principle, (36) contains all the details needed to compute a theoretical template for the observed galaxy 4PCF using the

inflationary correlators of Sec. II. In practice, this is highly nontrivial, due to the 18-dimensional coupled integrals. A number
of tricks can be used to simplify this, as detailed in the Appendix A 1. In brief, (a) the r̂ integrals can be performed analytically
using spherical harmonic orthogonality, (b) we can rewrite the Dirac delta function as a one- or two-dimensional integral, and
(c) Z1ðk̂Þ can be expressed as a spherical harmonic series. Computation then reduces to a set of radial integrals with an
associated angular piece depending only on spherical harmonics in k̂, which can be expressed in terms of Wigner 3j and 9j
symbols, aided by writing the various terms in a rotationally invariant basis. All in all, we will arrive at an expression for the
relevant template written in terms only of low-dimensional integrals and angular momentum couplings. We summarize the
corresponding templates for the ghost inflation and cosmological collider models below.

B. Ghost inflation

Inserting the templates of (11) into the late-time definition (36), we can obtain the 4PCF templates for the two
ghost inflation correlators considered in Sec. II. Following the simplifications outlined in the Appendix A 2, these can be
written

ζðMPOÞ
l1l2l3

ðr1; r2; r3Þ ¼ 2ð4πÞ11=2ð−iÞl123 Λ5ðHΛ̃Þ1=2
MPOΛ̃5Γð3

4
Þ2 ðΔ

2
ζÞ3

X
H

ΦH

X
L1���L4L0

ð−iÞL1234

�
L1 L2 L0

0 0 0

��
L0 L3 L4

0 0 0

�

× CL1L2L3L4L0MlH1lH2ðl0ÞlH3lH4

L1L2ðL0ÞL3L4
Im

Z
∞

0

x2dx
Z

∞

0

λ11dλ I3=4;1=2;lH1;L1
ðx; λ; rH1ÞI3=4;3=2;lH2;L2

ðx; λ; rH2Þ

× I3=4;1=2;lH3;L3
ðx; λ; rH3ÞI3=4;1=2;lH4;L4

ðx; λ; rH4Þ; ð36Þ

and

ζ
ðΛ2

POÞ
l1l2l3

ðr1; r2; r3Þ ¼
8

ffiffiffi
2

p

3
ffiffiffi
5

p ð4πÞ11=2ð−iÞl123
Λ5ðHΛ̃Þ3=2
Λ2
POΛ̃

6Γð3
4
Þ2 ðΔ

2
ζÞ3

X
H

ΦH

X
L1���L4L0

ð−iÞL1234

�
L1 L2 L0

0 0 0

��
L0 L3 L4

0 0 0

�

× CL1L2L3L4L0N lH1lH2ðl0ÞlH3lH4

L1L2ðL0ÞL3L4

Z
∞

0

x2dx
Z

∞

0

λ13dλ I3=4;1=2;lH1;L1
ðx; λ; rH1ÞI3=4;5=2;lH2;L2

ðx; λ; rH2Þ

× I3=4;3=2;lH3;L3
ðx; λ; rH3ÞI−1=4;1=2;lH4;L4

ðx; λ; rH4Þ; ð37Þ

6We neglect higher-order gravitational effects in this work. Alone, these cannot generate a parity-violating signature (without some
flavor of modified gravity, e.g. [62]), though they can serve to complicate any existing LSS templates on small scales. We discuss these
effects in more detail in Sec. VI.
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involving the I integrals (over the transfer and Hankel
functions, see (A14), CL1���Ln

≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2L1 þ 1Þ � � � ð2Ln þ 1Þp
,

a permutation factor ΦH ∈ f�1g, and the coupling matri-
cesM andN of (A17), which can be expressed in terms of
Wigner 9j symbols.
To facilitate efficient computation of the above tem-

plates, we employ a number of tricks. First, for the k
integrals, we can assess their convergence via the asymp-
totic limits of the component functions, i.e.

jlðxÞ∼
sinðx−lπ=2Þ

x
; Hð1Þ

α ð2ix2Þ∼ð−iÞ1þαffiffiffi
π

p
x

e−2x
2 ð38Þ

for x ≫ 1. The integrand of the I functions thus behaves as

k2þβ

2π2
MðkÞjlðkrÞjLðkxÞHð1Þ

α ð2ik2λ2Þ

∼ð−iÞ1þα k
β−1

2π5=2
MðkÞ
xrλ

sinðkrþlπ=2ÞsinðkxþLπ=2Þe−2k2λ2 ;
ð39Þ

for kx; kr ≫ l, which is exponentially convergent. In this
vein, it is useful to change variables in the k integral to
q≡ kλ: thence, from (A14),

Iα;β;l;Lðx; λ; rÞ ¼ λ−3−β
Z

∞

0

q2þβdq
2π2

Mðq=λÞjlðqr=λÞjLðqyÞ

×Hð1Þ
α ð2iq2Þ; ð40Þ

defining also y ¼ x=λ, which ensures that an appropriate
range of x values can be used for any λ. Additionally, we
note that the y integrals can be rewritten as (infinite)

discrete summations, if one imposes some maximum q
of interest, i.e.,Z

∞

0

y2dy
Y4
j¼1

jLj
ðqjyÞ¼

�
π

2qmax

�
3X∞
m¼0

m2Em

Y4
j¼1

jlj

�
qjπm

2qmax

�
;

ð41Þ
where Em is 1=2 if m ¼ 0 and unity elsewhere [101]. In
practice, this was not found to significantly expedite
computation.
When evaluating the 4PCF, we additionally integrate the

radial components over finite bins, matching that of the
data. This is achieved via the replacement

jlðkrÞ →
1

Vbin

Z
rmax

rmin

r2dr jlðkrÞ; ð42Þ

where the radial bin is specified by ½rmin; rmax� with volume
Vbin. The bin-integrated Bessel functions are analytic and
can be found in [102].
To evaluate the theoretical model, we assume an inte-

gration grid of 200, 500 and 500 points in q, y, and λ
respectively, with maximum values of 5, 100 and 250,
verified by initial testing. To match the data, we use ten
radial bins in r, linearly spaced in ½20; 160�h−1 Mpc, and all
odd multiplets up to lmax ¼ 4, with lmax ¼ 8 used for all
internal (Li) summations. The full computation required
≈48 hours on a 24-core machine.

C. Cosmological collider

The particle-exchange 4PCF can be obtained in a similar
manner, inserting the trispectrum definition (18) into (36)
and simplifying. The full calculation, outlined in the
Appendix A 3, yields

ζðλ1λ3Þl1l2l3
ðr1; r2; r3Þ ¼ ð4πÞ7=2ð−iÞl123 c4sλ1λ3

18
ffiffiffi
5

p
H
ðΔ2

ζÞ4 sin π
�
νþ 1

2

�X
H

ΦH

X
L1…L4L0

ð−iÞL1234

�
L1 L2 L0

0 0 0

��
L0 L3 L4

0 0 0

�

× CL1…L4L0OlH1lH2ðl0ÞlH3lH4

L1L2ðL0ÞL3L4

Z
s2ds
2π2

QlH1lH2;A
L1L2L0 ðs; rH1; rH2ÞQlH3lH4;B

L3L4L0 ðs; rH3; rH4Þ; ð43Þ

where the Q integrals are defined in (A22), and the coupling matrix, O, is given in (A24).
Naive computation of Sec. IV B is difficult since the Q functions involve integrals of three sets of spherical Bessel

functions, which are highly oscillatory, and each must be then integrated over two momentum variables. These can be
simplified using the relation of [103]:

�
L1 L2 L0

0 0 0

�Z
x2dxjL1

ðk1xÞjL2
ðk2xÞjL0 ðsxÞ ¼ πβðΔÞ

4k1k2s
iL1þL2−L0 ð2L0 þ 1Þ1=2

�
k1
s

�
L0 XL0

λ¼0

�
2L0

2λ

�
1=2�k2

k1

�
λ

×
X
l

ð2lþ 1Þ
�
L1 L0 − λ l

0 0 0

��
L2 λ l

0 0 0

��
L1 L2 L0

λ L0 − λ l

�
LlðΔÞ;

ð44Þ
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where the curly braces indicate Wigner 6j symbols, Δ ¼ ðk21 þ k22 − s2Þ=ð2k1k2Þ, and βðΔÞ is unity if jΔj < 1 and zero
elsewhere. This reduces the Q integrals to the form

Ql1l2;X
L1L2L0 ðs; r1; r2Þ ¼ fL1L2L0 ðk1; k2; sÞ

�Z
k21dk1
2π2

Mðk1Þj̄l1ðk1; r1Þ
��Z

k22dk2
2π2

Mðk2Þj̄l2ðk2; r2Þ
�
tXðk1; k2; sÞ; ð45Þ

where fL1L2L0 ðk1; k2; sÞ is the result of the above Bessel
function integral, and we have additionally replaced the
Bessel functions in kiri by their bin-integrated forms, as in
Sec. IV B. This may be computed numerically as a two-
dimensional integral in ðk1; k2Þ for a grid of values of s and
all radial and angular bins of interest. In practice, we utilize
an integration grid of 100 points in ki and 100 points in s
with maximal values of kmax ¼ 0.5h Mpc−1 and smax ¼
1.0h Mpc−1 (noting that the Bessel functions have support
for k≲ 1=Rmin and s ≤ 2kmax from the triangle condition).
Computation requires ≈36 hours on a 24-core machine for
each choice of sound-speed and mass parameter.

V. FROM GALAXY SURVEYS
TO INFLATION: RESULTS

Our primary goal in this work is to use the measured
parity-odd four-point correlation function to search for
signatures of new inflationary physics, such as massive
particle exchange. In brief, our approach is to constrain the
amplitude, A, of a given model by comparing the measured
and theoretical four-point functions (denoted Aζth and ζobs)
via the following likelihood:

LðAÞ ∝ exp

�
−
1

2
½APζth − Pζobs�TC−1½APζth − Pζobs�

�
;

ð46Þ

where P is a projection matrix used to reduce the
dimensionality of the 4PCF, and C ¼ hðPζÞðPζÞTi is the
covariance, measured from simulations. Via posterior
sampling, we can compute the constraints on A, and thus
evaluate the viability of a given theoretical model.
In more detail, we project the 4PCF onto a low-

dimensional basis defined by first computing the eigende-
composition of the theoretical covariance matrix [104],
then selecting the basis vectors which maximize the signal
to noise of the theoretical model ζth. In general, we will
assume Neig ¼ 100 basis vectors, following [60], in order
to avoid any potential loss of information (at low Neig) with
non-Gaussianity of the likelihood (at high Neig), due to
highly correlated data.
For the covariance, we utilize measurements of the 4PCF

from the Nmocks ¼ 2048 PATCHY mocks, defined as

C ¼ 1

Nmocks − 1

XNmocks

a¼1

ðPζðaÞÞðPζðaÞÞT; ð47Þ

where (a) indicates the measurement from mock a.
To account for the presence of noise in the covariance
matrix, we use the following likelihood, instead of the
Gaussian (46) (which applies in the Nmocks → ∞ limit):

LðAÞ∝
�
1þ½APζth−Pζobs�TC−1½APζth−Pζobs�

Nmocks−1

�−Nmocks=2

;

ð48Þ

as discussed in [105]. All posterior sampling is performed
using EMCEE [106] in the one-dimensional parameter space.

A. Ghost inflation

For the ghost inflation scenario, we constrain the
following amplitudes, extracted from the prefactors of (11):

AðMPOÞ≡ Λ5H1=2

MPOΛ̃9=2×
ðΔ2

ζÞ3
Γð3

4
Þ2 ; AðΛ2

POÞ≡ Λ5H3=2

Λ2
POΛ̃

9=2×
ðΔ2

ζÞ3
Γð3

4
Þ2 ;

ð49Þ

where we separate out terms appearing in the τNL defi-
nitions of (22).
In Fig. 1, we plot a comparison of the observed galaxy

4PCF (from [60]) and the 4PCF ghost inflation prediction,
utilizing values of AðMPOÞ ¼ 100AðΛ2

POÞ ¼ 10−10 for visibil-
ity. Notably, the theoretical models have strong dependence
on both the radial and angular parameters (ri and li), and
the fiducial values are clearly inconsistent with the data.
Enhanced signals are seen particularly for small multiplets
(corresponding to wide angles) and the smaller radial bins,
though we see features also at high r.
To explore the feasibility of the general ghost inflation

models, we perform an Markov Chain Monte Carlo
analysis to find constraints on AðMPOÞ; AðΛ2

POÞ, as described
above. Since the two operators arise at different orders in
the EFTI, we will consider the templates separately rather
than performing a joint analysis. The results are shown in
Fig. 2 and Table I. Analyzing the mean 4PCF of the PATCHY

and NSERIES mock catalogs, we find a ghost amplitude
highly consistent with zero; this is a good consistency test
of our analysis, particularly since the NSERIES catalogs are
high-resolution mocks and include various physical effects
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FIG. 1. Comparison of the observed galaxy four-point correlation function, ζl1l2l3ðr1; r2; r3Þ (black points), with two models of the
theoretical 4PCF, assuming ghost condensate (black lines) and cosmological collider (colored lines) inflation. We assume fiducial values
of AðMPOÞ ¼ 100AðΛ2

POÞ ¼ 10−10 and Aðλ1λ3Þ ¼ 1019ðΔ2
ζÞ4c4s sin πðνþ 1

2
Þ for visibility and consider a variety of values of the sound speed

cs and mass ν in the latter case, indicated by the captions. The second through fifth panels show the correlators for a selection of values
of l1, l2, l3 (indicated by the title), with the x axis giving the radial bins, collapsed into one dimension. The first panel shows the values
of the radial bin centers corresponding to each one-dimensional bin center. Here, we utilize data from the BOSS CMASS NGC region,
and with error bars obtained from the PATCHY simulations (noting that the data is highly correlated). Notably, the theoretical models have
strong (and different) dependence on the multiplet, which the MCMC analysis shows to be broadly inconsistent with the data.
Constraints on the model amplitudes are given in Tables I and II.
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such as redshift-space distortions, survey windows, and
fiber collision artifacts. For the BOSS data, we find the
68% confidence intervals AðMPOÞ ¼ ð1.4 � 1.0Þ × 10−12

and AðΛ2
POÞ ¼ ð−0.7 � 3.7Þ × 10−14, or the physical

constraints Λ5H1=2M−1
POΛ̃

−9=2 ¼ ð3.1 � 2.1Þ × 1010 and
Λ5H3=2Λ−2

POΛ̃
−9=2 ¼ ð−1.5� 8.1Þ × 108 assuming Δ2

ζ ¼
4.1 × 10−8 [107], giving no evidence for a parity-violating
ghost condensate.
Finally, we can compare the above results to the

perturbativity bounds discussed in Sec. II C, through the

limits on τðMPOÞ
NL , and τ

ðΛ2
POÞ

NL , which correspond to
Λ5H1=2M−1

POΛ̃
−9=2 and Λ5H3=2Λ−2

POΛ̃
−9=2, up to numerical

constants. Perturbativity requires τNL ≲ 108, which is of the
same order as the constraints above. Precise statements
involving these bounds are difficult, given that they are

derived only up to numerical factors; however, this indi-
cates that we are working in the weakly non-Gaussian
regime, where the EFTI expansion is valid. Furthermore,
this implies that the BOSS constraints on the Lagrangian
amplitudes are parametrically relevant with regards to the
values predicted within the EFTI.

B. Cosmological collider

When analyzing the cosmological collider 4PCF, we
instead constrain the amplitude

Aðλ1λ3Þðcs; νÞ≡ λ1λ3
H

× c4sðΔ2
ζÞ4 sin π

�
νþ 1

2

�
ð50Þ

given some values of cs and ν, again separating out the part
appearing in τNL. As noted in Sec. II, this vanishes for
massless and conformally coupled particles (at
ν ¼ 3=2; 1=2) which do not yield a parity-violating sig-
nature. In Fig. 1, we plot the collider model alongside the
BOSS data with a fiducial value λ1λ3=H ¼ 1 × 1019.
Interestingly, the models exhibit significantly different
scale dependence to ghost inflation, with a particular
enhancement seen in the higher multiplets with respect
to ζ111, though we once again see enhanced signals on large
scales.7 Furthermore, the templates vary considerably with
cs, both in sign, amplitude, and scale dependence. As
predicted (see the discussion in Sec. II C), the signatures are
largest when both fields have the same sound speed
(cs ¼ 1), indicating that the constraints will be tightest

TABLE I. Constraints on the amplitudes of parity-violating
inflationary models using the observational 4PCF data. The left
panels show results for ghost inflation, while the right give those
for the cosmological collider using a single value of particle mass
and sound speed. In all cases, we quote 68% confidence intervals.
For the collider model, we assume the parameters ν ¼ cs ¼ 1;
constraints on the amplitude for a range of parameter values are
given in Table II. We give results from BOSS, the mean of 2048
PATCHY mocks, and the mean of 84 NSERIES mocks, with the
former two being shown in Fig. 2 (for the ghost condensate) and
Fig. 3 (for the cosmological collider). We find no detection of any
parity-violating model.

Dataset 1012AðMPOÞ 1014AðΛ2
POÞ 1013Aðλ1λ3Þð1; 1Þ

BOSS 1.4� 1.0 −0.8� 3.8 −3.1� 4.1
PATCHY 0.0� 0.9 0.0� 3.9 0.1� 4.0
NSERIES 0.2� 1.1 0.3� 4.7 0.4� 4.4

FIG. 2. Constraints on the amplitude of parity violation in the ghost condensate inflationary model, from the leading (left) and
subleading (right) EFTI diagrams. We show results both from the mean of 2048 PATCHY mocks (blue) and the BOSS data (red),
constraining both AðMPOÞ; AðΛ2

POÞ and the corresponding physical parameters, as shown in the title. The 1σ constraints are shown in
Table I, and correspond to the combinations Λ5H1=2M−1

POΛ̃
−9=2 ¼ ð3.1� 2.1Þ × 1010 and Λ5H3=2Λ−2

POΛ̃
−9=2 ¼ ð−1.5� 8.1Þ × 108.

7It would be interesting, though beyond the scope of this work,
to study how much this difference is due to the fact that the
collider trispectrum arises from an exchange diagram, rather than
a contact diagram.
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on such models. Purely from visual inspection, none appear
to be consistent with the data.
More rigorously, we may again perform parameter

inference to constrain the amplitude of the parity-breaking
cosmological collider coupling. In this case, the model
strictly depends on three parameters: the coupling strength,
λ1λ3=H, the sound speed of the heavy particle, cs, and the
mass, parametrized by ν. Rather than scan over all three, we
here constrain only the amplitude for a variety of fixed
values of cs and ν, noting that the latter parameters do not
enter the model linearly, thus are difficult to scan over
efficiently.
First, we consider the constraints from a single model

with ν ¼ cs ¼ 1 (corresponding to a mσ ¼
ffiffiffi
5

p
H=2 spin-1

field with the same sound speed as the inflaton).
The resulting bounds on Aðλ1λ3Þðcs; νÞ are shown in
Fig. 3 and Table I. As for ghost inflation, the amplitude
is consistent with zero for the BOSS data. Moreover,
inference on the mean of PATCHY and NSERIES simulations
also returns a null result, implying that a spurious infla-
tionary signal is not generated in our modeling, analysis

pipeline, or systematic treatment at any detectable level. In
this case, the BOSS data constrains the coupling λ1λ3=H ¼
ð1.1� 1.4Þ × 1017 at 68% confidence.
Table II gives the analogous constraints on λ1λ3=H for a

range of values of ν and cs consistent with the physical
bounds. While we display results only for BOSS, we have
repeated the analysis also for the two simulation suites and
find null detections in all cases. Constraints on the coupling
strength vary both as a function of cs and ν: as expected, we
observe somewhat stronger constraints for cs ¼ 1 and the
bounds tighten slightly as ν increases (or the mass
decreases). Of course, for massless and conformally
coupled particles, our bounds are infinite since no par-
ity-violating inflationary trispectrum is generated. In all
cases, our constraints are below 2σ, indicating no signifi-
cant evidence for any model. Furthermore, the significance
of any detection is reduced due to the look-elsewhere effect
due to analyzing a large number of models, e.g. [108], and
we note that each analysis is far from independent. Overall,
we conclude that the inflationary exchange of a massive
spin-1 particle does not seem to source parity violation in
the galaxy correlator at any currently detectable level.
As before, these results may be compared to the

perturbativity constraints discussed in Sec. II C. In general,
this, and the restriction that there is no strong coupling
at horizon crossing, demands that λ1λ3=H ≲ 1020 (for
cs ¼ 0.1) or 1016 (for cs ≥ 1). The values reported in
Table II are roughly consistent with this (noting that we
have neglected powers of π4, etc.), particularly for cs ¼ 1.
As for ghost inflation, this implies that our constraints are
consistent with the EFTI framework, and that constraints
from future surveys are expected to be phenomenologically
relevant.

VI. LATE-TIME PARITY VIOLATION AND THE
EFT OF LARGE SCALE STRUCTURE

Until now, we have considered only early-Universe
sources of parity violation. One may also ask the following
question: how large can parity-violating signatures be in the
late Universe? The EFTofLSS, which allows for the
description of structure formation on large scales in terms
of a weakly coupled theory even when the details of
complicated baryonic physics governing galaxy formation

TABLE II. Constraints on the coupling strength λ1λ3=H of spin-1 massive particles inflation using the parity-violating 4PCF from
BOSS galaxies. We give results for a variety of values of ν≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9=4 − ðmσ=HÞ2
p

and the massive particle sound speed, cs. Here, results
are given only for the BOSS data; a representative result for the PATCHY and NSERIES simulations is shown in Table I. We omit
ν ¼ 1=2; 3=2 which do not give parity-violating signatures. We find no significant detection of parity violation in any case (with all
values under 1.4σ), though note that the various templates are highly correlated.

ν ¼ 0 ν ¼ 0.25 ν ¼ 0.75 ν ¼ 1 ν ¼ 1.25

cs ¼ 0.1 ð−5� 7Þ × 1017 ð−0.7� 1Þ × 1018 ð3� 8Þ × 1017 ð6� 5Þ × 1017 ð5� 5Þ × 1017

cs ¼ 1 ð0.8� 5Þ × 1017 ð1� 7Þ × 1017 ð0.8� 4Þ × 1017 ð0.2� 2Þ × 1017 ð−0.7� 2Þ × 1017

cs ¼ 10 ð−7� 9Þ × 1019 ð−1� 1Þ × 1020 ð−0.3� 3Þ × 1019 ð−0.8� 7Þ × 1018 ð0.5� 2Þ × 1018

FIG. 3. As Fig. 2, but constraining the amplitude of parity
violation in the cosmological collider inflationary model, for a
massive spin-1 particle. Here, we use parameters cs ¼ 1 and
ν ¼ 1, i.e.mσ ¼

ffiffiffi
5

p
H=2. The 1σ constraints are shown in Table I,

and correspond to the combination λ1λ3=H ¼ ð1.1� 1.4Þ × 1017.
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are unknown, naturally provides an answer to this question.
Below, we will examine the various ways late-time parity
violation could enter the picture within this framework.
One caveat should be highlighted: the terms below require a
parity-violating mechanism for their production (such as
some flavor of chiral gravity). In the absence of this, the
bias coefficients accompanying each parity-violating term
will be exactly zero, thus there will be no late-time effects.

A. Density contributions

Within the EFTofLSS, the galaxy overdensity, δg, is
represented in terms of operators built out of the matter
density, tidal fields, and their derivatives. Assuming stat-
istical homogeneity, statistical isotropy, and the equiva-
lence principle, we can construct a complete basis at any
order in perturbations. This expansion is perturbative and
controlled by several different length scales: in the galaxy
rest frame, these are kNL, the scale at which the gravita-
tional collapse of matter becomes fully nonlinear, and R�,
which depends both on the details of the host halo
formation and baryonic physics that affects galaxy for-
mation. After factoring out the relevant length scales, the
bias expansion depends on a number of free coefficients
(bias parameters), which have to be determined experi-
mentally, i.e. fitted from data.
Let us discuss how parity-violating four-point

function may arise in the EFTofLSS. We first work in

the galaxy rest frame, whereupon the bias expansion
takes the form

δgðxÞ ¼
X
n¼1

X
O

bðnÞO OðnÞðxÞ; ð51Þ

where fOg are various bias operators and the index nmeans
that a given operator starts at order n in the (nonlinear)matter
density field. Nonlinearities in the bias expansion can
generate nontrivial four-point functions, even if none are
present in the primordial density field. These, in full general-
ity, may include some parity-odd terms. Physically, they can
appear inmodels where the star formation physics is coupled
to a parity odd sector, e.g. models with an axion-photon
coupling, or via some chiral gravity phenomena. As noted
above, the coefficients of all parity-odd terms will be exactly
zero in the absence of such effects.
As is standard in the EFTofLSS, let us discuss various

parity-violating terms in terms of their order in the loop
expansion. Note that, unlike the parity-even operators, the
loop expansion here does not match the derivative expan-
sion, i.e. the tree-level diagrams will actually be more
suppressed than the loop ones in the gradient expansion.
This happens because of additional constraints on the
parity-odd terms due to the appearance of the Levi-
Civita symbol, necessary for parity antisymmetry.
At the tree level we have the following diagrams:

ð52Þ

which, in principle, may contribute to the parity-odd
trispectrum. Here, the emptye circle denotes a parity-even
vertex and the filled circle a parity-odd one. The first of these
two diagrams is zero at all orders in spatial derivatives since
we have only the matter field δ to construct our operators,
which is a scalar under rotations; as such, we cannot contract
all the indices of the Levi-Civita symbol with only two
powers of δ at our disposal. The second diagram is also zero
unless oneworks at very high order in spatial derivatives: the
leading operator with n ¼ 3 is given by

δg ⊃ bð3Þ9 R9
POϵijkð∂iδÞð∂j∂2δÞð∂k∂4δÞ: ð53Þ

Here we have factored out an overall R9
PO to make the bias

coefficient bð3Þ9 dimensionless (as indicated by the sub-
script). The scale RPO denotes the nonlocality scale of the
new physics that generates these operators: given that it is
related to parity-violating physics, this can be different toR�
(which is usually taken to be of order of the Lagrangian
radius of the halo, but see, e.g., [109,110] for discussions of
scenarios where this is not the case). Below we will
demonstrate that this contribution is highly suppressed in
the power counting of theEFTofLSS, given the large number
of spatial derivatives. This will imply that the leading
contribution must come at one-loop order.
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Rotational invariance places strong constraints on one-loop diagrams, limiting us to

ð54Þ

Let us focus on the first diagram. What is the form of the
operator Oð4Þ giving rise to the filled-circle vertex? At
leading order, this takes the form

δg ⊃ bð4Þ1 RPOϵijkðΠ½1�
il ÞðΠ½2�

lj Þð∂kδÞ; ð55Þ

while some examples of subleading operators are

δg ⊃ bð4Þ3 R3
POϵijkðΠ½1�

il ÞðΠ½2�
lj Þð∂k∂2δÞ

þ bð4Þ5 R5
POδϵijkðΠ½1�

il Þð∂j∂l∂2δÞð∂kδÞ: ð56Þ

Here we follow [111] and define Π½1�
ij ≡ ð∂i∂j=∂2Þδ, with

Π½2�
ij being the element of the complete Eulerian basis of

bias operators that starts at second order in perturbation
theory, defined by (2.63) of [111]. It is important to stress
that, to generate a parity-violating signal, we must go
beyond leading order in the expansion in spatial deriva-
tives. This is clear from the expressions above. Indeed, the

coefficient bð4ÞO for the operator of (55) has dimension of
RPO, while for the first and second operators of (56) it has
dimension R3

PO and R5
PO, respectively. We have again made

this manifest by factoring out the powers of RPO

and defining the three dimensionless coefficients bð4Þ1 ,

bð4Þ3 and bð4Þ5 .
In absence of an hierarchy between relevant scales (i.e.

assuming RPO ∼ k−1NL), we expect: (1) that the first of the
three operators listed above gives the largest signal, and
(2) that this signal is smaller than even the (parity-
preserving) gravitational trispectrum from the nonlinear
gravitational evolution at one loop order (which appears at
zeroth order in RPO). Notice that the second diagram of (54)
enters at the same order in the power counting as we are
always forced to have at least a spatial derivative RPO∂i to
contract the free index of the Levi-Civita symbol.

B. Scaling arguments

We are now in the position to confirm that the one-loop
diagram proportional to bð4Þ1 is indeed the leading

contribution. We can compare its size to the tree-level
diagram coming from the higher-derivative operator of
(53). Focusing on the trispectrum in a configuration where
the modes have all roughly the same size k and approxi-
mating the linear matter power spectrum as a power law
ðk=kNLÞnδ=k3NL (where a spectral index nδ close to −1.5
describes well the power spectrum at the scales used in our
analysis), we find

Thigher-derivative

Tone-loop
∼
bð3Þ9

bð4Þ1

× ðRPOkÞ8
�

k
kNL

�
−ð3þnδÞ

: ð57Þ

If we now assume a scaling universe [112] we expect the
nonlocality scale RPO and the nonlinear scale to be equal:
then, we see that the tree-level diagram is strongly sup-
pressed by ∼ðk=kNLÞ6.5, assuming similar magnitudes for
the two bias coefficients.
What can we instead conclude about the relative mag-

nitude of the supposed parity-violating physics affecting
galaxy formation and that from inflationary signals? We see
that, unless the former has a spatial scale RPO much shorter
than the nonlinear scale or the halo Lagrangian radius R�,
its contributions to the galaxy four-point function is
dominant with respect to inflationary signals. More pre-
cisely, we can estimate

TLSS

T inflation
∼
bð4Þ1

τNL
×
ðRPOkÞ × 1

k9NL
ð k
kNL

Þ3nδ × ð k
kNL

Þ3þnδ

ðΔ2
ζÞ3 1

k9 ×
1

ðΔ2
ζÞ2

ð k
kNL

Þ2ð3þnδÞ

∼
bð4Þ1

τNL
×
ðRPOkÞ × ð k

kNL
Þ2ð3þnδÞ

Δ2
ζ

; ð58Þ

where we have assumed a scale-invariant (∝ k−9) trispec-
trum of the comoving curvature perturbation ζ and the
factor of ðk=kNLÞ2ð3þnδÞ=ðΔ2

ζÞ2 at the denominator comes
from four powers of the transfer function relating ζ to the
linear matter density. The strong suppression in loops
[scaling as ðk=kNLÞ3 for nδ close to −1.5] and the additional
suppression in spatial derivatives must be overcome for the
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late-time trispectrum to be larger than the inflationary
contribution. Assuming again a scaling universe [112] the
suppression becomes ∼ðk=kNLÞ4. Taking kNL¼0.5h−1Mpc
at the redshift z ≃ 0.5 typical of our analysis, and taking a
maximum momentum k ≃ 0.1h−1 Mpc, we see that

TLSS

T inflation
∼ 105 ×

bð4Þ1

τNL
: ð59Þ

Hence, for large values of τNL ≳ 105 (and assuming a

dimensionless bias coefficient bð4Þ1 of order unity), but still
compatible with weak primordial non-Gaussianity
τNLΔ2

ζ ≪ 1,8 we expect the inflationary parity violation
to be dominant with respect to (possible) late-time con-
tributions, even before cautioning that new physics at low
redshifts is needed to source such effects.
Before proceeding, let us also emphasize that so far we

have focused on the EFTofLSS with Gaussian initial
conditions. In the presence of some primordial (and
parity-violating) non-Gaussianity one expects that addi-
tional operators are needed, in order to renormalize the
contribution of short-wavelength modes [113], akin to what
happens for the scale-dependent bias in the case of local
primordial non-Gaussianity.9 We leave the identification of
these terms, and the estimation of their size, to future work.

C. Velocity contributions and redshift-space distortions

What happens once we consider the propagation of light
from the galaxy rest frame to the observer? Parity-violating
physics can affect the photon geodesics. However, in the
nonrelativistic regime k=aH ≫ 1 typical of present and
upcoming surveys, the only relevant projection effect is
given by redshift-space distortions. These are the Doppler
shift in the photon frequency due to the peculiar velocities
of galaxies and only depend on the total intensity of
photons emitted in the rest frame. Unless we include
parity-violating operators in the bias expansion for the
galaxy peculiar velocity, redshift-space distortions cannot
lead to new contributions to the parity-odd trispectrum.
In a similar manner to the above, one can ask what form

the leading parity-odd operator in the EFTofLSS expansion
of the galaxy velocity field vg should take. In this case, we
need to construct an axial vector out of ∂iδ, the tidal field,

and its higher-order generalizations Π½n�
ij (we cannot use

∂iϕ, where ϕ is the Newtonian potential, due to the
equivalence principle). The leading nonvanishing operator
consistent with symmetries of the EFTofLSS is then

vg ⊃ bvϵijkΠ
½1�
jl Π

½2�
lk ; ð60Þ

which we emphasize does not break the equivalence
principle, since it is built out of local observables for an
observer freely falling with the galaxies.10 The mapping
from the rest-frame galaxy overdensity δg to the redshift-
space one δ̃g (following the notation of [111]) contains the
Kaiser term [114]

δ̃g ⊃ n̂i∂iðn̂jvjgÞ; ð61Þ

where n̂ is the line of sight. The contribution where vg is
given by (60) is a cubic operator,11 and one without a
suppression in spatial derivatives (indeed, bv is a dimen-
sionless coefficient). Hence we expect that (60) will
contribute to the multipoles of the tree-level trispectrum,
provided there exists a mechanism to generate it. Unless

bð4Þ1 and bv are parametrically different, this ought to be the
leading contribution from late-time parity violation in
galaxy clustering in terms of the power counting of the
EFTofLSS. However, it is important to keep in mind that
higher-order multipoles of correlation functions are sup-
pressed with respect to lower-order ones by powers of the
growth rate f divided by the linear bias b1. It would be
interesting to develop a pipeline to measure the multipoles
of the redshift-space parity-odd galaxy trispectrum and put

constraints on bð4Þ1 and bv: we leave this to future work.

VII. CONCLUSIONS

Does the early Universe conserve parity? In general, this
is a difficult question to answer. Until we observe infla-
tionary gravitational waves, we have no direct probe of
parity-violation, thusmust search instead for its signatures in
scalar correlators, which appear only in the four-point
function and beyond. Though the simplest models of
inflation cannot source such a signal [36],many nonstandard
theories can, involving, for example, a nonlinear dispersion
relation for the inflaton, the introduction ofmassive spinning
fields, or time dependence of the couplings in the
Lagrangian. In this work, we have considered several such
models, using recent measurements of the galaxy 4PCF to
place the first constraints on their amplitudes.
In particular, we have considered ghost inflation, com-

prising a single field with a quadratic (ω ∝ k2) dispersion
relation, and the cosmological collider, whereupon the
inflaton correlators are modulated due to the exchange
of a massive spin-1 particle (for various choices of mass
and sound speed). For each scenario, we forward modeled

8We remind the reader that in terms of the amplitudes AðMPOÞ

and AðΛ2
POÞ of Sec. V, this constraint reads AðMPOÞ; AðΛ2

POÞ ≳ 10−18.
9Given that the Newtonian potential ϕ at the initial Lagrangian

position and its derivatives would now be allowed in the bias
expansion, we expect to be able to write operators that start at
lower order in perturbations.

10An equivalent way to see this is that both Π½1�
ij and Π½2�

ij are
invariant under a shift of the Newtonian potential by a gradient
mode.

11Indeed, unlike ∂ivig (which could appear in the galaxy density
expansion), n̂ivig starts at cubic order in perturbations.
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the primordial correlator to obtain a late-time prediction
for the 4PCF, and compared its form to the measurements
presented in [60]. This yielded constraints on the coup-
lings in the EFTI, all of which are consistent with zero
(within 2σ). Furthermore, these constraints were found to
be parametrically relevant, in the context of the perturba-
tivity bounds coming from the EFTI framework.
The inflationary models considered herein are by no

means exhaustive. For example, while ghost inflation
provides a useful example of a nonlinear dispersion
relation, it suffers from a number of theoretical difficulties,
as discussed in [36].12 If a prominent signal had been seen
for this model, it would promote further investigation into
other inflationary scenarios with similar dispersion rela-
tions. Second, we have considered only a single model for
the cosmological collider; other couplings can exist (again
see [36]), as well as models generated by an imbalance of
the two helical exchange modes. One could further con-
sider higher-order models, an example being the Uð1Þ
gauge field couplings discussed in [57] and constrained
in [60], or the exchange of chiral gravitational waves,
produced via a Chern-Simons coupling. Given a primordial
template, any model can be constrained following an
(admittedly difficult) calculation similar to those in the
Appendix. It may additionally prove useful to define some
general parametrization akin to fflocNL; f

eq
NL; f

orth
NL g, onto

which any primordial model can be projected.
The future will yield a vast increase in the volume of

primordial modes surveyed. For LSS, the next generation
of surveys will map out the distribution of around a
hundred million galaxies, which should improve con-
straints on physical models such as the above by around
an order of magnitude; these will strengthen still with
proposed experiments such as MegaMapper [120]. We
additionally can make use of CMB data; the large-scale
modes contained therein are predicted to be of great use in
constraining primordial parity violation (see, e.g., the
forecasts of [57]). However, the CMB is a two-dimensional
field, and thus only parity sensitive on large scales, with
statistically isotropic signals vanishing in the flat-sky
regime (due to the identification of parity reversal with a
3D rotation of the 2D CMB plane). In this sense, LSS data
seems a more promising future avenue, though we caution
that an experimental CMB parity-odd trispectrum study has
yet to be performed. Finally, we note that many parity-odd
inflationary models generate also a parity-even signature
(such as in the cosmological collider). Often, the ampli-
tudes of the two are related, and it is interesting to ask
whether the physical models can be best constrained by

parity-odd or parity-even measurements. For the CMB, the
parity-even form is likely simpler (as it does not vanish in
the small-scale limit), but for LSS, this observable is highly
complex, due to the additional gravitational contributions
(cf. [121,122] for the bispectrum) which do not contribute
source parity-odd trispectra.
We close by commenting on the recent claims of a

detection of parity violation in LSS [60,61]. In this work,
we have found no evidence for inflationary parity violation.
Though our constraints are derived in the context of specific
models, these templates are fairly generic, in that they are
scale independent, and span both exchange and contact
diagrams, with a variety of microphysical parameters. Other
models likely have significant cosines with the templates
discussed herein, thus, to an extent, are already constrained.
This lack of detection implies that the proposed signal of
[60,61] contains a very different scale dependence to that of
inflation, which hints at a different resolution. As discussed
in Sec. VI, we can predict the form of late-time parity
violation using the EFTofLSS. Such contributions could
arise from nonstandard models of gravity (e.g., Chern-
Simons gravity [62]) or hydrodynamics, and we find that
they are generically suppressed on large scales, arising only
from loop corrections or derivative operators. Again, this
seems an unlikely explanation, given that the analysis was
restricted to comparatively large scales (r≳ 20h−1 Mpc).
As such, systematic effects, or poor understanding of the
measurements’ noise properties, seems to be the most likely
cause of the aforementioned detection, though we note that
the space of possible cosmological explanations is large.
While better datawill help to understand the above,we stress
that, if the signal is some unknown, and unsubtracted,
systematic, its detection significance will only grow with
the survey volume. Caution is warranted!
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APPENDIX: COMPUTING 4PCF TEMPLATES

In this Appendix, we sketch the derivation of the galaxy 4PCF templates presented in Sec. IV. First, we note a number of
general simplifications, before presenting specific results for the ghost inflation and cosmological collider templates.

1. General strategy

Starting from (36), we can simplify the 4PCF by shifting the permutation sum into the exponential term. This yields

ζl1l2l3ðr1; r2; r3Þ ¼
Z

dr̂1 dr̂2dr̂3P�
l1l2l3

ðr̂1; r̂2; r̂3Þ
�Y4
i¼1

Z
ki

Z1ðk̂iÞMðkiÞ
�
ð2πÞ3δDðk1234Þ

× T̃ðk1;k2;k3;k4Þ
X
H

eiðk1·rH1þk2·rH2þk3·rH3þk4·rH4Þ; ðA1Þ

where fH1; H2; H3; H4g is one of the 24 permutations of f1; 2; 3; 4g, k1234 ≡ k1 þ k2 þ k3 þ k4 and we have introduced
r4 ¼ 0 for symmetry. Next, the integral over r̂i can be performed analytically, using the standard relation

Z
dr̂ eik·rYlmðr̂Þ ¼ 4πiljlðkrÞYlmðk̂Þ ðA2Þ

for the spherical Bessel function jlðxÞ. This allows us to write

ζl1l2l3ðr1; r2; r3Þ ¼ ð4πÞ7=2ð−iÞl123
X
H

ΦH

�Y4
i¼1

Z
ki

Z1ðk̂iÞMðkiÞjlHi
ðkirHiÞ

�

× PlH1lH2ðl0ÞlH3lH4
ðk̂1; k̂2; k̂3; k̂4ÞT̃ðk1;k2;k3;k4Þð2πÞ3δDðk1234Þ; ðA3Þ

notating l123 ≡ l1 þ l2 þ l3 and additionally inserting 1 ¼ R
dr̂4 Yl4m4

ðr̂4Þ=
ffiffiffiffiffiffi
4π

p
with l4 ¼ m4 ¼ 0. Equation (A3)

introduces a symmetry factor ΦH ∈ f�1g (defined in [60]) and the four-coordinate basis function in k̂ [92]:

Pl1l2ðl0Þl3l4ðk̂1; k̂2; k̂3; k̂4Þ ¼ ð−1Þl1234
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0 þ 1

p X
m0

ð−1Þl0−m0 X
m1m2m3m4

�
l1 l2 l0

m1 m2 −m0

��
l0 l3 l4

m0 m3 m4

�

× Yl1m1
ðk̂1ÞYl2m2

ðk̂2ÞYl3m3
ðk̂3ÞYl4m4

ðk̂4Þ; ðA4Þ

this is invariant under global rotations of k̂i.
Another simplification concerns the perturbative kernels Z1. Noting that

Z1ðk̂Þ ¼ 4π
X
lm

�
δKl0

�
bþ f

3

�
þ δKl2

2f
15

�
Ylmðk̂ÞY�

lmðn̂Þ≡ 4π
X
lm

ZlYlmðk̂ÞY�
lmðn̂Þ; ðA5Þ

for line-of-sight n̂, we can average over n̂ by isotropy, which leads to

Z1ðk̂1ÞZ1ðk̂2ÞZ1ðk̂3ÞZ1ðk̂4Þ→ ð4πÞ2
X

j1j2j3j4j0

�
j1 j2 j0

0 0 0

��
j0 j3 j4
0 0 0

�
Zj1Zj2Zj3Zj4Cj1j2j3j4j0Pj1j2ðj0Þj3j4ðk̂1; k̂2; k̂3; k̂4Þ

ðA6Þ

[60], where Cj1���jn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2j1 þ 1Þ � � � ð2jn þ 1Þp

, and ji ∈ f0; 2g.
Finally, the Dirac delta may be simplified in one of two ways. In the case of a contact trispectrum (e.g., in ghost inflation),

we may write
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ð2πÞ3δDðk1234Þ ¼
Z

dx eik1234·x

¼ ð4πÞ4
X

L1���L4M1���M4

iL1234

Z
x2dx

Z
dx̂

�Y4
i¼1

X
Mi

jLi
ðkixÞYLiMi

ðk̂iÞY�
LiMi

ðx̂Þ
�

¼ ð4πÞ3
X
L1���L4

ð−iÞL1234

Z
x2dx jL1

ðk1xÞjL2
ðk2xÞjL3

ðk3xÞjL4
ðk4xÞ

×
X
L0

�
L1 L2 L0

0 0 0

��
L0 L3 L4

0 0 0

�
CL1L2L3L4L0PL1L2ðL0ÞL3L4

ðk̂1; k̂2; k̂3; k̂4Þ; ðA7Þ

utilizing the plane-wave expansion in the second line, and the Gaunt integral and definitions of the four-particle basis
function (A4) in the third. For exchange trispectra, it is useful to instead introduce an internal (Mandelstam) momentum,
s≡ k1 þ k2. In this case,

ð2πÞ3δDðk1234Þ ¼
Z
s
ð2πÞ3δDðk12 þ sÞð2πÞ3δDðk34 − sÞ ¼

Z
s
dx dx0 eiðk12−sÞ·xeiðk34þsÞ·x0

¼ ð4πÞ5
X
L1���L6

iL1234−L5þL6CL1L2L3L4L5L6

�
L1 L2 L5

0 0 0

��
L3 L4 L6

0 0 0

�

×
Z
s
PL1L2L5

ðk̂1; k̂2; ŝÞPL3L4L6
ðk̂3; k̂4; ŝÞ

×
Z

∞

0

x2dx jL1
ðk1xÞjL2

ðk2xÞjL5
ðsxÞ

Z
∞

0

x02dx0 jL3
ðk3x0ÞjL4

ðk4x0ÞjL6
ðsx0Þ: ðA8Þ

This can be simplified by integrating out ŝ (but retaining s, which appears also in the primordial trispectrum), leading to

ð2πÞ3δDðk1234Þ ¼ ð4πÞ4
X

L1���L4L0
ð−iÞL1234CL1L2L3L4L0

�
L1 L2 L0

0 0 0

��
L3 L4 L0

0 0 0

�

×
Z

∞

0

s2ds
2π2

�Z
∞

0

x2dx jL1
ðk1xÞjL2

ðk2xÞjL0 ðsxÞ
��Z

∞

0

x02dx0 jL3
ðk3x0ÞjL4

ðk4x0ÞjL0 ðsx0Þ
�

× PL1L2ðL0ÞL3L4
ðk̂1; k̂2; k̂3; k̂4Þ: ðA9Þ

Though the above manipulations may seem only to add complexity, their benefit is that all the angular dependence is
expressed purely in terms of basis functions, which (when a similar manipulation is performed for the inflationary
trispectrum itself) can be straightforwardly combined and integrated over, leaving just a set of discrete summations and
separable integrals in the radial components.

2. Ghost inflation

The primordial trispectra given in (11) can be separated into radial and angular coefficients. For the angular components,
simplification is achieved utilizing the Cartesian forms of the isotropic basis functions, cf. [60,92]. In particular, for the Λ2

PO
term we have

ðk̂1 · k̂2 × k̂3Þðk̂1 · k̂2Þ ¼ −i
ffiffiffi
2

p

3
ffiffiffi
3

p ð4πÞ3P111ðk̂1; k̂2; k̂3ÞP110ðk̂1; k̂2; k̂3Þ

¼ −
i
3

ffiffiffi
2

5

r
ð4πÞ2P22ð1Þ10ðk̂1; k̂2; k̂3; k̂4Þ; ðA10Þ

contracting the two basis functions via Sec. 6 of [92] to reach the second expression, which is written in terms of isotropic
basis functions of four coordinates (A4). For the MPO contribution the situation is less straightforward due to the large
number of angles, but we eventually find
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ðk̂1 · k̂2 × k̂3Þðk̂2 · k̂4Þðk̂1 · k̂4Þðk̂2 · k̂3Þ ¼ −i
ffiffiffi
2

p

9
ffiffiffi
3

p ð4πÞ8½P11ð1Þ10P01ð1Þ01P10ð1Þ01P01ð1Þ10�ðk̂1; k̂2; k̂3; k̂4Þ

¼ −i
ffiffiffiffiffi
10

p

225
ð4πÞ2

�
P01ð1Þ22 − 2P03ð3Þ22 þ

4
ffiffiffi
2

p

5
P21ð1Þ22 þ P21ð2Þ20

−
ffiffiffiffiffi
14

5

r
P21ð2Þ22 þ

2
ffiffiffi
7

p

5
P21ð3Þ22 þ

ffiffiffi
3

p

5
P23ð1Þ22 − 2P23ð2Þ20

−
ffiffiffiffiffi
2

35

r
P23ð2Þ22 −

2
ffiffiffi
3

p

5
P23ð3Þ22 þ

6ffiffiffi
7

p P23ð4Þ22

�
ðk̂1; k̂2; k̂3; k̂4Þ

≡ −ið4πÞ2
X

l1l2l3l4l0
cl1l2ðl0Þl3l4Pl1l2ðl0Þl3l4ðk̂1; k̂2; k̂3; k̂4Þ; ðA11Þ

defining coefficients cl1l2ðl0Þl3l4 in the final line for brevity.
The radial piece is obtained by integrating the k̂-independent part of the trispectrum with respect to ki, as in (A3). This is

simplest to perform by switching the order of integration, placing the λ integral [contained within the T function of (12)] on
the outside. For the operator proportional to M−1

PO, we find

�Y4
i¼1

Z
k2i dki
2π2

MðkiÞjlHi
ðkirHiÞjLi

ðkixÞ
�
k1=21 k3=22 k1=23 k1=24 ImT ð11Þ

0;0;0;0ðk1; k2; k3; k4Þ

¼ Im
Z

∞

0

dλ λ11I3=4;1=2;lH1;L1
ðx; λ; rH1ÞI3=4;3=2;lH2;L2

ðx; λ; rH2ÞI3=4;1=2;lH3;L3
ðx; λ; rH3ÞI3=4;1=2;lH4;L4

ðx; λ; rH4Þ; ðA12Þ

and for that involving Λ−2
PO,

�Y4
i¼1

Z
k2i dki
2π2

MðkiÞjlHi
ðkirHiÞjLi

ðkixÞ
�
k1=21 k5=22 k3=23 k1=24 T ð13Þ

0;0;0;1ðk1; k2; k3; k4Þ

¼
Z

∞

0

dλ λ13I3=4;1=2;lH1;L1
ðx; λ; rH1ÞI3=4;5=2;lH2;L2

ðx; λ; rH2ÞI3=4;3=2;lH3;L3
ðx; λ; rH3ÞI−1=4;1=2;lH4;L4

ðx; λ; rH4Þ; ðA13Þ

defining

Iα;β;l;Lðx; λ; rÞ≡
Z

k2þβdk
2π2

MðkÞjlðkrÞjLðkxÞHð1Þ
α ð2ik2λ2Þ: ðA14Þ

In combination with the results of Sec. A 1 we find the following forms for the ghost 4PCF:

ζðMPOÞ
l1l2l3

ðr1; r2; r3Þ ¼ 2ð4πÞ19=2ð−iÞl123 Λ5ðHΛ̃Þ1=2
MPOΛ̃5Γð3

4
Þ2 ðΔ

2
ζÞ3

X
H

ΦH

X
L1���L4L0

ð−iÞL1234

�
L1 L2 L0

0 0 0

��
L0 L3 L4

0 0 0

�

× CL1L2L3L4L0
X

j1j2j3j4j0

�
j1 j2 j0

0 0 0

��
j0 j3 j4
0 0 0

�
Zj1Zj2Zj3Zj4Cj1j2j3j4j0

× Im
Z

∞

0

x2dx
Z

∞

0

dλ λ11I3=4;1=2;lH1;L1
ðx; λ; rH1ÞI3=4;3=2;lH2;L2

ðx; λ; rH2Þ

× I3=4;1=2;lH3;L3
ðx; λ; rH3ÞI3=4;1=2;lH4;L4

ðx; λ; rH4Þ
X
l1���l4l0

cl1l2ðl0Þl3l4

Z
dk̂1 dk̂2dk̂3dk̂4

× ½Pl1l2ðl0Þl3l4PL1L2ðL0ÞL3L4
Pj1j2ðj0Þj3j4PlH1lH2ðl0ÞlH3lH4

�ðk̂1; k̂2; k̂3; k̂4Þ; ðA15Þ

COLLIDERS AND GHOSTS: CONSTRAINING INFLATION WITH … PHYS. REV. D 107, 023523 (2023)

023523-21



ζ
ðΛ2

POÞ
l1l2l3

ðr1; r2; r3Þ ¼
8

ffiffiffi
2

p

3
ffiffiffi
5

p ð4πÞ19=2ð−iÞl123
Λ5ðHΛ̃Þ3=2
Λ2
POΛ̃

6Γð3
4
Þ2 ðΔ

2
ζÞ3

X
H

ΦH

X
L1���L4L0

ð−iÞL1234

�
L1 L2 L0

0 0 0

��
L0 L3 L4

0 0 0

�

× CL1L2L3L4L0
X

j1j2j3j4j0

�
j1 j2 j0

0 0 0

��
j0 j3 j4
0 0 0

�
Zj1Zj2Zj3Zj4Cj1j2j3j4j0

×
Z

∞

0

x2dx
Z

∞

0

dλ λ13I3=4;1=2;lH1;L1
ðx; λ; rH1ÞI3=4;5=2;lH2;L2

ðx; λ; rH2Þ

× I3=4;3=2;lH3;L3
ðx; λ; rH3ÞI−1=4;1=2;lH4;L4

ðx; λ; rH4Þ

×
Z

dk̂1 dk̂2dk̂3dk̂4½P22ð1Þ10PL1L2ðL0ÞL3L4
Pj1j2ðj0Þj3j4PlH1lH2ðl0ÞlH3lH4

�ðk̂1; k̂2; k̂3; k̂4Þ: ðA16Þ

The final line of each expression involves the integral over four sets of basis functions; these can be evaluated in terms of 9j
symbols [92], and written in terms of angular coupling matrices, given by

MlH1lH2ðl0ÞlH3lH4

L1L2ðL0ÞL3L4
¼ ClH1lH2l0lH3lH4

CL1L2L0L3L4

X
l1l2l3l4l0

cl1l2ðl0Þl3l4Cl1l2ðl0Þl3l4

×
X

j1j2j3j4j0

�
j1 j2 j0

0 0 0

��
j0 j3 j4
0 0 0

�
Zj1Zj2Zj3Zj4C

2
j1j2j3j4j0

×
X

λ1λ2λ12λ3

ð−1Þλ1þλ2þλ3þλ4C2λ1λ2λ12λ3λ4

�
l1 L1 λ1

0 0 0

��
l2 L2 λ2

0 0 0

��
l3 L3 λ3

0 0 0

��
l4 L4 λ4

0 0 0

�

×

�
j1 lH1 λ1

0 0 0

��
j2 lH2 λ2

0 0 0

��
j3 lH3 λ3

0 0 0

��
j4 lH4 L4

0 0 0

�

×

8>><
>>:

l1 l2 l0

L1 L2 L0

λ1 λ2 λ12

9>>=
>>;

8>><
>>:

l0 l3 l4
L0 L3 L4

λ12 λ3 L4

9>>=
>>;

8>><
>>:

j1 j2 j0

lH1 lH2 l0

λ1 λ2 λ12

9>>=
>>;

8>><
>>:

j0 j3 j4
l0 lH3 lH4

λ12 λ3 L4

9>>=
>>; ðA17Þ

and

N lH1lH2ðl0ÞlH3lH4

L1L2ðL0ÞL3L4
¼ 15ClH1lH2l0lH3lH4

CL1L2L0L3L4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L4 þ 1

p X
j1j2j3j4j0

�
j1 j2 j0

0 0 0

��
j0 j3 j4
0 0 0

�
Zj1Zj2Zj3Zj4

× C2j1j2j3j4j0
X

λ1λ2λ12λ3

ð−1Þλ1þλ2þλ3C2λ1λ2λ12λ3

�
2 L1 λ1

0 0 0

��
2 L2 λ2

0 0 0

��
1 L3 λ3

0 0 0

�

×

�
j1 lH1 λ1

0 0 0

��
j2 lH2 λ2

0 0 0

��
j3 lH3 λ3

0 0 0

��
j4 lH4 L4

0 0 0

�

×

8>><
>>:

2 2 1

L1 L2 L0

λ1 λ2 λ12

9>>=
>>;

8>><
>>:

1 1 0

L0 L3 L4

λ12 λ3 L4

9>>=
>>;

8>><
>>:

j1 j2 j0

lH1 lH2 l0

λ1 λ2 λ12

9>>=
>>;

8>><
>>:

j0 j3 j4
l0 lH3 lH4

λ12 λ3 L4

9>>=
>>;; ðA18Þ
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where the curly parentheses are 9j symbols. We additionally note that L1 þ L2 þ L3 þ L4 is even (from the 3j symbols)
and l1 þ l2 þ l3 is odd, thus the expression is purely imaginary (using the properties of Hankel functions). Inserting these
into (A15) leads to the final expressions given in (36) and (37).

3. Cosmological collider

To evaluate the cosmological collider template, it is convenient to first split the primordial correlator of (18) into two
pieces joined by an angular factor:

T̃λ1λ3ðk1;k2;k3;k4Þ ¼ −ic4s
λ1λ3
2H

ðΔ2
ζÞ4 sin π

�
νþ 1

2

�
tAðk1; k2; sÞtBðk3; k4; sÞðk̂1 · k̂2Þðk̂3 · k̂4Þðk̂2 · ðk̂3 × k̂4ÞÞ; ðA19Þ

using the definitions

tAðk1; k2; sÞ ¼ k−21 k−12 ðk1 − k2Þ½k12J3ðcsk12; sÞ þ csk1k2J4ðcsk12; sÞ�
tBðk3; k4; sÞ ¼ k−13 k−14 ðk3 − k4Þ½k34J4ðcsk34; sÞ þ csk3k4J5ðcsk34; sÞ�: ðA20Þ

As before, this contains a cross product and is purely imaginary. Unlike for ghost inflation, this is an exchange diagram, thus
has dependence on the exchange momentum s.
To simplify the angular component, we use the basis functions of (A4), writing

ðk̂2 · ðk̂3 × k̂4ÞÞðk̂1 · k̂2Þðk̂3 · k̂4Þ ¼ i

ffiffiffi
2

p

9
ð4πÞ7=2P111ðk̂2; k̂3; k̂4ÞP11ð0Þ11ðk̂1; k̂2; k̂3; k̂4Þ

¼ i
ð4πÞ2
9

ffiffiffi
5

p ½2P12ð1Þ22ðk̂1; k̂2; k̂3; k̂4Þ −
ffiffiffi
2

p
P10ð1Þ22ðk̂1; k̂2; k̂3; k̂4Þ�: ðA21Þ

For the radial integrals, we first rewrite the momentum-conserving delta function in terms of (A9); this will lead to radial
integrals of the form

Ql1l2;X
L1L2L0 ðs; r1; r2Þ ¼

Z
∞

0

x2dx jL0 ðsxÞ
Y2
i¼1

�Z
k2i dki
2π2

MðkiÞjliðkiriÞjLi
ðkixÞ

�
tXðk1; k2; sÞ; ðA22Þ

for X ∈ fA;Bg.
Utilizing the results of Appendix A 1, we find that the 4PCF can be written

ζðλ1λ3Þl1l2l3
ðr1; r2; r3Þ ¼ ð4πÞ15=2ð−iÞl123 c4sλ1λ3

18
ffiffiffi
5

p
H
ðΔ2

ζÞ4 sin π
�
νþ 1

2

�X
H

ΦH

X
L1…L4L0

ð−iÞL1234

�
L1 L2 L0

0 0 0

��
L0 L3 L4

0 0 0

�

× CL1…L4L0
X

j1j2j3j4j0

�
j1 j2 j0

0 0 0

��
j0 j3 j4
0 0 0

�
Zj1Zj2Zj3Zj4Cj1j2j3j4j0

×
Z

s2ds
2π2

QlH1lH2;A
L1L2L0 ðs; rH1; rH2ÞQlH3lH4;B

L3L4L0 ðs; rH3; rH4Þ
Z

dk̂1 dk̂2dk̂3dk̂4

× ½ð2P12ð1Þ22 −
ffiffiffi
2

p
P10ð1Þ22ÞPj1j2ðj0Þj3j4PL1L2ðL0ÞL3L4

PlH1lH2ðl0ÞlH3lH4
�ðk̂1; k̂2; k̂3; k̂4Þ: ðA23Þ

This may be further decomposed by defining the coupling matrix (integrating over basis functions to obtain Wigner 9j
symbols, as before):
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OlH1lH2ðl0ÞlH3lH4

L1L2ðL0ÞL3L4
¼ 15ClH1lH2l0lH3lH4

CL1L2L0L3L4

X
j1j2j3j4j0

�
j1 j2 j0

0 0 0

��
j0 j3 j4
0 0 0

�
Zj1Zj2Zj3Zj4

× C2j1j2j3j4j0
X

λ1λ2λ12λ3λ4

ð−1Þλ1234C2λ1λ2λ12λ3λ4
�
1 L1 λ1

0 0 0

��
2 L3 λ3

0 0 0

��
2 L4 λ4

0 0 0

�

×

�
j1 lH1 λ1

0 0 0

��
j2 lH2 λ2

0 0 0

��
j3 lH3 λ3

0 0 0

��
j4 lH4 λ4

0 0 0

�

×

8>><
>>:

j1 j2 j0

lH1 lH2 l0

λ1 λ2 λ12

9>>=
>>;

8>><
>>:

j0 j3 j4
l0 lH3 lH4

λ12 λ3 λ4

9>>=
>>;

2
66642

ffiffiffi
5

p �
2 L2 λ2

0 0 0

�8>><
>>:

1 2 1

L1 L2 L0

λ1 λ2 λ12

9>>=
>>;

−
ffiffiffi
2

p �
0 L2 λ2

0 0 0

�8>><
>>:

1 0 1

L1 L2 L0

λ1 λ2 λ12

9>>=
>>;

3
7775
8>><
>>:

1 2 2

L0 L3 L4

λ12 λ3 λ4

9>>=
>>;; ðA24Þ

yielding the final expression given in (43).
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