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The kinetic Sunyaev Zel’dovich (kSZ) effect, cosmic microwave background (CMB) temperature
anisotropies induced by the scattering of CMB photons from free electrons, will be measured by near-term
CMBexperiments at high significance. By combiningCMB temperature anisotropieswith a tracer of structure,
such as a galaxy redshift survey, previous literature introduced a number of techniques to reconstruct the radial
velocity field. This reconstructed radial velocity field encapsulates themajority of the cosmological information
contained in the kSZ temperature anisotropies, and can provide powerful new tests of the standard cosmological
model and theories beyond it. In this paper, we introduce a new estimator for the radial velocity field based on a
coarse-grainedmaximum likelihood fit for the kSZ component of the temperature anisotropies, given a tracer of
the optical depth.Wedemonstrate that thismaximum likelihood estimator yields a higher fidelity reconstruction
than existing quadratic estimators in the low-noise and high-resolution regime targeted by upcoming CMB
experiments. We describe implementations of the maximum likelihood estimator in both harmonic space and
map space, using either direct measurements of the optical depth field or a galaxy survey as a tracer. We
comment briefly on the impact of biases introduced by imperfect reconstruction of the optical depth field.
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I. INTRODUCTION

Future cosmic microwave background (CMB) experi-
ments such as Simons Observatory [1], CMB-S4 [2], and
CMB-HD [3] will probe the high-resolution, low-noise
frontier where secondary CMB anisotropies dominate.
Secondary anisotropies arise due to the electromagnetic
(Sunyaev Zel’dovich effect) or gravitational (lensing) scatter-
ing of CMB photons from structure, and encode a significant
amount of astrophysical and cosmological information. How
to access this information is an active area of investigation. In
this paper, we focus on the kinetic Sunyaev Zel’dovich (kSZ)
effect, blackbody temperature anisotropies induced by the
scattering ofCMBphotons from free electrons in bulkmotion
along the line of sight [4]. We introduce a new estimator for
the radial velocity field based on a coarse-grained maximum
likelihood solution constructed from the CMB temperature
anisotropies and a tracer of the optical depth.
Previous literature introduced a set of quadratic estima-

tors (QEs) for the radial velocity field [5–7] based on the
CMB temperature anisotropies and a galaxy survey as a
tracer of the optical depth.1 Fisher forecasts [5–7], the

analysis of N-body simulations [9,10], and the analysis of
Gaussian mocks containing various foregrounds and sys-
tematics [7] indicate that these QEs will yield high-fidelity
reconstructions of the radial velocity field with near-term
CMB and galaxy surveys. The QE reconstructs the radial
velocity field from statistical anisotropies in the cross-
power spectrum of the CMB temperature and a redshift-
binned galaxy survey. The estimator relies on the
assumption that all the fields involved are Gaussian, and
is based on the theoretical ensemble average spectra, which
are used to find the appropriate weights for the estimators to
be unbiased and have the minimum variance. However,
these properties of the QE lead to significant signal-to-
noise penalties and biases in the high signal-to-noise
regime. For example, the non-Gaussian nature of the
optical depth and galaxy density on small scales leads to
the so-called Nð3=2Þ bias which can exceed the Gaussian
reconstruction noise in the high signal-to-noise regime
[10]. For sufficiently low-noise and high-resolution CMB
experiments, and in the absence of foregrounds, the
dominant contribution to the observed temperature anisot-
ropies on small angular scales will be the kSZ effect itself.
In this limit, the QE is limited by sample variance, since it
relies on searching for statistical anisotropies beyond those
expected in the ensemble average. However, because one is
able to accurately measure the detailed kSZ temperature
anisotropies in this limit, it should be possible to do better

1More precisely, one reconstructs the remote dipole field: the
CMB dipole seen in the local rest frame of the scatterer, projected
along the line of sight. The largest contribution to the remote dipole
field is given by the radial peculiar velocity, but there are additional
“primordial” contributions; see Refs. [5,8] for discussion.
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by using the properties of our realization rather than the
ensemble statistics (e.g. to use a form of sample variance
cancellation).
To overcome these two shortcomings of the QE, we

introduce a new estimator for the radial velocity field based
on a coarse-grained maximum likelihood condition. This
maximum likelihood (MaxL) estimator does not rely on the
assumption that the underlying fields are Gaussian (hence
we do not expect the analog of the Nð3=2Þ bias), and relies
on the realization of the underlying fields rather than their
statistical properties (and hence should incorporate a form
of sample variance cancellation). We therefore expect the
MaxL estimator to have advantages over the QE in the high
signal-to-noise regime, where the kSZ effect is signal
dominated (e.g. over the primary CMB, instrumental noise,
and foregrounds) in the CMB on small angular scales.
Because it relies on the properties of a realization, fore-
casting with the MaxL estimator requires simulations,
unlike the QE, whose statistical properties can be calculated
analytically. We create properly correlated random
Gaussian realizations of the underlying fields and make
direct comparisons between the reconstruction of the QE as
implemented previously [7] and the MaxL estimator.
Because the realizations are purely Gaussian, we are unable
to demonstrate the absence of a non-Gaussian bias for the
MaxL estimator, and therefore it will be important in future
work to compare the results of applying the MaxL
estimator and QE to N-body simulations.
A key ingredient of the MaxL estimator is an estimate of

the optical depth field. In the absence of a direct meas-
urement (e.g. by using a large number of fast radio bursts
[11]), we must infer the optical depth from a tracer of large
scale structure, such as a galaxy survey. This inference will
be imperfect, leading to a multiplicative optical depth bias
on the reconstructed velocities [6,11–13]. Further multi-
plicative biases will be introduced by redshift errors in the
galaxy survey and various systematics in the galaxy and
CMB surveys. These multiplicative biases on the QE are
described in detail in Ref. [7], and in this paper we describe
their nature using a simplistic estimator for the optical
depth field. Our implementation of the MaxL estimator can
likely be improved upon through the use of more accurate
methods to estimate the optical depth field, e.g. using
machine learning techniques trained on accurate hydrody-
namical simulations (see e.g. [14]).
The plan of the paper is as follows. In Sec. II we provide

some intuition and motivation for the MaxL estimator. In
Sec. III we review our model for the kSZ component of the
temperature anisotropies, which is largely a review of
Ref. [7]. In Sec. IV, we derive an implementation of the
maximum likelihood estimator (given the optical depth
field) for the radial velocity field in both harmonic space
and map space. In Sec. V we compare the performance of
the MaxL estimator and QE on a set of correlated Gaussian
mock datasets. In Sec. VI we discuss inference of the

optical depth field from a galaxy redshift survey and the
associated optical depth bias on the reconstructed velocity;
we conclude in Sec. VII.

A. Some notation

Throughout the paper, we refer to objects defined on a
sphere in both “harmonic” and “map” space. We label the
multipole moments of fields in harmonic space by the pairs
ðl; mÞ; ðl0; m0Þ… and of the pixels in map space by the
letters i; j;…. For coarse-grained quantities, we use capital
letters ðL;MÞ; ðL0;M0Þ;… or I; J…. We denote operators
in boldface, such that τ is a field but τ is an operator.

II. INTUITION AND MOTIVATION

In this section we give a heuristic description of the QE
that recovers the radial velocity field from a temperature
and optical depth measurement, and motivate a new
estimator that can avoid some of the QE reconstruction
noise in the high-signal-to-noise regime of velocity
reconstruction.
The kSZ contribution to the CMB temperatureΘ is of the

form τv, where v is the radial velocity field and τ is the
optical depth field, such that

Θ ¼ ΘpCMB þ ΘkSZ;

∼ ΘpCMB þ τv; ð1Þ

where ΘpCMB describes all contributions to the temperature
anisotropies that are not kSZ (this includes primary CMB
contributions as well as other foreground contributions and
instrumental noise). Here, we employ a toy model where
kSZ is sourced by a two-dimensional field; later we include
line-of-sight effects. The goal is to use a measurement of Θ
and τ to recover v. The QE recovers the velocity from this
combination and their statistics:

v̂QE ∼
1

A
Θτ; ð2Þ

where A is a theoretically calculated filter that can be
thought of as ∼hτ2i; it is calculated from the ensemble
statistics of τ. The QE differs from the true velocity by

v̂QE − v ∼
1

hτ2iΘτ − v ∼ v

�
τ2

hτ2i − 1

�
þ ΘpCMB

hτ2i : ð3Þ

In particular, there is a contribution to the residual sourced
by the difference of the realization of τ2 from its theoreti-
cally expected variance. This contribution persists even
when ΘpCMB is vanishingly small.
However, in the limit where the ΘkSZ contributions

dominate over the non-kSZ contributions, we can avoid
this contribution to the reconstruction noise by neglecting
ΘpCMB and simply “inverting” Eq. (1):
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v̂ ∼
Θ
τ
: ð4Þ

In this case, the “reconstruction noise” only has contribu-
tions from the non-kSZ contributions to the temperature:

v̂ − v ∼
ΘpCMB

τ
: ð5Þ

This allows us to make a lower-noise estimate of v by
utilizing angular scales where the kSZ temperature domi-
nates over the other contributions to the CMB temperature,
similar to what is done in the gradient-inversion approach
to CMB lensing reconstruction [15].
In the remainder of this paper, we develop this idea more

rigorously by deriving a new estimator from the maximi-
zation of a likelihood, and compare explicitly the perfor-
mance of the “MaxL” estimator with that of the QE. Note
that further complication arises from the fact that the kSZ
temperature is not truly sourced by the product of one
velocity and one electron density field, as in Eq. (1), but by
the integral of this product along the line of sight. We will
deal with this explicitly by “redshift-binning” the velocity
and optical depth fields, with the end goal being to
reconstruct the redshift-binned velocity field.

III. THE KINETIC SUNYAEV
ZEL’DOVICH EFFECT

The observed kSZ temperature anisotropies in the
direction n̂ are given by the line-of-sight integral over
radial comoving distance χ

ΘkSZðn̂Þ ¼
Z

χmax

0

dχ _τðn̂; χÞvðn̂; χÞ: ð6Þ

Here, vðn̂; χÞ is the radial velocity field and the differential
optical depth _τðn̂; χÞ is

_τðn̂; χÞ ¼ −σTaðχÞn̄eðχÞð1þ δeðn̂; χÞÞ; ð7Þ

with σT the Thompson cross section, aðχÞ the scale factor,
n̄eðχÞ the cosmological mean electron density, and δeðn̂; χÞ
the electron overdensity field. There are contributions to the
kSZ signal from during and after the epoch of reionization.
We are primarily concerned with the late-time kSZ effect in
this paper,2 and so in Eq. (6) we introduce a cutoff χmax on
the line-of-sight integral at some time after reionization
(which also justifies our neglect of the optical depth factor
e−τ in this equation).
Following Ref. [7], we decompose fields along the radial

direction in the basis of Haar wavelets:

vðn̂; χÞ ¼
X∞
s¼0

vsðn̂ÞhsðχÞ; ð8Þ

where hs are the Haar wavelet basis functions; these form a
complete basis on the interval 0 ≤ χ ≤ χmax. The Haar
expansion has the additional useful property that if we
truncate at a fixed index N, the sum in the Haar basis is
simply related to a sum over radial top-hat bin averages
over bins of equal comoving size Δχ ¼ χmax=N:

vðn̂; χÞ ¼
XN−1

α¼0

vαðn̂ÞΠαðχÞ þ
X∞
s¼N

vsðn̂ÞhsðχÞ; ð9Þ

where Πα are radial top-hat bins. We will reserve Greek
superscripts α; β; γ;… to denote the top-hat bin averages.
The bin averages vα give a coarse-grained description of the
field on the past light cone, and the remaining sum over
Haar moments gives the residual fine-grained information.
We can therefore write the line-of-sight integral in Eq. (6)
as the sum:

ΘkSZðn̂Þ ¼
X∞
s¼0

τsðn̂Þvsðn̂Þ

¼
XN−1

α¼0

ταðn̂Þvαðn̂Þ þ
X∞
s¼N

τsðn̂Þvsðn̂Þ; ð10Þ

where we have defined ταðn̂Þ≡ Δχ _ταðn̂Þ. Below, we
approximate the continuum limit by truncating at fixed
N. For the contribution to kSZ from the redshift range 0 <
z < 5 most of the kSZ autopower is captured for N ¼ 512
as shown in Ref. [7]. However, in practice we will have to
truncate the sum at a somewhat lower value of N for the
application of the estimators derived below.
It will be useful to think of the optical depth as a set of N

operators that map the bin-averaged radial velocity field to
the observed temperature anisotropies, in which case we
can write the sky-basis-independent equation truncated at
fixed N:

ΘkSZ ≃
XN−1

α¼0

τα · vα: ð11Þ

Here, just as any field defined on a sphere, ΘkSZ can be
represented either in map space or harmonic space. In map
space, Θi has dimension equal to the number of pixels Npix

at some resolution (e.g. using the Healpix pixelization
scheme [17]); vαi is a set of N fields each with dimension
equal to Npix; ταij is a set of N operators each with
dimension equal to Npix × Npix. In harmonic space, Θlm

has dimension equal to the number of modes required to
describe the field at the appropriate resolution (which
should in principle be equal to Npix, but in practice is

2See Ref. [16] for a discussion of kSZ velocity reconstruction
during the epoch of reionization.
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somewhat larger); we denote this number as Nharm. In
AppendixA, we present the form of τ in each representation,
as well as a mixed harmonic-map space representation.

IV. MAXIMUM LIKELIHOOD ESTIMATOR

The dominant blackbody components of the observed
CMB temperature anisotropies are the lensed primary
CMB and the late-time and reionization kSZ. Neglecting
the reionization kSZ, the blackbody component of the
temperature anisotropy is given by

Θ ¼ ΘpCMB þ
X∞
s¼0

τs · vs: ð12Þ

Here ΘpCMB are the primary CMB anisotropies in map or
harmonic space, which we assume purely Gaussian with
covariance CpCMB. The likelihood function L for the
primary CMB is then

lnL ¼
�
Θ −

X∞
s¼0

τs · vs
�†

ðCpCMBÞ−1
�
Θ −

X∞
s¼0

τs · vs
�

þ ln det CpCMB: ð13Þ

Extremizing L with respect to ðvqÞ†:

δ

δðvqÞ† lnL¼ðτqÞ†ðCpCMBÞ−1
�
Θ−

X∞
s¼0

τs ·vs
�
¼0

⇒ðτqÞ†ðCpCMBÞ−1Θ¼
X∞
s¼0

½ðτqÞ†ðCpCMBÞ−1τs� ·vs

ðταÞ†ðCpCMBÞ−1Θ≃
XN−1

β¼0

½ðταÞ†ðCpCMBÞ−1τβ� ·vβ: ð14Þ

In the last line we truncate the radial sum at N and work
with the bin coefficients (denoted by the Greek indices).
Note that Θ and τ are fixed, and our goal is to find the set of
vα that maximizes the likelihood. Organizing both vβ and
ðταÞ†ðCpCMBÞ−1Θ into ðNpix × NÞ-dimensional vectors
containing both the bin and pixel information, and organ-
izing ½ðταÞ†ðCpCMBÞ−1τβ� into an ðNpixNÞ × ðNpixNÞ-
dimensional operator, Eq. (14) is a linear equation for
the velocity field:

½τ†ðCpCMBÞ−1Θ� ¼ ½τ†ðCpCMBÞ−1τ� · v: ð15Þ

This equation will have a solution when the operator
τ†ðCpCMBÞ−1τ has a well-defined inverse. In general, this
is not the case, since there will be many highly oscillatory
functions v that nearly satisfy the maximum likelihood
condition and pixels at which the operator (whose eigen-
basis is in map space) is nearly zero (indicating small
eigenvalues). However, we can first perform the matrix

products in τ†ðCpCMBÞ−1τ at full resolution, and then
coarse-grain this operator so that it is invertible. The
maximum-likelihood condition is then

Wð½τ†ðCpCMBÞ−1Θ�Þ ¼ Wð½τ†ðCpCMBÞ−1τ�Þ ·WðvÞ
⇒ WðvÞ ¼ ½Wð½τ†ðCpCMBÞ−1τ�Þ�−1

×Wð½τ†ðCpCMBÞ−1Θ�Þ; ð16Þ

where Wð·Þ is the coarse-graining procedure; we demon-
strate explicitly below that it is appropriate to separately
coarse-grain ½τ†ðCpCMBÞ−1τ� and v. The proposal is that
with Eq. (16), we can reconstruct the coarse-grained
velocity WðvÞ. We now separately examine if there is a
useful solution to the maximum likelihood condition in
harmonic or map space for the velocity field.

A. Harmonic space estimator

Before coarse-graining, the maximum likelihood con-
dition in harmonic space is

½τ†ðCpCMBÞ−1Θ�αlm ¼
X
l0m0;β

½τ†ðCpCMBÞ−1τ�αβlm;l0m0v
β
l0m0 : ð17Þ

In Appendix Awe evaluate the components of the operators
and vectors in Eq. (17) explicitly, obtaining

½τ†ðCpCMBÞ−1τ�αβlm;l0m0 ¼
Z

dΩταðn̂Þτ̄βðn̂ÞY�
lmðn̂ÞYl0m0 ðn̂Þ;

ð18Þ

and

½τ†ðCpCMBÞ−1Θ�βlm ¼
Z

dΩτβðn̂ÞΘ̄ðn̂ÞY�
lmðn̂Þ; ð19Þ

where the bar denotes inverse-variance filtering using
CpCMB
l :

Āðn̂Þ≡X
lm

Alm

CpCMB
l

Ylmðn̂Þ: ð20Þ

The coarse-graining operation required to make the
operator ½τ†ðCpCMBÞ−1τ�αβlm;l0m0 invertible is to cut off
the sum at a maximum multipole Lmax, which will be
the maximum multipole of the v field that we recover; for
more details, see Appendix B. After this coarse-graining,
the maximum-likelihood solution for the velocity is

v̂αLM ¼
XLmax

L0M0

XN−1

β¼0

ð½τ†ðCpCMBÞ−1τ�−1ÞαβLM;L0M0

× ðτ†ðCpCMBÞ−1ΘÞβL0M0 ; ð21Þ
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where the Lmax cutoff should be done after the calculation
of τ†ðCpCMBÞ−1τ but before its inversion. The maximum
valuesN and Lmax must be empirically determined from the
numerical inversion of ½τ†ðCpCMBÞ−1τ�αβlm;l0m0 for each
realization. A crude approach to finding an approximate
solution to the maximum likelihood condition Eq. (17) is to
substitute with the ensemble-average operator over real-
izations of the optical depth, which is explicitly invertible.
This approach is presented in Appendix C, where we
demonstrate that it yields an expression equivalent to the
QE in the low signal-to-noise regime. We note that Eq. (21)
is nearly identical to an estimator that was successfully
used to reconstruct our peculiar velocity with respect the
CMB rest frame using the thermal Sunyaev Zel’dovich
effect [18].
We now compute the mean and variance of the MaxL

estimator. The estimator Eq. (21) is based on a fixed
realization of the optical depth, so the statistics of the
estimator should be computed over an ensemble of real-
izations of the primary CMB which we denote by hiΘ. In
this ensemble, the mean of the estimator is

hv̂αLMiΘ ¼
XL0
max

L0M0

XN−1

β¼0

ð½τ†ðCpCMBÞ−1τ�−1ÞαβLM;L0M0

× h½τ†ðCpCMBÞ−1Θ�βL0M0 iΘ: ð22Þ

We find that

hv̂αLMiΘ ¼ vαLM þ βαLM; ð23Þ

where β is a “coarse-graining” bias

βαLM ≡XLmax

L0M0

XN−1

γ¼0

X∞
c¼N

XLmax

L00M00
ð½τ†ðCpCMBÞ−1τ�−1ÞαγLM;L0M0

× ½τ†ðCpCMBÞ−1τ�γcL0M0;L00M00vcL00M00 : ð24Þ

Details of the calculation that leads to (23) are in
Appendix D 1. We also calculate the variance of the
estimator, and find that

hv̂αLMv̂βL0M0 iΘ ¼ ðCvvÞαβLM;L0M0 þ Nαβ
LM;L0M0 ; ð25Þ

with

ðCvvÞαβLM;L0M0 ¼ ðvαLM þ βαLMÞðvβL0M0 þ ββL0M0 Þ; ð26Þ

and

Nαβ
LM;L0M0 ¼ ð½τ†ðCpCMBÞ−1τ�−1ÞαβLM;L0M0 : ð27Þ

Unlike the QE [5,7], where one must assume that the
underlying fields are Gaussian, it is not necessary to make

any assumptions about the statistics of the optical depth or
velocity fields. Therefore, we do not expect additional
contributions to the estimator variance beyond what is
presented here. This is in contrast to the QE, where extra
contributions to the estimator variance arise from the non-
Gaussian nature of the optical depth and velocities [10]. We
view this as a significant advantage of the MaxL estimator,
since these non-Gaussian contributions are difficult to
compute and remove.
Evaluating the harmonic space MaxL estimator in

Eq. (21) requires costly, and potentially numerically inac-
curate, forward and reverse spherical harmonic transforms.
Motivated by this, in the next section we construct a map
space estimator. Ultimately, the implementation of the map
space estimator is simpler and more accurate, and will be
the method used for the forecasts presented below.
However, there may be contexts in which the harmonic
space estimator is superior, as we comment on below.

B. Map space estimator

We now derive an alternative coarse-graining procedure
and obtain a MaxL estimator defined in terms of fields in
map space. In map space (as demonstrated in Appendix A),
the maximum likelihood condition can be written explic-
itly as

ταðn̂ÞΘ̄ðn̂Þ ¼
XN−1

β¼0

ταðn̂Þτ̄βðn̂Þvβðn̂Þ; ð28Þ

where the bar denotes inverse-variance filtering by CpCMB
l :

Āðn̂Þ≡X
lm

Alm

CpCMB
l

Ylmðn̂Þ: ð29Þ

To coarse-grain, we define a set of smoothing kernels
WIðn̂Þ with compact support in regions of the map labeled
by I ¼ 1; 2;…Imax such that

Z
dΩWIðn̂ÞWJðn̂Þ ¼

δIJ
Δθ2

; ð30Þ

where we have assumed each kernel is nonzero over the
same solid angle Δθ2 for all I. A simple choice for WIðn̂Þ
satisfying this criterion, utilized below, is a simple average
over equal-area pixels. Note that this is only one choice of
definition forWIðn̂Þ among many possibilities. Multiplying
both sides of Eq. (28) by WIðn̂Þ and integrating over the
map, we obtain

Z
dΩWIðn̂Þταðn̂ÞΘ̄ðn̂Þ¼

XN−1

β¼0

Z
dΩWIðn̂Þταðn̂Þτ̄βðn̂Þvβðn̂Þ:

ð31Þ
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Expanding the velocity in terms of an average velocity vβI
over the region of the map labeled by I and a residual
ΔvβI ðn̂Þ in the same region, we have

Z
dΩWIðn̂Þταðn̂ÞΘ̄ðn̂Þ

¼
XN−1

β¼0

vβI

Z
dΩWIðn̂Þταðn̂Þτ̄βðn̂Þ

þ
XN−1

β¼0

Z
dΩWIðn̂Þταðn̂Þτ̄βðn̂ÞΔvβI ðn̂Þ: ð32Þ

Defining the operators

WI;αβ ≡
Z

dΩWIðn̂Þταðn̂Þτ̄βðn̂Þ; ð33Þ

we have the following estimator for the average velocity in
region I:

v̂αI ¼
XN−1

β¼0

WI;αβ
−1

Z
dΩWIðn̂Þτβðn̂ÞΘ̄ðn̂Þ: ð34Þ

In Appendix C, we demonstrate that the QE in the
low signal-to-noise regime is recovered upon replacing
WI;αβ → hWI;αβiτ.
In our implementation of the map space estimator, we

employ the Healpix equal-area pixelization scheme [17]. If
we define the input fields at a native Healpix resolution
with pixels indexed by i ¼ 1; 2;…Nin

pix and the regions I
are defined by pixels at a degraded Healpix resolution Nout

pix,
then we can write a discrete version of the MaxL estimator:

v̂αI ¼
XN−1

β¼0

�XNin
pix

i¼1

WIiτ
α
i τ̄

β
i

�−1�XNin
pix

i¼1

WIiτ
β
i Θ̄i

�
: ð35Þ

Note that WIi as defined here is simply the Healpix
ud_grade function—an operator that averages pixels at
a fine resolution labeled by i that fit within a coarse pixel
labeled by I (see Ref. [17]).
Taking an ensemble average over realizations of the

primary CMB, the estimator mean is

hv̂αI iΘ ¼ vαI þ βαI ð36Þ

where the additive bias βαI arises from coarse-graining:

βαI ¼
XN−1

β;γ¼0

WI;αβ
−1
Z

dΩWIðn̂Þτβðn̂Þτ̄γðn̂ÞΔvγIðn̂Þ

þ
XN−1

β¼0

X∞
c¼N

WI;αβ
−1
Z

dΩWIðn̂Þτβðn̂Þτ̄cðn̂Þvcðn̂Þ: ð37Þ

The first term is the bias from the pixel-averaging operation
and the second term is the bias from coarse-graining along
the line of sight. Moving to the estimator variance, we get

hv̂αI v̂βJiΘ ¼ ðvαI þ βαI ÞðvβJ þ ββJÞ þ
1

Δθ2
WI;αβ

−1δIJ: ð38Þ

Just as for the harmonic space estimator, the estimator
variance includes an additive bias due to coarse-graining as
well as a reconstruction noise. Note that the reconstruction
noise is local, and does not have any pixel-pixel covariance
(although there is bin-bin covariance). A derivation of the
estimator mean and variance can be found in Appendix D 2.
The map space estimator is local, only depending on the

fields in the region supported by WIðn̂Þ. This allows us to
construct Imax independent N × N operators WI;αβ, which
are more easily (and accurately) inverted than the single
ðN2

harmNÞ × ðN2
harmNÞ operator needed for the harmonic

space MaxL estimator. The local nature of the estimator
also makes it a convenient choice for masked datasets.
Indeed, one could generalize the discussion above to
arbitrary complex pixelizations, suited to a particular
procedure for masking, foreground removal, or anisotropic
noise.

V. IMPLEMENTATION AND FORECASTS

In this section, we describe an implementation of the
MaxL estimator and compare its performance to the
existing QE introduced in Ref. [5]. Unlike the QE, whose
performance can be forecast from theoretical spectra, the
performance of the MaxL estimator depends on the
realization. We therefore must generate ensembles of
simulations to compare the performance of the MaxL
estimator to the QE. In this paper, we perform reconstruc-
tions on ensembles of properly correlated Gaussian sim-
ulations generated using the algorithm of [7]; an analysis of
N-body simulations is an important direction for future
work. Specifically, we first calculate the theoretical power
spectra of the lensed primary CMB CpCMB

l ; of the velocity
field Cvv

l ; and of the electron density field Cττ
l . We neglect

the cross-power spectrum of electrons and velocity Cτv
l

since the estimators utilize the optical depth and velocities
on very different scales. We use CAMB [19] to calculate
quantities such as the primary CMB and linear matter
power spectrum, with the nonlinear regimes modeled with a
halo model [7] (see e.g. Ref. [20] for a review of the halo
model). The electrons are modeled with the density profiles
of [21]. These power spectra are then used to create
appropriately correlated Gaussian simulations of the binned
velocity v and τ, as well as the primary CMB. To model the
non-Gaussian kSZ map, we simply multiply and sum the
simulated v and τ maps: ΘkSZ ¼ P

vατα. We use 32
redshift bins between z ¼ 0.2 and z ¼ 5, and employ a
binning scheme such that each bin has equal comoving
width. Further details of this implementation are given in
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Sec. III of [7]. We consider the idealized scenario where all
non-blackbody foregrounds are absent and where we
neglect the non-Gaussianities induced by lensing of the
primary CMB. A discussion of these effects in the context
of the QE can be found in Ref. [7].
In Fig. 1 we show the ensemble averaged power spectra

of the (lensed) primary CMB and of the kSZ effect. Note
that we only include power from the 32 redshift bins
between 0.2 < z < 5 used in our analysis, while Ref. [7]
demonstrated that approximately 512 radial bins are nec-
essary to capture the majority of the kSZ power in this
redshift range. We continue with this model in order to be
self-consistent, as using a larger number of bins would be
too computationally expensive. We do not expect this
approximation to affect our conclusions.
Throughout this section, we consider the case where we

have access to a direct measurement of the optical depth. In
practice, we will not have access to such a map: one must
use a tracer of the electrons such as a galaxy survey.
Connecting such a tracer to the optical depth necessitates
further modeling, in particular through the cross power
spectrum Cτ g

l . Incorrect modeling of Cτ g
l leads to a bias on

the reconstruction known as the optical depth bias; we
comment on this further in Sec. VI. Additionally, we first
consider the case where Cττ

l is known to arbitrarily high
resolution, and do not consider realistic effects such as the
shot noise of a galaxy survey or redshift error on a
photometric survey.
We have validated two pipelines, based the map and

harmonic space MaxL estimators presented above. We find
that the map space estimator has a number of computational
advantages. The harmonic space estimator involves several
forward and reverse spherical harmonic transforms, which
in the Healpix pixelization are not information-preserving.
This loss of information leads to numerical inaccuracies in
the reconstruction which can be overcome by using exact,
but less efficient, pixelization schemes. In addition, the

operator inversion required in the velocity estimator is
costly when incorporating the full multipole and bin
covariance; this places computational limitations on the
degree of coarse graining that can be considered. The map
space estimator overcomes both of these challenges, and so
we focus on this implementation in what follows.
In our first illustration of the MaxL estimator, we

completely remove the primary CMB and perform
reconstruction on kSZ maps alone (we add a negligible
amount of white noise to ensure that we are not dividing by
zero when we filter). We use the equal-area Healpix
pixelization [17], where the resolution is set by the
parameter Nside, related to the number of pixels in the
map by Npix ¼ 12N2

side. We apply both the MaxL estimator
and the QE to the kSZ-only and optical depth maps for a
single realization at a native resolution of Nin

side ¼ 2048.
Recalling the discussion in Sec. II, we expect the QE to be
limited by reconstruction noise, while the MaxL estimator
is formally noiseless if the maximum likelihood condition
can be inverted without coarse graining. Some degree of
coarse graining is necessary for a well-defined solution to
the maximum likelihood condition, and we therefore expect
the MaxL estimator to be limited by the additive coarse
graining bias as described in the previous section.
The power spectrum of the true velocity and the power

spectrum of the reconstruction residuals (defined by v̂ − v)
are shown in Fig. 2. For the QE, we perform the
reconstruction at a resolution of Nout

side ¼ 128; for the
MaxL estimator, we perform the reconstruction at a variety
of resolutions Nout

side ¼ 16, 64, 128. For low-resolution
output maps (Nout

side ¼ 16) the MaxL estimator in fact
performs worse than the QE due to a large coarse-graining
bias β, but as we increase Nout

side the MaxL estimator
becomes superior as expected. We have explicitly checked
that the residual agrees with β as calculated directly
from (37).
When we include the primary CMB in the temperature

maps, we do not expect the improvement of the MaxL
estimator over the QE to be as dramatic. In this case, the
MaxL estimator will have both reconstruction noise and an
additive coarse-graining bias [see Eq. (38)]. We only expect
the MaxL estimator to improve upon the QE when the
resolution of the input maps is high enough to probe the
regime where the amplitude of the kSZ anisotropies are
comparable to those of the primary CMB. To test this
expected resolution dependence, we produce input maps at
Nin

side ¼ 1024, 2048. In Fig. 3 we compare the velocity
reconstruction using the quadratic and MaxL estimators for
Nout

side ¼ 16, 64, 128 using maps with Nin
side ¼ 2048. In

Fig. 4 we plot the ratio of the total signal to noise for
the MaxL estimator and the QE; the signal to noise is
defined as

S=NL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½Cvαvβ

L ðNv̂αv̂β
L Þ−1�

q
; ð39Þ

FIG. 1. The primary CMB power spectrum and the kSZ power
spectrum using 32 radial bins of equal comoving size between
0.2 < z < 5. At large-l, the kSZ power dominates over the CMB
power. It is only once we access these angular scales that we
expect the MaxL estimator to show improvements over the QE.
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whereCvαvβ
L is the (true) signal matrix and we use the power

of the residual as a proxy for the noise Nv̂αv̂β
L .

We see that the signal to noise for the MaxL estimator is
comparable to that of the QE for Nin

side ¼ 1024. Increasing
to Nin

side ¼ 2048, the MaxL signal to noise per mode is
approximately 25% higher than for the QE on small
angular scales, and significantly higher on large angular
scales. This demonstrates the improvement in perfor-
mance expected once angular scales on which kSZ
power is significant compared to the primary CMB are
included.
From these results we see that with perfect knowledge

of the optical depth field and including only the primary
CMB and kSZ temperature anisotropies, the MaxL esti-
mator does yield a higher fidelity reconstruction than the
QE for sufficiently high-resolution data. In the next
section, we take one step towards increasing realism
and compare the performance of the MaxL and quadratic
estimators when the optical depth is inferred from a galaxy
survey.

FIG. 3. We show the true velocity power spectrum as well as the power of the residuals v − v̂QE and v − v̂MaxL. On the left is a low-z
bin and on the right is a high-z bin. We show v̂MaxL for an increasing output resolution. Here we see less of an improvement over the QE
than we did in Fig. 2 where we did not include the primary CMB. The MaxL residual power is 75% of the QE residual power on small
angular scales, and significantly better on large angular scales.

FIG. 4. The ratio of the total signal to noise per mode of the
MaxL and quadratic estimators. We find that at Nin

side of 1024, the
estimators perform similarly; however, as we go to Nin

side of 2048
and higher, the MaxL estimator has higher signal to noise than the
QE. In both cases we have chosen a different Nout

side at which the
MaxL performs best: ifNout

side is too low, the coarse-graining bias is
too large, and if it is too high, the operator W becomes
uninvertible. These Nout

side corresponded to Nout
side ¼ f16; 64g for

Nout
side ¼ f1024; 2048g respectively.

FIG. 2. We show the true velocity power spectrum as well as the power of the residuals v − v̂QE and v − v̂MaxL. On the left is a low-z
bin and on the right is a high-z bin. We show v̂MaxL for increasing resolution Nout

side. At low resolution, the “coarse-graining” bias β is
significant and v̂MaxL performs worse than v̂QE, but as we increase Nout

side this bias decreases and we get a better reconstruction than v̂
QE.
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VI. ESTIMATING THE OPTICAL DEPTH

In the absence of a direct measure of the differential
optical depth, we must estimate it from a tracer in order to
implement the maximum likelihood estimators introduced
above. A simple estimator is

τ̂αlm ¼
XN−1

β;γ¼0

ðCτgÞαβl ð½Cgg�−1Þβγl gγlm; ð40Þ

where gγlm is the redshift-binned galaxy density, ðCggÞβγl is
the galaxy power spectrum, and ðCτgÞαβl is the cross-power
with the optical depth. The ensemble mean of this estimator
is zero while the variance is

hτ̂αlmðτ̂βlmÞ†i ¼
XN−1

γ;δ¼0

ðCτgÞαγl ð½Cgg�−1Þγδl ðCgτÞδβl : ð41Þ

For correlated Gaussian fields Eq. (40) will yield an optical
depth that has the expected statistics. However, it is likely
that there are superior ways to faithfully estimate the optical
depth from the galaxy density. We leave this question to
future work. Note that the estimator variance reduces to
ðCττÞαβl in the limit where the actual realization of the
optical depth is related to the realization of the galaxy
density by ταlm ¼ P

bαγl gγlm; that is, when the optical depth
in a redshift bin can be obtained by isotropically filtering a
linear combination of the tracers in different bins.
An implementation of the MaxL estimator in this

scenario involves two steps: first one estimates the optical
depth field, then one uses in the MaxL estimator to obtain
the reconstructed velocity. To compare the MaxL and
quadratic estimators we must now include a galaxy field
in our correlated Gaussian simulations. Following in the
implementation in Ref. [7], we generate galaxy auto- and
cross-spectra for an LSST-like galaxy survey. We refer
the reader to Ref. [7] for complete details, but in brief:
the galaxy spectra are generated using a halo model

incorporating a realistic halo occupation distribution
(HOD), with number density of galaxies in the survey
assumed to be

nðzÞ ¼ ng
2z0

�
z
z0

�
2

exp

�
−

z
z0

�
; ð42Þ

with z0 ¼ 0.3 and ng ¼ 40 arcmin−2. The HOD and
number density of objects determine the galaxy bias and
galaxy shot noise in Cgg

l ; the halo model is used to
determine a self-consistent Cgτ

l . Using these spectra as
inputs, we generate properly correlated Gaussian maps of
all fields at a Healpix resolution of Nin

side ¼ 2048. Redshift
errors associated with a photometric galaxy survey such as
LSST lead to bin-bin correlations in the galaxy spectra on
both large and small scales; we defer the inclusion of this
effect to future work.
Using the Gaussian simulations described above, we

implement the QE on the galaxy density and temperature
(kSZ and primary CMB) maps using the theory spectra for
Cgg

l and Cgτ
l as inputs. We then use Eq. (40) to estimate the

optical depth from the galaxy density and apply the MaxL
estimator to the estimated optical depth and temperature
map. The reconstruction residuals v̂ − v for the MaxL and
quadratic estimators are shown in Fig. 5. At low redshfit
(left panel), a high-fidelity reconstruction is possible, albeit
at a lower signal-to-noise ratio than what is possible using
the optical depth itself as a tracer. At high redshift all galaxy
density measurements are shot noise dominated, as the
galaxy density is very low. As such, it is not possible to
reconstruct the high-z velocity; this is evident on the right-
hand side of Fig. 5. At both low and high redshift, the
MaxL estimator performs at least as well as the QE, in this
regime (Nin

side ¼ 2048). Given that an LSST-like experiment
is shot noise dominated on small angular scales, the
additional information leveraged by the MaxL estimator
from the optical depth on small scales is significantly
degraded. Because of this, it may be difficult to identify an

FIG. 5. The true velocity power spectrum Cvv
L and the power of the residuals v − v̂QE and v − v̂MaxL, using galaxies to estimate the

optical depth field. We do this for the MaxL by using the procedure defined in (40). For the QE we use the simulated galaxy maps
directly and modify the theoretical weights in the estimator to ensure an unbiased output.
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implementation of the MaxL estimator that would outper-
form the QE for near-term experiments.
When a tracer is used in the MaxL estimator, we must

confront the inevitable modeling uncertainty involved in
estimating the optical depth field. In the estimator Eq. (40),
this modeling uncertainty arises through the theory spectra
ðCτgÞαβl and ðCggÞαβl that must be provided as inputs. As we
demonstrate explicitly in Appendix E, the consequence is
an overall multiplicative bias on the estimator mean,
referred to in previous literature (e.g. [6,11–13]) as the
optical depth bias. Neglecting the coarse-graining bias, for
the map space estimator we have

hv̂αI i ¼
XN−1

γ¼0

Rαγ
I vγI ; ð43Þ

where the optical depth bias matrix is

Rαγ
I ≡XN−1

β¼0

�Z
dΩWIðn̂Þτ̂βðn̂Þ ˆ̄ταðn̂Þ

�
−1

×
Z

dΩWIðn̂Þτ̂βðn̂Þτ̄γðn̂Þ: ð44Þ

A hat on τ implies that it has been reconstructed from a
tracer, while the absence of a hat indicates the actual optical
depth. In complete generality, the optical depth bias matrix
contains N2 × Npix free parameters. These free parameters
are completely degenerate with the N × Npix independent
degrees of freedom in the coarse grained velocity.
Fortunately, as argued in Appendix E, we expect that the
optical depth bias does not depend on the pixel index I.
Roughly, this follows from the assumption that the optical
depth field is statistically isotropic. Furthermore, we expect
that the dominant contribution to the off-diagonal α ≠ γ
components of the optical depth matrix are expected to
arise from redshift errors in the tracer used to reconstruct
the optical depth. This implies that there are only N free
parameters in the optical depth bias matrix, so long as the
redshift errors of the tracer can be well characterized. This
is consistent with the QE, where there areN free parameters
expected in the optical depth bias [7]. A complete inves-
tigation of the optical depth bias will be the focus of
future work.

VII. CONCLUSIONS

In this paper, we have introduced a new class of
estimators for the radial velocity field (more generally,
the remote dipole field) from the CMB temperature
anisotropies induced by the kinetic Sunyaev Zel’dovich
effect and a tracer of the optical depth field. These MaxL
estimators are based on a coarse-grained maximum like-
lihood condition, and we have introduced two coarse-
graining schemes in harmonic and map space that can be
used to solve for the maximum likelihood radial velocity

field. We derived the expected properties of the MaxL
estimator, and compared the performance of the MaxL
estimator to the existing quadratic estimator using the
correlated Gaussian simulation framework of Ref. [7].
The MaxL estimator introduced here has several advan-

tages over the existing QE for velocity reconstruction. As
we have demonstrated, the MaxL estimator can in principle
yield a higher fidelity reconstruction than the QE in the
high-resolution, low-noise frontier of future CMB experi-
ments. The MaxL estimator is not derived based on the
assumption that the optical depth field is Gaussian, and it
therefore does not receive contributions from the non-
Gaussian bias terms present in the QE [10]. The map space
version of the MaxL estimator is numerically stable and
simple to implement. It is absolutely local, making it a
useful and versatile tool to apply to datasets containing
masks and spatially varying foregrounds. The modular
nature of the MaxL estimator makes it amenable to
improvements in techniques used to estimate the optical
depth field or improved coarse-graining schemes.
Furthermore, applying both the quadratic and MaxL
estimators to future datasets will be a useful diagnostic
of various biases and systematics in each analysis.
There are a variety of directions to take in future work.

An important first step is a comparison of the quadratic and
MaxL estimators using N-body data, where some of the
advantages of the MaxL estimator described above can be
confirmed in a more realistic setting. Another line of
inquiry is to determine better methods for estimating the
optical depth field from a galaxy redshift survey, or other
tracers of large scale structure such as the cosmic infrared
background [22]. For example, machine learning tech-
niques trained on simulations could capture non-Gaussian
information to better model the tracer-optical depth corre-
lations; such a framework could incorporate multiple
tracers into an overall estimate of the optical depth field
over a wide range of redshifts. It will also be important to
develop an analysis framework incorporating a mask and
spatially varying foreground mitigation techniques as exists
for the QE [7]. Finally, one can construct an analogous set
of MaxL estimators based on other CMB secondaries; for
example, transverse velocity reconstruction from the mov-
ing lens effect [23] or remote quadrupole reconstruction
from the polarized Sunyaev Zel’dovich effect [5,24].
Improved techniques to produce unbiased high-fidelity
reconstruction of cosmological fields will yield significant
scientific dividends for future experiments, maximizing the
ability of these datasets to constrain fundamental properties
of our Universe.
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APPENDIX A: HARMONIC AND MAP SPACE
REPRESENTATIONS

In this paper, we work both in harmonic space and in
map space (also referred to as “pixel” or “real” space). In
each case, we are considering fields in a different basis: in
map space, we describe fields by associating a value to each
pixel on a sphere, while in harmonic space we describe
fields by expanding in the basis of spherical harmonics. In
this appendix, we briefly recall how to transform from one
basis to another, considering both the fields themselves,
and the operators on these fields.

1. Fields

A two-dimensional field Aðn̂Þ defined on a sphere can be
represented in the map or harmonic basis:

aðn̂Þ ¼
X
i

aiPiðn̂Þ ¼
X
lm

almYlmðn̂Þ; ðA1Þ

where ai is the value of the field at each pixel Piðn̂Þ and alm
are the spherical harmonic coefficients of the field decom-
posed onto the spherical harmonic basis Ylmðn̂Þ. In the map
basis, each pixel can be denoted i and the value ai is given by

ai ¼
Z

dΩ aðn̂ÞPiðn̂Þ; ðA2Þ

where Pi is an element of the discrete pixelization basis. In
the harmonic basis, fields can be represented as a sum over
the spherical harmonic basis Ylm with the alm’s given by

alm ¼
Z

dΩ aðn̂ÞY�
lmðn̂Þ: ðA3Þ

In particular, we can go between map space and
harmonic space according to

alm¼
Z

dΩ
�X

i

aiPiðn̂Þ
�
Y�
lmðn̂Þ¼

X
i

aiY�
lmðn̂iÞ; ðA4Þ

ai ¼
Z

dΩ
X
lm

almYlmðn̂ÞPiðn̂Þ ¼
X
lm

almYlmðn̂iÞ; ðA5Þ

where Ylmðn̂iÞ≡ R
dΩPiðn̂ÞYlmðn̂Þ, e.g. the spherical

harmonic weighted over the pixel centered on n̂i.

2. Operators

We can decompose operators O on either basis. Thus the
expression

Ob ¼ c ðA6Þ

can be written as

X
j

Oijbj ¼ ci; ðA7Þ

or

X
LM

Olm;LMbLM ¼ clm: ðA8Þ

We can also consider a mixed basis

X
LM

Oi;LMbLM ¼ ci: ðA9Þ

We also have the relation

Olm;LMbLM ¼
X
i

OijbjY�
lmðn̂iÞ ðA10Þ

¼
X
i

Oij

X
l0m0

bl0m0Yl0m0 ðn̂jÞY�
lmðn̂iÞ: ðA11Þ

3. The maximum likelihood condition in map
and harmonic space

The maximum likelihood condition is

½τ†ðCpCMBÞ−1Θ� ¼ ½τ†ðCpCMBÞ−1τ� · v: ðA12Þ

To write this in harmonic or map space, we need to
form both the operator τ†ðCpCMBÞ−1τ and the vector
τ†ðCpCMBÞ−1Θ in map and harmonic space. Let us first
consider the operator τ†ðCpCMBÞ−1τ.
First, it will be useful to write the elements of τ and

CpCMB. In map space, τ is diagonal:

ταij ¼ ταi δij ðA13Þ

where ταi are the components of the τα field in the position
basis and δij is the Kronecker delta, the identity on map
space. Using the basis transformation Eq. (A11) for a
diagonal operator on map space gives

ταlm;LM ¼
X
l0m0

ταl0m0

Z
dΩYl0m0 ðn̂ÞYLMðn̂ÞY�

lmðn̂Þ: ðA14Þ
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We can also write a mixed-basis expression

ταi;LM ¼ ταi YLMðn̂iÞ: ðA15Þ

It will be most helpful to consider CpCMB in harmonic
space, where it is diagonal:

CpCMB
lm;l0m0 ¼ CpCMB

l δll0δmm0 ; ðA16Þ

where CpCMB
l is the power spectrum of the primary CMB.

Then we can evaluate

½ðCpCMBÞ−1τ�αl00m00LM ¼
X
lm

ðCpCMBÞ−1l00m00lmτ
α
lm;LM

¼
X

lm;l0m0

�Z
dΩYl0m0YLMY�

lm

�
ταl0m0

CpCMB
l

δll00δmm00

¼
X
l0m0

ð−1Þm00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0 þ 1Þð2Lþ 1Þð2l00 þ 1Þ

4π

r �
L l0 l00

0 0 0

��
L l0 l00

M m0 −m00

�
ταl0m0

CpCMB
l00

; ðA17Þ

where ðLM l0
m0

l00
−m00Þ is the Wigner 3J symbol. Without making

further assumptions, this is as far as we can go. However,
we will mainly be interested in the regime where
L ≪ l0;l00. The triangle inequality restricts l and l0 to
the range jl00 − l0j ≤ L ≤ l00 þ l0. So, as long as CpCMB

l00 is
not a strongly varying function, we can approximate:

CpCMB
l00 ≃ CpCMB

l00�L ≃ CpCMB
l0 : ðA18Þ

Under this approximation, we have

X
lm

½ðCpCMBÞ−1�l00m00;lmτ
α
lm;LM

¼
Z

dΩ
�X
l0m0

ταl0m0

CpCMB
l0

Yl0m0

�
YLMY�

l00m00 ; ðA19Þ

which has a nice mixed pixel-space harmonic-space
representation:

½ðCpCMBÞ−1�ijταj;LM ¼ τ̄αi YLMðn̂iÞ; ðA20Þ

where τ̄αi is the inverse-variance filtered field

τ̄αi ≡
X
l0m0

ταl0m0

CpCMB
l0

Yl0m0 ðn̂iÞ: ðA21Þ

With these results, we can now form the operator
½τ†ðCpCMBÞ−1τ�. It is most convenient to do this using
the mixed representation:

½τ†ðCpCMBÞ−1τ�αβL0M0;LM

¼
Z

dΩ ταðn̂Þτ̄βðn̂ÞYL0M0 ðn̂Þ�YLMðn̂Þ: ðA22Þ

Using an analogous set of arguments, we have

½τ†ðCpCMBÞ−1Θ�βL0M0 ¼
Z

dΩ τβðn̂ÞΘ̄ðn̂ÞY�
L0M0 ðn̂Þ ðA23Þ

where, again, the bar denotes inverse-variance filtering:

Θ̄i ≡
X
l0m0

Θl0m0

CpCMB
l0

Yl0m0 ðn̂iÞ: ðA24Þ

The maximum likelihood condition is

½τ†ðCpCMBÞ−1Θ�αL0M0 ¼
X
LM;β

½τ†ðCpCMBÞ−1τ�αβL0M0;LMv
β
LM:

ðA25Þ

We can also rotate into map space by first writing

½τ†ðCpCMBÞ−1τ�αβi;LM ¼ ταi τ̄
β
i YLMðn̂iÞ ðA26Þ

and

½τ†ðCpCMBÞ−1Θ�αi ¼ ταi Θ̄i: ðA27Þ

The maximum likelihood condition is then

ταi Θ̄i ¼
X
LM;β

ταi τ̄
β
i v

β
LMYLMðn̂iÞ ¼

XN−1

β¼0

ταi τ̄
β
i v

β
i : ðA28Þ

APPENDIX B: COARSE-GRAINING

To determine if there is a solution to the maximum
likelihood condition Eq. (A12), we must determine if the
operator τ†ðCpCMBÞ−1τ is invertible for a particular coarse
graining procedure. Note that this operator depends on the
actual realization of the optical depth anisotropies, so there
is some danger that an inverse exists for some realizations
but not others. Nevertheless, we can get some idea of what
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to expect by examining the statistical properties of this
operator over an ensemble of realizations of the optical
depth anisotropies. For example, if we focus on the
harmonic basis, the mean of the operator is

h½τ†ðCpCMBÞ−1τ�αβL0M0;LMiτ

¼
X
l;l0

ð2lþ 1Þð2l0 þ 1Þ
4π

�
l l0 L

0 0 0

�
2 Cτατβ

l0

CpCMB
l

δLL0δMM0

ðB1Þ

where the h…iτ denotes an ensemble average over the
optical depth anisotropies. On average, we see that the
operator is diagonal in harmonic space. If the sum is
dominated by large-l (which we expect it to be) then it will
also be nearly diagonal in bin space. This is because the
bin-bin correlations in Cτaτb

l become vanishingly small at
high l as the scales probed by the angular projection
become much smaller than the extent of the bins. Finding
the variance of the operator,

hð½τ†ðCpCMBÞ−1τ�αβL0M0;LMÞ2i
≃ h½τ†ðCpCMBÞ−1τ�αβL0M0;LMi2

þ
�X

l

2lþ 1

4π

�
Cτατα
l Cτβτβ

l

ðCpCMB
l Þ2 þ

Cτατβ
l Cτατβ

l

ðCpCMB
l Þ2

��

×
X
l00

ð2l00 þ 1Þð2Lþ 1Þð2L0 þ 1Þ

×

�
L L0 l00

0 0 0

�
2
�

L L0 l00

M M0 M −M0

�
2

ðB2Þ

where we have assumed that the optical depth anisotropies
are Gaussian and used the limit where L, L0 are small.
Notably, the variance is not diagonal in the harmonic
coefficients, and becomes increasingly nondiagonal at
higher L and L0. It is also nondiagonal in bin space.
Therefore, in a particular realization we can expect that the
operator τ†ðCpCMBÞ−1τ becomes highly nondiagonal on
small angular scales. This implies that the condition
number could be quite large at full resolution, and there
may be no well-defined inverse. Our strategy is therefore to
coarse-grain the maximum likelihood condition by truncat-
ing at some empirically determined Lmax and N before
solving for the velocity field.

APPENDIX C: CONNECTING TO THE
QUADRATIC ESTIMATOR

1. Harmonic space estimator

In the low signal-to-noise regime, we can obtain the
quadratic estimator from the maximum likelihood condi-
tion Eq. (21) by taking an ensemble average over the
optical depth hiτ:

½τ†ðCpCMBÞ−1Θ�αL0M0 ¼
X
LM;β

h½τ†ðCpCMBÞ−1τ�αβL0M0;LMiτvβLM:

ðC1Þ

The ensemble average is given by Eq. (B1), which using the
notation of Ref. [7] can be recognized as

h½τ†ðCpCMBÞ−1τ�αβL0M0;LMiτ ¼
1

2Lþ 1

X
l;l0

Gvβτβ
ll0Lf

vβτα
lLl0δLL0δMM0

ðC2Þ

with

Gvβτβ
ll0L ¼ fv

βτβ
lLl0

CpCMB
l Cτβτβ

l0
;

fv
βτα

lLl0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2Lþ 1Þ

4π

r �
l l0 L

0 0 0

�
Cτβτα
l0 :

ðC3Þ

The left-hand side of the maximum likelihood condition
can be expanded to

½τ†ðCpCMBÞ−1Θ�αLM ¼
X

lm;l0m0
ð−1ÞM

�
l l0 L

m m0 −M

�

×Gvατα
ll0LΘlmτ

α
l0m0 : ðC4Þ

For a completely diagonal Cτβτα
l0 ¼ Cτατα

l0 δαβ, we solve the
ensemble-averaged maximum likelihood condition to
arrive at the traditional form for the quadratic estimator
appearing in Refs. [5,7]:

vαLM ¼ Avα
L

X
lm;l0m0

ð−1ÞM
�
l l0 L

m m0 −M

�
Gvατα

ll0LΘlmτ
α
l0m0

ðC5Þ

where

Avα
L ≡

�
1

2Lþ 1

X
l;l0

Gvατα
ll0Lf

vατα
lLl0

�
−1
: ðC6Þ

There are, however, a few crucial differences with the
quadratic estimator presented in Refs. [5,7]. In the tradi-
tional quadratic estimator, the weights needed for an
unbiased minimum variance reconstruction require that
everywhere above we replace CpCMB

l → CpCMB
l þ CkSZ

l . In
the limit where CpCMB

l ≪ CkSZ
l , as occurs for a sufficiently

high-resolution low-noise CMB experiment, this is a non-
negligible difference—as expected, since in this case the
temperature anisotropies on small scales are very non-
Gaussian, and far from the limit of Gaussian fields used to
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derive the quadratic estimator. Therefore, we only recover
the traditional quadratic estimator in the limit where
CpCMB
l ≫ CkSZ

l . This observation supports the notion that
the maximum likelihood estimator will be superior in the
high signal-to-noise regime. Another difference arises in
the case where Cτβτα

l is not diagonal. In this case, to find a
solution to the ensemble averaged maximum likelihood
condition it is necessary to find the inverse of Cτβτα

l (if it
exists). The resulting solution is different than the approach

presented in Ref. [7], which first constructs a set of biased
estimators which are then de-biased by forming the
appropriate linear combinations. The relevant differences
would be interesting to explore further in future work.

2. Map space estimator

Just as for the harmonic space estimator, we can derive
an ensemble average map space estimator. Starting
from Eq. (32):

Z
dΩWIðn̂Þταðn̂ÞΘ̄ðn̂Þ ¼

XN−1

β¼0

vβI

Z
dΩWIðn̂Þhταðn̂Þτ̄βðn̂Þiτ ðC7Þ

þ
XN−1

β¼0

Z
dΩWIðn̂Þhταðn̂Þτ̄βðn̂ÞiτΔvβI ðn̂Þ ðC8Þ

¼
XN−1

β¼0

vβI hταð0Þτ̄βð0Þiτ
Z

dΩ
�
WIðn̂Þ þ

Z
dΩWIðn̂ÞΔvβI ðn̂Þ

�
ðC9Þ

¼
XN−1

β¼0

vβI hταð0Þτ̄βð0Þiτ ðC10Þ

where we have assumed that τα is statistically isotropic,R
dΩWIðn̂Þ ¼ 1, and

R
dΩWIðn̂ÞΔvβI ðn̂Þ ¼ 0 by defini-

tion. This suggests the following map space quadratic
estimator:

v̂αI ¼
XN−1

β¼0

½hτβð0Þτ̄αð0Þiτ�−1
Z

dΩWIðn̂Þταðn̂ÞΘ̄ðn̂Þ: ðC11Þ

For a diagonal variance hτβð0Þτ̄αð0Þiτ ¼ hταð0Þτ̄αð0Þiτδαβ,
we can identify

hταð0Þτ̄αð0Þiτ ¼
1

Avα
L¼0

ðC12Þ

as defined above in Eq. (C6). Since Eq. (C6) is nearly
independent of L [5,7], one can simply show that Eq. (C11)
is equivalent to Eq. (C5) at low L, and also equivalent to the
map based quadratic estimator presented in Refs. [5,7]
(with the same caveats as for the harmonic space estimator).
In the low signal-to-noise regime, Eq. (C11) may be a
simpler implementation of the quadratic estimator used in
previous work. We leave further investigation of this point
to future work.

APPENDIX D: MEAN AND VARIANCE OF THE
MAXL ESTIMATOR

1. Harmonic space estimator

The mean of the harmonic space estimator is

hv̂αLMiΘ ¼
XL0
max

L0M0

XN−1

β¼0

ð½τ†ðCpCMBÞ−1τ�−1ÞαβLM;L0M0

× h½τ†ðCpCMBÞ−1Θ�βL0M0 iΘ: ðD1Þ

To calculate this, we must evaluate

h½τ†ðCpCMBÞ−1Θ�αL0M0 iΘ ¼
Z

dΩ ταðn̂ÞhΘ̄ðn̂ÞiΘY�
L0M0 ðn̂Þ:

ðD2Þ

The observed temperature anisotropies consist of the zero-
mean primary CMB and the kSZ:

hΘ̄ðn̂ÞiΘ ¼ hΘ̄pCMBðn̂ÞiΘ þ Θ̄kSZðn̂Þ ¼ Θ̄kSZðn̂Þ: ðD3Þ

Expanding the kSZ anisotropies into coarse- and fine-
grained components, we have
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h½τ†ðCpCMBÞ−1Θ�αL0M0 iΘ ¼
Z

dΩταðn̂Þ
�XN−1

β¼0

XLmax

LM

τ̄βðn̂ÞvβLMYLMðn̂Þ

þ
X∞
b¼N

XLmax

LM

τ̄bðn̂ÞvbLMYLMðn̂Þ þ
X∞
b¼0

X∞
LM¼Lmax

τ̄bðn̂ÞvbLMYLMðn̂Þ
�
Y�
L0M0 ðn̂Þ

≃
XN−1

β¼0

XLmax

LM

½τ†ðCpCMBÞ−1τ�αβL0M0;LMv
β
LM þ

X∞
b¼N

XLmax

LM

½τ†ðCpCMBÞ−1τ�αbL0M0;LMv
b
LM

where we assumed that the dominant contributions from the velocity field are at low L. We therefore have

hv̂αLMiΘ ¼ vαLM þ βαLM ðD4Þ
where

βαLM ≡XLmax

L0M0

XN−1

γ¼0

X∞
c¼N

XLmax

L00M00
ð½τ†ðCpCMBÞ−1τ�−1ÞαγLM;L0M0 ½τ†ðCpCMBÞ−1τ�γcL0M0;L00M00vcL00M00 : ðD5Þ

So, the estimator is unbiased up to an additive bias βαLM, which depends on the fine-grained radial velocity modes.
Moving to the variance,

hv̂αLMv̂βL0M0 iΘ ¼
XLmax

LaMa;LbMb

XN−1

γ;δ¼0

ð½τ†ðCpCMBÞ−1τ�−1ÞαγLM;LaMa
ð½τ†ðCpCMBÞ−1τ�−1ÞβδL0M0;LbMb

×
ZZ

dΩdΩ0τγðn̂Þτδðn̂0ÞhΘ̄ðn̂ÞΘ̄ðn̂0ÞiΘYLaMa
ðn̂ÞYLbMb

ðn̂0Þ: ðD6Þ

There is a contribution to the temperature correlation function from the primary CMB and from the kSZ effect:

hΘ̄ðn̂ÞΘ̄ðn̂0ÞiΘ ¼
X
lm

1

CpCMB
l

Ylmðn̂ÞYlmðn̂0Þ þ Θ̄kSZðn̂ÞΘ̄kSZðn̂0Þ: ðD7Þ

The first term will give rise to the Gaussian estimator noise and the second will describe our signal and biases arising due to
our coarse-graining of the maximum likelihood condition:

hv̂αLMv̂βL0M0 iΘ ¼ ðCvvÞαβLM;L0M0 þ Nαβ
LM;L0M0 : ðD8Þ

The reconstruction noise Nαβ
LM;L0M0 arises due to the contribution from the primary CMB:

Nαβ
LM;L0M0 ¼

X
LaMa;LbMb;lm

X
γ;δ

ð½τ†ðCpCMBÞ−1τ�−1ÞαγLM;LaMa
ð½τ†ðCpCMBÞ−1τ�−1ÞβδL0M0;LbMb

×
ZZ

dΩdΩ0τγðn̂Þτδðn̂0Þ 1

CpCMB
l

Ylmðn̂ÞYlmðn̂0ÞYLaMa
ðn̂ÞYLbMb

ðn̂0Þ ðD9Þ

≃
X

LaMa;LbMb

X
γ;δ

ð½τ†ðCpCMBÞ−1τ�−1ÞαγLM;LaMa
ð½τ†ðCpCMBÞ−1τ�−1ÞβδL0M0;LbMb

Z
dΩτγðn̂Þτ̄δðn̂ÞYLaMa

ðn̂ÞYLbMb
ðn̂Þ

ðD10Þ
¼

X
LaMa;LbMb

X
γ;δ

ð½τ†ðCpCMBÞ−1τ�−1ÞαγLM;LaMa
ð½τ†ðCpCMBÞ−1τ�−1ÞβδL0M0;LbMb

ðD11Þ

×ðτ†ðCpCMBÞ−1τÞγδLbMb;LaMa
ðD12Þ

¼ ð½τ†ðCpCMBÞ−1τ�−1ÞαβLM;L0M0 ðD13Þ
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where in going from the first to second lines we have assumed that CpCMB
l does not vary too quickly on scales of order

Δl ¼ L and used the identity

Z
d2nYlama

Ylbmb
Ylcmc

Yldmd
¼

X
lm

�Z
d2nYlama

Ylbmb
Ylm

��Z
d2n0Ylcmc

Yldmd
Ylm

�
: ðD14Þ

For the signal and bias due to “fine modes” we have

ðCvvÞαβLM;L0M0 ¼
X

LaMa;LbMb

X
γ;δ

ð½τ†ðCpCMBÞ−1τ�−1ÞαγLM;LaMa
ð½τ†ðCpCMBÞ−1τ�−1ÞβδL0M0;LbMb

×
ZZ

dΩdΩ0τγðn̂Þτδðn̂0ÞΘ̄kSZðn̂ÞΘ̄kSZðn̂0ÞYLaMa
ðn̂ÞYLbMb

ðn̂0Þ ðD15Þ

≃
X

LaMa;LbMb

X
γ;δ;e;f

ð½τ†ðCpCMBÞ−1τ�−1ÞαγLM;LaMa
ð½τ†ðCpCMBÞ−1τ�−1ÞβδL0M0;LbMb

×
ZZ

dΩdΩ0τγðn̂Þτδðn̂0Þτ̄eðn̂Þveðn̂Þτ̄fðn̂0Þvfðn̂0ÞYLaMa
ðn̂ÞYLbMb

ðn̂0Þ

¼
X

LaMa;LbMb

X
γ;δ;e;f

ð½τ†ðCpCMBÞ−1τ�−1ÞαγLM;LaMa
ð½τ†ðCpCMBÞ−1τ�−1ÞβδL0M0;LbMb

×
X

LcMc;LdMd

veLcMc
vfLdMd

Z
dΩτγðn̂Þτ̄eðn̂ÞYLaMa

ðn̂ÞYLcMc
ðn̂Þ

Z
dΩ0τδðn̂0Þτ̄fðn̂0ÞYLbMb

ðn̂0ÞYLdMd
ðn̂0Þ

¼
X

LaMa;LbMb

X
LcMc;LdMd

X
γ;δ;e;f

veLcMc
vfLdMd

ð½τ†ðCpCMBÞ−1τ�−1ÞαγLM;LaMa
½τ†ðCpCMBÞ−1τ�γeLaMa;LcMc

× ð½τ†ðCpCMBÞ−1τ�−1ÞβδL0M0;LbMb
½τ†ðCpCMBÞ−1τ�δfLbMb;LdMd

¼ ðvαLM þ βαLMÞðvβL0M0 þ ββL0M0 Þ: ðD16Þ

The main assumption made in the derivation of the estimator mean and variance was that CpCMB
l does not vary too quickly

on scales of order Δl ¼ L, which can always be satisfied for sufficiently small L. For modest values of L ∼ 100, we expect
this to be a reasonable assumption at large l where the primary CMB is smooth and dominated by lensing, instrumental
noise, or reionization kSZ (depending on the instrument).

2. Map space estimator

We now compute the mean and variance of the map space estimator. Starting with the mean:

hv̂αI iΘ ¼
XN−1

β¼0

WI;αβ
−1

Z
dΩWIðn̂Þτβðn̂ÞΘ̄kSZðn̂Þ; ðD17Þ

¼
XN−1

β¼0

WI;αβ
−1

Z
dΩWIðn̂Þτβðn̂Þ

X∞
c¼0

τ̄cðn̂ÞðvcI þ ΔvcI ðn̂ÞÞ ðD18Þ

¼
XN−1

β;γ¼0

vγIWI;αβ
−1WI;γβ þ

XN−1

β;γ¼0

WI;αβ
−1

Z
dΩWIðn̂Þτβðn̂Þτ̄γðn̂ÞΔvγIðn̂Þ ðD19Þ

þ
XN−1

β¼0

X∞
c¼N

WI;αβ
−1

Z
dΩWIðn̂Þτβðn̂Þτ̄cðn̂Þvcðn̂Þ ðD20Þ

¼ vαI þ βαI ðD21Þ
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where we have defined

βαI ¼
XN−1

β;γ¼0

WI;αβ
−1

Z
dΩWIðn̂Þτβðn̂Þτ̄γðn̂ÞΔvγIðn̂Þ þ

XN−1

β¼0

X∞
c¼N

WI;αβ
−1

Z
dΩWIðn̂Þτβðn̂Þτ̄cðn̂Þvcðn̂Þ: ðD22Þ

Moving to the estimator variance, we have

hv̂αI v̂βJiΘ ¼
XN−1

γ;δ¼0

WI;αγ
−1WJ;βδ

−1
Z

dΩdΩ0WIðn̂ÞWJðn̂0Þτγðn̂Þτδðn̂0ÞhΘ̄ðn̂ÞΘ̄ðn̂0ÞiΘ

¼
XN−1

γ;δ¼0

WI;αγ
−1WJ;βδ

−1
�Z

dΩ WIðn̂Þτγðn̂ÞΘ̄kSZðn̂Þ
Z

dΩ0WJðn̂0Þτδðn̂0ÞΘ̄kSZðn̂0Þ

þ
X
lm

Z
dΩWIðn̂Þτγðn̂ÞYlmðn̂Þ

Z
dΩ0 WJðn̂0Þ

τδðn̂0Þ
CpCMB
l

Ylmðn̂0Þ
�

≃ ðvαI þ βαI ÞðvβJ þ ββJÞ þ
XN−1

γ;δ¼0

WI;αγ
−1WJ;βδ

−1
Z

dΩWIðn̂ÞWJðn̂Þτγðn̂Þτ̄δðn̂Þ

¼ ðvαI þ βαI ÞðvβJ þ ββJÞ þ
1

Δθ2
WI;αβ

−1δIJ; ðD23Þ

where in going from the second to the third line, we have
made the approximation that CpCMB

l is not too rapidly
varying with scale, as we did in the derivation of the
harmonic space estimator variance.

APPENDIX E: OPTICAL DEPTH BIAS

When we only have access to an estimate τ̂ of the
differential optical depth, the harmonic space estimator is
given by

v̂αLM ¼
XL0
max

L0M0

XN−1

β¼0

ð½τ̂†ðCpCMBÞ−1τ̂�−1ÞαβLM;L0M0

× ðτ̂†ðCpCMBÞ−1ΘÞβL0M0 : ðE1Þ

Computing the estimator mean, we have

hv̂αLMiΘ ¼
XL0
max

L0M0

XN−1

β¼0

ð½τ̂†ðCpCMBÞ−1τ̂�−1ÞαβLM;L0M0

× hðτ̂†ðCpCMBÞ−1ΘÞβL0M0 iΘ ðE2Þ

¼
�XLmax

L00M00

XN−1

γ¼0

Rαγ
LM;L00M00v

γ
L00M00

�
þ β̂αLM; ðE3Þ

where

Rαγ
LM;L00M00 ¼

XL0
max

L0M0

XN−1

β¼0

ð½τ̂†ðCpCMBÞ−1τ̂�−1ÞαβLM;L0M0

× ½τ̂†ðCpCMBÞ−1τ�βγL0M0;L00M00 ðE4Þ

and

β̂αLM ≡XLmax

L0M0

XN−1

γ¼0

X∞
c¼N

XLmax

L00M00
ð½τ̂†ðCpCMBÞ−1τ̂�−1ÞαγLM;L0M0

× ½τ̂†ðCpCMBÞ−1τ�γcL0M0;L00M00vcL00M00 : ðE5Þ

When τ̂ ¼ τ, this is simply the identity matrix, and we
recover an unbiased estimator mean. In reality, an imperfect
estimate of the differential optical depth will result in
the mixing of information and therefore a bias. It is
important to characterize the magnitude and properties
of this bias to obtain useful cosmological information from
the reconstruction.
To explore the optical depth bias a bit more, suppose we

have a pretty good reconstruction of the differential optical
depth, such that

τ̂αðn̂Þ ¼ ταðn̂Þ þ nατ ðn̂Þ; nατ ðn̂Þ ≪ ταðn̂Þ: ðE6Þ

We can approximate

½τ̂†ðCpCMBÞ−1τ̂�−1
≃ ½1 − ½τ†ðCpCMBÞ−1τ�−1 · ½nτ†ðCpCMBÞ−1nτ ��
· ½τ†ðCpCMBÞ−1τ�−1 ðE7Þ
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and therefore

Rαγ
LM;L00M00 ≃ δαγδLM;L00M00

−
XL0
max

L0M0

XN−1

β¼0

ð½τ†ðCpCMBÞ−1τ�−1ÞαβLM;L0M0

× ½nτ†ðCpCMBÞ−1nτ �βγL0M0;L00M00 : ðE8Þ

Taking an ensemble average over τ and nτ, and using
Eq. (B1), we have

hRαγ
LM;L00M00 i ≃ δαγδLM;L00M00

− δLM;L00M00
Xβmax

β

hταð0Þτ̄βð0Þi−1hnβτ ð0Þn̄γτð0Þi

ðE9Þ

where hταð0Þτ̄βð0Þi−1 is the bin-space inverse of Eq. (B1)
and hnβτ ð0Þn̄γτð0Þi is

hnβτ ð0Þn̄γτð0Þi ¼
X
l

2lþ 1

4π

Cnβτn
γ
τ

l

CpCMB
l

: ðE10Þ

In particular, note that on average in this limit the optical
depth bias is independent of scale L00M00, and small when
the differential optical depth is reconstructed well.
For the map space estimator, we have

v̂αI ¼
XN−1

β¼0

�Z
dΩWIðn̂Þτ̂βðn̂Þ ˆ̄ταðn̂Þ

�
−1

×
Z

dΩWIðn̂Þτ̂βðn̂ÞΘ̄ðn̂Þ: ðE11Þ

Computing the estimator mean,

hv̂αI i ¼
XN−1

γ¼0

Rαγ
I vγI þ β̂αI ðE12Þ

where

Rαγ
I ≡XN−1

β¼0

�Z
dΩWIðn̂Þτ̂βðn̂Þ ˆ̄ταðn̂Þ

�
−1

×
Z

dΩWIðn̂Þτ̂βðn̂Þτ̄γðn̂Þ ðE13Þ

and

β̂αI ¼
XN−1

β;γ¼0

�Z
dΩWIðn̂Þτ̂βðn̂Þ ˆ̄ταðn̂Þ

�
−1

×
Z

dΩWIðn̂Þτ̂βðn̂Þτ̄γðn̂ÞΔvγIðn̂Þ

þ
XN−1

β¼0

X∞
c¼N

�Z
dΩWIðn̂Þτ̂βðn̂Þ ˆ̄ταðn̂Þ

�
−1

×
Z

dΩWIðn̂Þτβðn̂Þτ̄cðn̂Þvcðn̂Þ: ðE14Þ

Assuming a well-modeled optical depth, as in Eq. (E6), a
similar derivation as for the harmonic estimator yields

hRαγ
I i ≃ δαγ −

XN−1

β¼0

hταð0Þτ̄βð0Þi−1hnβτ ð0Þn̄γτð0Þi: ðE15Þ

So, the optical depth bias in this limit is independent of the
pixel index I.
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