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We formulate the transition from decelerated to accelerated expansion as a bounce in connection space
and study its quantum cosmology, knowing that reflections are notorious for bringing quantum effects to
the fore. We use a formalism for obtaining a time variable via the demotion of the constants of nature to
integration constants, and focus on a toy universe containing only radiation and a cosmological constant Λ
for simplicity. We find that, beside the usual factor-ordering ambiguities, there is an ambiguity in the order
of the quantum equation, leading to two distinct theories: one second order, and one first order. In both
cases two time variables may be defined, conjugate to Λ and the radiation constant of motion. We make
little headway with the second-order theory, but are able to produce solutions to the first-order theory.
They exhibit the well-known “ringing” whereby incident and reflected waves interfere, leading to
oscillations in the probability distribution even for well-peaked wave packets. We also examine in detail
the probability measure within the semiclassical approximation. Close to the bounce, the probability
distribution becomes double peaked, with one peak following a trajectory close to the classical limit
but with a Hubble parameter slightly shifted downwards, and the other with a value of b stuck at its
minimum. An examination of the effects still closer to the bounce, and within a more realistic model
involving matter and Λ, is left to future work.
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I. INTRODUCTION

It is not often pointed out that the Universe has recently
undergone a bounce in connection space (not to be
confused with a possible metric bounce at the Planck
epoch). The natural connection variable in homogenous
cosmological models is the inverse comoving Hubble
parameter, here called b, as opposed to the expansion
factor a in metric space (with b ¼ _a=N on shell for a lapse
functionN). This is precisely the variable used in character-
izing the horizon structure of the Universe. It is well
established (see Ref. [1] and references therein) that b has
recently transitioned from a decreasing function of time
(associated with decelerated expansion) to an increasing
function of time (accelerated expansion), due to Λ or more
generally a form of dark energy taking over. If we choose
the connection representation in quantum cosmology the
Universe has, therefore, in the recent few billion years of its
life undergone a bounce or a reflection.

Reflection is one of the best ways to highlight
quantum wave-like behavior [2], sometimes with paradoxi-
cal results [3]. The incident and reflected waves interfere,
introducing oscillations in the probability, or “ringing,”
which affects the classical limit. Such interference trans-
forms traveling waves into stationary waves, leading to
effects not dissimilar to those investigated in Ref. [4].
Independently of this, turning points in the effective
potential, dividing classically allowed and forbidden
regions, are always regions where the WKB or semi-
classical limit potentially breaks down, revealing fully
quantum behavior. The point of this paper is to initiate
an investigation into this matter, specifically into whether
the extremes of “quantum reflection” could ever be felt by
our recent Universe.
We base this study on recent work where a relational

time (converting the Wheeler-DeWitt equation into a
Schrödinger-like equation) was obtained by demoting
the constants of nature to constants on shell only [5,6]
(i.e., quantities that are constant as a result of the equations
of motion, rather than being fixed parameters in the action).
The conjugates of such “constants” supply excellent
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physical time variables. This method is nothing but an
extension of unimodular gravity [7] as formulated in
Ref. [8], where the demoted constant was the cosmological
constant, Λ, and its conjugate time is Misner’s volume
time [9]. Extensions targeting other constants (for example,
Newton’s constant) have been considered before, notably in
the context of the sequester (developed in Refs. [10,11]) in
the form given in Ref. [12], where the associated “times”
were called “fluxes”, or more recently in Refs. [13,14].
Regarding the Wheeler-DeWitt equation in this fashion,

one finds that the fixed constant solutions appear as
monochromatic partial waves. By “deconstantizing” the
constants the general solution is a superposition of such
partial waves, with amplitudes that depend on the “deconst-
ants.” Such superpositions can form wave packets with
better normalizability properties. In this paper we inves-
tigate the simplest toy model exhibiting a b bounce, which
is a mixture of radiation and Λ, subject to the deconstan-
tization of Λ and a radiation variable (which can be the
gravitational coupling G). The wave packets we build thus
move in two alternative time variables, with the description
being simpler [6] in terms of the clock associated with the
dominant species (e.g., Misner time during Lambda domi-
nation). The b bounce is the interesting epoch where the
“time zone” changes.
The plan of this paper is as follows. In Sec. II we set up

the classical theory highlighting the connection rather
than the metric, with a view to quantization in the
connection representation (Sec. III). We stress the large
number of decision forks in the connection representation
(thus leading to nonequivalent theories with respect to
quantizations based upon the metric). Notably, besides
factor-ordering issues, we have ambiguities in the order
of the quantum equation. Thus, we find two distinct
theories for our toy model: one first order, and one
second order.
We seek solutions to the second-order theory in Sec. IV,

but encounter a number of mathematical problems that
hinder progress. In contrast, we produce explicit solutions
to the first-order theory in Sec. V, albeit at the cost of
several approximations that may erase or soften important
quantum behavior. Gaussian wave packets are found, and
the motion of their peaks reproduces the semiclassical limit.
At the bounce they do exhibit “ringing” in jψ j2, as in all
other quantum-mechanical reflections. However, with at
least one definition of the inner product and unitarity,
within the semiclassical approximation this “ringing”
disappears from the probability, as shown in Sec. VI.
Nonetheless, in Sec. VII we find hints of interesting
phenomenology: even within the semiclassical approxima-
tion, for a period around the bounce, the Universe is ruled
by a double-peaked distribution biased toward the value of
b at the bounce. This could be observable.
Whether the features found/erased in Secs. V–VII vanish

or become more pronounced in a realistic model with fewer

approximations is left to future work (see, e.g., Ref. [15]),
as we discuss in Sec. VIII.

II. CLASSICAL THEORY

We study a cosmological model with two candidate
matter clocks, modeled as perfect fluids with equation-of-
state parameters w ¼ 1

3
(radiation) and w ¼ −1 (dark

energy), respectively. In minisuperspace, these fluids can
be characterized by their energy density ρ or, equivalently,
by a conserved quantity ρa3ðwþ1Þ. This conserved quantity
is canonically conjugate to a clock variable, and hence
particularly convenient to use.
The reduction of the Einstein–Hilbert action (with an

appropriate boundary term) to a homogeneous and iso-
tropic minisuperspace model yields

SGR ¼ 3Vc

8πG

Z
dtð _ba2 þ Naðb2 þ kÞÞ; ð1Þ

where b is conjugate to the squared scale factor a2; varying
with respect to b gives b ¼ _a=N, as stated above.
k ¼ 0;�1 is the usual spatial curvature parameter, and Vc
is the coordinate volume of each three-dimensional slice.
A perfect-fluid action in minisuperspace can be

defined by [16]

Sfl ¼
Z

dt

�
U_τ − Na3Vcρ

�
U

a3Vc

��
; ð2Þ

where U is the total particle number (whose conservation
is ensured by the first term) and τ is a Lagrange multiplier.
For a fluid with equation-of-state parameter w, ρðnÞ ¼
ρ0n1þw for some ρ0 where n ¼ U=ða3VcÞ is the particle
number density. Now, introducing a new variable
m ¼ 8πGρ0

3Vc
ðUVc

Þ1þw, the conservation of U is equivalent to
the conservation of m, and we can define an equivalent
fluid action (see also Refs. [17,18])

SðwÞfl ¼ 3Vc

8πG

Z
dt

�
_mχ − N

m
a3w

�
: ð3Þ

The total action for gravity with two fluids is then

SGR þ S
ð1
3
Þ

fl þ Sð−1Þfl ¼ 3Vc

8πG

Z
dt

�
_ba2 þ _mχ1 þ _Λχ2

− Na

�
−ðb2 þ kÞ þ m

a2
þ Λ

3
a2
��

;

ð4Þ

where we now write m for the conserved quantity asso-
ciated with radiation and Λ=3 for the “cosmological
integration constant” of dark energy. (The latter is equiv-
alent to the way in which the cosmological constant
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emerges in unimodular gravity [8]; the factor of 3 ensures
consistency with the usual definition of Λ.) We assume
that m and Λ are positive; other solutions are of less direct
interest in cosmology. Classically, the values of such
conserved quantities can be fixed once and for all. In
the quantum theory discussed below, we are only interested
in semiclassical states sharply peaked around some positive
m and Λ values, even though the corresponding operators
are defined with eigenvalues covering the whole real line in
order to simplify the technical aspects of the theory.
The Lagrangian is in the canonical form L ¼ pi _qi −H,

which implies the nonvanishing Poisson brackets

fb; a2g ¼ fm; χ1g ¼ fΛ; χ2g ¼ 8πG
3Vc

ð5Þ

and Hamiltonian

H ¼ 3Vc

8πG
Na

�
−ðb2 þ kÞ þ m

a2
þ Λ

3
a2
�
: ð6Þ

Importantly, this Hamiltonian is linear in m and Λ, and for
a suitable choice of lapse given by the appropriate power of
a, the equations of motion for χ1 and χ2 can be brought into
the form _χi ¼ −1; if one allows for a negative lapse, _χi ¼ 1
would also be possible. Hence, in such a gauge either χ1 or
χ2 is identified with (minus) the time coordinate [5,18].
We could apply any canonical transformation to these

variables, in particular point transformations from constants
to functions of themselves (inducing time conjugates
proportional to the original one, with the proportionality
factor being a function of the constants). In particular,
it will be convenient to introduce the canonically trans-
formed pair

ϕ ¼ 3

Λ
; Tϕ ¼ −3

χ2
ϕ2

ð7Þ

instead of Λ and χ2.
Evidently, the variation of Eq. (4) with respect to N leads

to a Hamiltonian constraint

−ðb2 þ kÞ þ m
a2

þ Λ
3
a2 ¼ 0; ð8Þ

which is equivalent to the Friedmann equation. We think
of b as a “coordinate” and a2 as a “momentum” variable,
and introduce the shorthand VðbÞ≡ b2 þ k viewing the b
dependence in Eq. (8) as a potential, whereas the
a2-dependent terms play the role of kinetic terms.
If we use the variables (7) from now on, we can give the

two solutions to the constraint in terms of a2 as

a2� ¼ ϕ

2

�
VðbÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðbÞ2 − 4m=ϕ

q �
; ð9Þ

which can be seen as two constraints, linear in a2, which
taken together are equivalent to the original Eq. (8) which is
quadratic in a2. We could write this alternatively as

h�ðbÞa2� − ϕ ≔
2a2�

VðbÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðbÞ2 − 4m=ϕ

p − ϕ ¼ 0 ð10Þ

in terms of the “linearizing” conserved quantity ϕ, as
suggested in Refs. [5,6]. The negative-sign solution in
Eq. (9) corresponds to a regime in which radiation
dominates (ϕm ≫ a4), whereas the positive sign corre-
sponds to Λ domination, as one can see by checking which
solution survives in the m → 0 or Λ → 0 (ϕ → ∞) limit.
The equations of motion arising from Eq. (8) can be

solved numerically,1 which shows explicitly how the
classical solutions transition from a radiation-dominated
to aΛ-dominated branch of Eq. (9). We plot some examples
(one for k ¼ 0 and one for k ¼ 1) in Fig. 1. Notice that the
point of transition between the two branches (which is

FIG. 1. Cosmological solutions with initial data (set at t ¼ 0)
a ¼ 1, b ¼ 2, and m ¼ 1.2, (top: k ¼ 0;Λ ¼ 8.4; bottom:
k ¼ 1;Λ ¼ 11.4). These follow the radiation-dominated (or-
ange dotted) branch at small a2 and the Λ-dominated (green
dashed) branch at large a2. The time coordinate is defined by
setting N ¼ 1=a.

1Analytical solutions can be given in conformal time in terms
of Jacobi elliptic functions [19].
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when radiation and dark energy have equal energy den-
sities, ϕm ¼ a4) corresponds to a “bounce” in b, where
_b ¼ 0. This bounce of course happens at a time where the
Universe is overall still expanding. It happens when
VðbÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
m=ϕ

p
or, equivalently, when

b2 ¼ b20 ≔ 2

ffiffiffiffi
m
ϕ

r
− k: ð11Þ

It is important to realize that a linearized form of the
constraints based on Eq. (9) leads to the same dynamical
equations as those arising from Eq. (6): for the Hamiltonian

H� ¼ 3Vc

8πG

�
a2 −

ϕ

2
ðVðbÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðbÞ2 − 4m=ϕ

q
Þ
�

ð12Þ

we obtain

db
dt

¼ 1;
dða2Þ
dt

¼ ϕb

�
1� VðbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðbÞ2 − 4m=ϕ
p �

: ð13Þ

This form of the dynamics corresponds to a gauge in which
b plays the role of time and we express the solution for a2

in the “relational” form a2ðbÞ. The second equation in
Eq. (13) can be obtained from Hamilton’s equations for

Eq. (6) by using dða2Þ
db ≡ dða2Þ

dt = db
dt and substituting in one of

the solutions for a2ðbÞ given by Eq. (9). Of course, this way
of defining things can only ever reproduce one branch of
the dynamics corresponding to one of the two possible sign
choices; the equations of motion break down at the turning
point ϕm ¼ a4, where one should flip from Hþ to H− or
vice versa and where both the parametrization a2ðbÞ and
the gauge choice _b ¼ 1 in Eq. (13) fail. In this sense,
the ambiguities in passing from Eq. (6) to the linearized
form (9) are related to the failure of b to be a good global
clock for this system, a situation frequently discussed in the
literature on constrained systems [20].

III. QUANTUM THEORY

Minisuperspace quantization follows from promoting
the first Poisson bracket in Eq. (5) to

½b̂; â2� ¼ i
l2P
3Vc

; ð14Þ

where lP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGNℏ

p
is the reduced Planck length. Given

our focus on a bounce in connection space, we choose the
representation diagonalizing b, so that

â2 ¼ −i
l2P
3Vc

∂

∂b
≕ − ih

∂

∂b
; ð15Þ

where we have introduced the shorthand h for the “effective
Planck parameter,” as in Ref. [21].
By choosing this representation we are making a very

noninnocuous decision, leading to minimal quantum
theories which are not dual to the most obvious ones
based on the metric representation. When implementing
the Hamiltonian constraint, in the metric representation
all matter contents (subject to a given theory of gravity)
share the same gravity-fixed kinetic term, with the
different equations of state w reflected in different powers
of a in the effective potential, UðaÞ, as is well known
(e.g., Ref. [22]). In contrast, in the connection represen-
tation all matter fillings share the same gravity-fixed
effective potential VðbÞ ¼ b2 þ k introduced below
Eq. (8), with different matter components appearing as
different kinetic terms, induced by their different powers
of a2 → −ih∂=∂b.
As a result, the connection representation leads to further

ambiguities quantizing these theories, besides the usual
factor-ordering ambiguities. In addition to these, we have
an ambiguity in the order of the quantum equation (with a
nontrivial interaction between the two issues). In the
specific model we are studying here, we already discussed
this issue for the classical theory above. We can work
with the single Hamiltonian constraint (8) which is
quadratic in a2,

a4

ϕ
− VðbÞa2 þm ¼ 0; ð16Þ

with the middle term providing ordering problems; or,
we can write Eq. (16) as ða2 − a2þÞða2 − a2−Þ ¼ 0 with a2�
given in Eq. (9), and quantize the Hamiltonian constraint
written as a two-branch condition,

â2 −
ϕ

2

�
VðbÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðbÞ2 − 4m=ϕ

q �
¼ 0: ð17Þ

The two branches then naturally link with the monofluid
prescriptions in Refs. [5,6] when Λ or radiation dominate
(as we will see in detail later). For more complicated
cosmological models in which multiple components with
different powers of a2 are present the situation can clearly
become more complicated, with additional ambiguities in
how to impose the Hamiltonian constraint. Notice also
that an analogous linearization would have been possible
in the metric representation, by writing Eq. (16) as
ðb − bþÞðb − b−Þ ¼ 0 in terms of the two solutions for
bða2Þ. We see no reason to expect that the resulting theories
obtained by applying this procedure to either b or a2 would
be related by a Fourier transform.
We therefore have in hand two distinct quantum

theories based on applying Eq. (15) to either Eq. (16),
leading to
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�ðâ2Þ2
ϕ

− VðbÞâ2 þm

�
ψ ¼ 0; ð18Þ

or to Eq. (17), leading to

½h�ðbÞâ2 − ϕ�ψ ¼ 0; ð19Þ

with h�ðbÞ defined in Eq. (10). One results in a second-
order formulation, while the other results in a two-branch
first-order formulation. These theories are different and
there is no reason why one (with any ordering) should be
equivalent to the other. Indeed, they are not. Let us define
the operators

D� ¼ â2 − a2�ðb;m;ϕÞ; ð20Þ

where we work (for now) in a representation in which m
and ϕ act as multiplication operators. These operators
clearly do not commute:

½Dþ; D−� ≠ 0: ð21Þ

The second-order formulation, based on the constraint (16),
has an equation of the form

∶DþD−∶ ψ ¼ 0; ð22Þ

where ∶ denotes some conventional “normal ordering,” for
example, keeping the b to the left of the a2. The first-order
formulation defined by Eq. (19) leads to a pair of equations,

Dþψ ¼ 0 ∨ D−ψ ¼ 0 ð23Þ

(note that an ordering prescription is implied here). In
keeping with the philosophy of quantum mechanics, in the
presence of a situation that classically corresponds to an
“OR” conjunction, we superpose the separate results
upon quantization, so that the space of solutions is still
a vector space as in standard quantummechanics. A generic
element of this solution space will satisfy neither Dþψ ¼ 0
nor D−ψ ¼ 0.
To understand the difference between the two types of

theories, we can compare with a simple quantum mechan-
ics Hamiltonian H ¼ p2=2mþ VðxÞ. Quantizing the rela-
tion E ¼ Hðp; xÞ leads to a Schrödinger equation that is
second order in x derivatives [and which, depending on
the form of VðxÞ, may not be solvable analytically].
Alternatively, we could replace this fixed energy relation
by two conditions p ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE − VðxÞÞp ¼ 0 linear in p;
these would be analogous to the conditions D� ¼ 0
appearing in our quantum cosmology model. In the
quantum mechanics case, quantizing the linear relations
and taking superpositions of their respective solutions
results in a set of plane-wave solutions, different to those
of the second-order theory. These plane-wave solutions are

interpreted as the lowest-order WKB/eikonal approxima-
tion to the theory given by the initial Schrödinger equation.
Hence, while these approaches agree in that they produce
the same classical dynamics (away from turning points
where p can change sign), the two quantum theories give
different predictions in terms of ℏ-dependent corrections to
the classical limit. In quantum cosmology, we do not know
which type of quantization is “correct” and we saw at the
end of Sec. II that the classical cosmological dynamics can
be equally described by either the linear Hamiltonian (12)
or the original Hamiltonian (6). In the quantum theory we
can then follow either a first-order approach or a second-
order approach as separate theories, with the difference
between these becoming relevant at the next-to-lowest
order in ℏ. Again, we stress that this ambiguity goes
beyond the issue of ordering ambiguities; it is about
different classical representations of the same dynamics
used as starting points for quantization. The strategy
proposed here is a new type of quantization procedure
compared to most of the existing quantum cosmology
literature.
Indeed, no ordering prescription for the second-order

formulation would lead to the total space of solutions of the
first-order formulation. By choosing ∶DþD− ≔ DþD−, for
example, the solutions of D−ψ ¼ 0 would be present in
the second-order formulation but not those of Dþψ ¼ 0
(and vice versa). One might prefer the symmetric ordering
∶DþD− ≔ ðDþD− þD−DþÞ=2 but the resulting equation
would not be solved by solutions of either D−ψ ¼ 0 or
Dþψ ¼ 0. If we start from a second-order formulation in
which we keep all b to the left,

�ðâ2Þ2
ϕ

− VðbÞâ2 þm
�
ψ ¼ 0; ð24Þ

we do not exactly recover any of the solutions of the first-
order formulation, and even asymptotically (in regions in
which either m or Λ dominates) we can only recover the
D−ψ ¼ 0 solutions (and the radiation solutions in Ref. [5]).
Indeed, by letting ϕ → ∞, Eq. (24) reduces to

ð−VðbÞâ2 þmÞψ ¼ 0; ð25Þ

which asymptotically is the same as D−ψ ¼ 0 [since
a2− ≈m=VðbÞ when VðbÞ2 ≫ 4m=ϕ]. However, for
m ¼ 0 we get

�
â4

ϕ
− VðbÞâ2

�
ψ ¼ 0; ð26Þ

with VðbÞ to the left of â2. Thus, we cannot factor out â2 on
the left, to obtain�

1

VðbÞ â
2 − ϕ

�
ψ ¼ 0 ð27Þ
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and so force some solutions to asymptotically match
those of Dþψ ¼ 0 and the pure Λ solutions of Ref. [5].
The solutions of Eq. (26) instead match those studied in
Ref. [23]. They are not the Chern-Simons state, but rather
the integral of the Chern-Simons state.
From the second-order perspective, in order to repro-

duce the solutions of the first-order theory we would
need to put the b to the left or right depending on
the branch we are looking at. The ordering in one
formulation can therefore never be matched by the
ordering in the other.2

IV. SOLUTIONS IN THE SECOND-ORDER
FORMULATION

In our model, as in the example of a general potential in
the usual Schrödinger equation, the second-order theory
is more difficult to solve. If we add a possible operator-
ordering correction proportional to ½b̂2; â2� ¼ 2ihb̂ to
Eq. (24), we obtain the more general form

�ðâ2Þ2
ϕ

þ iξhb − VðbÞâ2 þm
�
ψ ¼ 0; ð28Þ

where ξ is a free parameter (which could be fixed by
self-consistency arguments; for instance, requiring the
Hamiltonian constraint to be self-adjoint with respect to
a standard L2 inner product would imply ξ ¼ 1).
We can eliminate the first derivative in Eq. (28) by

making the ansatz

ψðb;m;ϕÞ ¼ e
i
2hϕðb

3

3
þbkÞχðb;m;ϕÞ ð29Þ

so that χ now has to satisfy

�
−
h2

ϕ

∂
2

∂b2
þ ðmþ ihðξ − 1Þb −

ϕ

4
VðbÞ2Þ

�
χ ¼ 0; ð30Þ

which we recognize (with ξ ¼ 1) as a standard Schrödinger
equation with a (negative) quartic potential. One can write
down the general solution to this problem in terms of
triconfluent Heun functions (see, e.g., Ref. [24]),

χ ¼ c1ðm;ϕÞe− i
2hϕðb

3

3
þbkÞHT

�
mϕ

h2
;−i

ϕ

h
;−i

kϕ
h
; 0;−i

ϕ

h
; b

�

þ c2ðm;ϕÞe i
2hϕðb

3

3
þbkÞHT

�
mϕ

h2
; i
ϕ

h
; i
kϕ
h
; 0; i

ϕ

h
; b

�
;

where the triconfluent Heun functions HT are normalized
by defining them to be solutions to the triconfluent Heun
differential equation subject to the boundary conditions

fð0Þ ¼ 1 and f0ð0Þ ¼ 0. These are defined in terms of a
power series around b ¼ 0, so that we get

ψ ¼c1þc2þ ic2
kϕ
h
bþmϕðc1þc2Þ−k2ϕ2c2

2h2
b2þOðb3Þ:

ð31Þ

These solutions could be useful for setting “no-bounce”
boundary conditions at b ¼ 0 (now referring to a bounce in
the scale factor), in the classically forbidden region. An
immediate issue however is that triconfluent Heun func-
tions defined in this way diverge badly at large b, and are
hence not very useful for studying the classically allowed
region. While they can be written down for arbitrary ξ,
there seems to be no particular value that allows for more
elementary expressions or analytical functions that are well
defined for all b.
The divergences seen in these “analytical” solutions

are rooted in the definition of these functions as a power
series around b ¼ 0; full numerical solutions show no
such divergence but decay at large b. This is reassuring,
but one might prefer retaining analytical expressions that
can at least be valid at large b. In this limit, we can obtain
an approximate solution by setting m¼0, ξ ¼ 1, and
VðbÞ¼b4 in Eq. (30); the resulting differential equation
has the general solution

χ¼
ffiffiffi
b

p �
c3ðm;ϕÞJ−1

6

�
ϕb3

6h

�
þc4ðm;ϕÞJ1

6

�
ϕb3

6h

��
; ð32Þ

where JνðzÞ are Bessel functions. At large b, these Bessel
functions have the asymptotic form

χ ∼
2

b

ffiffiffiffiffiffi
3h
πϕ

s �
c3ðm;ϕÞ sin

�
ϕb3

6h
þ π

3

�

þ c4ðm;ϕÞ sin
�
ϕb3

6h
þ π

6

��
: ð33Þ

These asymptotic solutions are plane waves in b3 modu-
lated by a prefactor decaying as 1=b, so they are certainly
well behaved at large b. These large-b solutions can be
matched to the triconfluent Heun functions at smaller
values of b; see Fig. 2 for an example. The result of this
matching agrees perfectly with a numerically constructed
solution. Of course, the coefficients c3 and c4 in Eq. (32)
which correspond to certain initial conditions are then also
only known numerically. We have no good analytical
control over these solutions where they are most interest-
ing, i.e., in the region around b ¼ b0.
If we interpret jψ j2 as a probability density, we see that

this falls off as 1=b2 at large b and so most of the
probability would in fact be concentrated near the “bounce”

2Apart from the forceful two-branched ordering ∶DþD−∶ ≡
DþD−∨D−Dþ, of course.

STEFFEN GIELEN and JOÃO MAGUEIJO PHYS. REV. D 107, 023518 (2023)

023518-6



b ¼ b0. One might be tempted to relate this property to the
coincidence problem of cosmology, since it would suggest
that an observer would be likely to find themselves not too
far from equality between radiation and Λ, contrary to the
naive expectation in classical cosmology that Λ should
dominate completely. Below we will compare this expect-
ation with a more detailed calculation (and using a different
measure) in the first-order theory.
We can contrast these attempts at obtaining exact

solutions to the second-order theory with what would be
the traditional approach in quantum cosmology, which is to
resort to approximate semiclassical solutions. After all, the
setup of quantum cosmology is at best a semiclassical
approximation to quantum gravity. If we start from aWKB-
type ansatz ψðb;m;ϕÞ ¼ Aðb;m;ϕÞeiPðb;m;ϕÞ=h, the trun-
cation of Eq. (28) to lowest order in h implies that

1

ϕ

�
∂P
∂b

�
2

− VðbÞ ∂P
∂b

þm ¼ 0; ð34Þ

which is the Hamilton-Jacobi equation corresponding to
Eq. (16). Its solutions are ∂P=∂b ¼ a2�ðb;m;ϕÞ with a2� as
in Eq. (9),

a2� ¼ ϕ

2

�
VðbÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðbÞ2 − 4m=ϕ

q �
; ð35Þ

and the general lowest-order WKB solution to the second-
order theory is

ψ ¼ cþðm;ϕÞe i
h

R
b db0a2þ þ c−ðm;ϕÞe i

h

R
b db0a2− : ð36Þ

On the other hand, Eq. (36) is already the exact general
solution of the first-order theory we defined by Eq. (23).
These solutions are pure plane waves in the classically
allowed region jVðbÞj ≥ 2

ffiffiffiffiffiffiffiffiffiffi
m=ϕ

p
but have a growing or

decaying exponential part in the classically forbidden
region jVðbÞj < 2

ffiffiffiffiffiffiffiffiffiffi
m=ϕ

p
, as expected. In the next section

we will discard the exponentially growing solution corre-
sponding to a2−, but since this forbidden region is of finite
extent there are no obvious normalizability arguments that
mean it has to be excluded.

V. DETAILED SOLUTION IN THE
FIRST-ORDER FORMULATION

Needless to say, the first-order formulation is easier to
solve analytically and take further. In these theories (e.g.,
Ref. [6]) the general solution is a superposition of different
values of “constants” α of “spatial” monochromatic func-
tions ψ sðb;αÞ (solving a Wheeler-DeWitt equation for
fixed values of the α) multiplied by the appropriate time
evolution factor combining α and their conjugates T. The
total integral takes the form

ψðb;TÞ ¼
Z

dαAðαÞ exp
�
−
i
h
α · T

�
ψ sðb;αÞ: ð37Þ

The ψ s are conventionally normalized so that in the
classically allowed region

jψ sj2 ¼
1

ð2πhÞD ; ð38Þ

where D is the dimensionality of the deconstantized space,
i.e., the number of conserved quantities α. The model
studied in this paper corresponds to [see Eqs. (4) and (7)]

α ¼
�
ϕ≡ 3

Λ
; m

�
; T ¼ ðTϕ; Tm ¼ χ1Þ; ð39Þ

with D ¼ 2.

FIG. 2. Solutions with m ¼ 1.2, k ¼ 0, Λ ¼ 8.4, and in units
h ¼ 1 (real part: blue; imaginary part: orange). The top panel
shows a solution given in terms of a triconfluent Heun function
that diverges at b ≈ 6.8. In the bottom panel we match this to
the approximate solution (32) by matching the wave function
and its derivative at b ¼ 6, which leads to a solution defined
at arbitrarily large b. The classically allowed region is
b > b0 ≈ 1.91. This solution agrees with a numerical solution
constructed from the same initial data ψð0Þ ¼ 1;ψ 0ð0Þ ¼ 0
(black, dashed and dotted).
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A. Monochromatic solutions

In our model, the ψ sðb;αÞ are defined to be the solutions
to the two branches of Eq. (19), given by

ψ s�ðb;ϕ; mÞ ¼ N exp

�
i
h
ϕX�ðb;ϕ; mÞ

�
; ð40Þ

with [see also Eq. (36)]

X�ðb;ϕ; mÞ ¼
Z

b

b0

db̃
1

2

�
Vðb̃Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðb̃Þ2 − 4m=ϕ

q �
;

ð41Þ

where the integration limit is chosen to be b ¼ b0, defined
in Eq. (11) as the value of b at the bounce. We plot these
functions, with this choice of limits and for some particular
choices of the parameters, in Fig. 3.
We see that for b2 ≫ b20 the þ=− branches have

Xþðb;ϕ; mÞ ≈ Xϕ ¼ b3

3
þ kb; ð42Þ

X−ðb;ϕ; mÞ ≈m
ϕ
Xr ¼

m
ϕ

Z
b db̃

b̃2 þ k
; ð43Þ

where Xϕ and Xr are the corresponding functions appearing
in the exponent for a model of pure Λ (characterized by the
quantity ϕ) and a model of pure radiation. Hence, this leads
to the correct limits far away from the bounce [6],

ψ sþðb;ϕ; mÞ ≈N exp

�
i
h
ϕXϕðbÞ

�
; ð44Þ

ψ s−ðb;ϕ; mÞ ≈N exp

�
i
h
mXrðbÞ

�
; ð45Þ

up to a phase related to the limits of integration. This phase
is irrelevant for the þ wave, since Xϕ diverges with b, so
that the b0 contribution quickly becomes negligible. It does
affect the − wave, if we want to match with Eq. (45)
asymptotically. Let us assume k ¼ 0.3 Then, X−ðbÞ ∼ − 1

b
for large b, so in order to have agreement between Eqs. (40)
and (45) we should subtract the extra phase obtained
by using b0 as the lower limit of the integral, which we
denote by

χ ≔
1

h
ϕX−ð∞Þ: ð46Þ

We could also take the lower limit of the integral to be ∞
or absorb the phase (46) into the − amplitude defined
in Eq. (48),

A− → A−eiχ : ð47Þ

We plot the various options for defining ψs− in Fig. 4.
The general solution for b > b0 is the superposition

ψ sðbÞ ¼ Aþψ sþðbÞ þ A−ψ s−ðbÞ; ð48Þ

where we dropped the ϕ and m labels to lighten up the
notation. In the b < b0 region we have the usual evanescent
wave.4 The appropriate solution (i.e., the one that is
exponentially suppressed, rather than blowing up) is

FIG. 4. Imaginary part of the wave functions ψs− with h ¼ 1,
m ¼ 1, and ϕ ¼ 106, defined with the lower limit of integration
b0 (orange) and with lower limit infinity (green), compared with
the asymptotic radiation-dominated wave function (blue).

FIG. 3. Imaginary part of the wave functions ψs� [Λ branch (þ)
in blue, radiation branch (−) in orange], with h ¼ 1, m ¼ 1, and
ϕ ¼ 106, defined with the lower limit b0 (here and in the
following plots b0 ≈ 0.0447). Notice how the oscillation fre-
quency increases/decreases with b for theΛ-/radiation-dominated
branches.

3The other cases are more complicated, as the universe could
become dominated by curvature before Λ domination.

4Here we assume that the amplitude for tunneling into the
contracting region b < −b0 < 0 is negligible.
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ψðbÞ ¼ Bψ s−ðbÞ

¼ B exp

�
i
h
ϕX−ðb;ϕ; mÞ

�

¼ B exp

�
ϕ

2h

Z
b

b0

db̃ðiVðb̃Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m=ϕ − Vðb̃Þ2

q
Þ
�
:

ð49Þ
Note that the limits of integration then ensure a negative
sign for the real exponential. In addition to this there is also
an oscillatory factor. This solution is plotted in Fig. 5.
Our problem is now similar to a quantum reflection

problem, but with significant novelties because the medium
is highly dispersive. Usually, all we have to do is match
the wave functions and their derivatives at the reflection
point b0 to get a fully defined wave function. Given that
Xþðb0Þ ¼ X−ðb0Þ ¼ 0, imposing continuity at b ¼ b0
requires

Aþ þ A− ¼ B: ð50Þ
However, imposing that the first derivative of ψ s is
continuous at b ¼ b0 produces the same condition, given
that X0

�ðb0Þ ¼ Vðb0Þ=2. Second derivatives diverge as
b → b0, as can be understood from the fact that this is a
classical turning point and the monochromatic solutions
are eiPðb;m;ϕÞ=h, where P is the classical Hamilton-Jacobi
function. We require as a matching condition that these
divergences have the same form as we approach b0 from
above or below. This leads to

Aþ − A− ¼ iB ð51Þ
from a term that diverges as b → b0. Hence,

A�
B

¼ 1� i
2

: ð52Þ

For wave packets, the same conditions arise from
imposing continuity of the wave function and requiring
that divergent first derivatives match, as we will see below.
Specifically, in order to match the radiation-dominated

phase for the partial waves we should choose

A− ¼ e−iχ ;

B ¼
ffiffiffi
2

p
eið−χþπ=4Þ;

Aþ ¼ eið−χþπ=2Þ: ð53Þ

The resulting ψ s is plotted in Fig. 6. Suppressing for the
moment the α label, it has the form

ψ sðbÞ ¼ ½Aþψ sþðbÞ þ A−ψ s−ðbÞ�Θðb − b0Þ
þ Bψ s−ðbÞΘðb0 − bÞ; ð54Þ

with the coefficients given by Eq. (53).

B. Wave packets

To construct coherent/squeezed wave packets we must
now evaluate Eq. (37) with a factorizable state,

AðαÞ ¼
Y
i

AiðαiÞ ¼
Y
i

exp
h
− ðαi−αi0Þ2

4σ2αi

i
ð2πσ2αiÞ1=4

: ð55Þ

Given Eq. (54), this results in

ψðb;TÞ ¼ ½Aþψþðb;TÞ þ A−ψ−ðb;TÞ�Θðb − b0Þ
þ Bψ−ðb;TÞΘðb0 − bÞ; ð56Þ

FIG. 6. Imaginary part of the full wave function ψ s normalized
so as to match the asymptotic radiation-dominated expression,
with parameters h ¼ 1, m ¼ 1, and ϕ ¼ 106. The incident
(orange) and reflected (blue) waves, when superposed, match
the evanescent wave (green) up to second derivatives in this plot.

FIG. 5. Imaginary part of the evanescent wave function ψ s−
valid for b < b0 with h ¼ 1, m ¼ 1, and ϕ ¼ 106, defined with
the lower limit b0. (Strictly speaking, the integrals used are only
valid for b > 0 but we ignore the region b < 0).
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with

ψ�ðb;TÞ ¼
Z

dαAðαÞ exp
�
−
i
h
α · T

�
ψ s�ðb;αÞ: ð57Þ

These are the superpositions of three wave packets: an
incident one, coming from the radiation epoch; a reflected
one, going into the Λ epoch; and an evanescent packet
in the classically forbidden region significant around the
“time” of the bounce.
We can now follow a saddle-point approximation, as in

Ref. [6], which is appropriate for interpreting minisuper-
space as a dispersive medium, where the concept of the
group speed of a packet is crucial. Defining the spatial
phases P� from

ψ s�ðb;αÞ ¼ N exp
�
i
h
P�ðb;αÞ

�
ð58Þ

so that

P�¼ϕX�¼ϕ

Z
b

b0

db̃
1

2

�
Vðb̃Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðb̃Þ2−4

m
ϕ

r �
; ð59Þ

we can approximate

P�ðb;αÞ ≈ P�ðb;α0Þ þ
X
i

∂P�
∂αi

����
α0

ðαi − αi0Þ: ð60Þ

These P� again correspond to the two solutions for the
classical Hamilton-Jacobi function of the model, as dis-
cussed before Eq. (36). Then, for any factorizable ampli-
tude, the wave functions (57) simplify to

ψ�ðb;TÞ ≈ e
i
hðP�ðb;α0Þ−α0·TÞ

Y
i

ψ�iðb; TiÞ; ð61Þ

with

ψ�iðb; TiÞ ¼
Z

dαiffiffiffiffiffiffiffiffi
2πh

p AiðαiÞe−
i
hðαi−αi0ÞðTi−

∂P�
∂αi

jα0 Þ: ð62Þ

The first factor is the monochromatic wave centered on α0

derived in Sec. VA, with the time phases α0 · T included.
The other factors, ψ�iðb; TiÞ, describe envelopes moving
with equations of motion

Ti ¼
∂P�ðb;αÞ

∂αi

����
α0

: ð63Þ

In the classically allowed region, the motion of the
envelopes (and thus of their peaks) reproduces the classical
equations of motion for both branches, throughout the

whole trajectory, as proved in Ref. [6]. The packets move
along outgoing waves whose group speed can be set to one
using the linearizing variable

Xeff
�iðbÞ ¼

∂P�ðb;αÞ
∂αi

����
α0

; ð64Þ

so that Ti ¼ Xeff
�i .

Inserting Eq. (55) into Eq. (62), we find that the
envelopes in our case are the Gaussians

ψ�iðb; TiÞ ¼
1

ð2πσ2TiÞ1=4
exp

�
−
ðXeff

�iðbÞ − TiÞ2
4σ2Ti

�
; ð65Þ

with σTi
¼ h=ð2σαiÞ saturating the Heisenberg inequality,

as expected for squeezed/coherent states.
It is interesting to see that the condition (51) obtained in

Sec. VA from matching divergences in the second deriva-
tive of the plane waves can be derived from the first
derivative of the wave packets. Recall that

P�ðb0;αÞ ¼ 0;

P0
�ðb0;αÞ ¼ ϕ

Vðb0Þ
2

¼
ffiffiffiffiffiffiffi
mϕ

p
; ð66Þ

to which we should add

Xeff
�iðb0Þ ¼ 0;

lim
b→b0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðbÞ2 − 4m=ϕ

q
Xeff 0
�i ðbÞ

�
¼∓ ϕ

∂ðm=ϕÞ
∂αi

: ð67Þ

Leaving the A� and B undefined in Eq. (56), we then find
that the continuity of the wave packet at b ¼ b0 requires

Aþ þ A− ¼ B; ð68Þ

i.e., Eq. (50), whereas the divergent terms in the first
derivative at b0 agree on both sides if

Aþ − A− ¼ iB; ð69Þ

i.e., Eq. (51).

C. Ringing of the wave function at the bounce

As already studied in detail in Ref. [6], the peaks of
these wave packets follow the classical limit throughout
the whole trajectory, including the bounce, assuming they
remain peaked and do not interfere. They are also bona fide
WKB states asymptotically, in the sense that they have a
peaked broad envelope multiplying a fast oscillating phase
(the minority clock in general will not produce a coherent
packet, but we leave that matter out of the discussion here).
The problem is that none of this applies at the bounce,
where the incident and reflected waves interfere, leading to
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“ringing” in the probability. This is an example of how the
superposition of two semiclassical states is itself not a
semiclassical state.
To illustrate this point at its simplest, let us set k ¼ 0 and

focus on the factor with the radiation time Tm, so that

Xeff
�m ¼∓

Z
b

b0

db̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̃4 − b40

q þ const; ð70Þ

where α0 ¼ ðϕ0; m0Þ, and we used that for k ¼ 0, Eq. (11)
leads to b40 ¼ 4m0=ϕ0. A term constant in b, resulting
from the dependence on m in the limits of integration
in Eq. (59), can be neglected. We evaluate our wave
functions numerically, but we note that in this case the
integral can be expressed in terms of elliptic integrals of
the first kind F,

Xeff
�m ¼∓ i

b
Fðarcsinðb=b0Þ;−1Þ þ const: ð71Þ

with another constant (b-independent) piece (which
includes the constant imaginary part of the F function,
ensuring that the resulting Xeff

�m is real).
For illustration purposes, we then select a wave packet

with σTm ¼ 4 and follow it around the bounce at Tm ¼ 0.
Note that on shell Tm ¼ −ðη − η0Þ, where η is conformal
time (shifted by η0 so that Tm ¼ 0 at the bounce), so the
conventional arrow of Tm is reversed with respect to that
of Tϕ or the thermodynamical arrow (see the discussion in
Ref. [6]). In Fig. 7 we plot the wave function away from the
bounce on either side, and at the bounce. As we see, well
away from the bounce, the envelope picks the right portion
of the ψ s as depicted in Fig. 6, þ or − depending on
whether T is positive or negative. Around the bounce
T ¼ 0, however, the þ and − waves clearly interfere (see
middle plot).
As in standard reflections [2], this interference could

have implications for the probability, in the form of
“ringing.” We illustrate this point with the traditional
jψ j2, which contains the interference cross term (but which,
we stress, is not a serious contender for a unitary definition
of probability, as we will see in the next section). If we were
to compute jψ j2 for the ψþ or ψ− in Fig. 6 we would obtain
a constant, in spite of the wave-function oscillations.
Likewise, if we dress ψþ or ψ− with an envelope,
these internal beatings will not appear in the separate
jψ j2. Close to the bounce, however, the interference
between the þ and − waves will appear as ringing in
jψ j2 (see Fig. 8) or any other measure displaying interfer-
ence. A similar construction could be made with the
packets locked on to the time Tϕ.
We close this section with two words of caution. First,

this ringing is probably as observable as the one associated
with the mesoscopic stationary waves described in Ref. [4].

Indeed the two are formally related. The Chern-Simons
wave function described in Ref. [4] translates (by Fourier
transform [25]) into a Hartle-Hawking stationary wave
function [26], which is nothing but the superposition of two
Vilenkin traveling waves [27] moving in opposite direc-
tions. The reflection studied here is precisely one such
superposition in a different context and in b space. The
scale of the effect, however, is the same.
Second, we need to make sure that the probability is

indeed associated with a function (like jψ j2) containing an
interference cross term, and work out the correct integration

FIG. 7. Snapshots of the wave function in the classically
allowed region b ≥ b0 for a wave packet with σTm ¼ 4 at times
Tm ¼ 8; 0;−8. Note that on shell Tm ¼ −ðη − η0Þ, where η and
η0 are the conformal time and conformal time at the bounce,
respectively. The envelope picks the right portion of the ψs,
þ or −, away from the bounce. Close to the bounce, however, the
þ and − waves interfere.
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measure to obtain a unitary theory. At least with one
definition of the inner product, in the semiclassical
approximation the ringing disappears, as we now show.

VI. INNER PRODUCT AND PROBABILITY
MEASURE

Usually, the inner product and probability measure are
inferred from the requirement of unitarity, i.e., the time
independence of the inner product, which in turn follows
from a conserved current (see, e.g., Refs. [22,27]). As
explained in Ref. [6], in monofluid situations this leaves us
with three equivalent definitions, which we first review.

A. Monofluids

For a single fluid with equation-of-state parameter w, the
first-order version of the Hamiltonian constraint leads to a
dynamical equation that can be written as

�
ðb2 þ kÞ 2

1þ3w
∂

∂b
þ ∂

∂T

�
ψ ≕

�
∂

∂X
þ ∂

∂T

�
ψ ¼ 0; ð72Þ

with T dependent on w and

X ¼
Z

db

ðb2 þ kÞ 2
1þ3w

: ð73Þ

From such an equation we can infer a current jX ¼
jT ¼ jψ j2 satisfying the conservation law

∂XjX þ ∂TjT ¼ 0: ð74Þ

The inner product can then be defined as

hψ1jψ2i ¼
Z

dXψ⋆
1ðbðXÞ; TÞψ2ðbðXÞ; TÞ ð75Þ

with unitarity enforced by current conservation:

∂

∂T
hψ1jψ2i ¼ −

Z
dX

∂

∂X
ðψ⋆

1ðb; TÞψ2ðb; TÞÞ ¼ 0: ð76Þ

For this argument to be valid without the introduction of
boundary conditions as in, e.g., Ref. [18], here and in the
following we must assume that XðbÞ takes values over the
whole real line and is monotonic. This is true for many
cases including the ones studied here, namely, radiation and
Λ with k ¼ 0 (and also in the case of dust with k ¼ 0,
studied in Ref. [15]). We have then established that a useful
integration measure for monofluids is

dμðbÞ ¼ dX ¼ db

jðb2 þ kÞ 2
1þ3wj : ð77Þ

The normalizability condition jhψ jψij ¼ 1 supports using
this measure to identify the probability. Given the particular
form of the general solution for monofluids,

ψðb; TÞ ¼
Z

dαffiffiffiffiffiffiffiffi
2πh

p AðαÞ exp
�
i
h
αðXðbÞ − TÞ

�
; ð78Þ

we can write Eq. (75) in the equivalent forms

hψ1jψ2i ¼
Z

dTψ⋆
1ðb; TÞψ2ðb; TÞ; ð79Þ

hψ1jψ2i ¼
Z

dαA⋆
1ðαÞA2ðαÞ: ð80Þ

B. Multifluids with no bounce

Unfortunately, not all of this construction generalizes to
the transition regions of multifluids, where an “X” variable
can be defined, but in general depends on α as well as b
(even putting aside that there may be multibranch expres-
sions if there is a bounce, a matter which we ignore at first).
We may propose that the inner product in a general

multifluid setting be defined by the generalization of
Eq. (80),

hψ1jψ2i ¼
Z

dαA⋆
1ðαÞA2ðαÞ; ð81Þ

which, by construction, is time independent, and so
unitarity is preserved. However, since ψ s in Eq. (37) is
not a plane wave in some XðbÞ, its expressions in terms of
integrals in b and T will not generally take the forms (75)
and (79). For example,

hψ1jψ2i ¼
Z

dTdT0ψ⋆
1ðb;TÞψ2ðb;T0ÞKðb;T − T0Þ;

FIG. 8. Plot of jψ j2 for the same situation as in Fig. 7 at
Tm ¼ 12, 8, 4, 0. (For the particular case of Tm—but not for a
generic time—this function is symmetric, so for clarity we have
refrained from plotting the equivalent Tm < 0).

STEFFEN GIELEN and JOÃO MAGUEIJO PHYS. REV. D 107, 023518 (2023)

023518-12



with

Kðb;T − T0Þ ¼
Z

dα
e−

i
hα·ðT−T0Þ

ð2πhÞ2Djψ sðb;αÞj2
;

so we recover Eq. (79) if and only if ψ s is a pure phase.5

Even if ψ s is a pure phase, we would not be able to recover
a form like Eq. (75) which would require ψ s to be a plane
wave in some X only dependent on b. In general, the kernel
Kðb − b0;TÞ for the X inner product will not be diagonal,
inducing an interesting new quantum effect.6

C. Semiclassical measure

With the proviso that this might erase important quan-
tum information, the discussion simplifies within the wave-
packet approximation (already used in Sec. V C). Then, the
calculation of the measure in terms of b is straightforward.
We call the measure thus inferred the semiclassical mea-
sure, since it fully erases quantum effects, as we will see.
Still ignoring the bounce (and thus the double-branch)

setup, we can regard minisuperspace for multifluids
as a dispersive medium with the single dispersion
relation [6]

α · T − Pðb;αÞ ¼ 0: ð82Þ

If the amplitude AðαÞ is factorizable and sufficiently
peaked around α0 we can Taylor expand P around α0 to
find

ψ ≈ e
i
hðPðb;α0Þ−α0·TÞ

Y
i

ψ iðb; TiÞ; ð83Þ

with [cf. Eq. (62)]

ψ iðb; TiÞ ¼
Z

dαiAðαiÞ
e−

i
hðαi−αi0ÞðTi−Xeff

i Þffiffiffiffiffiffiffiffi
2πh

p ; ð84Þ

Xeff
i ¼ ∂P

∂αi

����
αi0

: ð85Þ

Then, for the space of all of the functions with an AðαÞ
factorized as AðαÞ ¼ Q

D
i¼1AiðαiÞ and peaked around the

same α0, the definition (81) simplifies to

hψ1jψ2i ¼
YD
i¼1

Z
dαiA⋆

i1ðαiÞAi2ðαiÞ ð86Þ

and is equivalent to7

hψ1jψ2i ¼
YD
i¼1

Z
dXeff

i ψ⋆
i1ðb; TiÞψ i2ðb; TiÞ; ð87Þ

with dXeff
i ¼ ðdXeff

i =dbÞdb. Hence, in this approximation,
in the presence of multiple times the probability factorizes,

Pðb;TÞ ¼
YD
i¼1

Piðb; TiÞ; ð88Þ

and each factor is normalized with respect to the measure

dμiðbÞ ¼ dXeff
i ; ð89Þ

which we identify as the semiclassical probability measure.
This normalization implies that each Piðb; TiÞ can itself be
seen as a probability distribution for b at a particular value
of Ti, with unspecified values for the other times.

D. Case of a bounce

In our caseD ¼ 2, so the wave function is the product of
two independent factors: one form and one for ϕ (and their
respective clocks). The fact that there is a bounce in b adds
an extra complication. Indeed, each factor is the super-
position of three terms: the incident (−) wave, the reflected
(þ) wave, and the evanescent wave. A crucial novelty
is that Xeff

i− ∈ ð−∞; Xi0Þ and Xeff
iþ ∈ ðXi0;∞Þ, where

Xi0 ¼ Xi−ðb0Þ ¼ Xiþðb0Þ. For example, Xi0 ¼ 0 in the
example i ¼ m used in the previous section, cf. Eq. (70).
Therefore, when performing the manipulations leading to
Eq. (87), we find for the cross term

Z
dαie

iαih ðXeff
iþ−X

eff0
i− Þ ¼ 0; ð90Þ

except in the measure zero point b ¼ b0, killing the cross
term. The requirement that Xeff

i covers the real line is
satisfied, but with the joint domains of Xeff

iþ and Xeff
i− only,

and without cross terms. Therefore, for this inner product
and in this approximation,

hψ1jψ2i ¼
YD
i¼1

�Z
dXeff

iþψ
⋆
iþ1ðb; TiÞψ iþ2ðb; TiÞ

þ
Z

dXeff
i−ψ

⋆
i−1ðb; TiÞψ i−2ðb; TiÞ

�
; ð91Þ

5As we saw in Eq. (56), in the case of a bounce ψ s must be
chosen to be a superposition of the solutions ψ sþ and ψ s− in the
classically allowed region, so this condition is not met.

6This would in principle interact with “ringing” in a case where
incident and reflected waves interfere.

7We stress that the amplitude functions in this space are not
necessarily Gaussian and, if Gaussian, do not necessarily have to
have the same variance, but they must all peak around the same
α0 for the argument to follow through.
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and the interference between incident and reflected waves
disappears. Moreover, the norm of a state only depends on
the wave function in the classically allowed region. Calling
this measure semiclassical therefore seems appropriate.
In conclusion, for b ≥ b0 the probability in terms of b

has the form

Piðb;TiÞ ¼ jψ iþj2
���� dXeff

iþ
db

����þ jψ i−j2
���� dXeff

i−
db

����: ð92Þ

For our model with radiation and Λ and now assuming
k ¼ 0 for simplicity, we have [cf. Eq. (67)] for the measure
factors

dXeff
1�

db
¼ b2

2
� b4 − 2m=ϕ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 − b40

p ;
dXeff

2�
db

¼ ∓ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 − b40

p : ð93Þ

In this semiclassical approximation, one can define an
explicitly unitary notion of time evolution, focusing on
one of the times Ti and therefore on only one of the factors
in Eq. (91). From the form of the inner product it is
clear that a self-adjoint “momentum” operator is given by

−ih ∂

∂Xeff
i�
¼ −ihðdXeff

i�
db Þ−1 ∂

∂b, where in the first definition we

think of Xeff
i� as a single variable going over the whole real

line and in the second expression the sign depends on
whether the operator acts on ψ iþ or ψ i−.
Moreover, the waves ψ iþ are constructed to satisfy

ih
∂

∂Ti
ψ i� ¼ −ih

∂

∂Xeff
i�

ψ i� ð94Þ

[see Eq. (62) and the discussion below]. Hence, they satisfy
a time-evolution equation with a self-adjoint operator on
the right-hand side, which is all that is needed.

VII. TOWARD PHENOMENOLOGY

One may rightly worry that our semiclassical inner
product and other approximations have removed too much
of the quantum behavior of the full theory. For any state,
the probability of being in the classically forbidden region
would always be exactly zero. The phenomenon of “ring-
ing” is erased. We need to go beyond the semiclassical
measure and peaked wave-packet approximation to see
these phenomena. And yet, even within these approxima-
tions we can infer some interesting phenomenology, which
probably will survive the transition to a more realistic
model [15] involving pressureless matter (rather than
radiation) and Λ. We also refer to Ref. [15] for an
investigation of effects revealed within the semiclassical
approximation closer to the bounce than considered here.
In Fig. 9 we replot Fig. 8 using the semiclassical measure

(92) and Gaussian packets (65). Hence, for the wave-
function factor associated with m and Tm we have

P2ðb;TmÞ ¼
e
−
ðXeffþ2

−TmÞ2

2σ2
T2 þ e

−
ðXeff−2−TmÞ2

2σ2
T2ffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2T2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b4 − b40
p ð95Þ

without an interference term. At times well away from
the bounce, the measure factor goes like 1=b2, so for a
sufficiently peaked wave packet it factors out. However, for
times near the bounce the measure factor is significant.
It induces a soft divergence as b → b0,

P2ðb → b0;TmÞ ¼
exp

h
− T2

m
2σ2T2

i
ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2T2

p
b3=20

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b − b0

p ; ð96Þ

which becomes exponentially suppressed when jTmj≫σT2
(for example, in Fig. 9 this is hardly visible already for
Tm ¼ 16), but is otherwise significant. As we see in Fig. 9,
the measure factor therefore leads to a double-peaked
distribution, when the main peak (due to the Gaussian)
is present (in this picture at Tm ¼ 10, 12, 16). The measure
factor also shifts the main peak of the distribution towards
b0, since it now follows

Tm − Xeff
i� ¼∓ 2b3σ2Tm

b4 − b40
; ð97Þ

which is valid for times when one of the waves dominates
(incident or reflected), and the right-hand side is due fully
to the measure effect. We recall [6] that the classical
trajectory is reproduced by Tm ¼ Xeff

i�. At some critical
time close to the bounce, the “main” peak disappears
altogether (see Tm ¼ 8 in Fig. 9), with the distribution
retaining a peak only at b ¼ b0. This peak becomes sharper

FIG. 9. Probability with the semiclassical measure, for the same
situation as in Fig. 7, at the various times Tm ¼ 16, 12, 10, 8, 0.
We have explicitly verified that this probability density, unlike the
function plotted in Fig. 8, always integrates to unity.
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and sharper as jTmj → 0 (so the average value of b will
eventually be larger than the classical trajectory, although
the peak of the distribution will now be below the
classically expected value, and stuck at b0). A detailed
study of how all of these effects interact in a more concrete
setting is discussed elsewhere [15], but all of this points to
interesting phenomenology near the b bounce at b0. The
strength of the effects, and for how long they will be felt,
depends on σT for whichever clock is being used, which in
turn depends on the sharpness of its conjugate “constant.”
The sharper the progenitor constant, the larger the σT , and
so the stronger the effect around the b bounce.
How this fits in with other constraints pertaining to the

life of the Universe well away from the b bounce has to be
taken into consideration. See, e.g., Ref. [15] for a realistic
model for which an examination of these details is more
meaningful. We note that in real life it is the dominant
clock for pressureless matter (rather than for radiation)
that is relevant. This could be the same as the dominant
clock for radiation (for example, if both are derived from a
deconstantization of Newton’s G; see Refs. [12,28]),
or not.

VIII. CONCLUSIONS

In this paper we laid down the foundation for studying
the quantum effects of the bounce in b which our Universe
has recently experienced. We investigated a toy model
designed to be simple while testing the main issues of a
transition from deceleration to acceleration: a model with
only radiation and Λ. The realistic case of a mixture of
matter and Λ was studied in Ref. [15]. Nonetheless, we
were able to unveil both promising and disappointing
results.
Analogies with quantum reflection and ringing were

found, but these will require going beyond the semi-
classical approximation. Specifically, the inner product
issues presented in Sec. VI were tantalizing in that they
point to new quantum effects, namely, in the nonlocal
nature of probability, as highlighted in Sec. VI B.
However, as soon as the semiclassical approximation is
consistently applied to both solutions and the inner
product, even the usual interference of incident and
reflected waves is erased (see Sec. VI D).
Nonetheless, the semiclassical measure factor has a

strong effect on the probabilities near the bounce, as
was shown in Secs. VI D and VII. It introduces a double-
peaked distribution for part of the trajectory.8 This even-
tually becomes single peaked, with the average b shifting
significantly from the classical trajectory. The period over
which this could be potentially felt depends on the width of
the clock, σT . This is not a priori fixed, since the concept of
squeezing is not well defined in a “unimodular” setting, as

pointed out in Ref. [6]. Indeed, any deconstantized
constant can be seen as the constant momentum of an
abstract free particle moving with uniform “speed” in a
“dimension” which we identify with a time variable. It is
well known that, unlike for a harmonic oscillator or
electromagnetic radiation [29], coherent states for a free
a particle lack a natural scale with which to define
dimensionless quadratures and thus the squeezing param-
eter [30]. Hence, they share this problem with the free
particle.9 Thus, an uncertainty in T and b of the order of a
few percent, felt over a significant redshift range around
the bounce, is a distinct possibility. It is tempting to relate
these findings to the so-called “Hubble tension” (see, e.g.,
Ref. [32] and references therein), as was done in Ref. [15].
It should be stressed that due to Heisenberg’s uncer-

tainty principle involving constants and conjugate times,
if we define sharper clocks (so that the fluctuations
studied herein are not observable) it might be their
conjugate constants that bear observable uncertainties.
This would invalidate the approximations used in this
paper (namely, those leading to wave packets and the
semiclassical measure). Most crucially, b0, the point
of reflection, would not be sharply defined for such
states, with different partial waves reflecting at different
“walls” and then interfering. Such a quantum state for
our current Universe should not be so easily dismissed.
It might be an excellent example of cosmological
quantum reflection.
We close with two comments. In spite of its “toy” nature,

our paper does make a point of principle: quantum
cosmology could be here and now, rather than something
swept under the carpet of the “Planck epoch.” This is not
entirely new (see, e.g., Ref. [33]), but it would be good to
see such speculations get out of the toy-model doldrums.
Obviously, important questions of interpretation would
then emerge [34,35]. Finally, we note that something
similar to the bounce studied here happens in a reflection
in the reverse direction at the end of inflation. One may
wonder about the interconnection between any effects
studied here and re-/preheating.
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component of torsion appearing in first-order theories [31], or in
any other quantum treatment of theories with trivial classical
dynamics.
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