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Dynamical friction (DF) is the gravitational force experienced by a body moving in a medium as a
result of its density wake. In this work, we investigate the DF acting on circularly moving perturbers in
fuzzy dark matter (FDM) backgrounds. After condensation in the early Universe, FDM is described
by a single wave function satisfying a Schrödinger-Poisson equation. An equivalent, hydrodynamic
formulation can be obtained through the Madelung transform. Here, we consider both descriptions and
restrict our analysis to linear response theory. We take advantage of the hydrodynamic formulation to
derive a fully analytic solution to the DF in steady state and for a finite time perturbation (corresponding
to a perturber turned on at t ¼ 0). We compare our prediction to a numerical implementation of the wave
approach that includes a nonvanishing FDM velocity dispersion σ. Our solution is valid for both a single
and a binary perturber in circular motion as long as σ does not significantly exceed the orbital speed vcirc.
While the short-distance Coulomb divergence of the (supersonic) gaseous DF is no longer present, DF in
the FDM case exhibits an infrared divergence which stems from the (also) diffusive nature of the
Schrödinger equation. Our analysis of the finite time perturbation case reveals that the density wake
produced by perturbers diffuses through the FDM medium until it reaches its outer boundary. Once this
transient diffusive regime is over, both the radial and tangential DF oscillate about the steady-state
solution with a decaying envelope. Steady state is never achieved. We discuss two astrophysical
applications of our results: we revisit the DF decay timescales of the five Fornax globular clusters and
point out that the inspiral of compact binary may stall because the DF torque about the binary center of
mass sometimes flips sign to become a thrust rather than a drag.
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I. INTRODUCTION

The lack of evidence for weakly interactive massive
particles at current collider experiments strongly advocates
the exploration of alternative dark matter scenarios. In the
fuzzy dark matter (FDM) scenario [1–3], dark matter is in
the form of ultralight bosons that are an extrapolation of the
QCD axion [4–6] down to very small masses (see [7] for a
review). While QCD axions have masses in the range
10−10 ≲ma ≲ 10−3 eV, the FDM particles can have masses
as low as ma ≳ 10−21 eV without spoiling cosmic micro-
wave background and large-scale structure constraints
[8–10]. This lower limit is supplemented by observations
of a variety of astrophysical systems [11–13], which are
currently sensitive to axion masses as high as ma ≳
10−19–10−18 eV [14,15]. Higher axion masses can also
be probed with the superradiant instability of spinning
black holes [16].
Light bosons generically undergo Bose-Einstein con-

densation in the early Universe [17–19], after which their
spatial distribution is characterized by a (classical) wave

function satisfying a nonlinear Schrödinger equation.
This condensate behaves like nonrelativistic, cold dark
matter (CDM) on scales larger than the de Broglie
wavelength of the particles (e.g., [20]). Therefore, gravi-
tationally bound structures form hierarchically like in
CDM cosmologies, though virialized FDM halos grow
solitonic cores at their center [21–26]. These dense
central cores are surrounded by a large atmosphere of
fluctuating granules [27–29].
The motion of extended or compact objects in a FDM

background generates a dynamical friction (DF) as in any
other ambient medium [30,31]. The gravitational field of a
perturber moving in a discrete or continuous medium
induces a density fluctuation or wake. DF is the gravitational
force exerted on the perturber by the density wake. The
studies of [30,32] considered a perturber linearly moving
in a collisionless medium, whereas [31,33–42] focused
on a gaseous medium. Dynamical friction in FDM and
Bose-Einstein condensates has been explored only recently
in, e.g., [28,29,43–49]. In particular, [50] considered DF
in a Bose-Einstein condensate (BEC) with weak self-
interactions, while [45,51] numerically investigated the
DF induced by linearly and circularly moving point masses
taking into account the self-gravity of the FDM background.
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In this work, we will investigate the DF acting on point
masses in circular motion using the analytical approach
outlined in [41]. While the validity of this approach is
restricted to linear response theory, it provides a versatile
tool to explore DF across a wide parameter range. Here,
we apply this methodology to point mass perturbers
circularly moving in FDM backgrounds. Starting from
the hydrodynamic (Madelung) formulation of the Gross-
Pitaevskii-Poisson (GPP) system, we will derive new
analytical predictions which we compare to the DF
computed in the wave (Lippmann-Schwinger) approach.
We will also consider finite time perturbations (i.e., the
perturber is turned on at t ¼ 0) and explore the conver-
gence to steady state.
Our paper is organized as follows. Section II introduces

the key scales and dimensionless parameters that control
DF for the systems of interest. Section III summarizes the
application of linear response theory to a FDM background
and presents numerical solutions for density wakes. In
Sec. IV, we briefly recapitulate the approach of [41] before
we spell out the derivation of DF for circularly moving
perturbers in FDM backgrounds and perform a number of
numerical tests. In Sec. V, we discuss some astrophysical
implications of our results pertaining, in particular, to the
infall times of globular clusters and the stagnation of binary
inspirals. We conclude in Sec. VI. Technical details of the
derivation of our analytic results are summarized in a few
appendixes.

II. CHARACTERISTIC SCALES

Our aim is to calculate the linear theory DF acting on
perturbers moving on circular orbits in a FDM background.
The results depend on a few characteristic scales and key
dimensionless parameters, which encode the relevant
physical effects. We spell them out here. For convenience,
we also introduce the notation of [44] to facilitate a
comparison with their results.
The pointlike perturber of mass M moves on circular

orbits of radius r0 and frequency Ω. These physical
quantities will be used to define dimensionless variables
labeled with a tilde symbol such as a rescaled length and
wave number ðr̃; k̃Þ ¼ ðr=r0; r0kÞ and a rescaled time and
frequency coordinate ðt̃; ω̃Þ ¼ ðΩt;ω=ΩÞ.
Furthermore, the perturbers of massM evolve on circular

orbits in a background of FDM particles which they perturb
through gravity. Following [28,44], we can identify three
characteristic velocities: the velocity dispersion σ of the
FDM particles, the orbital velocity vcirc ¼ Ωr0 of the
perturber, and a “quantum” velocity vQ ≡GMma=ℏ, where
ma is the mass of the FDM particle. The latter can be
interpreted as the perturber’s escape velocity at a distance
equal to the gravitational Bohr radius ðℏ=maÞ2=GM. The
velocities σ, Ωr0 and vQ can be used to define three distinct
de Broglie wavelengths:

λσ ≡ ℏ
maσ

≃ 1.918 × 10−2 pcm−1
18

�
σ

100 km s−1

�
−1
; ð1Þ

ƛΩ ≡ ℏ
maΩr0

≃ 1.060 × 10−6 pcm−1
18

�
Ω
yr−1

�
−1
�
r0
pc

�
−1
; ð2Þ

ƛQ ≡ ℏ
mavQ

≃ 854.1 pcm−2
18

�
M
M⊙

�
−1
; ð3Þ

where m18 ≡ma=10−18 eV. ƛσ and ƛΩ are the scales
associated with the FDM velocity dispersion and the
FDM-perturber relative velocity, respectively. ƛQ can be
thought of as the gravitational Bohr radius of the perturber
[44]. Using the orbit size (2r0) as reference, these wave-
lengths imply three dimensionless ratios

Rσ ≡ 2r0
ƛσ

≃ 104.3m18

�
σ

100 km s−1

��
r0
pc

�
; ð4Þ

RΩ ≡ 2r0
ƛΩ

≃ 1.887 × 106m18

�
Ω
yr−1

��
r0
pc

�
2

; ð5Þ

RQ ≡ 2r0
ƛQ

≃ 2.342 × 10−3m2
18

�
M
M⊙

��
r0
pc

�
: ð6Þ

They can be interpreted as a characteristic angular momen-
tum (in unit of ℏ) associated with the FDM velocity
dispersion, the relative velocity Ωr0 and the perturber’s
gravity. The larger their value, the stronger the correspond-
ing effect. Their ratios lead to the Mach numbers
Mσ ¼ RΩ=Rσ and MQ ¼ RΩ=RQ introduced in [44]:

Mσ ≡ Ωr0
σ

≃ 1.809 × 104
�

σ

100 km s−1

�
−1
�

Ω
yr−1

��
r0
pc

�
; ð7Þ

MQ ≡Ωr0
vQ

≃ 8.056 × 108m−1
18

�
M
M⊙

�
−1
�

Ω
yr−1

��
r0
pc

�
: ð8Þ
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Our definition of MQ recovers that of [44] in the linear
motion case.
Finally, our treatment assumes linear response theory.

Therefore, it is valid so long as fractional density pertur-
bations are smaller than unity. For the FDM considered
here, the scale λNL below which nonlinearities are signifi-
cant is obtained upon equating the “escape” velocity vQ
with the circular velocity Ωr0:

λNL ≡ 2vQ
Ω

≃ 4.589 × 10−9 pcm18

�
M
M⊙

��
Ω
yr−1

�
−1
: ð9Þ

This scale naturally emerges from our calculations as the
distance (from the perturber) at which the wake overdensity
is of order unity (see Sec. III A 3). λNL ∝ ma because an
increase in axion mass weakens the FDM “quantum
pressure” that can oppose the gravitational pull.
Equation (9) should be contrasted to expression of
λNL ≡GM=c2s in a gaseous medium with sound speed
cs, which is the Bondi radius [52]. Our analysis will be
robust to nonlinear corrections provided that r0 ≫ λNL,
that is, MQ ≫ 1.
In order to gain insight into these parameters, let us

assume m18 ¼ 1 and a FDM root-mean-square (rms) veloc-
ity dispersion σ ¼ 100 km s−1 appropriate to a Milky-Way-
size halo. m18 ¼ 1 will be our fiducial axion mass. This
choice is motivated by recent astrophysical constraints (see
Sec. I). Furthermore, we shall consider the following two
configurations throughout this paper:

(i) A single perturber of mass 1M⊙ on a circular orbit of
radius r0 ¼ 10−3 pc around a supermassive black
hole of mass M• ¼ 106M⊙. The key parameters are

Rσ ≃ 0.104;

RΩ ≃ 3.95;

λNL ≃ 2.19 × 10−9 pc; ð10Þ

whereas RQ ∼ 10−6, MQ ∼ 2 × 106 and Mσ ∼ 40.
(ii) A compact, equal-mass binary of total mass 20M⊙

on a circular orbit of semimajor axis r0 ¼ 10−3 pc,
in which case

Rσ ≃ 0.104;

RΩ ≃ 1.77 × 10−2;

λNL ≃ 4.90 × 10−6 pc: ð11Þ

For this system, we have RQ ∼ 10−5, MQ ∼ 400

and Mσ ∼ 0.2.
Note that, while r0 ≫ λNL in both cases, a globular cluster of
mass 105M⊙ on a circular orbit of radius 1 Kpc in a dwarf

galaxy halo of mass 108M⊙ implies a nonlinearity scale of
λNL ∼ 20 Kpc much larger than the orbital radius.
Figure 1 displays the orbital radius r0 for which

λNL ¼ 0.1r0 as a function of the total binary mass M and
the axion mass m18. Contour levels indicate the r0 above
which higher-order contributions to the linear response
theory considered here roughly exceeds 10%. This character-
istic radius decreases with increasing axion mass because the
“smoothing” from quantum pressure becomes weaker.

III. PERTURBING THE GPP SYSTEM

Fuzzy dark matter is in the form of a BEC and is thus
described by a single wave function ψðr; tÞ. Neglecting any
possible self-interaction, the latter satisfies the (nonlinear)
Schrödinger equation

i∂tψ ¼ −
ℏ

2ma
Δrψ þma

ℏ
Φψ ; ð12Þ

where Φ is the gravitational potential and Δr ≡∇2
r is the

Laplacian. This notation makes clear that quantum mechani-
cal effects appear only through the nonzero Compton length
ℏ=ma of the particle (see, e.g., [28,53,54] for a discussion).
Equation (12) is supplemented by the Poisson equation

ΔrΦ ¼ 4πGρ; ρ≡ jψ j2; ð13Þ

to form the Gross-Pitaevskii-Poisson (GPP) system.
The presence of a pointlike perturber is included in the
gravitational potential Φ ¼ Φ0 þΦp, which is the sum of
the self-gravity Φ0 of the BEC and the potential Φp of the
perturber. Namely,

FIG. 1. The orbital radius r0 for which λNL ¼ 0.1r0 [i.e., α0
defined in Eq. (25) is α0 ¼ 0.1] is shown as a function of the total
binary mass M and the axion mass m18. The nonlinear scale λNL
is calculated assuming circular Keplerian motion. The contour
levels indicate the value of r0 above which higher-order con-
tributions to the linear response approach considered here
become larger than ≳10%.
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ΔrΦp ¼ 4πGMhðtÞδDðrpðtÞ − rÞ; ð14Þ

where hðtÞ ¼ 1 if the perturber is “turned on” and zero
otherwise and rpðtÞ ¼ ðr0 cosðΩtÞ; r0 sinðΩtÞ; 0ÞT is the
perturber’s position.
Two different routes can be taken to compute the linear

response of the GPP system to a gravitational perturber:
(i) a wave scattering approach based on the Lippmann-
Schwinger equation and (ii) a sound propagation approach
based on the Madelung form of GPP. Both are equivalent
(so long as fully destructive interferences are absent). The
former can easily incorporate interference effects present in
the atmosphere of FDM halos. However, it has a major
drawback: the analytic calculation of DF is more challeng-
ing than in the hydrodynamic treatment.

A. Madelung hydrodynamic approach

To obtain the hydrodynamic form of the GPP system,
we apply the Madelung transform [55]

ψ ¼ ffiffiffi
ρ

p
eiθ; ð15Þ

where the phase θ is the velocity potential of a pure
gradient flow

v ¼ ℏ
ma

∇rθ: ð16Þ

Substituting Eq. (15) into the Schrödinger equation and
extracting the real and imaginary part eventually leads to a
continuity and momentum conservation equations remi-
niscent of ideal (nonviscous) hydrodynamics:

∂tρþ∇rðρvÞ ¼ 0;

∂tv þ ðv ·∇rÞv ¼ −∇rðQþΦ0 þΦpÞ: ð17Þ

Here,

Q≡ −
ℏ2

2m2
a

Δr
ffiffiffi
ρ

pffiffiffi
ρ

p ð18Þ

is the “quantum pressure” arising from the delocalization of
the FDM particles.

1. Linear “wave” equation

On splitting the fluid variables into a (homogeneous)
mean and a perturbation, ρ → ρ̄þ δρ and v → v̄ þ δv, and
linearizing Eqs (17) in the velocity perturbation δv and the
fractional overdensity

αðr; tÞ≡ ρðr; tÞ
ρ̄

− 1; ð19Þ

we obtain

∂tα ¼ −ðv̄ · ∇rÞα −∇rδv;

∂tδv ¼ −ðv̄ · ∇rÞδv −∇r

�
Φ0 þΦp þ

ℏ2

4m2
a
Δrα

�
: ð20Þ

Moving to the fluid rest frame (v̄ ¼ 0) and ignoring its self-
gravity Φ0, these equations reduce to a wavelike equation
with a source term:

∂
2
t αþ ℏ2

4m2
a
Δ2

rα ¼ −ΔrΦp: ð21Þ

Green’s method can now be applied to compute the density
contrast α and, thereby, the DF in linear response theory.

2. Green’s function

Transforming to the dimensionless variables k̃, ω̃, the
retarded Green’s function for the wave equation (21) can be
expressed as the Fourier transform

Gretðr; τÞ ¼
1

Ωr30
lim
ϵ→0þ

Z
k̃

Z
ω̃

eiðk̃·r̃−ω̃ τ̃Þ

k̃4=R2
Ω − ðω̃þ iϵÞ2 : ð22Þ

This makes clear that Gret has dimensions of ½TL−3� as
it should. Our shorthand notation is

R
ω ¼ 1

2π

R
∞
−∞ dω andR

k ¼ 1
ð2πÞ3

R
2π
0 dφk

R
1
−1 d cosðϑkÞ

R∞
0 dkk2 in the spherical

coordinates used here [so that k ¼ ðk;φk; ϑkÞ]. The con-
dition ϵ > 0 (i.e., the poles lie in the lower half of the
imaginary ω plane) enforces causality.
This integral can be solved analytically upon applying

Cauchy’s integral formula to the ω integration before
performing the k integral. We find

Gretðr; tÞ ¼
HðtÞRΩ

4πr̃Ωr30
Im

�
erf

�
1þ i

2
ffiffiffi
2

p ffiffiffiffiffiffi
RΩ

p r̃ffiffĩ
t

p
��

; ð23Þ

where r̃ ¼ jr̃j, HðtÞ is the Heaviside function, ImðzÞ is the
imaginary part of z and erfðzÞ is the error function.
The Green’s function is displayed in Fig. 2 as a function

of r̃ and t̃ assuming RΩ ¼ 4. In addition to the overall 1=r̃
decrease of its amplitude, Gret oscillates around zero for
large values of r̃. The onset of oscillations follows the
relation r̃=

ffiffĩ
t

p
∼ const encoded in the functional dependence

Eq. (23). This is very different from the gaseous case, for
which the Green’s function Gretðr; tÞ ¼ 1

r δ
Dðt − r=csÞ is

nonvanishing on the line r ¼ cst solely and cannot be
negative. This forbids α < 0 and also leads to sharp
discontinuities in the recovered density contrast unlike
what is found in the FDM case (see for example Fig. 3). In
the latter case, the oscillations and the absence of sharp
features and high-density caustics can be seen as a
manifestation of the delocalized nature of FDM.
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3. Density contrast

Setting τ̃ ¼ t̃ − t̃0 and ũðt̃0Þ ¼ r̃ − r̃pðt̃0Þ to be the
dimensionless time difference and separation vector,
respectively, the retarded Green’s function (23) yields
the density contrast

αðr; tÞ ¼ α0

Z
∞

0

dτ̃
hðt̃ − τ̃Þ
jũðt̃ − τ̃Þj Im

�
erf

�
1þ i

2
ffiffiffi
2

p ffiffiffiffiffiffi
RΩ

p ũffiffiffĩ
τ

p
��

;

ð24Þ

where, again, hðt̃Þ ¼ 1 only when the perturber is turned
on. The normalization amplitude α0 is given by

α0 ≡ 2GM
ƛΩðΩr0Þ2

¼ 2

MQ
¼ λNL

r0
: ð25Þ

It is identical to the normalization obtained in the case of a
classical gas with negligible sound speed, for which the
Bondi radius also is GM=ðΩr0Þ2, except for 1=r0 being

replaced by 1=ƛΩ. Assuming Ω independent of r0, we have
α0 ∝ 1=r0. The value of r0 for which α0 ≡ 1 matches the
nonlinearity scale Eq. (9).
Our results readily extend to a binary with component

masses M1 ¼ q1M and M2 ¼ q2M, where M ¼ M1 þM2

is the total binary mass. The overdensity produced by the j
component (j ¼ 1, 2) can be expressed as

αjðr̃; t̃Þ ¼ qjα0

Z
∞

0

dτ̃
hðt̃ − τ̃Þ
jũjðt̃ − τ̃Þj

× Im

�
erf

�
1þ i

2
ffiffiffi
2

p ffiffiffiffiffiffi
RΩ

p ũjffiffiffĩ
τ

p
��

; ð26Þ

where ũ1ðt̃0Þ ¼ r̃ − q2r̃pðt̃0Þ and ũ2ðt̃0Þ ¼ r̃ − q1r̃pðt̃0 þ πÞ.
The total overdensity is the sum of these two contributions:

αðr̃; t̃Þ ¼ α1ðr̃; t̃Þ þ α2ðr̃; t̃Þ: ð27Þ

Results for both the single-perturber and binary case are
presented in Sec. III C.

B. Lippmann-Schwinger approach

The Schrödinger equation (12) can also be recast into
the form

ðÊ − ĤÞψ ¼ maΦψ ; ð28Þ

where Ê ¼ iℏ∂t and Ĥ ¼ − ℏ2
2ma

Δ2
r⃗ are operators and maΦ

can be treated as a (long-range) scattering potential.

1. Born approximation

The Lippmann-Schwinger approach reformulates the
solution ψ of this scattering problem as an integral
equation. In plain words, one writes

FIG. 2. The retarded Green’s function Eq. (23) assuming
RΩ ¼ 4. For convenience, Gretðr̃; Þ is normalized to RΩ

4πΩr3
0

and

both r̃ and t̃ axes are logarithmic. The white contours indicate the
locus for which Gret vanishes.

FIG. 3. Density wake in the single-perturber case computed after 1.25 rotations. The Born approximation to the Lippmann-Schwinger
equation (left panel) and the linearized hydrodynamic approach (middle panel) are used. The corresponding overdensities αLS and αM

are normalized by α0 (see text for details). The right panel shows the difference αLS − αM, which is at the few percent level. The
parameter values RΩ ¼ 4 and Rσ ¼ 0.1 adopted here match our single-perturber configuration.
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ψ ¼ ψ0 þ
1

Ê − Ĥ
maΦψ ; ð29Þ

where ψ0 is the homogeneous solution (free particle) to the
Schrödinger equation. The Born series offers a recursive
solution to this equation whereby, instead of searching for
the full solution directly, (finite) successive approximations
are produced iteratively starting from ψ0:

ψ1 ¼ ψ0 þ
1

Ê − Ĥ
maΦψ0;

ψ2 ¼ ψ1 þ
1

Ê − Ĥ
maΦψ1

..

.
:

Since we work in linear response theory throughout,
we limit ourselves to the Born approximation (first-order
solution)

ψ1 ¼ ψ0 þ
1

Ê − Ĥ
maΦψ0 ≡ ψ0 þ δψ : ð30Þ

We write the homogeneous solution as a superposition of
plane waves (e.g., [29])

ψ0ðr; tÞ ¼
Z
k0

φðk0Þeik0·r−iω0t ð31Þ

which fulfill the dispersion relation

ω0 ¼
ℏk20
2ma

; ð32Þ

while φðk0Þ is a distribution to be determined later. In the
first part of the following calculation, we will restrict
ourselves to a monochromatic wave of arbitrary wave
mode k0 and normalized such that jψ0j2 ¼ ρ for simplicity.
The distribution φðk0Þ will be reintroduced below.
Our next focus is the (retarded) Green’s function

ðÊ − ĤÞ−1 which can be expressed as

Gretðr; tÞ ¼ lim
ϵ→0þ

Z
k

Z
ω

e−iωtþik·r

ℏðωþ iϵÞ − ℏ2
2ma

k2
ð33Þ

upon a Fourier transformation. Finally, the last ingredient is
the external potential Φ of the perturber:

Φðr; tÞ ¼ −hðtÞ GM
jr − rpðtÞj

: ð34Þ

The self-gravity of the FDM component is, as before,
neglected (see, e.g., [45,51] for treatments with the FDM
self-gravity).

2. Density contrast

Substituting Gret and Φ into the Born approximation
yields

δψðr; tÞ

¼ ma

Z
dr03

Z
dt0Gretðr − r0; t − t0ÞΦðr0; t0Þψ0ðr0; t0Þ:

ð35Þ

This integral can be carried out with aid of the convolution
theorem (further details are presented in Appendix A). In
short, the Fourier transforms of Φ and ψ0 can be combined
with that of the Green’s function [Eq. (33)] and, after
performing all possible integrals, yields

δψðr̃; t̃Þ ¼ i
α0
2
ψ0ðr0r̃; t̃=ΩÞ

Z
∞

0

dτ̃ h̃ðt̃ − τ̃Þ

×
erf

�
1−i
2

ffiffiffiffiffi
RΩ
2τ̃

q
jũðt̃ − τ̃Þ − 2

RΩ
τ̃k̃0j

�
jũðt̃ − τ̃Þ − 2

RΩ
τ̃k̃0j

; ð36Þ

which is expressed in terms of the dimensionless variables.
Our calculation is thus far limited to a monochromatic

wave, but it can be readily extended to any superposition of
plane waves with arbitrary amplitudes φðk̃0Þ along the
lines of [28,29,44]. Incoherent superposition of FDM
granules or wave packets occurs, for instance, inside
virialized halos [23,24,27]. Interpreting the group velocity
of (almost monochromatic) wave packets v ¼ ℏk̃0=mr0 as
the velocity of FDM quasiparticles, we draw the amplitudes
φðk̃0Þ from a Maxwell-Boltzmann distribution

fðk̃0Þ ¼
�
2

π

�
3=2 ρ

R3
σ
e
−
2k̃2

0

R2σ ð37Þ

normalized such that

hjψ0j2i ¼
Z
k̃0

fðk̃0Þ ¼ ρ: ð38Þ

Assuming that the amplitudes φðk̃0Þ are statistically
independent, we require

hφðk̃0Þφ�ðk̃0
0Þi ¼ fðk̃0ÞδDðk̃0 − k̃0

0Þ: ð39Þ

The ensemble average is performed over realizations of
FDM backgrounds with prescribed velocity dispersion σ
and spatial average density ρ.
Introducing δψ 0 ¼ δψ=ψ0, the ensemble average density

contrast is now calculated as
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hαi ¼ 1

ρ
hjψ j2i − 1

¼ 1

ρ

Z
k̃0

fðk̃0Þð2Reðδψ 0Þ þ jδψ 0j2Þ: ð40Þ

Here again, the result for the single-perturber case easily
extends to a compact binary upon defining

δψ 0
jðr̃; t̃Þ ¼ iqj

α0
2

Z
∞

0

dτ̃ h̃ðt̃ − τ̃Þ

×
erf

�
1−i
2

ffiffiffiffiffi
RΩ
2τ̃

q
jũjðt̃ − τ̃Þ − 2

RΩ
τ̃k̃0j

�
jũjðt̃ − τ̃Þ − 2

RΩ
τ̃k̃0j

: ð41Þ

This allows us to express the average density wake
produced by a compact binary as

hαi¼1

ρ

Z
k̃0

fðk̃0Þð2Reðδψ 0
1Þþ2Reðδψ 0

2Þþjδψ 0
1j2þjδψ 0

2j2

þδψ 0
1δψ

0�
2 þδψ 0�

1 δψ
0
2Þ: ð42Þ

A Maxwell-Boltzmann distribution for fðk̃0Þ will be
assumed like in the single-perturber case.

C. Density wakes

1. Numerical implementation

The density wakes αðr; tÞ presented in this section are
produced by numerically solving the initial value problem
in the Madelung and Lippmann-Schwinger approach on a
regular, two-dimensional mesh of 64 × 64 grid points
covering the domain ½−4r0;þ4r0� × ½−4r0;þ4r0�.
In the hydrodynamic approach, we use an initially

homogeneous density distribution which we evolve accord-
ing to Eq. (24) (single perturber) and to Eqs. (26) and (27)
(compact binary). In the wave approach, we solve Eq. (40)
(single perturber) and Eq. (42) (compact binary) after the
substitution of Eq. (36).
These numerical results thus correspond to the “finite

time perturbation” case and, as we will see below, never
achieve steady state. We discuss the convergence to steady
state further in Secs. IV B 2 and IV D when we explore DF.
For the latter, sampling along the z axis is also needed. We
consider a 643 cubical grid of size 8r0 although, in practice,
we take advantage of the planar symmetry and add 32
evenly distributed points in the interval ½−4r0; 0� along the z
direction. The comparison between DF computed from
these numerical results and from our analytical expressions
can be found in Sec. IV D.
All our simulations have absorbing boundary conditions

to prevent the artificial reflection of the density wake.

2. Results

Figure 3 displays the density wake created by our fiducial
single perturber after it is turned on at t̃ ¼ 0. Results are
shown both in the Lippmann-Schwinger approach (αLS, left
panel) and in the Madelung approach (αM, middle panel).
The density contrast αðr; tÞ is plotted in the orbital plane
after the completion of 1.25 rotations. The white symbol
indicates the perturber’s position on its circular orbit. The
wake produced by the perturber’s gravitational disturbance is
a deformed ellipsoid in the vicinity of the circular orbit. The
inner overdense wake is surrounded by an underdense,
outwardly spiraling whose tip slightly lags behind the
perturber. The main differences with the wake pattern in
the gaseous case (see for instance [38,41,56]) are the
existence of underdense regions together with the absence
of sharp discontinuities and caustics (the latter arise in the
gaseous case when the motion is supersonic). In the FDM
case, small-scale density features are smoothed out by the
“quantum pressure” Eq. (18), reflecting the delocalized
nature of the FDM particles.
Likewise, the density wake for the compact binary case

shown in Fig. 4 is smoothly distributed around the binary
center of mass, with a slight elliptic asymmetry aligned with
the position of the bodies. The outer, underdense spiraling
region visible in the single-perturber case is not present for
the equal-mass binary considered here because the two
bodies produce a spiral of equal size in a symmetric fashion,
which adds up to a circular distribution. Increasing RΩ away
from the fiducial value RΩ ¼ 0.0177 lessens the smoothing
due to ƛΩ and produces (weak) deformations of the wake’s
circular shape, albeit nothing comparable to the spirals seen
in the single-perturber case. As expected, unequal-mass
binaries produce more asymmetric distributions.
The prefactor α0 ¼ λNL=r0 controls the convergence of

the perturbative solution both in the Madelung and in the
Lippmann-Schwinger approach. As a result, the contribu-
tion proportional to jδψ 0j2 in Eq. (40) formally is second
order. For our choice of fiducial parameters that ensures
α0 ≪ 1, it is negligible relative to the first-order term.
Therefore, we have discarded these second-order terms in
the calculation of αLS.
The right panel of Figs. 3 and 4 shows the difference

between the overdensity αLS and αM computed in the wave
and hydrodynamic approach, respectively. Our Madelung
prediction αM is equal to 2Reðδψ 0Þ evaluated at k0 ¼ 0.
Therefore, it misses the contribution 2

RΩ
k̃0τ̃ ¼ ℏ

ma
k0τ to the

separation vector in Eq. (36). This additional term is the
distance traveled by a FDM quasiparticle with group
velocity ℏ

ma
k0 in the time interval τ. The Maxwell-

Boltzmann distribution implies that the relevant wave
numbers satisfy k̃0 ≲ Rσ=2. This defines a characteristic
scale ðRσ=RΩÞτ̃ ¼ τ̃=Mσ over which the FDM quasipar-
ticles are redistributed and the wake density contrast is
smoothed.
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The impact of the FDM velocity dispersion is small in
the single-perturber case because Mσ ≫ 1 for our fiducial
choice of parameters. The density wake αLS computed with
a Maxwell-Boltzmann distribution has an amplitude lower
by about 0.2% in overdense regions relative to αM and
larger by at most 3% in underdense regions. By contrast,
the difference between αLS and αM is markedly stronger in
the binary case since we now have Mσ ≪ 1. In the center
where the overdensity is highest, the FDM velocity
dispersion lowers the wake amplitude by roughly 38%.
This suppression reaches up to 42% in the outer region of
lower (but still positive) overdensity.

IV. DYNAMICAL FRICTION

In this section, we present details of the calculation of
the dynamical friction. Our methodology and key results
are as follows.

(i) We express the complex friction coefficient I as a
multiple expansion [Eq. (45)], which sums over a
scattering amplitude S [Eq. (46)]. The real and
imaginary parts of I encode the radial and tangential
parts of the DF force.

(ii) The multipole expansion converges quickly and can
be truncated at some lmax ≲ 100 (see Fig. 6) for a
wide range of parameter choices.

(iii) For a single perturber, the friction coefficient I for
FDM background does not show the features seen
in the gaseous case (see Fig. 5). This is due to the
FDM quantum pressure, which smoothes the trailing
density wake.

(iv) The (also) diffusive nature of the Schrödinger
equation implies that the DF force never reaches
steady state, although the finite time perturbation
result oscillates around the steady-state solution
as soon as the density perturbation has diffused
throughout the system (see Figs. 8 and 10).

(v) For a binary perturber, there exist configurations for
which the tangential and radial parts of the force can
be a thrust and a lift rather than a drag and a weight
(see Fig. 9).

The reader interested mainly in the astrophysical implica-
tions can skip this section and jump to Sec. V.
Our calculation of DF follows the approach outlined

in [41] which we shall briefly summarize to begin with.

FIG. 5. The real and imaginary parts of the function IðRΩÞ
(solid curves) in FDM backgrounds calculated from Eq. (45) with
(48)–(50) with k̃min ¼ 0.3. For comparison, we also show the
corresponding gaseous IðMgÞ (dashed curves) computed in [41].
Although the quantity RΩ plays a role similar to the gas Mach
number Mg, we show IðRΩÞ as a function of

ffiffiffiffiffiffi
RΩ

p
for

convenience. Furthermore, we have rescaled the real and imagi-
nary parts of I such that they all asymptote to a constant in the
limit of large RΩ or Mg. For the imaginary part of IðRΩÞ, this
rescaling leads to an artificial divergence at RΩ ¼ 0. The multi-
poles have been summed up to lmax ¼ 100 in both the gas and
FDM cases.

FIG. 4. Similar to Fig. 3 but for our fiducial compact binary with mass ratios q1 ¼ q2 ¼ 0.5, RΩ ¼ 0.0177 and Rσ ¼ 0.1. The
predicted wavelike and fluidlike overdensities αLS and αM are normalized to α0 (see text for details). The right panel shows the difference
αLS − αM. The current position of the binary components are indicated by white filled symbols, while the binary orbit is shown as a thin
white circle.
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A. Multipole expansion

The dynamical friction can be expressed as

FDFðtÞ ¼ GMρ

Z
d3u

u
u3

αðu; tÞ; ð43Þ

where u is the separation vector between the current
position rp ¼ rpðtÞ of the perturber and the wave front
produced by it from an earlier position r0p ¼ rpðt0Þ at the
retarded time t0 < t. For the FDM medium considered
here, the overdensity αðu; tÞ is computed either in the
Madelung or in the Lippmann-Schwinger approach as
discussed above.
The hydrodynamic formulation has the advantage that,

in linear response theory, α is given by the convolution
Eq. (23) of the source with the Green’s function like in the
gaseous case explored in [41]. On expanding part of the
complex exponential eik̃·r̃ [here, r̃ ¼ 1

r0
ðrp − r0p þ u)] in

plane waves, decomposing the force into a helicity basis
and performing the integral over the orientation of k̃, the
DF can be reexpressed as

FDFðtÞ ¼ −4π
�
GM
Ωr0

�
2

ρðReðIÞr̂ðtÞ þ ImðIÞφ̂ðtÞÞ; ð44Þ

where r̂ðtÞ and φ̂ðtÞ are unit vectors in the radial and
tangential direction, respectively. ReðIÞ and ImðIÞ are the
real and imaginary parts, respectively, of a dimensionless
function I ¼ IðRΩÞ which, on exploiting symmetry rela-
tions of Wigner 3j symbols, can be recast into the form

I ¼
X∞
l¼1

Xl−2
m¼−l

ð−1Þm ðl −mÞ!
ðl −m − 2Þ!

×
Sl;l−1ðm;RΩ; tÞ − S�l;l−1ðmþ 1; RΩ; tÞ
Γð1−l−m

2
ÞΓð1þ l−m

2
ÞΓð3−lþm

2
ÞΓð1þ lþm

2
Þ : ð45Þ

Here, ΓðzÞ is the usual Gamma function while the “scatter-
ing amplitude”

Sl;l−1ðm;RΩ; tÞ ¼ lim
ϵ→0þ

Z
ω̃

Z
∞

−∞
dτ̃hðt̃ − τ̃Þeiðm−ω̃Þτ̃

×
Z

∞

0

dk̃
k̃jlðk̃Þjl−1ðk̃Þ

k̃4=R2
Ω − ðω̃þ iϵÞ2 ð46Þ

involves products of radial standing waves (spherical
Bessel functions) jlðzÞ. The sign of ReðIÞ and ImðIÞ
determines whether the radial DF force is a weight
[ReðIÞ > 0] or a lift [ReðIÞ < 0] and the tangential DF
force a drag [ImðIÞ > 0] or a thrust [ImðIÞ < 0].
A comparison with [28,44] shows that their friction

coefficient C is equivalent to our ImðIÞ. In the circular case,
I is a “complex friction” which encodes also the lift or
weight in the radial direction.

B. Single perturber

1. Steady state

For a perturber in steady state (labeled with “Sty”),
hðtÞ ¼ 1 and the integral of τ in Eq. (46) returns
2πδDðmΩ − ωÞ independently of t. This can be used to
simplify the scattering amplitude further to

SStyl;l−1ðm;RΩÞ ¼ lim
ϵ→0þ

Z
∞

0

dk̃ k̃
jlðk̃Þjl−1ðk̃Þ

k̃4=R2
Ω − ðmþ iϵÞ2 : ð47Þ

This integral can be solved upon expressing the spherical

Bessel functions in terms of the Hankel functions hð1Þl ðzÞ
and hð2Þl ðzÞ and applying Cauchy’s integral formula. Details
of the calculation can be found in Appendix B. The result
can be compressed further with the aid of several identities
of spherical Bessel functions and eventually recast into

SStyl;l−1ðm;RΩÞ ¼
iπRΩ

4m

�
jlð

ffiffiffiffiffiffiffiffiffiffi
mRΩ

p
Þhð1Þl−1ð

ffiffiffiffiffiffiffiffiffiffi
mRΩ

p
Þ

þ iffiffiffiffiffiffiffiffiffiffi
mRΩ

p Ilþ1=2ð
ffiffiffiffiffiffiffiffiffiffi
mRΩ

p
ÞKl−1=2ð

ffiffiffiffiffiffiffiffiffiffi
mRΩ

p
Þ
�
:

ð48Þ

This expression is strictly valid for azimuthal numbers
m ≠ 0 only. Whenm ¼ 0, the integrand of Eq. (47) exhibits
a single pole at k ¼ 0 and a very different behavior
depending on the value of l. When l ≠ 1, the scattering
amplitude SStyl;l−1ð0; RΩÞ is finite and equal to

SStyl;l−1ð0; RΩÞ ¼
3πR2

Ω
18 − 80l2 þ 32l4

: ð49Þ

When l ¼ 1, the purely real amplitude SSty1;0ð0; RΩÞ has an
infrared divergence which we regularize by introducing a
lower cutoff k̃min:

SSty1;0ð0; RΩÞ ¼ R2
Ω

Z
∞

k̃min

dk̃

k̃3
j1ðk̃Þj0ðk̃Þ

¼ R2
Ω

40k̃5min

½4 − 4πk̃5min þ ð4k̃4min − 2k̃2min − 4Þ

× cosð2k̃minÞ þ k̃minð2k̃2min − 3Þ sinð2k̃minÞ
þ 8k̃5minSið2k̃minÞ�: ð50Þ

Here, SiðzÞ is the sine integral. The previous expressions
are all that we need in order to compute the complex
friction IðRΩÞ in the steady-state regime.
In Fig. 5, we compare the steady-state FDM IðRΩÞ

predicted by the Madelung approach with the correspond-
ing gaseous solution IðMgÞ given in [41]. The FDM
parameter RΩ plays a role similar to the gas Mach number
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Mg, at least in the way it appears in the scattering
amplitude [compare the k integrand of Eq. (47) with that
of Eq. (17) in [41]]. Nevertheless, we have plotted IðRΩÞ as
a function of

ffiffiffiffiffiffi
RΩ

p
so that ImðIðRΩÞÞ approximately

reaches its maximum where ImðIðMgÞÞ does. In the
gaseous case, we normalize the real part ReðIðMgÞÞ such
as to emphasize that it asymptotes to Mg

2 in the limit of
large Mach numbers. We use the same normalization for
ImðIðMgÞÞ. In the FDM case, ImðIðRΩÞÞ is fully deter-

mined by SStyl;l−1ðm;RΩÞwithm ≠ 0, which depends linearly

on RΩ. However, ReðIðRΩÞÞ also depends on SStyl;l−1ð0; RΩÞ,
which is quadratic in RΩ. This leads to a linear dependence
at small RΩ and a quadratic one at large RΩ. Showing
ReðIðRΩÞÞ=R2

Ω as done in the figure filters out the large-RΩ
asymptotic and leads to the artificial divergence seen at
small RΩ.
The quantity ImðIðRΩÞÞ reaches a maximum for

RΩ ∼Oð1Þ around which the synchronization between
the perturber and its wake is most efficient. In the gaseous
case, this occurs at Mg ¼ 1. However, IðRΩÞ exhibits less
features relative to IðMgÞ owing to the quantum pressure.
Another important difference can be spotted upon compar-
ing our Fig. 6 to Fig. 3 of Ref. [41]. Both of them display
the dependence of the imaginary part ImðIÞ (for a few
different values of RΩ and Mg, respectively) on the upper
limit lmax of the sum defining I in Eq. (45). While the gas
case exhibits a logarithmic divergence for supersonic Mach
number, there is no such behavior for FDM. The k4 scaling
of the (Fourier space) Greens’ function ensures the
convergence of the multipole expansion regardless of the
value of RΩ. In Fig. 6, the series convergence is achieved
for lmax ≳ 100. We also checked the real part assuming

k̃min ¼ 0.3 and found even faster convergence. For RΩ ¼
100 for instance, ReðIÞ has already converged by lmax ≈ 20.
The different behavior of the gaseous IðMgÞ and FDM

IðRΩÞ is related to the features seen in Figs. 2 and 3 and
discussed at the end of Sec. III A. The quantum pressure
prevents the FDM density wake to form jump disconti-
nuities whereas, in a gaseous medium, there are sharp
discontinuities at which the density increases toward the
perturber. They lead to the short-distance (ultraviolet)
divergence of ImðIðMgÞÞ for pointlike perturbers
(see [38,41]).

2. Finite time perturbation

The finite time perturbation (labeled with “Ftp”) corre-
sponds to a perturber “turned on” at time t ¼ 0 and can
be straightforwardly explored with numerical simulations.
Details of the derivation are given in Appendix C. In short,
hðt − τÞ ¼ 0 for τ > t such that the integral over τ̃ becomes

Z
t̃

−∞
dτ̃eiðm−ω̃Þτ̃ ¼ lim

η→0þ

eiðm−ω̃Þt̃

iðm − ω̃ − iηÞ : ð51Þ

The resulting scattering amplitude can be written as
SFtpl;l−1ðm;RΩ; tÞ ¼ SStyl;l−1ðm;RΩÞ þ STral;l−1ðm;RΩ; tÞ, where
the transient amplitude (labeled with “Tra”) is obtained
upon taking the limit ϵ → 0þ of

STral;l−1ðm;RΩ; tÞ ¼ −
RΩ

2
eimt̃

Z
∞

0

dk̃

k̃
jlðk̃Þjl−1ðk̃Þ

×

�
e−iðk̃

2=RΩ−iϵÞt̃

k̃2=RΩ −m− iϵ
þ eiðk̃

2=RΩþiϵÞt̃

k2=RΩ þmþ iϵ

�
:

ð52Þ

Notice that we have STral;l−1ðm;RΩ; 0Þ ¼ −SStyl;l−1ðm;RΩÞ at
t ¼ 0, which ensures that the DF initially vanishes.
For ðl; mÞ ¼ ð1; 0Þ, Eq. (52) is purely real. Like the

corresponding steady-state SSty1;0 , the transient STra1;0 exhibits
an infrared divergence which can be again remedied by
introducing a lower cutoff k̃min in the k̃ integration.
However, we have not been able to find an analytic
expression for t̃ > 0.
For ðl; mÞ ≠ ð1; 0Þ, we can apply Cauchy’s integral

formula and rewrite Eq. (52) as

STral;l−1 ¼ −
RΩ

2
eimt̃

Z
∞

0

dχ̃
χ̃
½jlðð1þ iÞχ̃Þjl−1ðð1þ iÞχ̃Þ

− jlðð1 − iÞχ̃Þjl−1ðð1 − iÞχ̃Þ� e−2t̃χ̃
2=RΩ

2iχ̃2=RΩ þmþ iϵ
;

ð53Þ

FIG. 6. The imaginary part ImðIÞ of the complex friction IðRΩÞ
is shown for different values or RΩ as a function of the upper limit
lmax of the (truncated) multipole expansion Eq. (45). Unlike the
gaseous case, ImðIÞ converges to any desired accuracy for finite
values of lmax.
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which makes clear that the transient contributions STral;l−1
decay so long as ðl; mÞ ≠ ð1; 0Þ.
Numerical evaluations of STral;l−1 are shown in Fig. 7 as a

function of the dimensionless time t̃ for a fixed azimuthal
number m ¼ 1 but different choices of multipole l. A value
of RΩ ¼ 4 is assumed. The transient amplitudes shown here
are normalized to their steady-state counterpart SStyl;l−1 to
facilitate the comparison. Their envelope decays with
time according to (the empirical law) STral;l−1 ∝ t−lþ1=2.
Consequently, with the notable exception of
STra1;0ð0; RΩ; tÞ, essentially all the transient contributions
drop below the steady-state result after a rotation at
most, regardless of the value of l. Consequently,
SFtpl;l−1 ≈ SStyl;l−1 at better than a percent level after a few
rotations solely.
Nonetheless, neither the radial nor the tangential com-

ponent of the finite perturbation time DF ever reaches the
steady-state regime. In the radial direction, the convergence
depends on ReðIÞ and, therefore, is slowed down by the
infrared divergence present for ðl; mÞ ¼ ð1; 0Þ. This is
emphasized in Fig. 8, in which we plot the purely real
SFtp1;0ð0; RΩ; tÞ (in unit of R2

Ω) as a function of the number of
rotations t̃=2π (in unit of RΩ). All the curves assume the
same RΩ ¼ 4 but a different k̃min as labeled on the figure.
The empty symbols show results for RΩ ¼ 1 in the
particular case k̃min ¼ 0.3, while the horizontal lines
indicate the steady-state solution. For a cutoff wave
number as small as k̃min ¼ 0.1, SFtp1;0ð0; RΩ; tÞ does not
(even) reach the magnitude of the steady-state solution after

20 rotations. For larger k̃min ≳ 0.3, however, convergence to
steady state occurs faster.
The physical origin of this behavior stems from the wave

and diffusive nature of the free Schrödinger equation,
in which β ¼ ℏ=2ma can also be regarded as a diffusion
coefficient [see [57,58]]. Diffusion (of the condensate
wave function) in three-dimensional space then implies
hr2i ¼ 6βt. Therefore, the timescale corresponding to a
diffusion length ∼π=kkmin is tdiff ¼ ðπ=kminÞ2=6β or,
equivalently,

t̃diff
2π

¼
�
π

12

�
RΩ

k̃2min

: ð54Þ

In Fig. 8, this characteristic time is indicated as vertical
arrows. Equation (54) reasonably captures the RΩ and k̃min
dependence of the timescale marking the transition from a
(radially) diffusive regime to damped oscillations around
the steady-state result.

C. Compact circular binary

The same techniques can be used to derive analytic
results in the compact binary case. Let M denote the total
mass of the binary system and q1M and q2M (with
q1 þ q2 ¼ 1) the mass of the individual components. To
account for their different distance to the binary center of

FIG. 7. The imaginary part of the transient amplitude STral;l−1
normalized to its steady-state counterpart as a function of the
(dimensionless) time t̃. Results are shown for a few choices of
multipole l. The azimuthal number is fixed to m ¼ 1 and a
parameter value RΩ ¼ 4 is assumed. All the transient amplitudes
shown here fall below the steady-state result after completing one
rotation. Their envelope approximately decays as STral;l−1 ∝ t−lþ1=2.

FIG. 8. The finite time perturbation amplitude SFtpl;l−1 in the
special case l ¼ 1 and m ¼ 0. Results are shown as a function of
the number of rotations t̃=2π (in unit of RΩ) for different lower
cutoff wave numbers k̃min as indicated on the figure. All the
curves assume RΩ ¼ 4, while the empty symbols represent the
particular case ðk̃min; RΩÞ ¼ ð0.3; 1Þ. The (also) diffusive nature
of the Schrödinger equation leads to the square root behavior
SFtp1;0 ∝

ffiffĩ
t

p
at early time. Arrows mark the estimated timescale at

which the initial (t ¼ 0) perturbation has diffused throughout the
medium (see text). The horizontal lines indicate the steady-state
limit which the finite time perturbation result converges to.
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mass, we must also change the argument of the spherical Bessel function in Eq. (46). As a result, the denominator of
Eq. (45) is replaced by

q2a½Sa;al;l−1ðm;RΩ; tÞ − Sa;a�l;l−1ðmþ 1; RΩ; tÞ� þ ð−1Þmqaqb½Sa;bl;l−1ðm;RΩ; tÞ þ Sa;b�l;l−1ðmþ 1; RΩ; tÞ�:

The steady-state solution reads

Sa;bl;l−1ðm;RΩÞ ¼
πRΩ

4

8>>>>>>>>><
>>>>>>>>>:

i
m

h
hð1Þl ðqa

ffiffiffiffiffiffiffiffiffiffi
mRΩ

p Þjl−1ðqb
ffiffiffiffiffiffiffiffiffiffi
mRΩ

p Þ − i Klþ1=2ðqa
ffiffiffiffiffiffiffi
mRΩ

p ÞIl−1=2ðqb
ffiffiffiffiffiffiffi
mRΩ

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qaqbmRΩ

p þ ql−1b

qlþ1
a

2i
jmjRΩ

i
ðqa > qbÞ ∧ m ≠ 0;

RΩðqbqaÞl−1
4ð3þ4lð2þlÞÞq4aþ2ð9−4l2Þq2aq2bþð3þ4lðl−2ÞÞq4b

ð9−40l2þ16l4Þq2a ðqa > qbÞ ∧ m ¼ 0;

i
m

h
jlðqa

ffiffiffiffiffiffiffiffiffiffi
mRΩ

p Þhð1Þl−1ðqb
ffiffiffiffiffiffiffiffiffiffi
mRΩ

p Þ þ i Ilþ1=2ðqa
ffiffiffiffiffiffiffi
mRΩ

p ÞKl−1=2ðqb
ffiffiffiffiffiffiffi
mRΩ

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qaqbmRΩ

p
i

ðqa < qbÞ ∧ m ≠ 0;

−RΩðqaqbÞl
ð2l−3Þq2a−ð2lþ3Þq2b

9−40l2þ16l4 ðqa < qbÞ ∧ m ¼ 0

ð55Þ

with ðqa; qbÞ equal to ðq2; q1Þ [respectively, ðq1; q2Þ] if the
DF acting on object 1 (respectively, object 2) is desired.
Like in the single-perturber case, this expression is not
valid for l ¼ 1 and m ¼ 0 and a lower cutoff k̃min must be
introduced to regularize the infrared divergence. An ana-
lytic solution can still be found in this case, but it is lengthy
and, therefore, presented in Appendix D solely.
The resulting function IðRΩÞ is shown in Fig. 9 assuming

k̃min ¼ 0.3 for illustration. The top and bottom panels
display contour levels of the real and imaginary parts
ReðIÞ and ImðIÞ as a function of RΩ and the mass
0 < q1 < 1 of the first binary component. There are
combinations of RΩ and q1 for which the radial and
tangential components of DF change sign. When q1 > 0.5,
the radial DF force is mostly directed inward [ReðIÞ > 0]
while the tangential component points forward along the
direction of motion [ImðIÞ < 0] for 0.5 < RΩ < 20. When
q1 < 0.5, DF pushes the point mass outward [ReðIÞ < 0]
for RΩ < 0.2 while it generally slows it down in the
tangential direction [ImðIÞ > 0].

D. Comparison between Lippmann-Schwinger
and Madelung DF

As discussed above, both treatments have their advan-
tages. While the Lippmann-Schwinger approach can easily
incorporate wave superposition and interference effects, the
Madelung approach allows for the fully analytical solution
to DF presented in Sec. IV B 1 owing to its convenient
hydrodynamic form. More specifically, wave interference
in the atmosphere of virialized halos creates a haze of
fluctuating granules or wave packets with a distribution of
velocities [23,24,27]. Such an interference pattern can be
easily accounted for in the Lippmann-Schwinger formu-
lation. However, this inclusion is less straightforward in the
Madelung approach, and our implementation of the latter

assumes zero velocity dispersion. Therefore, it is instructive
to compare the DF obtained in both implementations.
To compute DF in the Lippmann-Schwinger approach,

we calculate the overdensity α directly from Eqs. (36)
and (40) over the simulation box before integrating Eq. (43)
numerically. Namely, on rewriting Eq. (43) in terms of
dimensionless variables, we arrive at

FDFðt̃Þ ¼
�
GM
Ωr0

�
2

ρRΩ

Z
d3ũ

�
ũ
ũ3

�
αðũ; t̃Þ
α0

; ð56Þ

where α0 is the characteristic amplitude of the overdensity
wake, Eq. (25). The field αðũ; t̃Þ is then computed on a
regular cubical of size 8r0 with 643 mesh points (see
Sec. III C 1 for the details of the numerical implementa-
tion). Splines are used to interpolate this data and numeri-
cally evaluate Eq. (56).
The resulting DF is shown in the top panel of Fig. 10 as

the cross symbols for our fiducial single perturber (i.e.,
RΩ ¼ 4 and Rσ ¼ 0.1) turned on at t ¼ 0. It is compared to
the steady-state solution Eqs. (48)–(50) obtained from the
Madelung approach (dashed curves) and to the finite
perturbation time result Eq. (53) (solid curves) assuming
a lower cutoff k̃min ¼ 1=8. This wave number value
corresponds to a scale equal to the side length 8r0 of
the cubical box. This choice is motivated by the absence of
power on scales larger than the simulation box. The bottom
panel of Fig. 10 displays the fractional difference between
the numerical prediction of the Lippmann-Schwinger
approach and the analytic prediction of the Madelung
formulation.
As expected, the radial DF strongly depends on the

behavior of the purely real amplitude SFtp1;0 . At early times,

SFtp1;0 is not very sensitive to the exact choice of k̃min ∼ 0.1
(see Fig. 8). Notwithstanding, a low cutoff wave number
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implies that the radial DF grows through diffusion for a
longer time before oscillating around the steady-state
solution. For k̃min ¼ 1=8, the steady-state radial DF is
≈ − 76.6 in the scales of the figure and, therefore, does

not appear on it. As a result, the radial, steady-state solution
is a poor approximation to the finite time perturbation result
so long as t̃≲Oð10–100Þ rotations. By contrast, the
tangential part rapidly initiates damped oscillation around

FIG. 9. Contour levels of ReðIÞ=R2
Ω (top panel) and ImðIÞ=RΩ in the plane ðRΩ; q1Þ, where q1 is the (normalized) mass of the first

binary component. A value of k̃min ¼ 0.3 is assumed for the computation of IðRΩÞ. The green contours indicate the zero level. The
increase in the magnitude of ReðIÞ toward smaller RΩ is artificially caused by the normalization ReðIÞ=R2

Ω adopted here. ReðIÞ linearly
depends on RΩ for RΩ ≲ 1 but exhibits a quadratic dependence ∝ R2

Ω for RΩ ≫ 1. Both ReðIÞ and ImðIÞ can be positive or negative
depending on ðRΩ; q1Þ.
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the steady-state solution. One should however bear in mind
that neither the radial nor the tangential DF attain the
equilibrium steady-state regime in a finite time.
The finite time perturbation results agree very well for

both the tangential and radial DF components. Although
our Lippmann-Schwinger implementation of DF is more
complete from a modeling point of view (it includes the
granularity of the FDM background), it is matched by
the Madelung analytical prediction to a high degree. In the
radial direction, the relative difference between the wave-
like and fluidlike predictions never exceeds 3%. In the
tangential direction, the agreement is equally good during
the first rotation, yet the relative difference between the
wave and hydrodynamic predictions increases with time.
This reflects the fact that, in the Lippmann-Schwinger
approach, the tangential component converges significantly
faster to steady state.
We emphasize that the comparison carried out here

is somewhat limited since the regime Mσ ≫ 1 (our
fiducial single perturber) solely was tested. A more
exhaustive comparison is beyond the scope of this paper.
Notwithstanding, the differences in the α predictions seen
in the binary case with Mσ ≲ 1 (Fig. 4) suggest that
the agreement between the Lippmann-Schwinger and
Madelung DF shall worsen in the single-perturber case
as the FDM velocity dispersion σ or, equivalently, the
Mach number Mσ decreases. While a nonvanishing σ
likely changes the convergence rate to steady state (i.e., the
decay timescale of the oscillatory envelope), it is unclear
whether the steady-state solution is also affected.

V. ASTROPHYSICAL IMPLICATIONS

In this section, we present two astrophysical applications
of our results. We also speculate on the behavior of DF for
self-interacting axions.

A. Orbital decay of globular clusters

Massive satellites orbiting around a galaxy are affected
by the dynamical friction caused by the dark matter halo.
This leads to their orbital decay if the dark matter density
is high enough and its velocity dispersion is low [30].
Following [28], let L ¼ MΩr20 be the angular momentum
of, say, a globular cluster of mass M. The corresponding
DF timescale is given by

τ ¼ L
r0jφ̂ · FDFj

;

where r0jφ̂ · FDFj is the torque produced by DF. For the
slow orbital decay of circular orbits, this timescale can be
expressed as

τ ¼ Mð< r0Þ3=2
4πG1=2Mρr3=20 ImðIÞ

; ð57Þ

with Mð< r0Þ being the total (dark matter and baryons)
mass enclosed within the orbital radius.
A well-known example of application is the Fornax

dwarf spheroidal, which contains five widely spread
globular clusters. These should have already spiraled
toward the center and merged with the nucleus [59]. To
resolve this issue, various explanations have been put
forward, including the presence of a constant-density core
that can stall the inspiral [60]. However, this might not be
sufficient to explain the Fornax observations [61,62].
Reference [28] assessed how the DF timescale is modified
if the dark matter in Fornax and, more generally, in dwarf
galaxies is comprised of FDM rather than CDM. For this
purpose, they derived an expression for the DF produced by
a FDM medium on a perturber in linear motion (see their
Sec. III. J).
To compare our circular motion prediction with their

result, we use the fact that their drag coefficient C
corresponds to our ImðIÞ (the radial DF is irrelevant
here) and, moreover, their choice of kr is equivalent to our
RΩ=2. Assuming likewise an axion mass m18 ¼ 3 × 10−4,
the nonlinearity scale is λNL ∼ 10−3 pc, much smaller than
the orbital radius of the globular clusters (r0 ≈ 1 Kpc)
considered here. Therefore, our linear response theory
can be safely applied here. Furthermore, our analysis of
the finite time perturbation indicates that our steady-state
solution provides a reasonable approximation to the
tangential DF at all time (see Fig. 10). Therefore, we
shall use it to compute the orbital decay timescales
determined by Eq. (57).
To illustrate how the DF decay timescale changes

quantitatively when our circular motion result is used
instead of the linear motion expression of [28], we have
extended their Table I into a new Table I, in which we
quote τ obtained from our “FDM circular” and their
“FDM linear,” respectively. Using our circular motion
DF increases or decreases τ by up to ∼70% depending
on the value of RΩ. To understand this, recall that the
(tangential) FDM friction coefficient ImðIÞ peaks for values
of RΩ ∼Oð1Þ (see Fig. 5). This corresponds to a configu-
ration in which the perturber’s motion is best synchronized
with the gravitational wake it generates, thereby increasing
the strength of the tangential DF. At large RΩ ≫ 1, the
weaker synchronization between the perturber’s motion
and the induced density wake reduces the tangential DF.
Overall, there is no dramatic change from the linear motion
calculation.

B. Stagnation of binary inspiral

Dynamical friction generally leads to the dissipation of
energy and angular momentum. We will now demonstrate
that, in a FDM background, DF can stall the orbital
evolution. In what follows, M is the total binary mass
and q1M and q2M are the masses of the components.

ROBIN BUEHLER and VINCENT DESJACQUES PHYS. REV. D 107, 023516 (2023)

023516-14



Consider first the motion of the binary center of mass of
position rCM. If the binary is not of equal mass, a net force
accelerates the center of mass according to

M
d2rCM
dt2

¼ FDF;1 þ FDF;2

¼ −4πρ
�
GM
Ωr0

�
2

½ðReðI1Þ − ReðI2ÞÞr̂ðtÞ

þ ðImðI1Þ − ImðI2ÞÞφ̂ðtÞ�; ð58Þ

where r̂ðtÞ and φ̂ðtÞ are unit vectors in the x − y plane
directed along the component separation vector rðtÞ≡
r2ðtÞ − r1ðtÞ and perpendicular to it. Decomposing the total
force into this radial and tangential direction,

Fr ≡ 4πρ

�
GM
Ωr0

�
2

½ReðI1Þ − ReðI2Þ�;

Fφ ≡ 4πρ

�
GM
Ωr0

�
2

½ImðI1Þ − ImðI2Þ�; ð59Þ

TABLE I. A comparison between the orbital decay timescale obtained for a perturber moving linearly in a CDM
medium (“CDM”), in a FDM background (“FDM linear”), and for a circularly moving perturber in FDM (“FDM
circular”). Results are shown for the five globular clusters of the Fornax dwarf spheroidal. This table is adapted from
Table I of [28] from which the CDM and FDM linear predictions are taken.

CDM FDM linear FDM circular

n r0 [Kpc] M ½105M⊙� C τ [Gyr] C τ [Gyr] RΩ ImðIÞ τ [Gyr]

1 7.60 0.37 4.29 112 2.46 215 17.8 1.46 362
2 1.05 1.82 3.32 9.7 1.88 12 10.08 1.64 14
3 0.43 3.63 2.45 0.62 0.29 2.2 1.94 0.39 1.63
4 0.24 1.32 2.50 0.37 0.033 10 0.62 0.078 4.23
5 7.79 1.76 3.46 21.3 2.32 31 15.58 1.41 51

FIG. 10. Top panel: radial (r̂) and tangential (φ̂) components of the DF force in the finite time perturbation case for our fiducial single
perturber. The DF force is normalized to ρRΩðGMΩr0Þ2. The cross symbols are the outcome of a numerical implementation of the Lippmann-
Schwinger approach on a three-dimensional grid, whereas the solid and dashed curves show the analytic predictions obtained from the
Madelung approach (see text for details). We have adopted a cutoff wave number k̃min ¼ 1=8 which matches the size of our simulation
boxes. The steady-state tangential DF is shown as the horizontal dashed line. In the radial direction, the steady-state DF is ≃ − 76.6 for
k̃min ¼ 1=8. Hence, it is not visible on the figure. Bottom panel: fractional difference between our wave and hydrodynamic predictions
of the radial and tangential DF.
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and rewriting the equation of motion in Cartesian x − y
coordinates (we omit the z component as it is irrelevant),
we get

M
d2rCM
dt2

¼ −
�
Fr cosðΩtÞ − Fφ sinðΩtÞ
Fr sinðΩtÞ þ Fφ cosðΩtÞ

�
: ð60Þ

Assuming the steady-state solution for I1 and I2 makes Fr
and Fφ independent of time and the differential equation
straightforward to solve. For a binary system initially at rest
at rCMð0Þ ¼ ðFr=MΩ2; Fφ=MΩ2Þ⊤, the motion of the
center of mass describes a circle about the origin r ¼ 0
at a frequency Ω. The radius of this circular orbit is

rDF ¼
1

MΩ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
r þ F2

φ

q

≃ 2.5 × 10−28 pc

�
ρ

M⊙pc−3

�

×

�
M
M⊙

��
Ω
yr−1

�
−4
�
r0
pc

�
−2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReðI1Þ − ReðI2ÞÞ2 þ ðImðI1Þ − ImðI2ÞÞ2

q
:

ð61Þ

Therefore, rDF reassuringly is orders of magnitude smaller
than the orbital radius even for k̃min ≪ 1. More precisely,
parameter values as extreme as k̃min ¼ 0.001 and RΩ ¼ 100
are required such that the difference between I1 and I2
reaches Oð105Þ. Even in this case would the radius rDF be
of the order of 10−23 solely, that is, orders of magnitude
below λNL. There seems to be no realistic scenario in which
the motion of the center of mass caused by DF can have any
significant impact on the motion of the perturber.
Turning now to the center-of-mass frame, the energy

E ¼ 1
2
μ_r2 − GMμ

r and angular momentumL ¼ μr × _r of the
binary, where μ ¼ q1q2M is the reduced mass, evolve
according to

dE
dt

¼ _r · ðq1FDF;2 − q2FDF;1Þ;
dL
dt

¼ r × ðq1FDF;2 − q2FDF;1Þ: ð62Þ

For the homogeneous medium and circular motions con-
sidered here, we have L ¼ Lẑ with

dL
dt

¼ −4πr0ρ
�
GM
Ωr0

�
2

ðq1ImðI2Þ þ q2ImðI1ÞÞ: ð63Þ

Assuming an adiabatic sequence of circular orbits, we have
L2 ¼ GM2μr0 and, therefore,

dr0
dt

¼ −8πρ

ffiffiffiffiffiffiffiffi
Gr50
μ

s
ðq1ImðI2Þ þ q2ImðI1ÞÞ: ð64Þ

The radial part of DF is irrelevant here as it mainly affects
the eccentricity [38,63]. Note also that the right-hand side
of Eq. (64) is invariant under the exchange of indices
1 ↔ 2. Since the DF acting on the binary depends on r0,
ma and M through the parameter RΩ, it is convenient to
introduce a characteristic orbital radius rΩ. For simplicity,
we set

rΩ ≡ 1

GM

�
ℏ

2ma

�
2

≃ 171.2 pcm−2
18

�
M
M⊙

�
−1
; ð65Þ

which corresponds to the orbital radius such that RΩ ¼ 1.
Furthermore, we take into account the energy or angular

momentum loss by radiation of gravitational waves (GWs).
The orbit average change of r0 reads [64]

	
dr0
dt



¼ −

64

5

G3M2μ

c5r30
:

Adding this loss term to Eq. (64) yields

dr0
dt

¼ −8πρ

ffiffiffiffiffiffiffiffiffi
Gr5Ω
μ

s �
8

5π
aGW

�
r0
rΩ

�
−3

þ
�
r0
rΩ

�
5=2

ðq1ImðI2Þ þ q2ImðI1ÞÞ
�
: ð66Þ

The relative strength of the loss by gravitational waves is
given by

aGW ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G5M4μ3

c10r11Ω ρ2

s

≃ 5.03 × 10−34
�

μ

M⊙

�
3=2

�
M
M⊙

�
2
�
rΩ
pc

�
−11=2

×

�
ρ

M⊙pc−3

�
−1
: ð67Þ

For our fiducial binary system [see (11)] and a FDM
density of ρ ¼ 0.01 M⊙pc−3 comparable to that of the solar
neighborhood, this gives

rΩ ≃ 8.56 pc;

aGW ≃ 1.67 × 10−33:

For a given choice of q1 and q2, the friction coefficient
ImðI1;2Þ can change sign as RΩ is varied (seen in Fig. 9).
Friction becomes a thrust (rather than a drag) when the
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binary extracts angular momentum from the FDMmedium.
Furthermore, at fixed ma and M, the value of RΩ depends
only on r0 (through Kepler’s third law). Therefore, the
right-hand side of Eq. (66) should be regarded as a function
of r0 only, say, gðr0Þ. This one-dimensional dynamical
system can exhibit stable fixed points for r0 ≡ r�0 whenever
gðr�0Þ ¼ 0 and g0ðr�0Þ < 0.
When there is no loss from GWemission, there is exactly

one stable orbit for each choice of q1 except q1 ¼ 0.5. In
Fig. 11, the solid (black) curve shows the stable orbital
radius r�0 as a function of q1 for our fiducial binary system.
At small q1, the stable radius is r�0 ≈ 400 (in unit of rΩ) and
varies slowly until q1 ≈ 0.2, beyond which the stable orbit
quickly drops toward smaller radii. Adding the GW
emission affects the stable orbital radius only marginally
at low q1: the change never exceeds 1% even for
aGW ¼ 1.0. The most notable effect of a nonvanishing
aGW is to prevent stable fixed points in the q1 range
½qmin; 0.5�. In Fig. 11, vertical lines mark qmin for different
values of aGW. The q1 range for which there are no stable
orbits grows from 0.5 downward with increasing values
of aGW. This follows from the r−30 dependence of the GW
loss, which becomes relevant only when the stable orbit
wanders to the small radii obtained for q1 ≲ 0.5. A larger
aGW increases the orbital radius below which GWemission
dominates over DF. Note that, since the DF only depends
on ma via RΩ solely, any change in the axion mass can be

absorbed by a rescaling of rΩ according to Eq. (65). In
other words, changing ma leaves Fig. 11 unchanged.
For our fiducial choice of parameters, the characteristic

radius rΩ ∼ 10 pc is about 3 orders of magnitude larger
than any viable upper limit on galactic binary separations
[65,66]. Consequently, binaries of mass M ∼Oð10Þ M⊙
and viable separations will not inspiral through the fixed
point unless q1 is very close to 0.5. However, as the axion
mass is increased, the characteristic radius drops according
to rΩ ∝ m−2

a so that stable orbits with realistic r�0 appear for
a larger range of q1. In the absence of external perturbations
(see, e.g., [67] for a discussion), binaries would eventually
stagnate around this stable orbit (provided they started with
a larger orbital radius). This could have an impact on
merger rates.

C. Axion self-interactions

Axion self-interactions will change the structure of
the Green’s function. For axions which acquired a mass
through nonperturbative effects (such as the QCD axion),
this self-interaction is attractive and, owing to the
enormous phase space density, can counteract the quan-
tum pressure. This leads to an instability which has been
explored in, e.g., [22,68–78].
At the level of the Green’s function of the linearized

theory, a self-interaction manifests itself as a pressure
with an (effective) sound speed c2s > 0 or (c2s < 0) if the
self-interaction is repulsive (attractive). In plain words,
G is of the form

G̃ðk;ωÞ ¼
�
c2sk2 þ

ℏ2k4

4m2
a
− ω2

�
−1

ð68Þ

in Fourier space. Our present work, together with the
analysis of [41], suggests that the resulting DF should be
free of any infrared and ultraviolet divergence since, for
ω ¼ 0, the divergence of G in the limit k → 0 is only
quadratic whereas its high-k limit is regularized by the k4

term. We defer a thorough exploration of this case to
future work.

VI. CONCLUSION

We investigated the DF acting on circularly moving
perturbers in a background of FDM particles. Starting
from the Gross-Pitaevskii-Poisson system which describes
a self-gravitating FDM medium, we considered two differ-
ent routes to solve for the density wake and DF: the
Madelung (hydrodynamic) and Lippmann-Schwinger
(wave) approach. Although the latter can more straight-
forwardly account for the fluctuating nature of FDM halo
atmospheres, the former is more amenable to an analytic
treatment of DF. For this reason, our hydrodynamic
implementation assumes a perfectly uniform FDM back-
ground, whereas our wave implementation describes the

FIG. 11. Stable fixed points r�0 of the one-dimensional dynami-
cal system Eq. (66) as a function of q1 (q2 ¼ 1 − q1). When
aGW ¼ 0, there is one stable orbital radius for each q1 shown as
the solid (black) curve. When aGW ≠ 0, there are no stable orbits
for q1 in the range ½qmin; 0.5�. Vertical lines mark qmin for the
different values of aGW indicated on the figure. For each q1 in the
range ½0; qmin½, there is, again, a unique stable orbit. Whenever
they exist, the stable orbital radii r�0 change by at most 1% as aGW
is varied in the range 0 < aGW < 1. Therefore, the solid (black)
curve computed for aGW ¼ 0 accurately characterizes the fixed
point also for 0 < aGW < 1 (leftward of the corresponding
vertical line).
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medium as a superposition of FDM quasiparticles.
Furthermore, we restricted our analysis to linear response
theory. The astrophysical systems considered here are well
within the validity range of this linear approximation.
We derived a fully analytical solution to the dynamical

friction using the Madelung formulation. Our circular-orbit
solution, based on the approach outlined in [41], covers
steady-state as well as the finite time perturbation case (the
perturber is turned on at t ¼ 0). Although it does not
include the velocity dispersion of FDM quasiparticles, it
provides a versatile tool to explore DF for a wide range of
parameters. We compared the two approaches at the level of
the density wake and the DF produced by single and binary
compact perturbers in circular motion. The velocity
dispersion σ of FDM quasiparticles generally lowers the
overall density contrast, the effect increasing with smaller
values of the Mach number Mσ ¼ vcirc=σ. Moreover,
for the finite time perturbation, our analytical solution to
DF agrees very well with that extracted from our limited
numerical investigations of the wave formulation.
The distinctive form of the FDM and gaseous Green’s

functions considered here and in [41], respectively, leads to
critical differences in the behavior of the dynamical
friction. While the ultraviolet divergence (seen for super-
sonic motion in the gaseous medium) is no longer present
in the FDM case, the latter exhibits instead an infrared
divergence which originates from the (also) diffusive nature
of the free Schrödinger equation. Our analysis of the finite
time perturbation case reveals that the density wake
produced by the perturber(s) diffuses through the medium
with a diffusion coefficient β ¼ ℏ=2ma (ma is the axion
mass). Only when the characteristic diffusion length
reaches the size of the system does DF stabilize around
the steady-state result. This diffusive process affects the
radial component of DF solely. Once the initial perturbation
has diffused through the whole medium, both the radial and
tangential DF oscillate about the steady-state solution with
a decaying envelope. Strictly speaking, steady state is thus
never attained within a finite time. Our numerical imple-
mentation of the wave approach, which includes a non-
vanishing FDM velocity dispersion, indicates that the
convergence rate is somewhat sensitive to the value of σ.
Although we have not determined the extent to which the
steady-state solution depends on σ ≠ 0, we speculate (in
light of our single-perturber test case) that the Madelung
prediction remains valid so long as Mσ ≫ 1. Notice also
that the damped oscillations seen in the tangential DF only
arise from multipoles with ðl; mÞ ≠ ð1; 0Þ, which are
insensitive to the outer boundary conditions. These oscil-
lations thus have a physical origin different from those
studied in [40].
We applied our results to two different astrophysical

scenarios. Firstly, we revisited the DF decay timescale of
the five Fornax globular clusters using our circular-motion
prediction and compared them to the linear-motion

estimates of [28]. In the circular setting, the imaginary
part ImðIÞ of the complex friction I encodes the drag in the
direction parallel to the instantaneous perturber’s velocity.
At fixed axion mass, our circular-motion result increases
the decay time relative to the linear-motion prediction when
RΩ ∝ ffiffiffiffiffi

r0
p ≫ 1, i.e., for large orbital radii, and decreases it

for small r0. This follows from the fact the interaction
between the perturber and its wake is maximized for
RΩ ∼Oð1Þ. While the relative change can be as large as
70%, our revised DF decay timescales are still larger than
that obtained for a CDM medium. Secondly, we explored
the stagnation of compact binary inspirals assuming an
adiabatic sequence of circular orbits. The motivation is the
presence of a novel feature in the tangential DF acting on
binaries: it can change sign and act as a thrust (rather than a
drag) for some range of mass ratios. This effect could stall
binary inspirals and lead to their stagnation if there are
stable orbits (provided that external perturbations are
small). This might also impact binary merger rates.
Ignoring energy and angular momentum loss through

GWemission, a stable circular orbit exists for any compact
binary, except for equal-mass systems. The inclusion of
GW emission prevents the existence of stable orbits for
near-equal-mass binaries. A stronger GW loss implies a
smaller range of stable circular orbits but, for conservative
assumptions, this effect is small. For our fiducial axion
mass ma ∼ 10−18 eV, most of the stable orbits are far
outside the range of viable binary orbital radii. However,
larger axion masses would move them in the interesting
range r0 ≲ 0.01 pc. To conclude, we stress that this effect is
not restricted to FDM backgrounds. It can arise in any
medium as long as the tangential DF can change sign and
sometimes be a thrust rather than a drag. Note also that it is
physically different from the core stalling discussed in [79].
It would be interesting to explore this further taking into
account the orbital eccentricity.
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APPENDIX A: BORN APPROXIMATION
TO THE PERTURBED WAVE FUNCTION

In the (first-order) Born approximation, the Lippmann-
Schwinger approach returns
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δψðr; tÞ ¼ ma

Z
dr03

Z
dt0Gretðr − r0; t − t0ÞΦðr0; t0Þψ0ðr0; t0Þ; ðA1Þ

where the building blocks of this expression are given by Eqs. (31), (33), and (34). The convolution theorem can be apply
for the computation of this integral. This requires the combined Fourier transform of Φ and ψ0:

˜ðΦψ0Þðk;ωÞ ¼ −
Z

dr3
Z

dteiωt−ik·rΦðr; tÞψðr; tÞ

¼ −
Z

dr3
Z

dteiωt−ik·rhðtÞ GM
jr − rpðtÞj

ffiffiffi
ρ

p
e−iω0tþik0·r ðA2Þ

¼ −GM
ffiffiffi
ρ

p Z
dteiðω−ω0Þt−iðk−k0Þ·rpðtÞhðtÞ

Z
d3u

e−iðk−k0Þ·u

u

¼ −GM
ffiffiffi
ρ

p Z
dteiðω−ω0Þt−iðk−k0Þ·rpðtÞhðtÞ 4π

jk − k0j2
; ðA3Þ

where u ¼ r − rpðtÞ and, in the last equality, the Fourier transform of the Coulomb potential is used. Together with the
Fourier transform of the retarded Green’s function, this leads to

δψðr; tÞ ¼ ma

Z
k

Z
ω
e−iωtþik·rG̃ðk;ωÞð ˜Φψ0Þðk;ωÞ

¼ 4πGMma lim
ϵ→0þ

Z
dt0hðt0Þ ffiffiffi

ρ
p

e−iω0t0þik0·rpðt0Þ
Z
k

Z
ω

e−iωðt−t0Þþik·ðr−rpðt0ÞÞ

ℏðωþ iϵÞ − ℏ2k2
2ma

1

jk − k0j2

¼ 4πGMma lim
ϵ→0þ

Z
dt0hðt0Þψ0ðrpðt0Þ; t0Þ

Z
k

Z
ω

e−iωτþik·uðt0Þ

ℏðωþ iϵÞ − ℏ2k2
2ma

1

jk − k0j2
: ðA4Þ

Once again the Cauchy integration formula is used to solve the ω integral. There is only one pole at ω ¼ ℏ
2ma

k2 − iϵ, which
is in the lower half of the complex plane. For the integral to be nonzero, a contour through the lower half plane has to be
chosen (similar to C2 in the left panel of Fig. 12), and the arc through the complex plane only gives vanishing contribution
when τ > 0. This ensures causality. The solution to the ω integral is given by

Z
ω

e−iωτ

ℏðωþ iϵÞ − ℏ2k2
2ma

¼ −
i
ℏ
HðτÞe−iτðℏk

2

2ma
−iϵÞ; ðA5Þ

at which point we can safely take the limit ϵ → 0. Inserting this result into the expression for δψ, the latter can be further
simplified to

δψðr; tÞ ¼ i
4πGMma

ℏ

Z
dt0hðt0ÞHðτÞψ0ðrpðt0Þ; t0Þ

Z
k
eik·uðt0Þ−iτβk2

1

jk − k0j2

¼ i
4πGMma

ℏ

Z
dt0hðt0ÞHðτÞψ0ðrpðt0Þ; t0Þ

Z
k0
eiðk0þk0Þ·uðt0Þ−iτβðk0þk0Þ2 1

k02

¼ i
4πGMma

ℏ

Z
dt0hðt0ÞHðτÞψ0ðrpðt0Þ; t0Þeik0·uðt0Þ−iτβk20

Z
k0
eik

0·ðuðt0Þ−2τβk0Þ−iτβk02 1

k02
ðA6Þ

upon substituting k0 ¼ k − k0 and the diffusion coefficient β ¼ ℏ=2ma. The first part is independent of k0 and, with help of
the dispersion relation Eq. (32), simplifies to ψ0ðr⃗; tÞwhich is independent of the remaining integration over k0. Performing
the latter leads to
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Z
k
eik

0·ðuðt0Þ−2τβk0Þ−iτβk02 1

k02

¼ 1

2π2

Z
dk0j0ðk0juðt0Þ − 2τβk0jÞe−iτβk02

¼ 1

2π2
π

2
ð1þ iÞ

h
S
�
juðt0Þ−2τβk0jffiffiffiffiffiffiffi

2πβτ
p

�
− iC

�
juðt0Þ−2τβk0jffiffiffiffiffiffiffi

2πβτ
p

�i
juðt0Þ − 2τβk0j

;

ðA7Þ

where CðzÞ and SðzÞ are the Fresnel integrals. Using their
connection with the error function,

SðzÞ ¼ ð1þ iÞ
4

�
erf

�
1þ i
2

ffiffiffi
π

p
z

�
− i erf

�
1 − i
2

ffiffiffi
π

p
z

��
;

CðzÞ ¼ ð1 − iÞ
4

�
erf

�
1þ i
2

ffiffiffi
π

p
z

�
þ i erf

�
1 − i
2

ffiffiffi
π

p
z

��
;

ðA8Þ

we eventually arrive at

δψðr; tÞ ¼ i
GMma

ℏ
ψ0ðr; tÞ

×
Z

dt0hðt0ÞHðτÞ
erf

�
1−i
2

juðt0Þ−2τβk0jffiffiffiffiffi
2βτ

p
�

juðt0Þ − 2τβk0j
; ðA9Þ

which gives Eq. (36) after substituting the dimensionless
variables.

APPENDIX B: SCATTERING AMPLITUDES
IN THE STEADY-STATE REGIME

In this appendix, we provide details of the calculation of
the scattering amplitudes SStyl;l−1 in the steady-state regime,
beginning with Eq. (47).
First, the spherical Bessel functions is split into a sum of

Hankel functions jlðzÞ ¼ 1
2
ðhð1Þl ðzÞ þ hð2Þl ðzÞÞ, and the inte-

gral acquires a factor of 1=2 while its limits are extended to

−∞ to ∞. Since hð1Þl ðzÞ∝eiz and hð2Þl ðzÞ∝e−iz, each of the
terms resulting from the product of the two spherical Bessel
functions is proportional to a complex exponential with a
positive, zero or negative phase which determines the
contour to be chosen.
Poles are found at k̃0 ¼ 0, k̃1;2 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mRΩ þ iϵ
p

and
k̃3;4 ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mRΩ þ iϵ

p
as indicated in the left panel of

Fig. 12. k̃0, k̃1 and k̃3 are enclosed in the contour C1

relevant for the terms with a positive phase. It is trivial to
show that the contour integral over the semicircle vanishes.
Similarly, the contour C2, which contains the poles at k2
and k4, must be selected for the terms with a negative phase.
The choice of C2 is also more convenient when the phase
is zero.

FIG. 12. Left panel: poles and semicircular contours C1 and C2 used for the calculation of the steady-state amplitude Eq. (47). The
poles are located at k̃0 ¼ 0, k̃1;2 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mRΩ þ iϵ
p

and k̃3;4 ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mRΩ þ iϵ

p
. We choose to shift the k̃ ¼ k̃0 pole into the upper half

plane. The contour C1 (C2) extends from −∞ to ∞ on the real axis and is completed in the upper (lower) half plane. Right panel: the
contours C3 and C4 used for the calculation of the transient amplitude Eq. (C3). For C3 (C4), the circular arc subtends an angle π=4 and
lies in the upper (lower) half plane. The two contours are closed by a diagonal line at an angle ϑ ¼ � π

4
which can be parametrized by

k ¼ ð1� iÞχ with χ in the range ½0;∞½.
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The residues are independent of the exact combination of hð1Þl ðzÞ and hð2Þl ðzÞ. Therefore, we introduce below the generic
notation (x) or (y) to label the Hankel functions. Both (x) and (y) can be either (1) or (2). Furthermore. we use the shorthand

notation ðx̄Þ to indicate that a hð1Þl ðzÞ was transformed into a hð2Þl ðzÞ or conversely through the relation

hð1Þl ð−zÞ ¼ ð−1Þlhð2Þl ðzÞ. Taking the limit ϵ → 0þ, we have

Res

�
khðxÞl ðk̃ÞhðyÞl−1ðk̃Þ
k4=R2

Ω −m2
; k̃0

�
¼ i

m2
;

Res

�
khðxÞl ðk̃ÞhðyÞl−1ðk̃Þ
k4=R2

Ω −m2
; k̃1

�
¼ RΩ

4m
hðxÞl

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
hðyÞl−1

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
;

Res

�
khðxÞl ðk̃ÞhðyÞl−1ðk̃Þ
k4=R2

Ω −m2
; k̃2

�
¼ −

RΩ

4m
hðx̄Þl

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
hðȳÞl−1

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
;

Res

�
khðxÞl ðk̃ÞhðyÞl−1ðk̃Þ
k4=R2

Ω −m2
; k̃3

�
¼ −

RΩ

4m
hðxÞl

�
i

ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
hðyÞl−1

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
;

Res

�
khðxÞl ðk̃ÞhðyÞl−1ðk̃Þ
k4=R2

Ω −m2
; k̃4

�
¼ RΩ

4m
hðx̄Þl

�
i

ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
hðȳÞl−1

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
: ðB1Þ

All of these contributions combine to give

SStyl;l−1 ¼
iπ
4

RΩ

4m

�
4i

mRΩ
þ 2hð1Þl

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
hð1Þl−1

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
þ hð1Þl

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
hð2Þl−1

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �

þ hð2Þl

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
hð1Þl−1

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
−
� ffiffiffiffiffiffiffiffiffiffi

mRΩ
p

⇔ i
ffiffiffiffiffiffiffiffiffiffi
mRΩ

p ��
; ðB2Þ

where ð ffiffiffiffiffiffiffiffiffiffi
mRΩ

p
⇔ i

ffiffiffiffiffiffiffiffiffiffi
mRΩ

p Þ indicates that all the terms involving Hankel functions are repeated but with their argument

replaced by i
ffiffiffiffiffiffiffiffiffiffi
mRΩ

p
. Using hð1Þl ðxÞ ¼ jlðxÞ þ iylðxÞ, hð2Þl ðxÞ ¼ jlðxÞ − iylðxÞ, as well as the Wronskian relation

jlðxÞyl−1ðxÞ − jl−1ðxÞylðxÞ ¼ x−2, the sum of terms with argument q ¼ ffiffiffiffiffiffiffiffiffiffi
mRΩ

p
can be simplified to

2hð1Þl ðqÞhð1Þl−1ðqÞ þ hð1Þl ðqÞhð2Þl−1ðqÞ þ hð2Þl ðqÞhð1Þl−1ðqÞ þ
2i
q2

¼ 4jlðqÞjl−1ðqÞ þ 4ijlðqÞyl−1ðqÞ − 2iðjlðqÞyl−1ðqÞ − jl−1ðqÞylðqÞÞ þ
2i
q2

¼ 4jlðqÞðjl−1ðqÞ þ iyl−1ðqÞÞ
¼ 4jlðqÞhð1Þl−1ðqÞ;

and likewise for the terms with argument q ¼ i
ffiffiffiffiffiffiffiffiffiffi
mRΩ

p
. These simplifications yield

SStyl;l−1 ¼
iπRΩ

4m

h
jl
� ffiffiffiffiffiffiffiffiffiffi

mRΩ
p �

hð1Þl−1

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
− jl

�
i

ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
hð1Þl−1

�
i

ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �i
: ðB3Þ

For the final step of the calculation, the identities jlðixÞ ¼ ilið1Þl ðxÞ and hð1Þl ðixÞ ¼ − 2
π i

lklðxÞ are exploited and lead to
Eq. (48),

SStyl;l−1 ¼
iπRΩ

4m

�
jl
� ffiffiffiffiffiffiffiffiffiffi

mRΩ
p �

hð1Þl−1

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
þ 1ffiffiffiffiffiffiffiffiffiffi

mRΩ
p Ilþ1=2

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p �
Kl−1=2

� ffiffiffiffiffiffiffiffiffiffi
mRΩ

p ��
;

upon substituting ið1Þl ðxÞ ¼ ffiffiffiffi
π
2x

p
Ilþ1=2 and klðxÞ ¼

ffiffiffiffi
π
2x

p
Klþ1=2ðxÞ for numerical convenience.
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APPENDIX C: SCATTERING AMPLITUDES
FOR THE FINITE TIME PERTURBATION

For the finite time perturbation, we insert Eq. (51) into
Eq. (46) and obtain

SFtpl;l−1 ¼ lim
ϵ→0þ

Z
ω

eiðm−ω̃Þτ̃

iðm− ω̃− iηÞ
Z

∞

0

dk̃ k̃
jlðk̃Þjl−1ðk̃Þ

k̃4=R2
Ω − ðωþ iϵÞ2 ;

ðC1Þ
where it is understood that η > 0. In a first step, the integral
over ω̃ is solved with the residue theorem. We choose
the contour C2 as in the left panel of Fig. 12, with a
semicircular arc in the lower half of the complex plane.
There are three poles at ω̃0 ¼ m − iη, ω̃1 ¼ k̃2=RΩ − iϵ and
ω̃2 ¼ −k̃2=RΩ − iϵ. They are all located in the lower half
plane and, therefore, all contribute as residues. Taking
η → 0 yields

SFtpl;l−1 ¼− lim
ϵ→0þ

Z
∞

0

dk̃ k̃ jlðk̃Þjl−1ðk̃Þeimt̃

�
eimt̃

ðmþ iϵÞ2− k̃4=R2
Ω

þ RΩ

2k̃2

�
e−iðk̃

2=RΩ−iϵÞt̃

k̃2=RΩ−m− iϵ
−

e−ið−k̃
2=RΩ−iϵÞt̃

−k̃2=RΩ−m− iϵ

��
:

ðC2Þ
Upon taking the limit η → 0, the first term in the square
brackets can be identified as the steady-state amplitude
Eq. (47). It is discussed in Appendix B and we shall thus
ignore it here. The second term defines the transient
amplitude STral;l−1:

STral;l−1 ≡ −
RΩ

2
eimt̃

Z
∞

0

dk̃

k̃
jlðk̃Þjl−1ðk̃Þ

�
e−iðk̃

2=RΩ−iϵÞt̃

k̃2=RΩ −m − iϵ

þ eiðk̃
2=RΩþiϵÞt̃

k̃2=RΩ þmþ iϵ

�
: ðC3Þ

To compute this amplitude, we use the contours C3 and C4

in the upper and lower half plane, respectively, as indicated
in the right panel of Fig. 12. The piece proportional to
eik̃

2 t̃=RΩ is evaluated with C3. However, the relevant poles k̃3
and k̃4 are not enclosed by C3. Cauchy’s integral formula
thus implies that its line integral is zero. Since the integral
over the circular arc vanishes when its radius tends to
infinity, this also implies that the integral over the positive
real axis k̃ ∈ ½0;þ∞½ is minus the line integral over the
diagonal parametrized by k̃ ¼ ð1þ iÞχ, χ ∈ ½0;þ∞½. The
same reasoning applies to the contribution proportional to
e−ik̃

2 t̃=RΩ , the contour C4 and the relevant poles k̃1 and k̃2.
Adding up the two contributions eventually gives Eq. (53):

STral;l−1 ¼ −
RΩ

2
eimt̃

Z
∞

0

dχ̃
χ̃
½jlðð1þ iÞχ̃Þjl−1ðð1þ iÞχ̃Þ

− jlðð1 − iÞχ̃Þjl−1ðð1 − iÞχ̃Þ� e−2t̃χ̃
2=R2

Ω

2iχ̃2=RΩ þmþ iϵ
:

ðC4Þ

This expression makes clear that STral;l−1 must tend to zero in
the limit t̃ → ∞ so long as m ≠ 0.

APPENDIX D: ANALYTIC EXPRESSION FOR Sa;bl;l − 1ðm;RΩÞ WITH ðl;mÞ = ð1;0Þ
They can be obtained with software such as Mathematica [80]. For q1 > q2, we have

Sa;bl;l−1ð0; RΩÞ ¼
R2
Ω

240k̃5minq
2
1q2

fπk̃5minq2ð−15q41 − 10q21q
2
2 þ q42Þ

þ k̃5min½ð3q2 − 4Þð1 − 2q2Þ4Siðk̃min − 2k̃minq2Þ þ ð4 − 5q2ÞSiðk̃minÞ�
þ k̃minq1 cosðk̃minq1Þ½2ðk̃2minð2q21 þ q22Þ − 12Þ sinðk̃minq2Þ þ k̃minq2ðk̃2minð11q21 þ q22Þ − 6Þ cosðk̃minq2Þ�
þ 2 sinðk̃minq1Þ½k̃minq2ðk̃2minð7q21 − q22Þ þ 6Þ cosðk̃minq2Þ
þ ðk̃4minð−4q41 − 9q21q

2
2 þ q42Þ þ k̃2minð8q21 − 2q22Þ þ 24Þ sinðk̃minq2Þ�g; ðD1Þ

whereas, for q2 > q1, we obtain

Sa;bl;l−1ð0; RΩÞ

¼ R2
Ω

240k̃5minq
2
1q2

f4πk̃5minðq2 − 1Þ3ð6q22 − 2q2 þ 1Þ þ k̃5min½ð3q2 − 4Þð1 − 2q2Þ4Siðk̃min − 2k̃minq2Þ þ ð4 − 5q2ÞSiðk̃minÞ�

þ 2k̃min cosðk̃minq1Þ½4ð−3k̃2minq2 þ k̃2min þ 6q2 − 6Þ sinðk̃minq2Þ þ k̃minð11k̃2min − 6Þq2 cosðk̃minq2Þ�
þ 2 sinðk̃minq1Þ½4ðk̃2minðk̃2minð4q2 − 1Þ − 4q2 þ 2Þ þ 6Þ sinðk̃minq2Þ þ k̃minð7k̃2min þ 6Þq2 cosðk̃minq2Þ�
þ 2k̃2minq

2
2½ðk̃2minð2ð17 − 6q2Þq2 − 33Þ þ 6Þ cosðk̃min − 2k̃minq2Þ þ 2k̃minð3q2 − 7Þ sinðk̃min − 2k̃minq2Þ�g: ðD2Þ
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