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Cosmological perturbation theory is known to converge poorly for predicting the spherical collapse and
void evolution of collisionless matter. Using the exact parametric solution as a testing ground, we develop
two asymptotic methods in spherical symmetry that resolve the gravitational evolution to much higher
accuracy than Lagrangian perturbation theory (LPT), which is the current gold standard in the literature.
One of the methods selects a stable fixed-point solution of the renormalization-group flow equation,
thereby predicting already at the leading order the critical exponent of the phase transition to collapsed
structures. The other method completes the truncated LPT series far into the UV regime, by adding a
nonanalytic term that captures the critical nature of the gravitational collapse. We find that the UV method
most accurately resolves the evolution of the nonlinear density as well as its one-point probability
distribution function. Similarly accurate predictions are achieved with the renormalization-group method,
especially when paired with Padé approximants. Further, our results yield new, very accurate, formulas to
relate linear and nonlinear density contrasts. Finally, we chart possible ways on how to adapt our methods
to the case of cosmological random field initial conditions.
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I. INTRODUCTION

Current and upcoming surveys of the cosmic large-scale
structure are expected to test the cosmological concord-
ance model at a precision of about one percent [1–5].
Therefore, having fast and accurate theoretical predictions
for the large-scale structure is of fundamental importance.
For example, this is relevant in the context of field-level
forward models for reconstruction of tracers of the matter
distributions, such as retrieved from the galaxy density
field [6–9] or from quasar spectra obtained from the
Lyman-α forest data [10–13]. Another important applica-
tion relates to pairing theoretical predictions with numeri-
cal simulations [14–20].
Cosmological perturbation theory (CPT) [21–25] pro-

vides highly accurate predictions on large cosmological
scales, and in particular plays a crucial role in connecting
early with late-time cosmology, such as by providing initial
conditions for numerical simulations [26–30]. However,
CPT struggles to accurately predict the small-scale collapse
to gravitationally bound structures, a process that is
intimately tied to the shell-crossing singularity—the cross-
ing of trajectories of collisionless matter, which comes with
extreme matter densities.

To remedy the problem, many different approaches
beyond standard CPT have been developed, for example
by applying several renormalization or resummation
techniques, as well as effective field-theory methods
or path-integral formalisms (see, e.g., Refs. [31–41]).
However, these approaches are either of statistical nature
and thus cannot be directly tested against deterministic
solutions or, to our knowledge, such critical tests have not
yet been performed (see however [42] for an exception).
Other approaches circumvent the shortcomings of CPT, by
combining CPT predictions with those of the spherical or
ellipsoidal collapse model [43–50] by performing a large-
scale/small-scale split—see, e.g., Ref. [51] for a review,
and Ref. [52] for performance tests of such hybrid
methods for modeling galaxy clustering.
Still, these studies do not attempt to tackle the obvious

problem, namely that CPT is highly inefficient for predict-
ing the nonlinear collapse. We believe that this problem has
been partially addressed by Refs. [53–56], who tested Padé
approximants or Shanks transforms to accelerate the con-
vergence of CPT. As we will outline in this article, even a
faster convergence acceleration can be achieved, provided
one exploits the asymptotic structure of the underlying
collapse problem.
In all these matters, the choice of coordinates can be

crucial. Indeed, the first nontrivial shell-crossing solutions
have been found using Lagrangian coordinates [57–59],
specificallywithin the frameworkofLagrangianperturbation
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theory (LPT). Reasons for LPT performing better in com-
parison to its Eulerian counterpart are various, here we just
name two: First, Lagrangian approaches are very efficient in
resolving advected motion, essentially since the involved
nonlinearities are absorbed into the Lagrangian time deriva-
tive. Second, the Lagrangian map acts as a desingularization
transformation,meaning that the infinity in thematter density
at shell crossing gets converted into a vanishing of the
Jacobian determinant. Obviously, resolving the latter is
technically easier than the former, especially within the
context of perturbation theory.
Despite these advantages, however, even LPT con-

verges extremely slowly for spherical or quasispherical
collapse [54,58–61]. Another, somewhat surprising, limi-
tation of LPT is related to the late-time evolution of
voids, which shows clear signs of loss of convergence
(e.g., [62,63]). This divergent behavior has been analyzed
by the concept of “mirror symmetry” [64,65], which
elucidates that the radius of convergence of the LPT series
is identical for both over- and underdense regions, essen-
tially since the radius of convergence is independent of the
sign of the spatial curvature parameter.
In this article, we revisit in detail the convergence issues

of LPT for spherical over- and underdensities, and provide a
systematic analysis of two asymptotic techniques. We will
see that the poor convergence of the LPT series can be
remedied by employing a technique dubbed UV comple-
tion, and this twofold: First, the convergence of the UV-
completed LPT series is vastly accelerated in overdense
regions and, second, the underdense evolution does not
display any divergent behavior anymore. At the core, the
UV completion exploits the asymptotic structure of the LPT
series at order infinity. The functional form of this asymp-
totic behavior appears to be quite generic [66], which raises
the justified hope that this technique might be adaptable in
the near future also to the case of gravitational collapse with
cosmological random field initial conditions.
In addition to the UV completion, we also study an

alternative approach by applying a renormalization
group (RG) technique to the spherical-collapse problem.
Historically, the RG approach was introduced in quantum
electrodynamics to regularize infinities in quantum field
theory. RG is also vital in statistical physics, for
example when investigating critical phenomena in phase
transitions [67], which is also an instance where singular-
ities appear (e.g., in the heat capacity). RG techniques are
also heavily employed in nonequilibrium physics to detect
singularities (e.g., [68–72]), which is particularly relevant
for investigating critical phenomena in general fluids.
Crucially, as we show here by means of the spherical-
collapse problem, the mere knowledge of the underlying
singular structure provides a superior theoretical model as
obtained through conventional perturbative techniques.
This paper is organized as follows. In the following we

provide the basic fluid equations, first for generic initial

conditions (Sec. II A) and then limited to spherical
symmetry (Sec. II B). Afterwards, in Sec. III, we briefly
review LPT. In Sec. IV, we discuss a particularly simple
implementation of a renormalization-group approach (see
Appendix B for complementary derivations exploiting
the RG-flow condition), including also the pairing of
RG and Padé approximants (Sec. IV D). Then, we provide
an asymptotic analysis of the LPT series (Sec. VA), whose
findings are then implemented to achieve a UV completion
of the LPT series (Sec. V B). Subsequently, we apply our
findings to the calculation of the nonlinear density
(Sec. VI A) and of its one-point probability distribution
function (Sec. VI B). Finally, we summarize our findings
and provide concluding remarks in Sec. VII.

II. BASIC SETUP

A. Fluid equations for generic initial data

For simplicity, throughout this work, we ignore the
effects of a cosmological constant, and focus solely on the
nonlinear evolution of collisionless matter. We employ
Lagrangian coordinates q that denote the positions of fluid
elements at initial time t ¼ t0. Likewise, r ¼ rðq; tÞ ¼
xðq; tÞ=aðtÞ is the physical position of a given fluid
element at current time t, while a is the cosmic scale
factor normalized to unity at time t0. Using these defi-
nitions, the equations of motion of the fluid elements can
be written as

̈r ¼ −∇rϕ; ∇2
rϕ ¼ 4πGρ; ρ ¼ ρ̄=J; ð2:1Þ

where an overdot stands for a Lagrangian (convective) time
derivative, while ρ̄ ¼ ρ̄0a−3 is the spatially uniform back-
ground density with ρ̄0 ¼ ρ̄ðt0Þ denoting its initial value.
Furthermore, we have defined J ≔ det½xi;j�where a “; j” is a
partial space derivative with respect to the Lagrangian
component qj.
Equations (2.1) can be easily merged into a single one

by taking the Eulerian divergence from the first of the
equations; see, e.g., Ref. [73] for calculational details. After
converting the remaining Eulerian derivative according to
∇r ¼ ½ð∇qrÞ��−1∇q, where the star denotes matrix trans-
position, one arrives at the main evolution equation in
Lagrangian coordinates [74,75]

εilmεjpqrp;lrq;m ̈rj;i ¼ −8πGρ̄0: ð2:2Þ

Here, summation over repeated indices is assumed, and
εilm is the fundamental antisymmetric tensor. This scalar
equation should be supplemented with the statement of
the conservation of the vanishing vorticity (see, e.g.,
Refs. [76,77]), which however is not needed in what
follows, due to the assumed symmetry.
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B. The case of spherical symmetry

Equation (2.2) is valid for any initial data, but in the
following we will focus exclusively on the case of spherical
symmetry. For this, one may employ spherical coordinates,
but we find it actually more convenient to stick with the
Cartesian setup, in which case the Jacobian matrix ∇qr
must be exactly diagonal with identical entries (e.g., [78]).
Thus, for the components of the Jacobian matrix, we can set

ri;j ¼ δijr; ð2:3Þ

where r depends only on time but not on space, and δij is
the Kronecker delta. With this simplification, Eq. (2.2)
becomes

r2 ̈r ¼ −
4πGρ̄0

3
: ð2:4Þ

This is an ordinary differential equation of the Emden-
Fowler type [79], for which an exact parametric solution is
well known (e.g., [80–84]); see Appendix A for a review as
well as asymptotic considerations. Having access to an
exact solution provides an ideal testing ground for devel-
oping new solutions techniques. In the following, we first
briefly review LPT with its shortcomings in the context of
spherical collapse.

III. LAGRANGIAN PERTURBATION THEORY

The central quantity in LPT is the displacement field

ψðq; tÞ ¼ xðq; tÞ − q; ð3:1Þ

which in the case of spherical symmetry can be written in a
simplified manner as ψðq; tÞ ¼ qψðtÞ, where the scalar
displacement ψðtÞ depends only on time. The fastest-
growing mode of this displacement is expanded as a
perturbative series (e.g., [58,61,85–89]),

ψðtÞ ¼
X∞
n¼1

ψnðkaÞn; ð3:2Þ

where ψðtÞ ¼ xðtÞ − 1, and the (scalar) comoving trajec-
tory xðtÞ is defined via xi;j ¼ δijx. Furthermore, k is a free
parameter fixed by the initial conditions which, physically,
amounts to an effective curvature parametrizing the local
departure from a spatially flat Universe; see, e.g., Ref. [61]
for calculational details.
In LPT, the ansatz (3.2) is used to solve Eq. (2.4) at

subsequent perturbation orders n. The ψn’s occurring in
Eq. (3.2) are easily determined by the following recursive
relations (n ≥ 1) [61]

ψn ¼ −
1

3
δn1 −

X
q<n

q2 þ ðn− qÞ2 − ð3− nÞ=2
ðnþ 3=2Þðn− 1Þ ψqψn−q

−
X

kþlþm¼n

k2 þ l2 þm2 − ð3− nÞ=2
3ðnþ 3=2Þðn− 1Þ ψkψ lψm; ð3:3Þ

which in particular leads to the first few coefficients

ψ1 ¼ −
1

3
; ψ2 ¼ −

1

21
; ψ3 ¼ −

23

1701
: ð3:4Þ

See Sec. V for investigating the large-order asymptotic
properties of the displacement series.
In Fig. 1 we show the comoving trajectory xðaÞ ¼ 1þ

ψðaÞ for several LPT truncation orders (various colored
lines), and compare it against the exact parametric solution
(black dotted line, based on Appendix A). Specifically, the
positive a-time branch depicts the collapse of a spherically
overdense region with curvature k ¼ 3=10, while the
negative time branch reflects the evolution of an underdense
region with k ¼ −3=10 where, for convenience, we exploit
the sign symmetry of the tuple ða;−kÞ ↔ ð−a; kÞ within
the definition of ψðaÞ. In the present case, LPT convergence
is lost at the critical time jaj ¼ a⋆ ¼ ð3π ffiffiffi

2
p Þ2=3 ≃ 5.622,

which coincides exactly with the time of spherical collapse.
More generally, for given curvature k, the time of collapse is

5 0 5

LPT order:
10 20 301

exact

5

underdensity

50

yyyyyyyy overdensity

FIG. 1. LPT series solutions for the comoving trajectory xðaÞ ¼
1þ ψðaÞ up to 30th order for the case k ¼ 3=10 (colored lines),
compared against the exact solution (black dotted line) based on
the spherical collapse model, which begins oscillating around
x ¼ 0 after the first collapse. The positive a-branch denotes the
collapse of a spherical overdensity, while the negative a-branch
reflects the void evolution with k ¼ −3=10. The gray-shaded area
indicates the disk of convergence, i.e., the region −a⋆ < a < a⋆
where a⋆ ¼ ð3π ffiffiffi

2
p Þ2=3 ≃ 5.622 is the collapse time of the over-

density. Clearly, convergence of the LPT series is lost for jaj >
a⋆ for both over- and underdense regions.
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a⋆ ¼ δc=k, where δc ¼ ð3=5Þð3π=2Þ2=3 ≃ 1.686 is the usual
critical density at collapse time (see, e.g., Refs. [81–84]).
Moreover, since LPT is a Taylor series in powers of a,

the temporal regime of convergence is spanned by jaj < a⋆,
where the radius of convergence a⋆ is set by the nearest
singularity(ies) in the complex-time plane around the
expansion point a ¼ 0. In the case of spherical symmetry,
the nearest singularity occurs at the real-valued collapse
time a⋆ where, specifically, the velocity v ¼ _x blows
up [25,61]. This explains the exact coincidence between
the collapse time and the loss of convergence in the case of
spherical symmetry.
The above argument also implies that the LPT series in

the void case must have an identical radius of convergence
of a⋆, which is also shown in Fig. 1 in the negative time
branch (exploiting the aforementioned sign symmetry).
Clearly, the lack of convergence in the void case beyond a⋆
is a mathematical artifact since, physically, the void under-
density should not be influenced by a singular velocity
appearing in the spherical collapse. To our knowledge, the
fact that the LPT series for over- and underdensities have
an identical radius of convergence was first pointed out
in Ref. [64].

IV. RENORMALIZATION-GROUP APPROACH

Multiplying Eq. (2.4) by _r=r2 and integrating the
resulting equation in time, one obtains

_r2 ¼ 8πGρ̄0
3r

− C; ð4:1Þ

where C is an integration constant. Now, changing from
cosmic time to scale-factor time a with ∂t ¼ _a∂a and using
the Friedmann equation ð _a=aÞ2 ¼ 8πGρ̄0=ð3a3Þ to get an
expression for _a, we arrive after some straightforward
calculations at our main evolution equation in the RG
approach,

r02 ¼ a
r
− ϵ

a
2
; ð4:2Þ

where a prime denotes a partial derivative with respect to a
time, and we have defined ϵ ¼ 3C=ð4πGρ̄0Þ. Actually, in
the RG approach ϵ acts as a perturbative bookkeeping
parameter; physically, it can be interpreted as a curvature
perturbation locally induced through a spherical over- or
underdense region in an otherwise spatially flat Universe
(see also Appendix A). In the following, we seek solutions
for (4.2) by means of a standard perturbative expansion, i.e.,

r ¼ r0 þ ϵr1 þ ϵ2r2 þ…: ð4:3Þ

This perturbative ansatz allows us to obtain a set of
differential equations for r0, r1, etc. that are easily integrated
in time. The resulting approximation for r will have

so-called secular terms that grow unboundedly for large
times, which is an indication of ill-posed asymptotic
behavior. To cure the perturbative results from these secular
terms, we then apply suitable renormalization techniques.
In the following we provide a reduced RG approach

that, for the present problem, is particularly simple in its
implementation; see Appendix B for more traditional
avenues exploiting the RG-flow equation, leading however
to identical results as quoted here.

A. Perturbative expansion and temporal integration

Plugging the ansatz (4.3) into the Eq. (4.2) and keeping
only terms to fixed orders in ϵ, one obtains the following set
of differential equations:

ϵ0
�
r020 ¼ a

r0

�
; ð4:4Þ

ϵ1
�
2r00r

0
1 þ a

r1
r20

þ a
2
¼ 0

�
; ð4:5Þ

ϵ2
�
2r00r

0
2 þ r021 þ ðr0r2 − r21Þ

a
r30

¼ 0

�
; ð4:6Þ

and so on, where we remind the reader that a prime denotes
a temporal derivative with respect to a time. Integrating the
zeroth-order equation (4.4) leads to

r0 ¼ a

�
1þ 3c1

2a3=2

�
2=3

; ð4:7Þ

where c1 is an integration constant which plays a crucial
role in the renormalization procedure exploited below (but
otherwise would be determined by the initial conditions).
Continuing to the next orders, the first-order differential
Eqs. (4.5) and (4.6) have particular solutions

r1 ¼ −
1

10
r20; r2 ¼ −

3

700
r30; ð4:8Þ

respectively. Here, the homogeneous parts of the solutions
can be discarded as they would add more integration
constants than being allowed by the parent ordinary differ-
ential equation (ODE) (4.2). In any case, higher-order
homogeneous parts should not play any role in the physical
solution. See Appendix B 2 for a complementary RG
method relying on specific boundary conditions.

B. First-order renormalization

Let us begin with a renormalization procedure that ignores
the effects of Oðϵ2Þ. In that case, the unrenormalized
solution for r reads
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r ¼ a

�
1þ 3c1

2a3=2

�
2=3

−
ϵ

10
r20; ð4:9Þ

where the last term r1 ∼ r20 is of secular nature. To
accommodate this term, we perform a multiplicative renorm-
alization of the constant c1, with the requirement that the
shift should mimic the secular term r1 to order ϵ, i.e., we
demand c1 → c1ð1þ ϵAÞ and search for the unknown A.
After straightforward calculations one finds

A ¼ −
1

10c1
a5=2

�
1þ 3c1

2a3=2

�
5=3

: ð4:10Þ

Plugging this back into (4.9) one finds

r ¼ a

�
1þ

3c1½1 − a5=2
10c1

ð1þ 3c1
2a3=2

Þ5=3ϵ�
2a3=2

�2=3

; ð4:11Þ

to first order in ϵ. Finally, we discard decaying modes as
they should have negligible impact in the asymptotic/
late-time limit, and obtain the first-order RG solution
r ¼ r1RG þOðϵ2Þ, with

r1RG ¼ a

�
1 −

3aϵ
20

�
2=3

: ð4:12Þ

In Appendix B 2 we show that the above derivation selects
a stable fixed-point solution of the RG flow equation.
It is also interesting to note that a first-order Taylor

expansion of r1RG about a ¼ 0 delivers the first-order LPT
result for ϵ ¼ 10k=3. We will see that this is a generic
property of the employed RG technique. However, we note
that by Taylor-expanding the RG result to fixed order, one
also loses its desirable asymptotic properties.
Indeed, the asymptotic behavior of the RG result is vastly

different when compared to LPT at any fixed order:
Specifically, RG predicts a singularity, i.e., nonanalyticity
(nondifferentiability), at the collapse time of a ¼ a⋆;1RG ¼
20=3 ≃ 6.67 for ϵ ¼ 1 [achieved by setting the round
bracketed term in Eq. (4.12) to zero]. This shell-crossing
prediction, which is just a first-order approximation within
the RG approach, outperforms the third-order LPT pre-
diction (a⋆;3LPT ≃ 6.83, as opposed to the exact result
a⋆ ≃ 5.62). Furthermore and most interestingly, the 1RG
solution comes with a critical exponent of 2=3, thereby
predicting correctly the blowup of the velocity v ¼ _x at
shell-crossing time. We will comment on this further below
(see also Appendix A).

C. Second-order renormalization

Collecting all terms up to Oðϵ2Þ, the unrenormalized
second-order solution for r is

r ¼ a

�
1þ 3c1

2a3=2

�
2=3

−
ϵ

10
r20 −

3ϵ2

700
r30: ð4:13Þ

Now we add a second-order renormalization term, i.e.,
c1 → c1ð1þ ϵAþ ϵ2BÞ, with the task that the newunknown
B absorbs the secular terms at order ϵ2 in (4.13). Of course,
the A term arising from the first-order renormalization
remains unchanged. We find

B ¼ −
5

2800c1
a7=2

�
1þ 3c1

2a3=2

�
7=3

: ð4:14Þ

Plugging this into (4.13) one first obtains

r ¼ a

�
1þ 3c1½1þ Aϵþ Bϵ2�

2a3=2

�
2=3

ð4:15Þ

up to Oðϵ3Þ, where A and B are, respectively, given in
Eqs. (4.10) and (4.14). Discarding the decaying modes we
then obtain the second-orderRG solution r ¼ r2RG þOðϵ3Þ,
with

r2RG ¼ a

�
1 −

3aϵ
20

−
3a2ϵ2

1120

�
2=3

: ð4:16Þ

Expanding this result about a ¼ 0 to second order, we
recover the standard 2LPT result [Eq. (3.2) including the
first two terms in the sum] for ϵ ¼ 10k=3, indicating that the
2RG result aligns with the LPT results for sufficiently early
times, as it should.
In Fig. 2 we show the temporal evolution of the physical

trajectory using the so-obtained 1RG and 2RG solutions
(see Fig. 3 for results up to 4RG). In the overdense case, the
RG (and also the UV) solutions become complex after
collapse, and therefore we show the real parts (solid lines/
dots) as well as the absolute parts (faint lines/dots) of the
respective solutions. Clearly, 1RG and 2RG resolve the
collapse to higher accuracy as compared to low-order LPT
predictions (top panel). In the underdense case (lower
panel), 1RG and 2RG are performing well even for some
time beyond the expected range of validity. Still, comparing
the late-time evolution between the two RG solutions in the
void case, it is observed that 2RG does not improve
significantly over 1RG for a ≳ 10.
In fact, going to times much later than shown in Fig. 2,

2RG performs poorly. The reason for that is that the term
∼a2 within the brackets of (4.16) adds a root in r2RGðaÞ
at a ¼ a⋆ ¼ −ϵ−1ð4=3Þ½21þ ffiffiffiffiffiffiffiffi

651
p � ≈ −62.02=ϵ, pushing

the void solution into an artificial collapse and, therefore,
into unphysical behavior. We will further address related
points in the following, as well as simple counter measures.
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D. Higher-order RG and Padé approximants

It is straightforward to extend the formalism above to
higher orders in ϵ. For example, at order 4RG we find

r4RG ¼ aX2=3 ð4:17Þ

to Oðϵ5Þ, where

XðaÞ ≔ 1 −
3aϵ
20

−
3a2ϵ2

1120
−
11a3ϵ3

67200
−

823a4ϵ4

59136000
: ð4:18Þ

Generally, higher-order RG solutions become more accu-
rate within the disk of convergence (gray shaded areas
in Fig. 2). However, as pointed out above, beyond the

expected range of convergence—which is particularly
relevant in the void case—higher-order RG exemplifies
similar divergent behavior as observed in the LPT case.
Actually, such divergent behavior is generally expected for
asymptotic methods, i.e., such approaches do not neces-
sarily perform better at higher iterations. There are two
ways out of this dilemma, namely either to stay as low as
possible in the perturbative iteration within the asymptotic
method, or to investigate other means to remedy the
shortcomings.
For this reason, we exploit in the following Padé

approximants to the interior term X appearing in the
4RG result. We remark that similar approximations
have been already applied to the “plain” LPT series
expansion [53–55], but we stress that Padé approximants
of the LPT series are vastly different to the ones that we
apply to X , essentially since in our RG approach the term
X is exponentiated with 2=3, thereby correctly capturing
the leading-order asymptotic behavior of the LPT series.
See also Appendix A for further details and in particu-
lar Fig. 8.
We define the Padé approximant of degree ðm; nÞ for an

arbitrary function fðaÞ with

Pðm;nÞ½fðaÞ� ≔
P

m
j¼0 cja

j

1þP
n
k¼1 dka

k ; ð4:19Þ

FIG. 3. Temporal evolution of the comoving trajectory x ¼ r=a
for RG-related results for ϵ ¼ �1 (bottom panel: ratio of
approximation versus exact result). The long-dashed lines show
pure RG results up to the fourth order, while the solid lines involve
additionally Padé approximants. Specifically, “iRGþ PDmn”
employs riRG=a ¼ ðPðm;nÞ½X �Þ2=3 for i; m; n ¼ 1; 2;…, where
the various Padé approximants are given in Eq. (4.20).

FIG. 2. Temporal evolution of the physical trajectory rðaÞ for
k ¼ 3=10 (top panel) and for k ¼ −3=10 (bottom panel), as
predicted from various theoretical approaches. Specifically,
“1RG” and “2RG” are based on Eqs. (4.12) and (4.16),
respectively, for ϵ ¼ �1, while “nUV” is our novel UVapproach
discussed in Sec. V. The gray shading denotes the range of
convergence of the LPT series (3.2). Solid lines take the real
values from the solutions, while fainter lines depict the contin-
uations of the absolute value of the respective solutions.
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where cj and dk are time-independent coefficients that can
be determined by Taylor expanding fðaÞ about a ¼ 0.
Doing so for XðaÞ as defined in (4.18), we find the
following Padé approximants

Pð1;1Þ½X � ¼ 47

5
þ 2352

5ðaϵ − 56Þ ; ð4:20aÞ

Pð1;2Þ½X � ¼ 56ð1459aϵ − 8460Þ
aϵð10640þ 327aϵÞ − 473760

; ð4:20bÞ

Pð2;1Þ½X � ¼ aϵð10640 − 327aϵÞ − 50400

280ð11aϵ − 180Þ ; ð4:20cÞ

Pð2;2Þ½X � ¼ ½120859200þ aϵð1469453aϵ − 29597400Þ�
× ½35ð3453120þ aϵ½2083aϵ − 327672�Þ�−1:

ð4:20dÞ

In Fig. 3 we show the comoving trajectory x ¼ r=a for pure
RG results (dashed lines) as well as RG descriptions that
also include Padé approximants (solid lines). While all
pure RG methods predict well the overdense collapse with
increasing accuracy for higher iterations, one can also
observe the above mentioned pathological prediction for
the late-time evolution of voids.
In fact, one reason for the good performance of 4RGþ

PD22 is [and similarly for 3RGþ PD21], that its two roots
appear exclusively on the positive time axis, specifically at
a ¼ a� ≃ 5.59=ϵ; 14.45=ϵ [at a� ≃ 5.75=ϵ; 26.78=ϵ]. This
is in stark contrast to 2RG, where a second root was added
in the negative time branch, causing the void solution to
undergo an unphysical collapse, thereby spoiling its
long-term accuracy. Our results indicate that the use of
Padé approximants seems critical to maintain a certain
symmetry—no roots at negative time—an aspect that
deserves deeper mathematical investigation in future work.

V. ASYMPTOTIC ANALYSIS
AND UV COMPLETION

We have just seen above that RG techniques can be used
to circumvent inherent limitations of the LPT series. Here
we shall follow an orthogonal approach: Instead of avoid-
ing LPT, we develop a framework that allows us to extract
and exploit the asymptotic properties of the displacement
series

ψðaÞ ¼
X∞
s¼1

ψ sas; a ≔ ak; ð5:1Þ

thereby providing a theoretical description that we call UV
completion [see Eq. (3.4) for the first few coefficients ψs].
The general idea of the UV completion is as follows [see

Eq. (5.9) for the final result]. Suppose that there exists an

explicit solution for the nonperturbative displacement field,
valid deep in the ultraviolet (short wavelength) regime. The
functional form of that nonperturbative displacement might
not be known in general, but let us assume that we know at
least some of its “intrinsic” properties, which are encapsu-
lated in the singular term

ψ∞ðaÞ ∝ ða⋆ − aÞν: ð5:2Þ

Here, ν is neither zero nor a positive integer, and a⋆ denotes
a certain time value when a singularity in the problem arises.
For example, if ν < 0, then the displacement itself would
“blow up” at a ¼ a⋆, which of course would be unphysical.
If instead ν > 0 but ν ∉ N, then the displacement will
remain bounded, but the nth derivatives with n > bνc
exhibit singular behavior at a ¼ a⋆, which is an instance
of nonanalyticity (ψ ∉ C∞, i.e., the solution is not infinitely
differentiable, and therefore not globally representable by a
Taylor series).
Having the above in mind, we conjecture that the UV-

completed solution of the LPT displacement field (5.1) is
then obtained by splitting off the nonanalytic piece ψ∞ as
follows:

ψnUVðaÞ ¼
Xn−1
s¼1

ψ sas þ ψ∞ðaÞ − ψ ðn−1Þ
∞ ðaÞ : ð5:3Þ

Here, the first term on the rhs is the truncated LPT series,

while ψ ðn−1Þ
∞ denotes the Taylor expansion of ψ∞ about

a ¼ 0 to truncation order n − 1. This last term is needed to
avoid the double counting of certain low-order coefficients.
We remark that such UV completing schemes are well
known in the field of general fluid dynamics and asymp-
totic analysis; early related work can be found, e.g., in
Refs. [90–92].
Before going into the calculations, let us briefly sum-

marize the steps needed to determine the unknowns ν and
a⋆. First of all, the physical meaning of these unknowns can
be obtained by considering the Taylor expansion of (5.2)
about a ¼ 0, and comparing subsequent ratios of these
Taylor coefficients with ratios of the LPT coefficients ψn. A
straightforward analysis then reveals that a⋆ is nothing but
the radius of convergence of the LPT series, if and only if
the involved limit in d’Alembert’s ratio test

1

a⋆
¼ lim

n→∞

ψn

ψn−1
ð5:4Þ

exists. Similar asymptotic considerations performed on the
“graphical” level (Fig. 4) then lead to the conclusion that ν
is related to the slope of the ratio of coefficients at order
infinity.
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A. Leading-order asymptotics of LPT series

As outlined above, we first need to analyze the asymp-
totic properties of the LPT series before we can perform the
UV completion. To do so, we follow mostly the method-
ology of Refs. [61,92]. See also Refs. [30,66] where a
similar analysis has been applied employing cosmological
initial conditions.
Before proceeding let us consider the following problem.

While the LPT series (5.1) comprises an exact mathemati-
cal solution within its disc of convergence, in practice we
can only generate a finite number of coefficients in the
infinite series. This raises the following question: given a
finite number of (low-order) LPT series coefficients ψn,
how can we determine its asymptotic properties, which are
decided at order infinity?
To make progress we first consider the Taylor series

representation of the singular term appearing in (5.2), which
reads

ða⋆ − aÞν ¼ aν⋆
X∞
n¼0

cnan; ð5:5Þ

where we used a generalized binomial coefficient

cn ¼
�
ν

n

�
½−a⋆�−n: ð5:6Þ

From the very definition of cn, it is clear that the ratio of
Taylor coefficients of the singular term is, for any n > 2,
given exactly by [92]

cn
cn−1

¼ 1

a⋆

�
1 − ð1þ νÞ 1

n

�
: ð5:7Þ

It is important to observe that this ratio is linear in 1=n. This
linear relationship suggests that the unknowns a⋆ and ν can
be obtained by a graphical method, namely by drawing
subsequent ratios of cn=cn−1 against 1=n.
Now comes the crucial twist: if the above mentioned

linear relationship persists also for the ratios of the LPT
coefficients ψn for n → ∞, then we can deduce that the
large-n asymptotic behavior is precisely described by ψ∞
as given in Eq. (5.2). Even more, by drawing ψn=ψn−1
against 1=n and evaluating the y intercept, one essentially
applies the ratio test (5.4). The described method traces
back to the work of Domb and Sykes [91] in a fluid-
mechanical context.
In Fig. 4 we show the resulting “Domb-Sykes” plot for the

LPT series (5.1), obtained by drawing the subsequent ratios
ψn=ψn−1 between the perturbation orders n ¼ 2–1000
(marked by blue dots). It is seen that these ratios settle into
a linear relationship for sufficiently large orders, justifying a
linear extrapolation to the y intercept, from which one can
read off the radius of convergence. In more detail, we apply a
linear least-square fit between the perturbation orders
n ¼ 900–1000, which reveals the linear model −0.993 ×
1=nþ 0.593 (orange dashed line). Comparing this linear
model against the form (5.7), one can read off the two “free”
fitting parameters

a⋆ ≃ 1.686; ν ≃ 0.675: ð5:8Þ

Here, a⋆ ¼ a⋆k is identified as the radius of convergence,
which coincides in the present case with the collapse time.
From the spherical collapse model (Appendix A), we
actually know the “exact” values for both parameters,
namely a⋆ ¼ δc ¼ ð3=5Þ½3π=2�2=3 and ν ¼ 2=3, where δc
is the linear density contrast at collapse time. While the
above extrapolation technique is able to determine a⋆ at an
accuracy of five significant digits, the “error” on determin-
ing the critical exponent is fairly large, namely about 1.22%.
We note however that the numerical departure from 2=3
could also arise due to the fact, that the extrapolation
method detects corrections from the next-to-leading order
asymptotic behavior [which originates from a new singular
term with exponent 4=3; see Eq. (A9)]. In any case, as we
shall see, even with the approximate value for ν, the UV
method delivers very accurate results (Figs. 2 and 5 employ
the approximate value for ν; see also Appendix C for further
results).

B. UV completion

The so-obtained results for a⋆ and ν from the asymptotic
considerations can be directly used to extrapolate the LPT
series to order infinity. To achieve this, we simply demand
that the truncated LPT series to order n is UV completed by

FIG. 4. Domb-Sykes plot of subsequent ratios of coefficients
ψn=ψn−1 over 1=n (blue data points) of the displacement series
(5.1). The coefficients ψn are obtained through the recursive
relation (3.3), and in the figure we show the results from the first
1000 coefficients. The orange dashed line denotes a linear fit
obtained between perturbation orders 900 and 1000. Extrapola-
tion of this linear fit to the y intercept (gray vertical line) reveals
a⋆ ≃ 1=0.593 ≃ 1.686, which coincides with the exact result for
the shell-crossing time at the 10−6 level.
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the remainder of the series, where, crucially, the latter is
proportional to the singular term ða⋆ − aÞν. The amplitude
of that singular term is naturally fixed by demanding that
the series coefficients at the nth order are equal. This leads
directly to

ψnUVðaÞ ¼
Xn−1
s¼1

ψ sasþ
ψn

cn

��
1−

a
a⋆

�
ν

−
Xn−1
k¼0

ckak
�
; ð5:9Þ

where a ¼ ak, and the generalized binomial coefficient ck
is given in Eq. (5.6). This is our final result, which can be
used to determine the UV completion at a given truncation
order n. For example, for n ¼ 3, we have

ψ3UVðaÞ ¼ −
a
3
−
a2

21
þ 23δc

756

�
a2 þ 6aδc

þ 9

��
1 −

a
δc

�
2=3

δ2c − 1

��
; ð5:10Þ

where δc ¼ a⋆ ¼ ð3=5Þ½3π=2�2=3 ≃ 1.686, and, for simplic-
ity, we set ν ¼ 2=3.
In Fig. 5 we show the resulting comoving matter

trajectory for the so-obtained UV completion (solid lines)
where, as before, the negative time branch corresponds to
the void evolution. It is seen that the voids are most
accurately described by the UV completion for the trunca-
tion order n ¼ 3 (orange line), whereas higher-order
truncations become less accurate for large “negative” times.

As mentioned above, this is an expected feature deep in the
asymptotic regime. Still, any of the UV-completed pre-
dictions fare much better in comparison to LPT (dashed
lines) at all times. Furthermore, while the remainder of the
LPT series [square bracketed term in Eq. (5.9)] has the task
of completing the LPT series to all orders, it clearly does
not diverge in the void solutions. This is made possible
since the remainder is not limited by the use of a Taylor-
series representation, as it is the case for LPT (or cosmo-
logical/Eulerian perturbation theory, for that matter).
Similar as with the RG methods, for the collapse case

(positive time branch in Fig. 5) and within the convergent
regime (gray shaded area), the UV completion performs
increasingly better at increasingly higher-order truncations.
We have explicitly verified this last statement by determin-
ing the UV completions up to truncation orders of order
100 (not shown).
Concluding this section, we have seen that the UV

completed displacement most accurately resolves the
spherical collapse and void evolution. This is made
possible by exploiting the explicit knowledge of the LPT
properties up to extremely high orders (see Fig. 4), which
provided us with most accurate determinations of the two
unknowns in the UV completion, namely the radius of
convergence of the LPT series and the critical exponent
appearing in Eq. (5.2). Of course, such accurate knowledge
of the unknowns cannot be expected “in practice,” espe-
cially when the present UV method is extended to cosmo-
logical initial conditions. While a dedicated study to UV
methods for cosmological initial conditions goes well
beyond this initial study, we refer the interested reader
to Appendix C, where we test UV predictions and expected
errors when the two unknowns in the asymptotic method
are less well estimated.

VI. DENSITY EVOLUTION AND DISTRIBUTION

A. Density evolution

Given the various solutions in the asymptotic
approaches, it is easy to evaluate their predictions of the
corresponding nonlinear density contrast δNL, defined as

δNLðtÞ þ 1 ¼ jxNLðtÞj−3: ð6:1Þ

Here, xNLðtÞ ¼ rNLðtÞ=aðtÞ is the comoving trajectory,
where the subscript “NL” stands for a given nonlinear
model prediction. Simple examples for this are

δ1LPT þ 1 ¼ ð1 − δlin=3Þ−3; ð6:2Þ

δ1RG þ 1 ¼ ð1 − δlin=2Þ−2; ð6:3Þ

δ2RG þ 1 ¼ ð1 − δlin=2 − 5δ2lin=168Þ−2; ð6:4Þ

δfit þ 1 ¼ ð1 − δlin=αÞ−α; ð6:5Þ

FIG. 5. Same as Fig. 3 but shown are UV-completed results at
various truncation orders [solid lines; cf. Eq. (5.9)] for the cases
ϵ ¼ �1 corresponding to k ¼ �3=10. For comparison, we have
also added some nLPT results [dashed lines; cf. Eq. (3.2)].
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where δlin ≔ ð3ϵ=10Þa, and we note that k ¼ 3ϵ=10. Note
that by construction, the leading-order Taylor expansion of
the rhs is always 1þ δlin þOðδ2linÞ. Equation (6.5) traces
back to work by Bernardeau [44,93,94] (it is a fit except in
the limit Ω;Λ → 0), and the appearing parameter was
originally set to α ¼ 3=2. Later on, it was found that the
value of α ¼ 5=3 produces a better fit (see, e.g.,
Refs. [45,95–97]). This formula has seen widespread use
when relating linear and nonlinear densities, see, e.g.,
Ref. [45], but particularly also to correct LPT displacements
on small scales in hybrid methods, see, e.g., Ref. [43].
For the two more elaborate asymptotic methods, the

nonlinear densities read

δ3UV þ 1 ¼
�
1 −

δlin
3

−
δ2lin
21

þ 23δc
756

�
δ2lin þ 6δlinδc

þ 9

��
1 −

δlin
δc

�
2=3

δ2c − 1

���
−3
; ð6:6Þ

where we set ν ¼ 2=3 and δc ¼ ð3=5Þð3π=2Þ2=3 ≃ 1.686,
and

δRGþPD22 þ 1 ¼ 49ð1553904þ δlin½10415δlin − 491508�Þ2
× ð10877328þ δlin½1469453δlin
− 8879220�Þ−2: ð6:7Þ

In Fig. 6 we show a comparison of the resulting predictions
for the nonlinear density. For the 3UV-completed result we
show both the results for the critical exponent ν ¼ 2=3
(solid green line) as well as for the approximative value
ν ≃ 0.675 (faint green line) as obtained from the Domb-
Sykes extrapolation. The former critical exponent leads to a
slightly better density prediction in voids as well as in
collapsing regions. Indeed, for ν ¼ 2=3 [ν ≃ 0.675] the
linear-density prediction at collapse agrees with the exact
result to 0.03% [0.058%] accuracy. For our flagship
prediction in the RG approach (4RGþ PD22 shown in
orange), the accuracy of the linear-density prediction at
collapse is only 1.2% and thus slightly worse as compared
to the UV method. However, in void regions, the situation is
different, and 4RGþ PD22 delivers the most accurate
density predictions considered in this article.

B. One-point distribution of density

Finally, we test our UVand RG methods by means of the
one-point probability distribution function (PDF) of the
matter density. For this it is useful to define the nonlinear
overdensity

ϱ ≔ δNL þ 1; ð6:8Þ

where δNL ¼ δNLðδlinÞ is the nonlinear density contrast
given in the previous section for various theoretical
predictions. Provided that the initial density distribution
is Gaussian and the validity of the spherical collapse model,
the PDF is [23,96–98]

ϱ2pðϱÞ ¼ 1ffiffiffiffiffiffi
2π

p exp

�
−
δ2lin
2σ2

�
dðδlin=σÞ
d ln ϱ

; ð6:9Þ

where σ2 is the variance of the top-hat filtered linear density
contrast. We normalize the probability p such thatR
∞
0 pðρÞdρ integrates to unity, but we note that this could
be altered, e.g., to accommodate for populations of collapsed
objects in high-density peaks. We also note that σ depends
on the chosen smoothing radius or, equivalently, on the
overdensity (or mass) of the enclosing volume. For sim-
plicity, we assume an initial power spectrum of PðkÞ ∝ kn

for which σ ¼ σvϱ
−ðnþ3Þ=6, where σv is a constant ampli-

tude. Finally, apart from Eq. (6.9), there are alternative
theoretical models for the PDF, such as obtained from
excursion set theory [99] (see also Ref. [97] for a highly
related study). We leave the comparisons of various PDF
predictions against numerical simulations for future work.
In Fig. 7 we show the resulting PDF predictions based on

the RG and UV methods (we set n ¼ −2 and
σv ¼ 1=2; 1=4). Technically, this is achieved by inverting
the functional relationship of ϱðδlinÞ ¼ 1þ δNLðδlinÞ to
δlinðϱÞ, such that the linear density contrast appearing
in (6.9) is expressed in terms of the nonlinear overdensity.
From the figure it is seen that the 3UV (green line) and

FIG. 6. Top panel: evolution of the nonlinear density contrast as
a function of 1þ δlin. The asymptotic approaches 3UV (green
line, solid with ν ¼ 2=3 and faint with ν ≃ 0.675) and 4RGþ
PD22 (orange) reproduce the exact result to good accuracy over
a wide range of temporal scales. The cross marks the point of
uniformity when δNL ¼ 0 ¼ δlin, while the density singularity is
reached when δlin ¼ δc ≃ 1.686. The cyan solid [faint] line is
based on the fit (6.5) with α ¼ 5=3 [α ¼ 3=2]. Bottom panel:
ratio of approximation versus the exact parametric solution.
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4RGþ PD22 (orange) predictions deliver nearly identical
results for the PDF, and that they agree excellently with the
exact prediction (black dashed line) over a wide range of
overdensities.

VII. SUMMARY AND CONCLUSIONS

A. Technical summary

Lagrangian perturbation theory is known to converge fast
for gravitational collapse that predominantly occurs along
one coordinate axis [57–59]—which is a generic feature of
triaxial collapse, giving rise to Zel’dovich’s pancakes. This
situation changes to the opposite when considering the case
of spherically symmetric collapse [53,61–63], for which
LPT convergence is very slow. Even worse, the LPT series
for the void evolution displays divergent behavior after a
critical time (see, e.g., Fig. 1), although the trajectories
should stay perfectly smooth. This pathological behavior
suggests that the Taylor-series approach inherent in LPT is
vastly inefficient for resolving spherical collapse.
In the present article, we have analyzed two asymptotic

approaches that remedy these drawbacks of LPT. One of the
avenues employs renormalization-group techniques, where
the evolution equation is first recast such as to identify an
effective expansion parameter—in the present case the
rescaled spatial curvature parameter ϵ ¼ 10k=3. The evolu-
tion equation is then solved with a naive perturbation ansatz
in powers of ϵ. Subsequently, the perturbation equations are

renormalized in order to expose the secular terms, i.e., terms
that would grow unboundedly for large times. After evalu-
ating the RG-flow condition, which removes the arbitrari-
ness of certain integration constants, one then obtains the
final renormalized result. These steps have been effectively
implemented in a particularly concise way in Sec. IV; we
refer the interested reader to Appendix B for more elaborate
technical details.
The analyzed RG technique predicts already in the first

iteration a singular behavior of the solution with the correct
critical exponent within the leading-order asymptotics
(cf. Appendix A for complementary asymptotic consider-
ations by means of the exact parametric result). Subsequent
higher-order iterations within the RGmethod are particularly
fruitful when paired with Padé approximants (Sec. IVD).
Overall, we find that the Padé approximant (2,2) of the 4RG
prediction (dubbed 4RGþ PD22) delivers the most accurate
RG result. We find some evidence that Padé approximants
are not just better approximations, but in fact are crucial to
restore a symmetry property of the solution which, in the
present case, would otherwise lead to unphysical collapse of
void solutions.
The other asymptotic approach that we considered is the

UV completion (Sec. V). For this we first analyzed the
large-order asymptotic properties of the LPT series, for
which we drew the so-called Domb-Sykes plot (Fig. 4).
From this plot it is seen that subsequent ratios of LPT
coefficients settle into a linear relationship at large orders,
from which one can deduce that the radius of convergence
of the LPT series is limited by a singularity at the (real-
valued) collapse time. Even more, the graphical analysis
reveals a measured critical exponent that closely resem-
bles the one obtained from the RG method. With this input
at hand, one can complete the LPT series in a highly
efficient manner [Eq. (5.9)]. Crucially, the UV-completed
prediction does not come with the above mentioned
pitfalls of LPT, since the remainder of the series is not
a Taylor series anymore. We note however that the UV
completion should be performed at sufficiently low
truncation orders, otherwise unwanted features in the void
evolution are “reactivated.” For both over- and underdense
regions, we find that the UV completion with third-order
truncation in LPT (dubbed 3UV) leads to the most
convincing predictions.
Finally, we have tested our two asymptotic methods

by means of predicting the nonlinear density evolution
and corresponding one-point distribution (Sec. VI).
Characteristically, we find that the UV method works
marginally better for predicting the nonlinear density near
the collapse (which comprises a huge challenge for LPT)
in comparison to our flagship RG method, while the
situation is opposite in voids; see Fig. 6. In contrast, when
predicting the one-point probability distribution function
of matter, we found only negligible differences between
the tested UV and RG methods (Fig. 7).

FIG. 7. Same as Fig. 6 but shown is the normalized density
distribution function scaled with ϱ2 for the filtering amplitudes
σv ¼ 1=2; 1=4. We only show the best predictions to avoid
cluttering.
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B. Concluding remarks

We have analyzed the dynamical process from gravita-
tional infall to collapsed structures from the perspective of a
classical phase transition.We have seen clear indications that
fixed-order LPT is ultimately limited in capturing related
critical phenomena. For the idealized case of spherical
collapse, we provide two ways to remedy the situation.
The crucial step in both cases is to incorporate a nonanalytic
term ∝ ða⋆ − aÞν that captures the critical nature of gravi-
tational collapse, where ν is the critical exponent, and the
(curvature rescaled) cosmic scale factor a ¼ ak takes the
role of the order parameter.
The obvious challenge of the discussed asymptotic

methods is their potential applicability for predicting the
evolution of collisionless matter for cosmological initial
conditions in three space dimensions. For the UV method,
one first needs to find the precise nature of the convergence
limiting singularity(ies) for the Lagrangian displacement
field, which requires high-order LPT solutions that are
however already available [89,100,101]. In this context,
we note that in Ref. [66], we obtained some numerical
evidence that the norm of the displacement contains a
nonanalytic term that is in structure formally identical to the
one in the case of spherical collapse.
Regarding a UV completion within an Eulerian-

coordinates formulation, it is likely that the leading-order
asymptotic behavior of the fluid variables is characterized
by a pair of complex-conjugated singularities in time;
see Ref. [102] for highly related avenues applied to the
inviscid Burgers equation. However, in such a case, the
asymptotic structure of the fluid variables would be just
∝ ða⋆ − aÞν þ ðā⋆ − aÞν, where a⋆ is now complex and ā⋆
denotes its complex conjugate. Hence, the remainder of the
respective series has a different structure as in the spherical
case, but this can easily be handled by suitable alterations
within the framework.
Similarly, the RG method needs to be suitably adapted

when applied to cosmological initial conditions. First of all,
the underlying fluid equations are partial differential
equations in time and space. Therefore, as a preparatory
step, the fluid equations could be first represented in a
Fourier basis, which then leads to a spatially decoupled
ODE in time for each Fourier mode of the fluid variable.
The solutions to these ODEs could then be renormalized by
the methods outlined in this paper, provided a suitable
expansion parameter is identified. Regarding the latter, we
remind the reader that our starting point for the RG method,
Eq. (4.2), is obtained by time integrating the fluid equations
for spherical collapse. This time integration then revealed
as an integration constant the spatial curvature, which
indeed acts as the expansion parameter in the present
RG approach. Whether similar derivations hold for the
Fourier coefficients of the fluid variables for random initial
conditions remains to be investigated.

Future applications of the asymptotic methods include
the accurate modeling of (nonspherical) void and overdense
regions in deterministic or statistical contexts (e.g., excur-
sion sets and data inference for field-level forward model-
ing), as well as for hybrid approaches where the methods
are paired with numerical simulation or machine learning
techniques. Lastly, in this paper we did not consider post-
shell-crossing effects [59,103–106], but the RG and UV
methods are in principle able to handle such critical
behavior, which however requires further investigation.
In the long term, asymptotic methods have the potential for
reducing the gap between theoretical and numerical meth-
ods, while at the same time enhancing the physical insight
into highly nonlinear problems.
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APPENDIX A: EXACT PARAMETRIC SOLUTION

For completeness we report here the exact parametric
solution for the case of spherically symmetric over- and
underdensities. Most of the details are well known, see,
e.g., Refs. [81–84]), but we also provide an asymptotic
analysis by means of the parametric result that is perhaps
less well known.
Consider the parametrized evolution of a spherical

density perturbation in an expanding universe with vanish-
ing cosmological constant. By Birkhoff’s theorem, the
interior perturbation can be described in isolation as a
separate universe of constant scalar curvature K ¼ 10k=3
obeying

�
_R
R

�2

¼ 2M
R3

−
K
R2

: ðA1Þ

Let us change to conformal time η defined via dη ¼ dt=R
and nondimensionalize then with R̂ ≔ M, so that we
have the new dimensionless radius coordinate r ≔ R=R̂
of the form

�
dr
dη

�
2

¼ 2r − Kr2: ðA2Þ

Given the boundary condition at rð0Þ ¼ 0, the general
solution in conformal time is rðηÞ ¼ ½1 − cosð ffiffiffiffi

K
p

ηÞ�=K,
and for the specific (limiting) cases
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rðηÞ ¼

8><
>:

1 − cos η for K ¼ þ1

η2=2 for K ¼ 0

−1þ cosh η for K ¼ −1
: ðA3Þ

Instead of having solutions in terms of conformal time, we
like to express these solutions in terms of either cosmic
time t or in terms of the scale factor a of a flat background
cosmology. Integrating the relation dt ¼ RðηÞdη yields
tðηÞ ¼ η=K − sinð ffiffiffiffi

K
p

ηÞK−3=2, and for the specific cases

tðηÞ ¼

8><
>:

η − sin η; K ¼ þ1

η3

6
; K ¼ 0

−ηþ sinh η; K ¼ −1

: ðA4Þ

In a spatially flat, matter dominated universe we can write

aðtÞ ¼ 1

2
ð6tÞ2=3: ðA5Þ

Using this relation combined with the above solution for
tðηÞ, we then have

aðηÞ ¼

8><
>:

ð1=2Þ½6ðη − sin ηÞ�2=3; K ¼ þ1

ð1=2Þη2; K ¼ 0

ð1=2Þ½6ðsinh η − ηÞ�2=3; K ¼ −1

: ðA6Þ

On a technical level, to get the solution r as a function of a,
we plot parametrically rðηÞ against aðηÞ. In the positive
curvature case, the first shell-crossing occurs for η ¼ 2π,
which translates to the known result

a⋆ ¼ ð3π
ffiffiffi
2

p
Þ2=3 ≃ 5.622: ðA7Þ

Furthermore, we derive the critical exponent of the shell-
crossing singularity by means of the above-mentioned
parametric solution; see Refs. [107–110] for highly related
avenues.
For this we consider the Taylor expansion of

rðηðaÞÞ ¼ 1 − cos ηðaÞ ðA8Þ

around the shell-crossing time aðηÞjη¼2π ¼ a⋆. Here, ηðaÞ
is the inverse function of aðηÞ ¼ ð1=2Þ½6ðη − sin ηÞ�2=3
which is a priori unknown in explicit form, however for
evaluating the Taylor expansion of (A8) around the shell-
crossing time, only the series reversion is needed. One
straightforwardly finds

rðηðaÞÞja¼a⋆ ¼ cða − a⋆Þ2=3 þOðða − a⋆Þ4=3Þ; ðA9Þ

with c ¼ 38=9π2=92−5=9, thereby identifying a critical expo-
nent of 2=3 in the leading-order asymptotics. Quite aston-
ishingly, already the first-order renormalization-group

approach from Sec. IV correctly predicts this critical
exponent.
Finally, for completeness we show in the top panel of

Fig. 8 the velocity u ≔ −∂ar (minus sign is convention)
for the exact prediction (black dashed lines), as well as
for several approximation schemes (various colors). Clearly,
the exact parametric solution, the RG and UV approaches
detect the emergence of a singular velocity at collapse time
a ¼ a⋆ (albeit with an unwanted shift of the RG result along
the temporal axis that could be refined at higher orders). As
mentioned earlier, this singular behavior is expected, simply
due to the asymptotic nature of the problem. Still, we should
point out that it is in essence the chosen temporal variable
(here the scale factor) that causes this singularity. Indeed,
taking the conformal time as the temporal parameter for
the physical trajectory, it is trivially seen that the corre-
sponding velocity û ¼ −∂ηrðηÞ remains finite at all times
in the overdense case [cf. Eq. (A3)]. Thus, the temporal
coordinate transformation (A4) acts as the desingularization

FIG. 8. Top panel: the velocity u ≔ −∂ar in the overdense case
for ϵ ¼ 1 and k ¼ 3=10. Note that we do not show the full
temporal evolution but focus on times close to the blowup, which
in the present case is at a ¼ a⋆ ≃ 5.622. The depicted RG þ Padé
approach [orange line; based on Eq. (4.20d)] as well as the UV
method (green line) reproduce the generic singular behavior as
expected from the exact spherical collapse model (black dashed
line). By contrast, 50LPT (purple line) or its plain Padé approx-
imant “5,5” (blue line) do not predict this behavior. Bottom panel:
same but showing the physical trajectory for comparison.
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transformation for spherical collapse. Hence, much in the
sense as for the singularity of the Schwarzschild solution at
the horizon of a black hole, also the present singularity is
removable and thus not really physical. Note however that
new singularities might be easily introduced, once the
present analysis is extended into the postcollapse regime;
see Refs. [59,103,106] for related avenues however within a
one-dimensional setup.

APPENDIX B: MORE DETAILS
TO THE RG APPROACH

Here we reconsider the RG calculations from Sec. IV but
follow more closely the formalisms of Refs. [69–71], who
applied RG techniques to various noncosmological fluids.
On top of that, we will apply suitable multiscaling tech-
niques that in fact allows us to solve the corresponding RG
flow equations exactly. Nevertheless, we should stress that
the reported results agree exactly with those reported in
Sec. IV. Thus, the following demonstrations serve rather as
material for the reader to gain more intuition about the
applied asymptotic methods.
As stated in the main text, solving the evolution equation

r02 ¼ a
r
− ϵ

a
2

ðB1Þ

by the perturbative ansatz r ¼ r0 þ ϵr1 þ � � �, one obtains
at the zeroth order

ϵ0
�
r020 ¼ a

r0

�
: ðB2Þ

In Sec. IV we solved this ODE without explicit boundary
conditions; its solution can be written as

r0 ¼ ðc2 þ a3=2Þ2=3; ðB3Þ

where c2 is an integration constant. From here on we will
execute two main alterations as compared to the approach
of Sec. IV. The first alteration performs a multiscale
enlargement that is explained in the following section.
The second alteration is related to an alternative RG
approach that takes explicit boundary conditions for the
ODE into account.

1. Multiscaling refinement

Observe that Eq. (B3) contains two exponents: the interior
exponent is 3=2 while the exterior exponent is 2=3. These
exponents suggest that the evolution equation (B1) can be
written in a more efficient way, provided that we employ the
rescaled spatiotemporal coordinates

R2=3 ≔ r; T ≔ a3=2: ðB4Þ

With these changes, Eq. (B1) becomes

_R2 ¼ 1 −
ϵ

2
R2=3 ; ðB5Þ

where a dot denotes a time derivative with respect to
(cosmic) time T. Equation (B5) is autonomous in the time
variable, which is clearly not the case for its parent
equation (B1). Furthermore, the strong nonlinearity of
1=r in (B1) has been converted into a weaker nonlinearity
∼R2=3 in (B5). These combined observations suggest that
perturbative techniques in the scaled spatiotemporal coor-
dinates may grasp already the dominant asymptotic features
for the given problem.
Therefore, in what follows we seek perturbative solu-

tions for (B5), as opposed to solutions to its parent
equation (B1). We remark that the outlined RG method
works also without employing the rescaled coordinates,
however the corresponding RG flow equation can then only
be solved perturbatively.
To solve (B5) we impose a naive perturbation ansatz for

the rescaled trajectory

R ¼ R0 þ ϵR1 þ ϵ2R2 þ � � � ; ðB6Þ

which leads to the following perturbation equations

ϵ0f _R2
0 ¼ 1g; ðB7aÞ

ϵ1
�
2 _R0

_R1 ¼ −
1

2
R2=3
0

�
; ðB7bÞ

ϵ2
�
_R2
1 þ 2 _R0

_R2 ¼ −
R1

R1=3
0

�
; ðB7cÞ

etc. Now, if one solves these equations with the boundary
conditions Rð0Þ ¼ 0, one immediately obtains

R ¼ T −
3ϵ

20
T5=3 −

3ϵ2

1120
T7=3 þOðϵ3Þ; ðB8Þ

which is equivalent in the unscaled coordinates with

r ¼ a

�
1 −

3ϵa
20

−
3ϵ2a2

1120

�
2=3

þOðϵ3Þ: ðB9Þ

This result agrees exactly with (4.16). At this point we could
stop the derivation as the result coincides already with the
one stated in the main text. Instead we continue even further,
however, now with the actual RG procedure. We will find
that the RG procedure on top of the multiscaling approach
leads to no further improvement, indicating that the RG
techniques used cannot be further improved for the present
task (this is why we apply Padé approximants to the RG
approach).
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2. Refined RG method

Here we apply an RG method that is in the spirit of the
seminal approaches of Refs. [69–71]. In contrast to the
simplified approach outlined in Sec. IV, here we enable
explicit boundary conditions to solve the perturbation
equations (B7), provided at an arbitrary time T ¼ T0.
The appearing integration constants in the solutions are
then renormalized with the aim to isolate the term(s) that
grow unboundedly for large times. But T0 is in an arbitrary
timescale and the solution should not depend on it. Hence
one demands an RG flow condition that in essence removes
this arbitrariness from the solution.
Another interpretation of the RG flow condition is as

follows [71]. Suppose the solution RðTÞ has been obtained
by demanding the initial conditionRðT0Þ at arbitrary initial
time T0. The solution is thus R ¼ RðT; T0;RðT0ÞÞ where
the implicit dependence of R on the initial data can be
understood as characteristics along the solution curve. Put
differently, the solution RðT; T0;RðT0ÞÞ is identical to the
solution RðT; T1;RðT1ÞÞ with T1 ≠ T0, as long as both
initial values RðT0Þ and RðT0Þ lie on the same solution
curve of R. It can then be shown that the RG condition
dR=dT0 ¼ 0 leads exactly to the parent ODE, however now
not formulated for R but directly for the characteris-
tics RðT0Þ.
Let us begin with the calculational steps. Solving

Eq. (B7a) with the initial condition R0ðT0Þ ¼ R0 we obtain

R0 ¼ T − T0 þR0: ðB10Þ

The next-order perturbative equations are solved with the
initial conditions R1ðT0Þ ¼ 0 ¼ R2ðT0Þ. We get

R1 ¼ −
3

20

h
ðT − T0 þR0Þ5=3 −R5=3

0

i
; ðB11Þ

R2 ¼ −
3

1120

h
ðT − T0 þR0Þ7=3

þ 14R5=3
0 ðT − T0 þR0Þ2=3 − 15R7=3

0

i
: ðB12Þ

a. First-order renormalization

We first focus on the solution for R valid to order ϵ,
which reads

R¼ T −T0þR0−
3ϵ

20

h
ðT −T0þR0Þ5=3 −R5=3

0

i
: ðB13Þ

Here the secular (i.e., strongest growing term in time) is
located within the square bracket. To isolate the secular
term, we employ a renormalized integration constant
RðT0Þ that absorbs the nonsecular term in the square
bracket. This is achieved by the transformation

R0 ¼ RðT0Þ −
3ϵ

20
R5=3ðT0Þ: ðB14Þ

Employing RðT0Þ, the renormalized solution for R
becomes

R ¼ T − T0 þRðT0Þ −
3ϵ

20
½T − T0 þRðT0Þ�5=3; ðB15Þ

to Oðϵ2Þ. Since the arbitrary timescale T0 does not appear
in the original problem, we impose the RG flow equation

dR
dT0

				
T0¼T

¼ 0; ðB16Þ

which leads exactly to (i.e., no expansion needed!)

RðTÞ ¼ T þ C1; ðB17Þ

where C1 is an arbitrary integration constant that, in the
present case, just shifts the temporal coordinate. Setting the
shift C1 to zero, one finds the renormalized solution

R ¼ T −
3ϵ

20
T5=3; ðB18Þ

which, after reverting the scaling (B4), agrees with the first-
order renormalized result (4.12) in the main text.
We remark that the above RG procedure could be

alternatively executed by introducing a new time τ and
write T − T0 ¼ T − τ þ τ − T0 in (B15). Subsequently,
one absorbs the terms proportional to τ − T0 into a new
renormalized integration constant, and evaluates the altered
RG flow equation dR=dτjτ¼T ¼ 0. This procedure, which
would be closer in the original spirit of Refs. [69,70], leads
however to equivalent results as stated above.

b. Second-order renormalization

Similarly steps as above can be executed at higher
orders. We begin with the (fully) unrenormalized solution

R ¼ T − T0 þR0 −
3ϵ

20

h
ðT − T0 þR0Þ5=3 −R5=3

0

i

−
3ϵ2

1120

h
ðT − T0 þR0Þ7=3 − 15R7=3

0

þ 14R5=3
0 ðT − T0 þR0Þ2=3

i
ðB19Þ

up to order ϵ2. From the considerations of the first-order
renormalization, we know already the transformation ofR0

to order ϵ; see Eq. (B14). To make progress we use this
result and set R0 ¼ RðT0Þ − ð3ϵ=20ÞR5=3ðT0Þ þ ϵ2a2,
where a2 is an unknown. Plugging this relationship for
R0 into (B19) leads to the perturbation equations
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R0 ¼ T − T0 þR; ðB20Þ

R1 ¼ −
3

20
ðT − T0 þRÞ5=3; ðB21Þ

R2 ¼ a2 −
3

1120
½ðT − T0 þRÞ7=3 −R7=3�; ðB22Þ

whereRðT0Þ ≔ R for brevity. Notice that the second-order
term ∼ðT − T0 þR0Þ2=3 in (B19) has disappeared thanks
to the first-order renormalization. To complete the second-
order renormalization, we set a2 ¼ −3R7=3=1120, which
removes in (B22) the term that purely depends on the initial
condition, thereby isolating the remaining secular term at
order ϵ2. In summary, we can thus write Eq. (B19) as

R ¼ T − T0 þR −
3ϵ

20
ðT − T0 þRÞ5=3

−
3ϵ2

1120
ðT − T0 þRÞ7=3 þOðϵ3Þ: ðB23Þ

Imposing the RG flow equation dR=dT0jT0¼T ¼ 0 leads to
the exact solution RðTÞ ¼ T þ C as obtained from the
first-order renormalization, indicating that the renormaliza-
tion procedure is consistent. In summary, the renormalized
solution reads

R ¼ T −
3ϵ

20
T5=3 −

3ϵ2

1120
T7=3 þOðϵ3Þ ðB24Þ

or, in unscaled coordinates,

r ¼ a

�
1 −

3ϵa
20

−
3ϵ2a2

1120

�
2=3

þOðϵ3Þ; ðB25Þ

which agrees with the 2RG result stated in the main text.

APPENDIX C: FURTHER RESULTS
TO UV COMPLETION

Here we provide further results within the framework of
UV completion. Specifically, we analyze the predictions
for the case when the two unknowns in the method are not
known to high precision, which is particularly relevant
when the UV completion is applied to random field initial
conditions. As a reminder, these two unknowns are the
critical exponent ν and the radius of convergence of the LPT
series a⋆, which appear within the present UV completion
as follows,

ψ∞ðaÞ ¼ Aða⋆ − aÞν; a ¼ ak ðC1Þ

(the constant A is fixed by the UV matching criterion). In
Fig. 9 we show the temporal evolution of the physical

trajectory in the overdense case. In the top [bottom] panel
we fix a⋆ ¼ ð3=5Þð3π=2Þ2=3 ≃ 1.686 [ν ¼ 2=3] while we
vary the critical exponent [radius of convergence]. Clearly,
varying these parameters affects the prediction of the final
stages of the collapse (at a ≃ 5.622, vertical black dashed
line) significantly, while, at earlier times, the impact is
very small.

FIG. 9. Evolution of physical trajectory rðaÞ in the collapse
case (k ¼ 3=10). For convenience we show the ratio of the
various method versus the exact parametric result, and the vertical
long-dashed black line denotes the time of collapse. Top panel:
the critical exponent is varied while the radius of convergence a⋆
is fixed to the correct value. Bottom panel: the critical exponent is
fixed to ν ¼ 2=3 and the value of a⋆ is varied. We also show the
10LPT [5LPT] predictions for comparison.

FIG. 10. Same as Fig. 9 but showing the physical trajectory in
the void case (k ¼ −3=10).
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Generally, the prediction of the overdense collapse is
more hampered by a potential lack of precise knowledge
on a⋆ than on ν. Still, even if a⋆ is underpredicted by
more than 10%, the UV prediction fares still better than
the respective LPT prediction at the same perturba-
tion order.

In Fig. 10 we show the same as above but now applied to
the void case. Here, the UV completion shows a fairly weak
dependence on both a⋆ and ν; in fact, the mere knowledge
of the structural form of the asymptotic form (C1) appears
to be enough to clearly outperform the respective LPT
predictions.
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