
Cosmological consequences of first-order general-relativistic
viscous fluid dynamics

Fábio S. Bemfica,1,* Marcelo M. Disconzi,2,† Jorge Noronha ,3,‡ and Robert J. Scherrer 4,§

1Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte,
59072-970, Natal, Rio Grande do Norte, Brazil

2Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37211, USA
3Illinois Center for Advanced Studies of the Universe and Department of Physics,
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3003, USA

4Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

(Received 3 November 2022; accepted 18 December 2022; published 9 January 2023)

We investigate the out-of-equilibrium dynamics of viscous fluids in a spatially flat Friedmann-Lemaître-
Robertson-Walker cosmology using the most general causal and stable viscous energy-momentum tensor
defined at first order in spacetime derivatives. In this new framework a pressureless viscous fluid having
equilibrium energy density ρ can evolve to an asymptotic future solution in which the Hubble parameter
approaches a constant while ρ → 0, even in the absence of a cosmological constant (i.e.,Λ ¼ 0). Thus, while
viscous effects in this model drive an accelerated expansion of the universe, the equilibrium energy density
itself vanishes, leaving behind only the acceleration. This behavior emerges as a consequence of causality in
first-order theories of relativistic fluid dynamics and it is fully consistent with Einstein’s equations.
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I. INTRODUCTION

Given the ubiquity of viscous phenomena around us, it is
only natural to wonder how cosmological observations can
constrain the presence, or not, of viscous effects at different
stages in the large-scale evolution of the Universe. In fact,
dissipative processes in the early Universe have been
studied for quite some time [1–3]. In isotropic and
homogeneous spacetimes dissipation can only appear from
scalar sources, which motivated early on the study of bulk
viscosity in the expansion of the Universe [4,5]. Since this
effect is expected to contribute negatively to the pressure of
an expanding universe, bulk viscosity-driven inflation has
also been examined [6–11]. More recently, after the
discovery of the current accelerated expansion of the
Universe [12], the possibility of unifying dark matter
and dark energy as a single viscous fluid generated a lot
of interest [13–27] (for a recent review, see [28]).
Before statements concerning the suitability of viscous

dark matter models to match cosmological observations can
be reliably made, it is important to keep in mind that there
are still fundamental theoretical questions concerning the
description of viscous effects in general-relativistic fluids
that are very relevant to this problem. In fact, in standard
approaches viscous processes fundamentally alter the

equations of motion of relativistic fluids through the
addition of new terms containing spacelike derivatives1

of the hydrodynamic variables in the fluid’s energy-
momentum tensor. This occurs, for instance, in the famous
theories pioneered by Eckart [29] and Landau and Lifshitz
[30]. However, these modifications seem to be incompat-
ible with general relativity. Indeed, the theories proposed by
Eckart and Landau and Lifshitz are acausal [31,32], which
makes them unsuitable for the investigation of real-time
viscous processes in relativity. Furthermore, it is known
that such theories are unstable against perturbations around
the thermodynamical equilibrium state [32]. This is a
consequence of the more general statement that acausal
dissipative theories cannot be stable in relativity [33].
One could at first sight think that the Eckart and Landau

and Lifshitz theories are still suitable for cosmological
investigations despite their acausality and instability
because the symmetry assumptions made in cosmological
models imply that the dynamic evolution is described by a
system of ordinary differential equations, whereas causality
and stability are concepts applicable only to partial differ-
ential equations.2 Nevertheless, such a description given in
terms of ordinary differential equations implicitly assumes
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1Hence, only spatial derivatives appear in the energy-momen-
tum tensor in the fluid’s local rest frame.

2One can of course talk about stability of ordinary differential
equations. But the type of stability discussed in the context of
Eckart and Landau and Lifshitz theories requires at least two
independent variables.
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that the underlying system of partial differential equations
(from which the ordinary differential equations arise upon
imposing symmetry conditions) is well-posed. More pre-
cisely, since the symmetry assumptions of cosmology are
only approximately satisfied (e.g., the Universe is not
perfectly homogeneous nor isotropic on large scales), the
actual system’s description is given in terms of the full
Einstein-matter equations as partial differential equations.
Only if the ordinary differential equations provide a good
approximation to the underlying partial differential equa-
tions can one take their solutions as a good approximation
to the actual, not perfectly symmetric, system. This requires
the system of partial differential equations to be well-posed
[34], a property that fails for the Eckart and Landau and
Lifshitz theories [31].
In sum, the above facts hamper the application of

Eckart’s and Landau and Lifshitz’s theories in questions
concerning the cosmological evolution of the Universe. The
same can be said about the fate of cosmological fluctua-
tions in such viscous fluid models. Therefore, conclusions
obtained from such models must be taken with a grain of
salt (at best).
Israel and Stewart (IS) put forward an approach [35]

where linearized disturbances around global equilibrium
can be causal and stable [36], if certain conditions for the
fluid’s equation of state and transport coefficients (e.g.,
bulk and shear viscosities) are fulfilled. However, despite
recent progress [37,38], very little is known about the
properties and the constraints that must be fulfilled in these
theories in the nonlinear regime, which can be important in
simulations already in flat spacetime [39] and, also, when
embedding such fluid models in dynamical spacetimes. In
fact, in the context of viscous dark fluid modeling, it is not
known how the recently found nonlinear constraints
[37,38] coming from causality affect previous conclusions
drawn from such Israel-Stewart-like models (e.g.,
[10,26,27]). The constraints become especially relevant
in the far-from-equilibrium regime where viscous effects
are large, which is probed in viscous dark fluid models that
attempt to unify dark matter and dark energy in an
accelerating universe. In addition, well-posedness of the
Israel-Stewart equations remains an open question, except
in some very particular cases [37]. This is a potential
drawback given the importance of well-posedness for an
accurate description of the evolution, as explained above.
In this work, we investigate how viscous effects can

affect the evolution of fluids in isotropic, homogeneous,
and spatially flat spacetimes using the new general effec-
tive-theory formalism originally proposed in [40] and
further developed in [41–44]. In this approach, known as
BDNK (Bemfica-Disconzi-Noronha-Kovtun) in the fluid
dynamical literature after the initials of the authors of
[40,41], the viscous contribution to the energy-momentum
tensor is expanded according to a well-defined power-
counting scheme in terms of all the possible timelike and

spacelike derivatives of the hydrodynamic variables (e.g.,
density, flow velocity) compatible with the symmetries, in
contrast to standard formulations [29,30] where only terms
defined using spacelike derivatives are included. The full
system of equations of motion describing the evolving
viscous fluid coupled to Einstein’s equations has been
proven to be causal and strongly hyperbolic [43], hence
well-posed, even in the full nonlinear regime.3 Therefore,
this framework is uniquely suited to investigate real-time
dynamical problems, and also mathematical questions,
concerning the coupling of Einstein’s equations to viscous
fluids in general relativity. Numerical solutions of this
theory can already be found in [45–48] while systematic
derivations of BDNK theory from kinetic theory and
holography were presented in [49,50] (see also [51]).
Some recent applications can be found in Refs. [52,53].
We focus in this work on the simple dynamics displayed

by a viscous fluid in Friedmann-Lemaître-Robertson-
Walker (FLRW) spacetime [54], in the absence of a
cosmological constant (Λ ¼ 0). We show through a variety
of examples that an initially dustlike matter component
(cold dark matter) can drive an accelerated expansion at late
times when viscous effects are included. This implies that
the previous intuition concerning the effects of viscosity
acquired from inconsistent, or less well understood, fluid
models was well motivated. However, the consistent treat-
ment of causality at all levels in our approach predicts a
curious new effect that is only possible in general relativity;
the viscous fluid does not asymptotically achieve a constant
equilibrium density in accelerating cosmologies. Instead,
this density decays away as a power of the scale factor. This
occurs even though the cosmological constant is set to zero.
In other words, the equilibrium contribution of the viscous
fluid disappears at late times leaving only the acceleration
of the universe behind even though there is no cosmologi-
cal constant. Surprisingly enough, this phenomenon is fully
consistent with Einstein’s equations.
This “Cheshire Cat”-like behavior [55] during acceler-

ated expansion is a consequence of causality in this
approach and it cannot be reproduced by any previous
model without a cosmological constant where the equilib-
rium density must remain nonzero when the universe is
accelerating. Although different types of behavior for the
evolution of the cosmological scale factor are possible, for
completeness we show that an appropriate choice of model
parameters can produce evolution that almost exactly
mimics ΛCDM. While we are not advocating here that
viscous fluids provide an alternative way to fully describe
cosmological observations by unifying dark energy and
dark matter, it is amusing to see that the more sophisticated
and theoretically consistent framework employed in this
work does not seem to be incompatible with this idea (at

3Hydrodynamic stability around equilibrium has also been
established, see [40–44].
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least when it comes to the average properties of the
universe).
This paper is organized as follows. In the next section we

lay out the general properties of first-order theories of
relativistic fluid dynamics and discuss their dynamics in
Friedmann-Lemaître-Robertson-Walker spacetime. We dis-
cuss the case of radiation and also present some new
features of such theories in the case of accelerated expan-
sion. In Sec. III we analyze the stability property of the
equations of motion and their fixed points. In Sec. IV we
consider whether the theory presented here can lead to
cosmological evolution consistent with observations. Our
final remarks can be found in Sec. V.
Notation: We use natural units ℏ ¼ c ¼ kB ¼ 1, a

4-dimensional spacetime metric gμν with a mostly plus
signature, and Greek indices run from 0 to 3 while Latin
indices run from 1 to 3.

II. COSMOLOGY WITH FIRST-ORDER
GENERAL-RELATIVISTIC VISCOUS FLUID

DYNAMICS

Let us briefly review the effective theory approach to
relativistic viscous fluid dynamics introduced in Ref. [40]
and further developed in [41–44]. As usual [34], one starts
by decomposing the energy-momentum tensor of a fluid in
a general out of equilibrium state in terms of irreducible
structures constructed using a timelike future-directed
4-velocity vector uμ (where uμuμ ¼ −1),

Tμν ¼ Euμuν þ PΔμν þ πμν þ uμQν þ uνQμ; ð1Þ

where E ¼ uμuνTμν is the total energy density seen by an
observer comoving with the fluid,P ¼ ΔμνTμν=3 is the total
fluid pressure defined using the spacelike projector Δμν ¼
gμν þ uμuν orthogonal to uμ, Qμ ¼ −Δμ

λuνT
νλ describes

energy diffusion, and πμν ¼ ΔμναβTαβ is the shear-stress
tensor defined using the symmetric, rank-4 traceless projec-
tor Δμναβ ¼ 1

2
ðΔμβΔνα þ ΔμαΔνβÞ − 1

3
ΔμνΔαβ [34].

In an equilibrium state, πμν and Qμ vanish, E becomes
the equilibrium energy density ρ, and P the corresponding
thermodynamic pressure PðρÞ of the system determined by
its equation of state. The corresponding equilibrium
energy-momentum tensor is then Tμν

0 ¼ ρuμuν þ PΔμν.
In a general out-of-equilibrium state, one may write E ¼
ρþA and P ¼ Pþ Π, where A and the bulk scalar Π
represent the out of equilibrium corrections to the energy
density and pressure, respectively, as long as they vanish
in equilibrium. In this case, the most general energy-
momentum tensor that can describe an out-of-equilibrium
state can be written as

Tμν ¼ ðρþAÞuμuν þ ðPðρÞ þ ΠÞΔμν

þ πμν þ uμQν þ uνQμ: ð2Þ

Constraints on the out-of-equilibrium contributions can be
readily obtained by the dominant energy condition [56],
which imposes that ρþA ≥ 0 and QμQμ ≤ ðρþAÞ2.
This naturally places a bound on the size of some of the
out-of-equilibrium corrections. However, we note that the
conservation of energy and momentum, ∇μTμν ¼ 0, is not
enough to fully determine the evolution described by the 14
dynamical variables fρ; uμ;A;Π;Qμ; πμνg. Therefore,
some procedure must be implemented to fully specify
the system’s dynamics. Instead of treating the nonequili-
brium corrections as new degrees of freedom (and con-
sequently postulating new additional equations of motion
for them) as in Israel-Stewart-based approaches and
extended irreversible thermodynamics [57], here we con-
sider the case where the effective theory describing the
macroscopic motion of the system is defined solely in terms
of the standard hydrodynamic variables already present in
equilibrium, which in our case are fρ; uμg. In this approach,
the dissipative contributions must be given in terms of the
hydrodynamic fields fρ; uμg and their derivatives, which
may be organized through a relativistic derivative expan-
sion. Assuming that deviations from equilibrium are small,
the most general theory compatible with the symmetries
that can be written in terms of first-order derivatives is
defined by

A ¼ χ1
uα∇αρ

ρþ P
þ χ2∇αuα; Π ¼ χ3

uα∇αρ

ρþ P
þ χ4∇αuα;

Qμ ¼ λ

�
Δν

μ∇νP

ρþ P
þ uα∇αuμ

�
; πμν ¼ −2ησμν; ð3Þ

where σμν ¼ Δαβ
μν∇αuβ is the shear tensor. Above, the shear

viscosity η, and the coefficients λ and χ1, χ2, χ3, and χ4 are
in principle known functions of ρ, which are determined
from the underlying microscopic theory. The bulk viscosity
coefficient is given by the combination [41,42]

ζ ¼ χ3 − χ4 þ c2sðχ2 − χ1Þ; ð4Þ

where c2s ¼ dP=dρ is the equilibrium speed of sound
squared. The transport coefficients η and ζ determine
how the long wavelength limit of hydrodynamic modes
(i.e., sound and shear disturbances) are damped and the
amount of entropy produced [41], while three out of the
four χ coefficients determine the scales associated with
nonhydrodynamic4 modes.
It is important to stress a few properties of the expres-

sions above. First, given that in equilibrium uμ=T (with T
being the temperature) is a Killing vector [36] and
ρ ¼ ρðTÞ, every single term inA andΠ separately vanishes

in equilibrium, while Δν
μ∇νT
T þ uα∇αuμ ¼ 0 ⇒ Qμ ¼ 0.

4Those describe linearized disturbances around equilibrium
that carry energy even in the homogeneous limit.
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We also note that in this approach timelike derivatives of
the density, uα∇αρ, appear in the constitutive relations. This
fact is crucial for ensuring that the evolution is causal [40]
and linearly stable around equilibrium. Indeed, precise
conditions for the coefficients fη; λ; χ1; χ2; χ3; χ4g can be
found that guarantee causality, stability, strong hyperbol-
icity and, thus, local well-posedness of solutions of
Einstein’s equations coupled to the viscous fluid equations
[42,43]. These conditions are violated in the Landau-
Lifshitz theory [30], which corresponds to setting χ1 ¼
χ2 ¼ χ3 ¼ λ ¼ 0 and χ4 ¼ −ζ.
In this work we initiate the investigation of the possible

cosmological consequences of this approach. We consider
the viscous fluid theory defined by (2) and (3) coupled to
Einstein’s equations (without a cosmological constant) in
spatially flat Friedmann-Lemaître-Robertson-Walker space-
time described by the line element [58]

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð5Þ

whereaðtÞ is the cosmological scale factor. Homogeneity and
isotropy impose that the shear-stress tensor and the energy
diffusion exactly vanish, and our tensor becomes simply

Tμν ¼
�
ρþ χ1

uα∇αρ

ρþ P
þ χ2∇αuα

�
uμuν

þ
�
Pþ χ3

uα∇αρ

ρþ P
þ χ4∇αuα

�
Δμν: ð6Þ

We use uα ¼ ð1; 0; 0; 0Þ and ∇μuμ ¼ 3HðtÞ, where HðtÞ ¼
_aðtÞ=aðtÞ is the Hubble expansion rate (with notation
_a ¼ da=dt). Using (5), Einstein’s equations dictate that the
spatial derivative ∂iρ ¼ 0, and one finds the following set of
equations of motion for ρ and H:

_H þH2 ¼ −
1

6

�
ρþ 3Pþ 3χ3 þ χ1

ρþ P
_ρþ 3ð3χ4 þ χ2ÞH

�
;

ð7aÞ

H2 ¼ 1

3

�
ρþ χ1

ρþ P
_ρþ 3χ2H

�
; ð7bÞ

where we have appropriately normalized the fields above to
take into account the8πG constant factor present in Einstein’s
equations. As in the ideal fluid case, the equations of motion
of the fluid ∇μTμν ¼ 0 follow directly from those above.
Since causality requires χ1 > 0 [42], it is convenient to
rewrite (7) as

_HþH2¼−
1

2

�
P−

χ3
χ1
ρþχ1þ3χ3

χ1
H2−3χ2

�
χ3
χ1

−
χ4
χ2

�
H

�
:

ð8Þ

Finally, it is useful to define the variable

w ¼ P
ρ

ð9Þ

to investigate the out-of-equilibrium properties of the fluid for
different types of equation of state.

A. Radiation

For radiation w ¼ 1=3 and the imposition of conformal
invariance implies that χ ¼ χ1 ¼ χ2 ¼ 3χ3 ¼ 3χ4 ∼ ρ3=4

(hence, ζ ¼ 0) [40] and we obtain from (7b) and (8)

_ρþ 3Hρð1þ wðrÞ
eff Þ ¼ 0 and _H þ 2H2 ¼ 0; ð10Þ

where wðrÞ
eff ¼ 1

3
þ 4

9Hχ ðρ − 3H2Þ. One recognizes that the
Hubble parameter decouples from the energy density as it
obeys the well-known equation found for radiation in
equilibrium in FLRW [58], with general solution HðtÞ ¼
H0=ð1þ 2H0tÞ. Furthermore, we note that ρ ¼ 3H2 is a
solution of the equation of motion for the energy density.
Though at first one may think that the equation of motion
for ρ in (10) should have a complicated solution, the
uniqueness property to the solutions of the equations of
motion (i.e., well-posedness) directly implies that the
general solution for the energy density equation is indeed
simply ρ ¼ 3H2, just as in the ideal fluid case. Therefore, as
expected, out-of-equilibrium corrections vanish exactly for
pure (conformal) radiation in FLRW where ζ ¼ 0. This is
also true in the Landau-Lifshitz theory.
Besides indicating theoretical consistency, this result is

also important from the standpoint of observational cos-
mology as the behavior of the universe when it is
dominated by radiation is tightly constrained both by big
bang nucleosynthesis (BBN) [59] and by observations of
fluctuations in the cosmic microwave background (CMB)
[60]. Thus, any model for viscosity that strongly alters the
expansion history of the Universe during the radiation-
dominated era can be ruled out. As our theory produces no
change in the radiation equation of state, it automatically
satisfies this constraint.

B. Zero entropy production limit
away from conformal invariance

Above, we saw that for conformal radiation viscous
effects drop out of the Friedmann equation entirely and no
entropy is produced, as expected. We have no similar
requirement on the values of the χ’s for other equations of
state, but we can derive the requirements on these param-
eters such that out-of-equilibrium corrections vanish. One
can see that if χ3 ¼ χ4 in (8) and χ1 ¼ χ2 in (7b), then again
3ρ ¼ H2 is a solution of the equation of the equations of
motion, which reduce to those of an ideal fluid. Again,
well-posedness implies that the solutions are unique and,
thus, as long as these two conditions for the χ parameters
are satisfied, the out-of-equilibrium corrections to the
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Friedmann equations vanish. Note that this conclusion is
independent of the ρ-dependence of any of the χ param-
eters. Also, we remark that when χ1 ¼ χ2 and χ3 ¼ χ4 one
finds that ζ ¼ 0, so indeed no entropy [41] is produced in
this case.

C. Landau-Lishitz theory

In the absence of a cosmological constant, in Landau-
Lifshitz theory where χ1 ¼ χ2 ¼ χ3 ¼ 0 and χ4 ¼ −ζ the
viscous dark matter evolves, at late times, to a fluid with a
constant density thus mimicking the evolution of dark
energy. This can be easily understood because in this model
there are no out-of-equilibrium corrections to the energy
density (A ¼ 0) and Einstein’s equations become (taking
w ¼ 0 for simplicity)

H2 ¼ ρ

3
and _H þH2 ¼ −

1

6
ðρ − 9ζHÞ: ð11Þ

One can see that here a constant energy density implies a
constant Hubble expansion rate, with nonzero solution
H ¼ ζ that is positive for ζ > 0. Therefore, in Landau-
Lifshitz theory it is possible for viscous matter to behave at
late times as dark energy at the background level.5 This
result motivated the creation of many unified viscous dark
matter scenarios [28] and, in fact, it is known that this
model can provide a good description of the background
expansion of the Universe [15]. However, density pertur-
bations in this scenario based on Landau-Lifshitz theory are
rapidly damped out, which leads to severe constraints when
attempting to reconcile it with precision cosmology data
[15,21,62].
We emphasize that such constraints relied on theories

known to be acausal or for which nonlinear causality
remains open. We contend that decisive conclusions about
the viability of the viscous dark matter idea should be based
exclusively on viscous theories that satisfy causality and
well-posedness, in the nonlinear regime and also when
coupling to Einstein’s equations, and for which linear
stability in flat spacetime also holds. In Ref. [61] it was
proven that IS theories, in the absence of shear viscosity
and heat flow, fulfill these requirements (we note that
cosmological perturbations in bulk viscous IS-like theories
were studied in [20]). However, we point out that since
effects from shear and heat flow do contribute when the
spacetime is not homogeneous and isotropic, their influ-
ence on the evolution of cosmological perturbations must
also be investigated [63]. To the best of our knowledge, the
general first-order theory studied here is now the only
framework that fulfills the consistency conditions men-
tioned above and can, thus, be used to reliably study the
effects of bulk, shear, and heat flow even in viscous

inhomogeneous cosmological applications in a model
independent manner.

D. The Cheshire Cat mechanism

We show below that our approach differs from earlier
attempts to model dark energy as a viscous phenomenon in
an interesting way. In the model investigated here, the
equilibrium component of the density of the viscous dark
matter is driven asymptotically to zero. Because of the way
that the Friedmann equation is altered by viscous effects in
this model, the universe continues to accelerate even after
the driver of this acceleration effectively disappears.
Therefore, we refer to this as the “Cheshire Cat” mecha-
nism for generating accelerated expansion.6

This effect can be most easily illustrated by the following
analytical example. For simplicity, let us assume a constant
non-negative w ≪ 1 so the viscous matter has very small
equilibrium pressure, which works as the small parameter
in the perturbative argument that follows. Assume that the
matter is such that η ≥ 0 and ζ ¼ 2ηwð1

3
− wÞ. The con-

ditions for causality, well-posedness, and stability are
satisfied if, for instance, χ1 ¼ λ ¼ 4ηw, χ2 ¼ 2ηð1 − wÞ,
χ3 ¼ wχ1, and χ4 ¼ 4ηw=3 [42]. We note that the viscosity
coefficients are, thus, very small and when w ¼ 0 we
recover an ideal fluid with a matterlike, pressureless
equation of state.7 We take η (and, thus, ζ) to be constant.
Under these conditions, assuming that H is constant and
non-negative, the general solution of the equations of
motion (7b) and (8) can be found analytically

H ¼H0 ¼
ζ

1þw
and ρðtÞ ¼ ρ0β

ðρ0 þ βÞetβ=α − ρ0
; ð12Þ

where α¼4ηw=ð1þwÞ and β¼αH0ð3−wÞ=2w. Therefore,
even though H is constant, we note that the energy density
still varies with time, decreasing exponentially towards
zero even though there is no cosmological constant.8 We
remark that for this type of matter the Hubble constant is
very small, as small as w, and that the energy density still
varies in time (i.e., it is not a cosmological constant).
In an accelerated expansion driven by dark energy, the

universe expands at a constant rate and the dark energy

5The same result holds for standard IS theories such as those
considered in [61].

6Note that the term “Cheshire Cat” has been used in an entirely
different way in the context of quantum measurement theory [64].

7Note that η and λ need not to be zero even though shear and
heat flux vanish. The latter vanish because of symmetries and not
because the coefficients are zero.

8For a comparison, consider the evolution of an ideal fluid with
equation of state given by P ¼ wρ, in the presence of a positive
cosmological constant Λ (constant dark energy). Asymptotically,
3H2 → Λ and the ideal fluid energy density vanishes. The
difference here in the viscous case is that the energy density
evolves toward zero when H is constant and in the absence of a
cosmological constant.
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density remains constant. In the example above, the
cosmological scale factor aðtÞ increases exponentially
but causality generally imposes that the energy density
must lag behind, varying on time scales of the order of
χ1=ðρð1þ wÞÞ. According to the theory presented here, this
is a general consequence of causality and energy-momen-
tum conservation in out of equilibrium systems described
by first-order theories of relativistic viscous fluid dynamics.
We shall return to the Cheshire Cat mechanism in Sec. IV.

III. FIXED POINT ANALYSIS

Here we set w ¼ 0, i.e., P ¼ 0, and study the fixed points
and the stability properties of the equations of motion. We
also assume that χ1 > 0. We start by rewriting the relevant
equations of motion as

χ1 _ρþ 3Hρχ2 þ ρðρ − 3H2Þ ¼ 0 ð13Þ

and

2χ1 _H ¼ χ3ρ − 3H2ðχ1 þ χ3Þ þ 3Hðχ2χ3 − χ1χ4Þ: ð14Þ

We assume as before that χi ¼ χiðρÞ. Let ρ0 and H0 be the
fixed points of the equations above so _H0 ¼ _ρ0 ¼ 0.
Consider now fluctuations around the fixed points ρðtÞ →
ρ0 þ δρðtÞ and HðtÞ → H0 þ δHðtÞ. Note that fluctuations
also act on the transport coefficients, i.e., χiðρÞ →
χiðρ0Þ þ χ0iðρ0ÞδρðtÞ, where χ0i ¼ dχi=dρ. To zeroth order
in the fluctuations we obtain

ρ0ðρ0 þ 3H0χ2ðρ0Þ − 3H2
0Þ ¼ 0 ð15Þ

and

3H0χ1ðρ0ÞðH0 þ χ4ðρ0ÞÞ
¼ χ3ðρ0Þðρ0 þ 3H0χ2ðρ0Þ − 3H2

0Þ: ð16Þ

We see that Eq. (15) implies that ρ0 ¼ 0 or ρ0þ
3H0χ2ðρ0Þ ¼ 3H2

0. Clearly, the latter can be complicated
since one must know how χ2 depends on ρ to solve it.

A. ρ0 = 0 and H0 = 0

It is easy to see that ρ0 ¼ H0 ¼ 0 is a fixed point. In fact,
this fixed point is very general as it does not depend on the
properties of the χi’s. Let us now study the linear stability
properties of this fixed point. The linearized equations for
the fluctuations are

δ_ρ ¼ 0; ð17Þ

2δ _H ¼ χ3ð0Þ
χ1ð0Þ

δρþ 3ðχ2ð0Þχ3ð0Þ − χ1ð0Þχ4ð0ÞÞδH: ð18Þ

We can write this in matrix form, which reveals that the
eigenvalues of the matrix are 0 and ð3=2Þðχ2ð0Þχ3ð0Þ−
χ1ð0Þχ4ð0ÞÞ. Since one of the eigenvalues vanishes (in fact,
the determinant of the matrix vanishes), this is a marginal
case where one does not have an isolated fixed point. In this
case, a linear stability analysis is not guaranteed to give the
correct information about the stability properties of the
system [65]. In any event, this is not a physically interest-
ing case.

B. ρ0 = 0 and H0 ≠ 0

In this case, assuming that χ1ð0Þ þ χ3ð0Þ ≠ 0, one finds

H0 ¼
ðχ2ð0Þχ3ð0Þ − χ1ð0Þχ4ð0ÞÞ

χ1ð0Þ þ χ3ð0Þ
: ð19Þ

We will now find the conditions that ensure that H0 > 0
and ρ0 ¼ 0 is an attractor (i.e., a stable isolated fixed point).
In this case, the equations for the linearized fluctuations
v⃗ ¼ δð ρ

δHÞ become

dv⃗
dt

¼ Av⃗; ð20Þ

where A is a 2 × 2 matrix that depends on χið0Þ and χ0ið0Þ.
The eigenvalues of A are

a1 ¼ 3H0ðH0 − χ2ð0ÞÞ;

a2 ¼ −
3

2χ1ð0Þ
½χ2ð0Þχ3ð0Þ − χ1ð0Þχ4ð0Þ�: ð21Þ

Thus, a stable fixed point occurs when a1 < 0 and a2 < 0
(note that both eigenvalues are real). We see that a2 < 0
implies that

χ2ð0Þχ3ð0Þ − χ1ð0Þχ4ð0Þ > 0: ð22Þ

Since that quantity appears in H0, which we consider to be
positive, we see that this occurs then if χ1ð0Þ þ χ3ð0Þ > 0.
The condition that a1 < 0 then occurs when χ4 > −χ2.
When those conditions are met, the fixed point is hyper-
bolic (see Chapter 6 of Ref. [65]), which means that the
qualitative behavior of the system’s phase portrait near the
attractor is not changed even when small nonlinear terms
are included. As a matter of fact, the Hartman-Grobman
theorem [65] states that the local phase portrait near a
hyperbolic fixed point is topologically equivalent to the
phase portrait obtained via linearization and, thus, the
conclusions regarding the stability of the fixed point are
the same as in the linearized system (in other words, the
phase portrait near this attractor is structurally stable).
Summarizing, we conclude that ρ ¼ 0 with constant

H0 > 0 is an attractor when the following conditions
are met:
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χ2ð0Þχ3ð0Þ − χ1ð0Þχ4ð0Þ > 0 ð23Þ

χ1ð0Þ þ χ3ð0Þ > 0 ð24Þ

χ4 > −χ2; ð25Þ

which are compatible with the conditions found for
causality and also linear stability around equilibrium
presented in Ref. [42].

IV. TOWARD A REALISTIC COSMOLOGY

In this section we investigate whether the viscous fluid
presented here can produce cosmological evolution con-
sistent with observations, within a variety of different
scenarios. In particular, we will be interested in the types
of models discussed in Refs. [16,17] in which the universe
contains a pressureless dark matter component whose
viscosity drives the accelerated expansion.
From an observational point of view, it is useful to

redefine our evolution equations in terms of the scale factor
a instead of the time. Measurements of the dark energy
density are effectively determinations of HðzÞ, where the
redshift z is related to the scale factor as a ¼ 1=ð1þ zÞ.
Using d=dt ¼ Had=da, we can rewrite Eqs. (7a) and (7b)
with the scale factor as the independent variable,

H0aþ 3

2
H ¼ −

P
2H

−
1

2
χ3

ρ0

ρþ P
a −

3

2
χ4; ð26Þ

H2 ¼ 1

3

�
ρþ χ1

ρ0

ρþ P
aH þ 3χ2H

�
; ð27Þ

where we denote 0 ¼ d
da. When P ¼ 0, Eqs. (26) and (27)

become

H0aþ 3

2
H ¼ −

1

2
χ3

ρ0

ρ
a −

3

2
χ4; ð28Þ

H2 ¼ 1

3

�
ρþ χ1

ρ0

ρ
aH þ 3χ2H

�
: ð29Þ

The χ parameters must satisfy the conditions for nonlinear
causality and linear stability, which were obtained in
Ref. [42]. When P ¼ 0 these conditions are

λχ1 ≥ λχ3 þ χ2χ3 þ χ1

�
4η

3
− χ4

�
≥ 0; ð30Þ

χ21

�
4η

3
− χ4

�
þ λχ3ðλþ χ2Þ þ χ1χ2χ3 ≥ 0; ð31Þ

λþ χ1 ≥ χ3 þ
4η

3
− χ4 ≥ 0; ð32Þ

subject to the constraints λ; χ1 > 0, η ≥ 0, and λ ≥ η.
Furthermore, when P ¼ 0, the bulk viscosity becomes

ζ ¼ χ3 − χ4, which must be non-negative in accordance
with the second law of thermodynamics. Hence, we have
the further requirement here that

χ3 ≥ χ4: ð33Þ

A. Constant χ 1, χ 2, χ 3, and χ 4
Let us first consider the case where all of χ coefficients

are constant. As noted in the previous section, there is
generically an attractor solution with H → H0 ¼ constant,
with

H0 ¼
χ2χ3 − χ1χ4
χ1 þ χ3

; ð34Þ

as long as both the numerator and denominator on the right-
hand side are positive. Substituting this attractor into
Eqs. (26) and (27), we find that aρ0=ρ also evolves to a
constant, given by

a
ρ0

ρ
¼ −3

�
χ2 þ χ4
χ1 þ χ3

�
: ð35Þ

Furthermore, we define an effective weff given by

1þ weff ¼ −
1

3
a
ρ0

ρ
ð36Þ

and we note that, in particular, the special case χ2 þ χ4 ¼
χ1 þ χ3 gives weff ¼ 0. Because the general solution
of (35) is

ρ ∝ a−3ð1þweffÞ; ð37Þ

one can again see the Cheshire Cat behavior noted earlier.
WhenH → constant, the scale factor evolves as a ∼ eH0t, so
the equilibrium energy density of a fluid with constant weff
will decay as a power-law in a, but exponentially in t.
The evolution is particularly simple for the special case

χ3 ¼ 0. In this case, we can solve Eq. (28) exactly to yield

H ¼ Ca−3=2 − χ4; ð38Þ

with C a constant. As long as χ4 < 0, the Hubble parameter
will evolve from initial dark matter dominated evolution
(H ∼ a−3=2) to evolution resembling a cosmological con-
stant dominated universe (H ∼ constant). Note, however,
that ρ in this case does not evolve asymptotically to a
constant. If we takeH to be equal to its asymptotic constant
value (H ¼ −χ4) in Eq. (29), we obtain

ρ ¼ 3χ4ðχ2 þ χ4Þ
Da3ðχ2þχ4Þ=χ1 þ 1

; ð39Þ

with D a constant. The causality and stability conditions
require χ1 > 0, and we need χ2 þ χ4 > 0 to ensure a
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positive density. Although Eq. (28) in this case becomes
exactly what one would obtain in Landau-Lifshitz theory
with constant ζ [and the evolution of HðaÞ is therefore
identical], the value of ρ in the corresponding Landau-
Lifshitz case evolves to a constant. In our approach, we
once again see ρ evolving to zero while viscous effects
mimic a constant-density evolution for H.

B. Power-law density dependence of the χ parameters

Now consider the more general case where the χ
parameters are not constant but evolve as functions of ρ.
For simplicity, we will assume a power law behavior and
take all of the χ parameters to evolve as the same power of
ρ, namely, χi → χiρ

m, i ¼ 1, 2, 3, 4, where the χi’s are
constant. This is the analog of the case considered by [15]
in Landau-Lishitz theory where it was assumed that ζ ∼ ρm.
For this case, Eqs. (26) and (27) become

H0aþ 3

2
H ¼ −

1

2
χ3ρ

m ρ0

ρ
a −

3

2
χ4ρ

m; ð40Þ

H2 ¼ 1

3

�
ρþ χ1ρ

m ρ0

ρ
aH þ 3χ2ρ

mH
�
: ð41Þ

At early times, the density of the dark energy is observed to
be negligible, and the Universe is dominated by dark matter
with a density scaling as a−3. Thus, if we require that the
“dark energy” corresponds to viscous corrections to the
dark matter evolution, then these corrections must vanish in
the limit where a → 0. In this limit, we require ρ to scale as
a−3 and H to scale as a−3=2. Then in order for the viscous
corrections to be subdominant in Eqs. (40) and (41) as
a → 0, we need either χ1 ¼ χ2 and χ3 ¼ χ4 (so that there
are no viscous corrections at all), or m ≤ 1=2.
For 0 < m ≤ 1=2, we find attractor solutions with

w → constant, but H → 0. Hence, these do not correspond
to the observed universe if we want viscous effects to drive
the present-day accelerated expansion. When m < 0, we
find an attractor solution for which H → ∞. This corre-
sponds to phantomlike behavior [66], and can be consistent
with observations depending on the exact parameters of the
expansion.

C. Inclusion of baryons

Finally, in order to derive results that could in principle
be compared with observations, we must include both a
viscous dark matter component and the nonviscous baryons
(see, e.g., similar treatments in Refs. [14,15]). If ρB is the
density of baryons and ρD is the density of viscous
pressureless dark matter, then we can rewrite Eqs. (28)–
(29) as

H0aþ 3

2
H ¼ −

1

2
χ3

ρ0D
ρD

a −
3

2
χ4; ð42Þ

H2 ¼ 1

3

�
ρD þ ρB þ χ1

ρ0D
ρD

aH þ 3χ2H

�
: ð43Þ

These equations can be reexpressed in the form

H0a ¼ −
3

2

�
1þ χ3

χ1

�
H þ 3

2

�
χ2χ3
χ1

− χ4

�

þ 1

2

�
χ3
χ1

�
ρD þ ρB

H
; ð44Þ

ρ0Da ¼ ρD
χ1

�
3H −

ρD þ ρB
H

− 3χ2

�
: ð45Þ

The baryon density ρB scales exactly as a−3. In standard
nonviscous models of cold dark matter we also have ρD ∝
a−3 but here the evolution of ρD is determined instead by
Eq. (45). However, observational limits on the present-day
dark matter density combined with high-redshift estimates
of ρD from the cosmic microwave background indicate that
ρD must evolve approximately as a−3 up to the present.
By an appropriate choice of the χ coefficients it is

possible to derive a model satisfying this constraint on ρD
that also closely approximates ΛCDM. We first take

χ3 ¼ −χ1; ð46Þ

χ4 ¼ −χ2; ð47Þ

where we choose χ1, χ2 > 0, so that χ3, χ4 < 0. This choice
is consistent with the causality constraints. Indeed, if we
substitute Eqs. (46) and (47) into the causality constraint
equations (30)–(32), we find that there exist values for λ
and η for which all of the constraint equations are satisfied
as long as 4=3 ≥ χ2=χ1 ≥ 1. Substituting these values for
χ3 and χ4 into our evolution equations above, Eq. (44) is
unchanged, while Eq. (44) becomes

H0a ¼ −
1

2

ρD þ ρB
H

: ð48Þ

If we neglect ρB, these equations can be solved exactly.
Dividing Eq. (48) by Eq. (48) yields

dρD
dH

−
2

χ1
ρD ¼ −

6

χ1
H2 þ 6

χ2
χ1

H; ð49Þ

with solution

ρD ¼ Ce2H=χ1 þ 3H2 − 3ðχ2 − χ1ÞH −
3

2
χ1ðχ2 − χ1Þ; ð50Þ

where C is again a constant of integration. At early times
(H → ∞) we must have ρ ¼ 3H2, so C ¼ 0 and our
solution is
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ρD ¼ 3H2 − 3ðχ2 − χ1ÞH −
3

2
χ1ðχ2 − χ1Þ: ð51Þ

Note that when χ1 ¼ χ2, we once again obtain the evolution
appropriate for nonviscous matter, namely ρD ¼ 3H2

(which is consistent with the fact that in this case
ζ ¼ 0). Substituting Eq. (51) back into Eq. (45), we see
that ρD evolves as

ρ0D
ρD

a ¼ −3þ 3

2
ðχ2 − χ1Þ=H: ð52Þ

In order for Eqs. (51) and (52) to mimic ΛCDM, we
make one further requirement: we take χ2=χ1 ¼ 1þ ϵ, with
0 < ϵ ≪ 1. (Note that this assumption means that the
causality constraint 4=3 ≥ χ2=χ1 ≥ 1 will automatically
be satisfied.) With this assumption, the second term on
the right-hand side of (51) is always subdominant, and we
have

H2 ¼ 1

3
ρD þ 1

2
χ1ðχ2 − χ1Þ: ð53Þ

This has the form of standard ΛCDM, where we identify
ρΛ ¼ ð3=2Þχ1ðχ2 − χ1Þ. Furthermore, Eq. (53) implies that
H2 > ð1=2Þχ1ðχ2 − χ1Þ, so that 3

2
ðχ2 − χ1Þ=H ≪ 1. Thus,

ρD scales almost exactly as a−3, as required. Note that this
behavior for H, while identical to ΛCDM, is once again an
example of Cheshire Cat evolution; the acceleration is
driven by viscous effects from the dark matter, whose
equilibrium density is driven to zero by the expansion.
While we neglected ρB in this derivation, it is easy to see
that the evolution will be unchanged when ρB is included
since it scales in exactly the sameway as ρD (∼a−3), a result
we have verified with numerical integration of Eqs. (44)
and (45).
Finally, we do not mean to imply that our choices for the

χ coefficients in this case are the single set of “correct”
values of these parameters for pressureless dark matter.
Instead, we simply wish to demonstrate that causal and
stable first-order viscous fluid theories can reproduce
ΛCDM for at least one choice of these parameters. It is
quite possible that other choices for these parameters can
similarly reproduce the current observations.

V. CONCLUSIONS

This work represents the first examination of cosmology
with a causal, stable, first-order theory of relativistic
viscous fluid dynamics (the BDNK theory). We have
shown that this effective theory approach to relativistic
viscous fluids has two very attractive properties from the
standpoint of cosmology. First, viscosity has no effect on
the behavior of radiation, i.e., fluids with w ¼ 1=3. Thus,
the standard cosmology during the radiation-dominated era

simply carries over in this case without modification,
including all of the successes of BBN and the CMB.
Second, under very general conditions on the viscosity
parameters, a matterlike fluid (i.e., one with w ¼ 0) can
generate an accelerated expansion, just as in the case of
Landau-Lifshitz theory.
The major difference between this approach for relativ-

istic viscous fluids and other previously-investigated mod-
els such as the Landau-Lifshitz model lies in the
modification to Eq. (7b). Previous models have modified
Eq. (7a), altering the effective pressure, but leaving the
relationship between H and ρ as in the standard cosmology
(i.e., H2 ¼ ρ=3). By altering this relationship, we decouple
the behavior of H from that of the equilibrium energy
density ρ. Thus, while Landau-Lifshitz viscosity can cause
a zero-pressure dark matter fluid to behave as an effective
dark energy component with constant density at late times,
the BDNK theory can produce an accelerated expansion
even as the equilibrium density of the dark matter fluid goes
to zero, an effect we have dubbed the Cheshire Cat
mechanism. It is important to remark that it is HðaÞ,
and not the evolution of the dark energy density, that is
actually the observable quantity in cosmology, so the model
presented here can be made consistent with current obser-
vations of dark energy. Indeed, by a suitable choice of
model parameters, this model can nearly exactly mimic
ΛCDM at the background level.
As we have already noted, previous attempts to use

Landau-Lifshitz viscosity with pressureless dark matter to
account for the accelerated expansion of the universe have
produced acceptable results at background level but have
foundered on the issue of perturbation growth [15,21,62].
Thus, the results presented here are necessary but not
sufficient evidence that a viable cosmology can be con-
structed with dark matter and BDNK viscous effects alone.
The next step will be to examine perturbation growth in this
theory to see if it survives this further level of scrutiny.
Only then one would be able to conclusively answer
whether or not viscous effects are compatible with cos-
mological observations.
Finally, it is important to remark that an accurate

description of this vanishing equilibrium energy density
behavior is, formally, beyond the regime of applicability of
the hydrodynamics expansion. This occurs because in this
case the out of equilibrium correction, A, becomes larger
than the equilibrium piece ρ. This issue is also present when
considering higher-order theories, such as the generalized
Israel-Stewart theories constructed using a general hydro-
dynamic frame in Ref. [67]. Those should also display the
properties found here, given that BDNK can be seen as the
first-order truncation of such generalized second-order
theories. Therefore, further investigation of this type of
solution is needed. We defer a systematic investigation of
that to future work.
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