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We explore the possible application of linear covariance-based (LCB) filtering to line-intensity mapping
(LIM) signal reconstructions. Originally introduced for reconstruction of the integrated Sachs-Wolfe effect
in the cosmic microwave background, the LCB filter is an optimal map estimator that extends the simple
Wiener filter by leveraging external correlated data. Given a detectable strong LIM-galaxy or LIM-LIM
cross power spectrum, we show recovery of high-redshift, large-scale line-intensity fluctuations—even in
the presence of bright interloper emission—in simulations of a futuristic [C II] LIM survey as well as
simulated future iterations of the CO Mapping Array Project. With sufficient galaxy abundances or low
LIM survey noise, normalized cross-correlation between the LCB reconstruction and the true signal
reaches 70%–90% on large, linear comoving scales corresponding to k ∼ 0.1 Mpc−1. This suggests the
possible use of such signal reconstructions in astrophysical or cosmological contexts that require
identifying the locations of line emissivity peaks and voids, although clear shortcomings exist on smaller
scales. The successful application of the LCB filter in simulated LIM contexts highlights the importance of
cross-correlations to studies of the reionizing and reionized high-redshift universe with LIM and other
large-scale structure surveys.
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I. INTRODUCTION

Line-intensity mapping (LIM; for recent reviews see
Refs. [1–3]) will provide a view of the cosmic web not
through resolving populations of galaxies or other discrete
sources, but by tracing the spatial-spectral fluctuations of
unresolved, integrated emission in a given atomic or
molecular line species. The relevant ideas were first
developed for tomography of the high-redshift universe
with the 21 cm neutral hydrogen line [4,5], but recent
activity has spread to theoretical explorations and construc-
tion of experiments targeting emission in carbon monoxide
(CO) and singly ionized carbon ([C II]) lines [6–24].
Observations in those lines could probe the cosmic history
of star formation and molecular gas and strongly comple-
ment other surveys of large-scale structure (LSS), including
21 cm tomography.
Despite the name, line-intensity mapping is not neces-

sarily about high-fidelity mapping of the redshift-space
fluctuations in line intensity, but about measuring the
statistics of these fluctuations. Most literature has focussed
on recovery of the power spectrum. Some work also
explores one-point statistics [25–27] and higher-order

statistics, although the latter more so in the context of
21 cm intensity mapping [28–30]. Reconstructing the large-
scale line-intensity fluctuations themselves has not been as
much of a focus of research.
Yet future LIM experiments will reach sensitivities that

make such analyses feasible. Such analyses could poten-
tially also be desirable in many contexts, in terms of being
able to designate overdensities or peaks for follow-up,
probe underdensities or voids, diagnose the environment of
the interstellar medium in a global sense, and so on.
In principle, the Wiener filter (abbreviated at points in

this work as the WF) provides a simple, minimum-variance
linear estimator of the original signal, but only provided
that there is sufficient prior knowledge of the signal power
spectrum and provided that the signal fluctuations domi-
nate over noise at relevant scales. This will often not be the
case even after removal of continuum foregrounds. For
instance, [C II] surveys will see prominent interloper
line emission from lower redshifts (which would be
considered part of the noise in this picture). This emission
is expected to be so bright that discriminating it from the
[C II] signal is a significant portion of the [C II] LIM
theoretical literature [31–35].
Previous literature has also contemplated image

processing techniques that use convolutional neural*dongwooc@cita.utoronto.ca
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networks in order to resolve line confusion and
reconstruction (see, e.g., Refs. [36,37]). But the expected
signal is not well understood (which to be fair is what
motivates these surveys in the first place). When experi-
ments forecast the detectability of CO and [C II] LIM
signal from the epoch of reionization (e.g., Refs. [17,38]),
they show models for the power spectrum that span at
least one order of magnitude. Inadequate anticipation
of signal and noise easily confounds neural networks
without appropriate training (see, e.g., Ref. [39]).
Possibly such uncertainty around the signal has also more
generally discouraged interest in exploring LIM signal
reconstruction.
One area of significant interest for LIM research, on

the other hand, has been the use of cross-correlations
involving LIM (or other datasets containing unresolved
emission) to improve high-redshift astrophysical and
cosmological inferences [40–48], a line of work that
traces all the way back in real-world application to the
first detections of 21 cm intensity fluctuations in cross-
correlation with spectroscopic galaxy surveys [49–51].
This interest is a natural inclination. LIM surveys and
other LSS surveys all trace the same cosmic web while
their systematics and noise will often be disjoint, and
cross-correlations will yield scientific output not possible
with the autocorrelations in isolation. LIM analyses
may also exploit cross power spectra between different
parts of its dataset to improve estimation of what is
actually an autopower spectrum (see, e.g., Ref. [27]). So,
in general, cross-correlations are an invaluable asset for
LIM surveys.
One may naturally ask after a reconstruction technique

that behaves as linearly and understandably as the Wiener
filter but also leverages the power of cross-correlations, and
this already exists in the form of the linear covariance-based
(LCB) filter. First introduced by Barreiro et al. [52], the
LCB filter has mostly been used for reconstruction of maps
of the integrated Sachs-Wolfe (ISW) effect, distinguished
from the primordial cosmic microwave background by
cross-correlation with large-scale structure [52–56]. This
work applies the same formalism to mock LIM data and
examines resulting reconstructions in simulated CO and
[C II] LIM surveys cross-correlated with galaxy surveys or
other LIM data.
To be clear, the central contention of this paper is not that

the LCB filter is necessarily the best estimator to use. Other
reconstruction techniques relying on forward modeling,
physical priors (e.g., cosmic tidal shear), Bayesian statis-
tics, information theory, or some combination of these are
available [57–61]. But for the purposes of this work, we
want to demonstrate the extent to which cross-correlations
can indeed improve reconstruction of LIM signals relative
to relying on autocorrelation alone, with the LCB filter and
Wiener filter representing the optimal solutions in the linear
regime in each case.

More specifically, we ask: Can the LCB filter success-
fully reconstruct the structure of line-intensity fluctuations
on large linear scales by exploiting

(i) cross-correlations with surveys of discrete sources
and/or

(ii) cross-correlation with a measurement of a different,
correlated line-intensity signal?

The paper is structured as follows. We provide an
overview of the LCB filter itself in Sec. II, reviewing its
derivation and considering cases relevant to LIM
reconstruction. After a brief interlude in Sec. III about
metrics for “successful reconstruction,” we then consider a
proof of concept for applying the LCB filter to LIM with
simulations of [C II] signal reconstruction in Sec. IV and
undertake additional case studies in the context of the CO
Mapping Array Project (COMAP) in Sec. V. We end by
drawing conclusions from those results in Sec. VI.
We use base-10 logarithms throughout unless otherwise

specified, as well as Λ cold dark matter cosmologies
with parameters fΩm;ΩΛ;Ωb;h≡H0=ð100kms−1Mpc−1Þ;
σ8;nsg stated near the start of each section as appropriate.
Distances carry an implicit h−1 dependence throughout,
which also propagates through to masses (all based on
virial halo masses ∝ h−1) and volume densities (∝ h3).

II. THE LCB FILTER

We first recap the derivation of Barreiro et al. [52],
but rephrased in terms of the isotropic power spectrum
PðkÞ describing a random Gaussian field, instead of
specifically in a spherical multipole expansion. This in
and of itself is largely a superficial change as math-
ematically the two phrasings are equivalent. However,
we provide the derivation already generalized to recon-
structing the desired signal from cross-correlation with n
other tracers.
Note also that Manzotti and Dodelson [53] derive an

ISW estimator based on likelihood optimization, but state
that it will also reduce to the LCB estimator. We verify this
explicitly in Appendix A. Thus, the LCB filter describes an
optimal estimator for the signal that combines cross-
correlation and autocorrelation measurements across all
observables.
Following the general derivation provided in Sec. II A,

we consider in Sec. II B the n ¼ 1 case originally described
by Barreiro et al. [52] and then consider aspects of practical
implementation for matter tracers in Sec. II C.

A. General case

We begin by noting that the auto- and cross power
spectra by definition describe the covariance of the Fourier
modes of the random Gaussian fields,

PðSÞ
ij ðkÞ ¼ hsiðkÞs�jðkÞi: ð1Þ
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Note that we have assumed hsiðkÞi ¼ 0 for all k and i,
implying that any nonzero mean that may have existed has
already been subtracted in mapping the field.
Assume mode coupling is negligible, i.e., the covariance

matrix of the signal fields is block diagonal with all cross-k

elements equal to zero and described fully by PðSÞ
ij ðkÞ. The

covariance will also be symmetric, as PðSÞ
ij ðkÞ ¼ PðSÞ

ji ðkÞ.
Assume furthermore that we obtain measurements di of
each field with uncorrelated additive Gaussian noise,

di ¼ si þ ni: ð2Þ

If the power spectrum of each noise component is thus

some constant PðNÞ
i , then the total covariance matrix is

given by

CijðkÞ ¼ PðSÞ
ij ðkÞ þ δijP

ðNÞ
i ; ð3Þ

with δij being the Kronecker delta. Going forward, wewrite

the autopower spectra as PðSÞ
i ðkÞ≡ PðSÞ

ii ðkÞ for brevity.
Then given measurements fd1; d2;…; dng of tracers

fs1; s2;…; sng, we wish to obtain a reconstruction of
snþ1 from data dnþ1. For brevity we notate p≡ nþ 1,
and we will further abbreviate the signal and noise

power spectra for this last observable as PðSÞ ≡ PðSÞ
p

and PðNÞ ≡ PðNÞ
p .

Consider for a moment the covariance of the vector
f ¼ ðd1; d2;…; dn; spÞ, i.e., the covariance between the
observations of all n tracers that we are not reconstructing
and the intrinsic signal of the tracer sp that we do want to
reconstruct. This then is given by

DijðkÞ ¼
8<
:

PðSÞ
ij ðkÞ þ δijP

ðNÞ
i if i ≤ n and j ≤ n;

PðSÞ
ij ðkÞ otherwise:

ð4Þ

with δij being the Kronecker delta.
We are interested in the Cholesky decomposition of this

matrix, i.e., the identification of a lower triangular matrix
LðkÞ such thatD ¼ LLT at each k. This is because once we
obtain L, we can claim that some hidden Gaussian random
vector h, whose elements are all uncorrelated with diagonal
unit covariance, has generated our correlated observations
and signals fi such that

fðkÞ ¼ LðkÞhðkÞ: ð5Þ

What we then want to do is express the signal sp in terms
of the hidden h and the other data di, as well as the lower
triangular matrix L. At each k,

sp ¼
Xp
i¼1

Lpihi

¼ Lpphp þ
Xn
i¼1

Lpihi

¼ Lpphp þ
Xn
i¼1

�
Lpi

Xn
j¼1

ðL−1Þijdj
�
; ð6Þ

noting that we write the row index first when indexing
the matrices. For the last step we recall that L−1f ¼ h, and
note that L−1 is also a lower triangular matrix so that
ðL−1Þip ¼ 0 for all i ≤ n.
Note that no knowledge of the hidden fields is necessary

to calculate the second term, which is purely defined
in terms of the data-signal covariances and the data for
tracers 1 through n. At this point, Barreiro et al. [52]
propose that, to estimate the scaled hidden field Lpphp, one
should Wiener filter the difference between the actual data
and the second term of Eq. (6), i.e.,

d̄≡ dp −
Xn
i¼1

�
Lpi

Xn
j¼1

ðL−1Þijdj
�

¼ Lpphp þ np: ð7Þ

Then the linear covariance-based estimator for sp simply
substitutes the above (with a Wiener filter factor) into
Eq. (6). With a slight rearrangement of the double sum, we
can write the estimator as

ŝp ¼ L2
pp

L2
pp þ PðNÞ

�
dp −

Xn
j¼1

Xn
i¼1

LpiðL−1Þijdj
�

þ
Xn
j¼1

Xn
i¼1

LpiðL−1Þijdj: ð8Þ

This is analogous to the expression given by Refs. [54,55].
The form of Eq. (8) also allows us to easily see the power

spectrum of the reconstructed ŝp. By definition, d̄ is
uncorrelated with the second term of Eq. (6) and should
have a power spectrum given by L2

pp þ PðNÞ. The power
spectrum of all of ŝp should then be

PðŝÞ ¼ L4
pp

L2
pp þ PðNÞ

þ
Xn
j¼1

Xn
j0¼1

Xn
i¼1

Xn
i0¼1

LpiLpi0 ðL−1ÞijðL−1Þi0j0Djj0 : ð9Þ

However, Eq. (8) can also be clearly rewritten as

ŝp ¼ L2
pp

L2
pp þ PðNÞ dp

þ
�
1 −

L2
pp

L2
pp þ PðNÞ

�Xn
j¼1

Xn
i¼1

LpiðL−1Þijdj: ð10Þ
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This provides an alternate intuition for what is going on: the
estimator starts with filtered data for the observable p and
then introduces additional fluctuations based on correla-
tions between the observables. Indeed, with n ¼ 0 (i.e.,
without anything to cross-correlate with dp) we would
simply recover the Wiener filter. However, to delve further
into this kind of intuition, it is useful to return to the context
of the original derivation given by Barreiro et al. [52],
where the signal to be reconstructed is only correlated with
one additional tracer.

B. Special case: n= 1

Suppose we only have two observables, d1 and d2, and
we wish to obtain the estimator ŝ2 for the signal underlying
the latter observation. In this case, the upper triangular
matrix LðkÞ from the Cholesky decomposition is straight-
forwardly found at each k,

L11 ¼ ðPðSÞ
1 þ PðNÞ

1 Þ1=2; ð11Þ

L21 ¼ PðSÞ
12 ðPðSÞ

1 þ PðNÞ
1 Þ−1=2; ð12Þ

L22 ¼
�
PðSÞ −

PðSÞ
12

2

PðSÞ
1 þ PðNÞ

1

�1=2

; ð13Þ

and of course L12 ¼ 0. General, recursive expressions to
evaluate L from D exist for n > 1 also and are given in
Appendix B.
As far as the inverse of this matrix is concerned, only the

element ðL−1Þ11 will be relevant in evaluating Eq. (10)
given that n ¼ 1, and it is extremely straightforward to find

ðL−1Þ11 ¼ 1=L11 ¼ ðPðSÞ
1 þ PðNÞ

1 Þ−1=2: ð14Þ

Substituting the above into Eq. (10) yields

ŝ2 ¼
L2
22

L2
22 þ PðNÞ d2 þ

�
1 −

L2
22

L2
22 þ PðNÞ

��
L12

L11

d1

�

¼ L2
22

L2
22 þ PðNÞ d2

þ
�
1 −

L2
22

L2
22 þ PðNÞ

�
PðSÞ
12

PðSÞ
1 þ PðNÞ

1

d1; ð15Þ

where

L2
22

L2
22 þ PðNÞ ¼

ðPðSÞ
1 þ PðNÞ

1 ÞPðSÞ − PðSÞ
12

2

ðPðSÞ
1 þ PðNÞ

1 ÞðPðSÞ þ PðNÞÞ − PðSÞ
12

2
: ð16Þ

It is interesting to consider some limiting cases of this. If
the noise in d1 is overwhelmingly large, then the weights
for d1 go to zero and the best estimator for s2 is simply the

Wiener-filtered data d2. On the other hand, if the noise in d2
is overwhelmingly large (i.e., PðNÞ ≫ L2

22), then the
weights for d2 go to zero instead so that the best estimator
for s2 is actually simply a filtered version of d1, except the

weights have the cross power spectrum PðSÞ
12 in the

numerator, where the Wiener filter weights would have

had PðSÞ
1 . Where ŝ2 lands between these extremes simply

depends on the relative signal and noise power spectrum
amplitudes.
The power spectrum of the estimator is given by setting

n ¼ 1 in Eq. (9),

PðŝÞ ¼ ½ðPðSÞ
1 þ PðNÞ

1 ÞPðSÞ − PðSÞ
12

2�2=ðPðSÞ
1 þ PðNÞ

1 Þ
ðPðSÞ

1 þ PðNÞ
1 ÞðPðSÞ þ PðNÞÞ − PðSÞ

12

2

þ PðSÞ
12

2

PðSÞ
1 þ PðNÞ

1

: ð17Þ

The values of this expression in the limit of large PðNÞ
1 or

large PðNÞ are each consistent with expectations for power
spectra of Wiener-filtered data.
As with the Wiener filter, the LCB filter suppresses

fluctuations relative to the original signal,

PðSÞ − PðŝÞ ¼ ½ðPðSÞ
1 þ PðNÞ

1 ÞPðSÞ − PðSÞ
12

2�PðNÞ

ðPðSÞ
1 þ PðNÞ

1 ÞðPðSÞ þ PðNÞÞ − PðSÞ
12

2
: ð18Þ

The cross power spectrum magnitude cannot exceed the
geometric mean of the total autopower spectra, i.e., we can
define

α≡ jPðSÞ
12 j2

ðPðSÞ
1 þ PðNÞ

1 ÞðPðSÞ þ PðNÞÞ
; ð19Þ

which must satisfy 0 ≤ α ≤ 1. Then

PðSÞ − PðŝÞ ¼ ðPðSÞ − α
1−αP

ðNÞÞPðNÞ

PðSÞ þ PðNÞ : ð20Þ

In the case of α ¼ 0, where there is no correlation between
observables 1 and 2, we simply recover the power spectrum
bias of the Wiener filter for observable 2 alone. However, it
is clear that nonzero correlation (i.e., nonzero values of α)
would reduce the bias down from this limit, potentially
significantly depending on the relative amplitudes of the
signal and noise power spectra. This would suggest that
cross-correlations allow recovery of additional fluctuations
in the underlying signal.

C. Special case: si =Bis for all i

Suppose all our observations are of the same underlying
signal, but subject to a different linear bias. One might
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consider, for example, that fluctuations in line brightness
temperature δT line trace the matter density contrast δm
scaled by the luminosity-weighted average temperature-
bias product hTbiline. In a halo model that relates halo mass
Mh and redshift z to a line luminosity LðMh; zÞ, we may
calculate this quantity as

hTbiline ¼
c3ð1þ zÞ

8πkBν3restHðzÞ
Z

dMh
dn
dMh

LðMh; zÞbðMhÞ;

ð21Þ

given the linear bias bðMhÞ for halos of virial massMh, the
halo mass function dn=dMh, the rest-frame line emission
frequency νrest, the Hubble parameter HðzÞ for the assumed
cosmology, the speed of light c, and the Boltzmann
constant kB. [When working in units of flux density rather
than brightness temperature, replacing the multiplier in
front of the integral with simply c=½4πνrestHðzÞ� in Eq. (21)
gives the mean intensity-bias product. See, e.g., Ref. [62] ].
Then on large linear scales, the matter power

spectrum Pm and the line-intensity power spectrum Pline
are related by

PlineðkÞ ≃ hTbilinePmðkÞ; ð22Þ

where we ignore the Poissonian shot noise that begins
dominating at nonlinear scales. This is hardly a novel
insight, and the vast majority of LIM forecasts rely on halo
models with linear bias. Galaxy number density contrast as
measured by a galaxy survey will of course have a similar
effective bias bgal such that the galaxy density contrast has a
clustering power spectrum PgalðkÞ ≃ bgalPmðkÞ. The key
point is that this bias parameter, be it hTbiline or bgal, differs
across the range of atomic lines, molecular lines, and
galaxy selections. If we had only observations of the exact
same tracer, the LCB filter would simply reduce to an
inverse variance-weighted Wiener filter, which we show
explicitly in Appendix C.
Return to a more general picture for a moment. Instead of

dealing specifically with δm and some combination of
hTbiline or bgal parameters, suppose we have an underlying
field s and observable fields si for i ∈ f1;…; n;p≡ nþ 1g
all tracing s with some linear bias such that si ¼ Bis for all
i. Then the signal auto- and cross power spectra are all
proportional to some common power spectrum. Call this

PðkÞ, so that PðSÞ
ij ðkÞ ¼ BiBjPðkÞ.

As before we would like to go about reconstructing sp.
Defining the appropriate matrix D, we have

DijðkÞ ¼
�
BiBjPðkÞ þ δijP

ðNÞ
i if i ≤ n and j ≤ n;

BiBjPðkÞ otherwise:

ð23Þ

With prior knowledge of Bp and PðkÞ, application of the
LCB filter is then straightforward. However, what if we
were to plead ignorance of either Bp or PðkÞ? Even in the
absence of correlated noise, we would not be able to claim

knowledge of B2
pPðkÞ unbiased by PðNÞ

p from one dataset
dp by itself.
In the case where si ¼ sj for all i and j (e.g., all Bi ¼ 1),

every cross spectrum is effectively an unbiased estimator of
the signal power spectrum. As we mentioned above,
Appendix C shows that this case simply reduces to the
Wiener-filtered reconstruction of the inverse noise vari-
ance-weighted average of di.
If the signals are biased by factors Bi that are not

necessarily equal, estimation of PðSÞ is less straightforward.
In fact, if n ¼ 1 (i.e., we have two independent observa-
tions), we would only have one cross spectrum, and this
would not be sufficient for unbiased estimation of B2

pPðkÞ.
However, n ≥ 2 is sufficient to estimate B2

pPðkÞ based
on the cross spectra. It is straightforward to see that, in the
absence of correlated noise, we expect

P̂ðSÞ
p ðkÞ ¼ 2

nðn − 1Þ
Xn−1
i¼1

Xn
j¼iþ1

PðSÞ
ip ðkÞPðSÞ

jp ðkÞ
PðSÞ
ij ðkÞ

: ð24Þ

Having an estimator in this vein then allows us to
define D purely in terms of total auto- and cross power
spectra. Denoting the total autopower spectrum of di as

PðTÞ
i ≡ PðSÞ

i þ PðNÞ
i , we have

DijðkÞ ¼

8>>><
>>>:

PðTÞ
i ðkÞ if i ¼ j ≤ n;

PðSÞ
ij ðkÞ if i ≠ j;

P̂ðSÞ
p ðkÞ if i ¼ j ¼ p:

ð25Þ

Note that none of this actually requires Bi ≠ Bj for all i and
j. So for instance, we could leverage two independent
observations of one line to reconstruct a third independent
observation of a different line tracing the same matter
density fluctuations.

III. INTERMEZZO: QUANTIFYING THE SUCCESS
OF OPTIMAL ESTIMATORS

Before moving to consider potential applications of the
LCB filter, we need to address how this work will quantify
successful reconstruction of the structure of line-intensity
fluctuations.
It is clear that the LCB filter results in optimal estimation

of the target signal, but with a power spectrum that is
suppressed relative to that of the original signal (although
less so than estimation with the Wiener filter). Furthermore,
the assumptions behind the design of the LCB filter
ultimately almost all run up against the reality of the
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LIM signal. The signal for many atomic and molecular
lines will be intrinsically highly non-Gaussian if originating
from later cosmic epochs and principally tracing galaxies
(whose statistics have long been understood to behave less
like a Gaussian random field and more like Poissonian
draws from an underlying log-normal field—see, e.g.,
Coles and Jones [63]).
Furthermore, even if the line-intensity field in actual

comoving space were a Gaussian random field, what a LIM
survey will actually be able to observe is the pseudo-
intensity field convolved with instrumental response and
survey transfer functions. Thus, the output of the LCB
estimator will be a pseudo-pseudointensity field, a sup-
pressed version of the fluctuations already suppressed by
the observation.
The central aim of this paper that was stated in the

Introduction is not to show that the LCB filter reconstructs
the amplitudes of line-intensity fluctuations. Rather, we
will show that it allows reconstruction of the structure of
fluctuations on large linear scales, in a way that improves
over the Wiener filter alone. The morphology of line-
intensity fluctuations on large scales, separate from their
amplitude, is still of interest for many of the reasons we
discussed in the Introduction.
Of course, we would like to show that the LCB filter

improves over the Wiener filter in recovery of PðkÞ
amplitudes as well. However, to quantify the success of
a given signal estimator ŝ in recovering structure regardless
of amplitude, we will calculate the normalized cross-
correlation between the estimator and the original signal,
as a function of k. Specifically, if the original signal has a
power spectrum PðSÞðkÞ, the reconstruction has a power
spectrumPðŝÞðkÞ, and the signal-reconstruction cross power
spectrum is PðS×ŝÞðkÞ, the normalized cross-correlation is

rðkÞ≡ PðS×ŝÞðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðSÞðkÞPðŝÞðkÞ

q : ð26Þ

Perfect recovery of the phases of the Fourier modes,
regardless of amplitude, corresponds to r ¼ 1.

IV. SIMULATIONS OF [C II] LIM
RECONSTRUCTION: PROOF OF CONCEPT

Having considered the formalism around the LCB
filter and how to quantitatively establish successful
reconstruction, we are now ready to consider applications
to LIM reconstruction. Our first simulated case study is a
futuristic [C II] LIM survey that has a similarly futuristic
catalog of z ¼ 5.5–6.6 Lyman-alpha emitters (LAEs)
available for cross-correlation. We will begin by explaining
the scientific context behind [C II] LIM in Sec. IVA, before
defining the survey model in Sec. IV B and the line
emission signal and interloper models in Sec. IV C. We

will then be prepared to consider reconstruction results in
simulations in Sec. IV D.
For this section, we assume cosmological parameter

values ofΩm¼ 0.307,ΩΛ ¼ 0.693,Ωb ¼ 0.048, h ¼ 0.678,
σ8 ¼ 0.829, and ns ¼ 0.96, to maintain consistency with
the Small MultiDark-Planck (SMDPL) simulation [64] that
we will use below. This cosmology is also consistent with
the Planck 2015 results [65].

A. Context: Why ionized carbon
and Lyman-alpha emitters?

The [C II] line, emitting at a rest-frame frequency of
1900.5 GHz, is of interest at these high redshifts as a
potential signpost for star formation and diffuse interstellar
gas in the late epoch of reionization. [C II] is a key cooling
line for the interstellar media of galaxies, accounting for as
much as 1% of the total far-infrared luminosity [66], and
correlates with star-formation rate in population studies,
both in nearby galaxies [67,68] and at redshifts reaching
into the tail end of the epoch of reionization [69]. [C II] also
traces ionized and diffuse neutral phases of the interstellar
medium, as shown by detailed line diagnostics in nearby
galaxies [70] and extended emission at high redshift
[71–75], which has motivated use of [C II] as a tracer of
neutral or H I gas in galaxies across cosmic history [76,77].
Whether it traces the assembly of the first star-forming
galaxies assembling postreionization or neutral gas accret-
ing into galaxies, the [C II] LIM signal has strong com-
plementarity with 21 cm tomography and provides a key
probe of the late epoch of reionization.
Searches for [C II] emission from z ≃ 2.5 using cross-

correlation of Planck 545 GHz data with quasar positions
have yielded tentative results [43,46] but depend heavily on
accurate models of correlated continuum emission due to
the broadband nature of the intensity data. This is a problem
not shared to the same extent by LIM surveys with many
(≳102) channels, which should confine correlated con-
tinuum emission to the lowest-k line-of-sight modes and
thus be theoretically capable of rejecting correlated con-
tinuum with minimal signal loss [78]. (We will neglect
correlated continuum contamination for the simulations in
the remainder of this work, which for our purposes should
be equivalent to assuming that the channel count of these
surveys allows appropriate debiasing of signal power
spectra to correctly scale the reconstructed line intensity.)
This has motivated the development of numerous [C II] LIM
pathfinder experiments [8,17,24].
However, LIM observations of [C II] from z ∼ 6 (so at

≃270 GHz) will see significant interloper line emission
from the rotational transitions of CO at lower redshift. The
CO(J → J − 1) lines, which have rest-frame frequencies of
≃115 · JGHz, trace cold molecular gas that fuels star
formation and are thus interesting in their own right, and
we will discuss CO LIM in Sec. V. However, the interloper
CO(3–2) through CO(7–6) emission components are a
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significant concern for [C II] surveys as they originate from
redshifts 0.3–2.0, parts of cosmic history that are full of
much closer, more metal-rich, comparatively more massive,
and more actively star-forming galaxies compared to z ∼ 6.
We may also consider the neutral carbon [C I](1–0) line
(rest-frame frequency of 492.16 GHz) as an interloper
along the same lines as the CO lines, as it too acts as a tracer
of cold molecular gas [79–81]. Previous literature has
extensively explored different ways of reducing interloper
bias in the measured [C II] power spectrum [31–35], but
here we consider the even more ambitious possibility of
reconstructing the [C II] fluctuations themselves without
interloper bias by leveraging cross-correlation against a
hypothetical LAE catalog.
We choose to simulate a LAE catalog because previous

surveys (e.g., Refs. [82,83]) suggest LAEs are abundant at
these redshifts, with Ouchi et al. [83], for example, finding
> 50 LAEs per square degree per Δz ≃ 0.1. Combining
better photometry with next-generation integral field units
or massively multiplexed spectrographs, future surveys
could identify thousands of LAEs across wide fields and
wide continuous redshift ranges.
However, note that for the purposes of this work, what

matters most is not the exact galaxy selection for the
most part, but rather the source density, the correlation of
source density contrast with the signal to be reconstructed,
and the effective linear bias of the galaxy sample. This last
factor affects the amplitude of the cross power spectrum,
thus affecting detectability for fixed survey sensitivity.
Ultimately, even if a wide-field flux-limited LAE survey
is not feasible, any spectroscopic survey with similar source
abundances that selects for similarly star-forming galaxies
would serve equally well as a cross-correlation target for
some future LIM survey.

B. Survey parameters and Gaussian noise model

The futuristic [C II] survey that we simulate here takes its
cues from the proposed road map of Karkare et al. [84],
which suggests that future stages of [C II] surveys should
increase geometrically in sensitivity. The futuristic survey
concept considered in Ref. [62] fits in stage 3 of the road
map of Karkare et al. [84], with Nspectsurv ¼ 1.8 × 108

spectrometer hours covering 1024 square degrees of sky.
We follow Ref. [62] and calculate the noise-equivalent

intensity per detector as

σspec ¼ 106 Jy sr−1 s1=2
�

δν

2.5 GHz

�
−1=2

�
ϵsys
0.05

�
; ð27Þ

given channel bandwidth δν and system emissivity ϵsys,
under the implicit assumption that the detection bandwidth
is equal to the frequency channel width. Unlike Ref. [62],
we will assume ϵsys ¼ 0.05 for simplicity, and we will
assume δν ¼ 312.5 MHz for added futurism.

Assuming adequate control of atmospheric and other
sources of frequency-dependent Earth-bound noise, the
final “thermal” map noise per voxel should then be

σN ¼ σspecffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NspectsurvΩpix=Ωsurv

p : ð28Þ

While we assume the LIM survey covers a total of 1024
square degrees of sky, we conservatively assume only a
square 9 deg2 subfield can be cross-correlated with an
overlapping LAE catalog and thus reconstructed with the
LCB filter. This 3 × 3 deg2 patch will be simulated with
512 × 512 pixels, for a solid angle per pixel of
Ωpix ≃ 1.05 × 10−8 sr. With all appropriate substitutions
made, we find σN ≃ 1.9 × 104 Jy sr−1.
We also assume a Gaussian beam profile with a full

width at half maximum (FWHM) of 50 arc sec, taken to be
achromatic for simplicity. This approximately corresponds
to the diffraction limit for a 6 m telescope observing at
250 GHz, so it is quite plausible to intentionally degrade the
observation to that common resolution across all frequen-
cies after the fact (e.g., to avoid mode mixing where
possible).

C. Simulation parameters and line emission models

For [C II] simulations, our starting point is the
SMDPL simulation, which is a cosmological N-body
box of comoving size 400h−1 Mpc and mass resolution
9.6 × 107h−1M⊙. More precisely, the starting point relevant
to this work is the catalog of dark matter halos identified in
the simulation across space and time. Given the mass
resolution, the halo population should be reasonably
complete down to virial masses of Mh ≃ 1010M⊙; we set
this as the minimum halo mass for nonzero line luminosity.
We use publicly available halo catalogs (online at time of

writing at https://www.peterbehroozi.com/data.html) that
have already been processed through the UniverseMachine
framework of Behroozi et al. [85]. This framework pro-
vides an empirical galaxy model based on associating halo
merger histories with star formation and, as a result, assigns
galaxy properties such as star-formation rate (SFR) and dust
extinction (AUV) to every halo in each simulation snapshot.
TheUniverseMachine release includes code to generate light
cones from these halo catalogs, sowegenerate ten light cones
spanning3 × 3 deg2 and z ¼ 0–9. Thesewill beuseful for all
kinds of LIM predictions, especially given the mass reso-
lution of the SMDPL simulation, but we leave further
exploration to future work.
We convert the galaxy properties generated by

UniverseMachine into line luminosities relevant to our
[C II] survey in the frequency range of 250–290 GHz, which
include not only the [C II] line from redshifts z ¼ 5.5–6.6,
but also CO rotational transitions as well as the atomic
carbon [C I] line. We use correlations between SFR and line
luminosities summarized by Ref. [62], which in turn adapts
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all of the relevant relations from the work of Sun et al. [86].
We briefly resummarize them here:

(i) The [C II] luminosity is assumed on average to be
linearly proportional to the SFR (via UV luminos-
ity), with the proportionality derived from combin-
ing values given by Refs. [86,87],

log

�
L½C II�
L⊙

�
¼ log

�
SFR

M⊙ yr−1

�
þ 7.34: ð29Þ

In addition, we assume a log-normal scatter around
this average with a standard deviation of 0.4 (in units
of dex).

(ii) The CO transitions and the [C I] line are all assumed
to correlate perfectly with the CO(1–0) luminosity,
which in turn is assumed on average to be related to
the SFR (via IR luminosity) through a power law,

log

�
LCOð1−0Þ

L⊙

�
¼ α−1IR−CO

�
log

�
SFR

M⊙ yr−1

�

þ 9.76 − βIR-CO

�
− 4.31; ð30Þ

where αIR-CO ¼ 1.27 and βIR-CO ¼ −1.0. We also
assume a log-normal scatter around this average with
a standard deviation of 0.4 (again in units of dex).
From this scattered CO(1–0) luminosity, the lumi-
nosities for the COðJ → J − 1Þ lines can be calcu-
lated as follows:

LCOðJ→J−1Þ ¼ rJJ3LCOð1−0Þ; ð31Þ

where we use the values of r3 ¼ 0.73, r4 ¼ 0.57,
r5 ¼ 0.32, r6 ¼ 0.19, and r7 ¼ 0.1. We essentially
calculate the [C I] luminosity in the same way,
treating it as if it were another CO line with
J½C I� ≡ νrest;½C I�=νrest;COð1−0Þ ¼ 4.27,

L½C I� ¼ r½C I�J3½C I�LCOð1−0Þ; ð32Þ

where r½C I� ¼ 0.18.
All line ratios relative to the CO(1–0) luminosity

are taken from Sun et al. [86], who in turn refer the
reader to Refs. [80,81,88] for observational literature
probing the correlations of the individual line
species with IR luminosity.

In addition, we also need to estimate Lyman-alpha
luminosities in order to simulate a flux-limited (and there-
fore luminosity-limited) LAE sample. We once again look
to Sun et al. [86], who provide an approximate relation
between the SFR and the Lyman-alpha luminosity assum-
ing equilibrium between ionization and recombination,
with the Lyman-alpha photons coming from recombination
events only. Given fγ ¼ 4000 ionizing photons produced

per stellar baryon, an escape fraction fesc ¼ 0.1 of ionizing
photons that thus do not lead to recombination events, a
fraction fLyα ¼ 0.67 of recombination events producing

Lyman-alpha emission, and an escape fraction fLyαesc ¼ 0.6
of Lyman-alpha photons that reach the observer,

LLyα ¼
fγSFR=ð10AUV=2.5Þ

mp=ð1 − YÞ ð1 − fescÞfLyαfLyαesc ELyα: ð33Þ

Here, mp is the proton mass, Y ¼ 0.24 is the helium mass
fraction, AUV is the dust extinction (recalling that
UniverseMachine calculates AUV alongside SFR for each
halo), and ELyα ¼ hc=ð1215 ÅÞ is the energy per Lyman-
alpha photon. As Sun et al. [86] acknowledge, the resul-
ting model still ignores environmental factors that affect
the distribution of LAEs, but matches luminosity func-
tions and tracer bias constraints in the literature derived
from a 14–21 deg2 Subaru Hyper-Suprime Cam (HSC)
survey [83]. This is sufficient for our purposes as we mostly
want to reproduce realistic source densities and biases
rather than exact source selections, at least in the context of
the present work.
We use LIMLAM_MOCKER (available at time of writing at

https://github.com/georgestein/limlam\_mocker) to load
each simulation light cone, generate line luminosities for
each halo, and bin the [C II] and interloper line luminosities
into cubes of flux density (in units of Jy sr−1) based on the
redshift-space locations of the halos. The LIM survey
instrument is assumed to have a Gaussian beam on the
sky with 50 arc sec FWHM, so we convolve the flux
density cube with the appropriate Gaussian kernel. We also
subtract the mean from all flux density cubes, as LIM
surveys tend to remove the mean level in analysis while
subtracting continuum foregrounds. We then have a pseu-
dointensity cube with 128 frequency channels spanning
250–290 GHz and 512 pixels along each angular dimen-
sion, to which we then add Gaussian noise with standard
deviation σN derived in Sec. IV B.
At the same time, we generate a mock LAE catalog

corresponding to each flux density cube by selecting only
halos with an associated Lyman-alpha luminosity of
LLyα > 1042.5 erg s−1. This is somewhat more conservative
than the cut of 1042.2−1042.3 ergs−1 used by Sun et al. [86]
for their mock LAE survey. Note, however, that we are
hoping for a wide-field survey to generate this LAE catalog
across the whole redshift range, which likely will not be
possible with the same source density as the Subaru HSC
narrow-band survey of Refs. [83,89] (which only spans two
redshift bands of Δz ≃ 0.1 each). The resulting catalogs
provide between 7700 and 8600 LAE positions across our
ten light cones.
We bin the LAEs into a density contrast cube, obtaining

the source count in each voxel but then dividing by the
mean and subtracting 1. We may now obtain total auto- and
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cross spectra with this LAE density contrast cube and the
LIM data cube, for each one of our ten semi-independent
realizations.
The LCB filter, like theWiener filter, requires knowledge

of the signal power spectrum. We obtain a form for the
pseudointensity power spectrum (i.e., the power spectrum
of the [C II] flux density field after convolution with the
instrument beam and mean subtraction) by averaging
across all ten light cones, basically assuming that there
is a reasonable estimate of at least the shape of the [C II]
power spectrum from the wider LIM survey.

D. Simulation results

Before considering the filtering results, for completeness
we note the signal-to-noise ratio summed across all k for
both the [C II] auto and [C II]-LAE cross power spectra
(assuming successful removal of interloper line emission in
the former case). If Nm modes are available to the
observation at wave number k, the variance for each power
spectrum is given by

σ2½PðSÞ� ¼ ðPðSÞ þ PðNÞÞ2
Nm

; ð34Þ

σ2½PðSÞ
12 � ¼

ðPðSÞ
1 þ PðNÞ

2 ÞðPðSÞ þ PðNÞÞ þ PðSÞ
12

2

2Nm
: ð35Þ

with d1 and d2 respectively being the LAE and LIM
observations. Note that in this case PðNÞ comes from the
sum of the thermal noise described in Sec. IV B and the
interloper line emission.

The total signal-to-noise ratio for a given power spec-
trum PðkÞ is then given by the signal-to-noise ratio in each
k-bin summed in quadrature,

ðSNRÞ½PðkÞ� ¼
�X

k

P2ðkÞ
σ2½PðkÞ�

�
1=2

: ð36Þ

Across our ten different realizations, this total signal-to-
noise ratio ranges from 91 to 117 for the [C II] autopower
spectrum in the 9 deg2 field alone (recalling that we have
imagined a survey that spans over 1000 deg2 in total) and
from 312 to 337 for the [C II]-LAE cross power spectrum.
While detectability forecasting is not the focus of the
present work, this calculation shows that there is significant
information content in the cross power spectrum of our
mock surveys that the LCB filter will use but the Wiener
filter will simply ignore.

1. Filtering with full knowledge of signal power spectrum

To start with, we assume that the power spectrum PðSÞ of
the signal is fully known—possibly from the wider LIM
survey—and used to design the LCB filter, as well as a
Wiener filter for comparison. We first find the average
signal power spectrum across all ten light cones, then use it
while iterating through the light cones again to design the
filters in each simulation, along with the actual observed
total auto- and cross power spectra from that simulation.
We show an example set of observables and reconstructions
under this implementation in Fig. 1.
Note first the strength of the total interloper line-

intensity contrast—which significantly exceeds that of
the [C II] intensity contrast. The Wiener filter, lacking the

FIG. 1. Visualization of a slice of an example [C II] LIM simulation, showing six outputs: (a) the mean-subtracted [C II] signal in
isolation; (b) the mean-subtracted [C II] signal summed with the mean-subtracted interloper CO and [C I] emission; (c) the total mean-
subtracted signal and interloper emission plus Gaussian noise as described in Sec. IV B; (d) the LCB-filtered data; (e) the LAE positions
contained in the slice shown of the data cube, including both sources properly contained in the slice’s declination bin (filled circles) and
sources in neighboring declination bins (unfilled circles); and (f) the Wiener-filtered data. Both the LCB and Wiener filter
reconstructions assume full knowledge of the signal power spectrum.
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information needed to distinguish between the signal
and interloper lines, ends up reconstructing neither com-
ponent. The LCB filter, however, is able to leverage the
cross-correlation between the signal component and the
LAE catalog to isolate certain bits of flux density contrast
that likely originate from z ∼ 6 [C II]. The resulting
reconstruction is not perfect, with some spurious bright
spots and failure to recover bright spots without a colocated
LAE overdensity. However, the large-scale fluctuations
certainly appear soundly isolated from the interloper
emission as well as the noise.
Moving from first impressions to quantitative results,

we show in Fig. 2 the range across all ten simulations of
relevant power spectra and normalized cross-correlation.
Before considering the reconstructions, it is worth noting
that in this futuristic LIM survey, the limiting factor in
sensitivity to the [C II] power spectrum is not the thermal
Gaussian noise, but the interloper line emission (which is
what accounts for the difference between the total
observed power spectrum and the combination of the true
signal and thermal noise power spectra). In the presence of
thermal noise alone, the Wiener filter would likely
actually succeed in reconstructing at least the largest
scales. However, with the interloper emission power
spectrum being 10 times that of the signal power spec-
trum, the Wiener filter reconstruction is inevitably sup-
pressed in amplitude by the corresponding amount. The
normalized cross-correlation with the true signal is also
poor, mostly staying near 30%–40%.
Using the measured [C II]-LAE cross-correlation, the

LCB filter clearly improves reconstruction of the [C II]
LIM signal. Compared to the Wiener filter, the LCB
filter greatly reduces the power spectrum bias. More
importantly, in the range of k ¼ 0.02–1 Mpc−1 (between
the lowest k available given the survey volume and the
highest meaningful k given the survey resolution), the
normalized cross-correlation between the LCB filter
reconstruction and the true signal never falls below
50%, and reaches 80%–90% at the linear scales
of k≲ 0.1 Mpc−1.
Unsurprisingly, the normalized cross-correlation between

the LCB reconstruction and the true signal is very similar
to that between the LAE catalog and the true signal.
This matches our first impressions from visual inspection
of Fig. 1, in that we largely isolate the portion of the [C II]
signal that correlates with the LAE galaxies. Knowledge
of the expected [C II] power spectrum still aids the LCB
filter, but does not contribute as much to the reconstruction
as the cross-correlation, at least in this case.

2. Filtering with knowledge of shape but not amplitude
of signal power spectrum

Now we consider a more realistic scenario where the
power spectrum PðSÞ is not in fact fully known. In principle,
if [C II] traces matter density fluctuations, the shape of

the [C II] power spectrum could be known beforehand to a
great extent. The amplitude, however, could be imperfectly
determined. The presence of interloper bias and other
sources of additive noise could result in overestimation,
but overcorrecting for these sources of biases could result in
underestimation.
We thus consider calculating LCB and Wiener filter

coefficients, based on an assumed PðSÞðkÞ that is off by
some multiplicative factor from the true PðSÞðkÞ, and
examining the resulting LCB and WF reconstructions.
We show the resulting change in the reconstruction

(b)

(a)

FIG. 2. The full interval of [C II] reconstruction results across
our ten semi-independent light cones. We show (a) the obtained
power spectra of the LCB and Wiener filter reconstructions
alongside their expected values (dashed lines), as well as the
original input signal, the total observation including noise and
interloper emission, and the thermal noise power spectrum by
itself (dash-dotted line). We also show (b) the normalized cross-
correlation rðkÞ between the original input signal and the two
reconstructions, as well as between the [C II] emission and the
LAE density contrast.
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at k ¼ 0.035 Mpc−1 in Fig. 3, with the multiplicative offset
ranging from 1=16 to 16.
Neither filter is robust against overestimation of PðSÞðkÞ.

This is sensible given the definitions of the filter coeffi-
cients, as noisy data will not be sufficiently down-weighted
if we overestimate the contribution of the target signal to
the total measured power spectrum.
However, the LCB filter is robust against underestima-

tion of PðSÞðkÞ. Whereas the Wiener filter would naïvely
down-weight what is in fact perfectly serviceable data,
the LCB filter is anchored by the presence of external data
and cross-correlation of the signal against those data.
Therefore, even if we lose trust in the [C II] autopower
spectrum, the [C II]-galaxy cross spectrum and the galaxy
autospectrum together limit the resulting bias in the
reconstruction.
This distinction is visible not only in the power spectrum

of the LCB andWF reconstructions, but in their normalized
cross-correlation against the true signal. Regardless of the
exact coefficients, the Wiener filter is simply reweighting
the same data, and so there is no reason for rðkÞ to change

with the filter coefficients. More generally, this suggests
that, in the presence of strong interloper emission, a Wiener
filter will never reconstruct the Fourier modes of the [C II]
fluctuations with high fidelity.
However, while overestimation of the power spectrum

by beyond a factor of 2 rapidly degrades the LCB
reconstruction as well, underestimation by as much as a
factor of 8 has relatively little effect, with rðk ¼
0.035 Mpc−1Þ against the true signal staying above 80%
thanks to the LAE cross-correlation filling the vacuum left
by the down-weighted LIM data. We show in Fig. 4 the
same results at a slightly higher k ¼ 0.120 Mpc−1 to show
some degree of k independence in these qualitative con-
clusions about the merits of the LCB filter.
Given its robust performance, the LCB filter would

likely equally excel at recovering the interloper emission
components individually, but we leave exploration of this
possibility to future work.

V. POTENTIAL APPLICATIONS IN CO LIM

Different LIM experiments have different sets of fore-
grounds and interloper emission components, and here we
will consider different possible future configurations of the
CO Mapping Array Project as the focus of our remaining

(a)

(b)

FIG. 3. Effect of calculating LCB and Wiener filter reconstruc-
tions of the [C II] signal with an assumed power spectrum PðSÞðkÞ
for the signal that differs from the true PðSÞðkÞ by some
multiplicative offset indicated along the x-axis. As a function
of this offset, we show at k ¼ 0.035 Mpc−1 the range across our
ten simulated observations of (a) the value of the power spectra of
the LCB and WF reconstructions (with the true signal power
plotted for comparison) and (b) the normalized cross-correlation
of each reconstruction with the true [C II] signal.

(a)

(b)

FIG. 4. Same as Fig. 3, showing evolution with signal power
spectrum misestimation of (a) power spectra of reconstructions
(with the true signal power plotted for comparison) and (b) nor-
malized cross-correlation, but all at a higher wave number of
k ¼ 0.120 Mpc−1.
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simulations. We provide the context behind COMAP first
in Sec. VA, then consider potential use cases for the LCB
filter in near-term and future phases of COMAP operations
respectively in Secs. V B and V C.
For this section, we assume cosmological parameter

values of Ωm ¼ 0.286, ΩΛ ¼ 0.714, Ωb ¼ 0.047, h ¼ 0.7,
σ8 ¼ 0.82, and ns ¼ 0.96, to maintain consistency with
previous simulations used by Ref. [27].

A. Context: The COMAP Pathfinder-like survey,
the COMAP expanded reionization array

concept, and a fiducial CO model

1. COMAP road map and survey parameters

As we noted in Sec. IVA, the rotational transition
lines of CO trace the cold molecular gas that fuels star
formation [90]. Therefore, CO LIM has the potential to
trace the evolution of the early star-forming environments
from the late epoch of reionization to the epoch of peak star
formation and galaxy assembly.
COMAP is currently the only operating LIM experi-

ment with dedicated single-dish instrumentation targeting
the low-J CO lines, having deployed a Pathfinder experi-
ment in 2019 and published early science results from the
first observing season as summarized by Ref. [21]. While
the current Pathfinder phase of COMAP operates in
the Ka band and covers 26–34 GHz in observing
frequency, this corresponds to not only CO(1–0) emission
from z ¼ 2.4–3.4 (the main science target of the COMAP
Pathfinder), but also to CO(2–1) emission from
z ¼ 5.8–7.9. Future phases of COMAP as described in
Ref. [38] will deploy Ku-band instruments observing at
12–20 GHz, thus measuring CO(1–0) at z ¼ 4.8–8.6 and
allowing cross-correlation between Ka- and Ku-band
observations to better constrain cosmic molecular gas
content at z ∼ 7.

Table I describes the parameters we assume for two
phases of COMAP.

(i) The first is a COMAP Pathfinder-like survey,
with slightly increased integration time per field
compared to the fiducial Pathfinder survey design.
This sensitivity could be readily achieved with
extended Pathfinder observations and the addition
of a second instrument would further facilitate
matters.

(ii) The second is the COMAP Expanded Reionization
Array (COMAP-ERA), a hypothetical stage 2 ex-
periment (if we index the Pathfinder as stage 0)
with most of the survey parameters as outlined
in Ref. [38].

In both cases, we alter the voxel size so that the pixel size is
roughly the beam size and the channel width significantly
exceeds the native ≃2 MHz resolution of the COMAP
spectrometers. Also in both cases, the noise per voxel is
calculated as

σN ¼ Tsysffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δνNspdNdishtobsΩpix=Ωobs

p : ð37Þ

2. CO model and simulation parameters

We must still define a model for CO emission and apply
it to an ensemble of simulations. Unlike in Sec. IV, where
we used UniverseMachine light cones from a single
cosmological simulation with empirically determined
star-formation rates for each halo, here we will make use
of an ensemble of independent approximate N-body
simulations using the peak-patch method [91]. Without
merger histories for peak-patch halos, we will simply
associate the halo mass Mh and cosmological redshift z

TABLE I. Key parameters for COMAP Pathfinder-like and COMAP-ERA simulations, either taken from [38] or newly assumed for
this work.

COMAP Pathfinder-like COMAP-ERA

Parameter Ka band Ku band Ka band

Frequency coverage (GHz) 26–34 13–17 26–34
Beam FWHM (arcmin) 4.5 3.9 4.5
Pixel size Ωpix (arcmin2) 4 × 4 4 × 4 4 × 4

Science channelization δν (MHz) 15.625 7.8125 15.625
Nominal system temperature Tsys (K) 44 20 44
Spectrometer count per dish Nspd 19 38 19
Solid angle per field Ωobs (deg2) 2 × 2 2 × 2 2 × 2

Dish hours per field Ndishtobs (hr) 12500 57000 110000
Noise per voxel σN (μK) 11.42 2.55 3.85
Number of fields per survey 3 3 3
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to an average star-formation rate and the star-formation rate
to an average CO line luminosity.
For the CO luminosity model, we use the model of Li

et al. [11] as modified by Keating et al. [16], assigning
luminosities to all halos with virial mass above 1010M⊙.

(i) The model begins by using the empirical model
of Behroozi et al. [92,93] to interpolate the
average star-formation rate for a given halo
mass and redshift. Each halo is then assigned
its appropriate star-formation rate with log-
normal scatter of σ ¼ 0.3 dex (although we imple-
ment the scatter in a way that preserves the
linear mean).

(ii) The star-formation rate is assumed to be linearly
proportional to the bolometric IR luminosity, via a
factor of 1010L⊙ðM⊙ yr−1Þ−1.

(iii) Empirical fits to observations relate the IR and
average CO(J → J − 1) luminosities,

log
LIR

L⊙
¼ αJ

�
log

LCO;J

L⊙
þ 4.31

�
þ βJ: ð38Þ

Specifically, following fits to a local sample
of galaxies from Kamenetzky et al. [88], we use
α1 ¼ 1.27, β1 ¼ −1.0, α2 ¼ 1.11, and β2 ¼ −0.6.

(iv) Once again, there is log-normal scatter of σ ¼ 0.3
dex around this average CO luminosity for fixed IR
luminosity.

Using LIMLAM_MOCKER once again, we “paint” CO
luminosities so modeled onto two separate sets of peak-
patch simulations, one for the z ∼ 3 CO(1–0) signal and
another for the z ∼ 7 CO(1–0) and CO(2–1) signals.

(i) For the z ∼ 3 signal, we use 9 of the 161 independent
peak-patch light cone simulations generated for
Ref. [27]. The simulations have a box size of Lbox ¼
1140 Mpc and a resolution ofNcells ¼ 40963. This is
sufficient to span 26–34 GHz in CO(1–0) observing
frequency and 9.6° × 9.6° on the simulated sky,
while resolving halos as small as Mh ≃ 2.5 ×
1010M⊙ at high completeness. We correct peak-
patch halo masses via abundance matching to the
halo mass function of Tinker et al. [94]. We divide
each box into 16 subfields of 2° × 2° each, for a total
of 144 simulations of CO(1–0) at z ∼ 3 as would be
observed by COMAP.

(ii) For the z ∼ 7 signal, we use 16 light cones out of a
new set of peak-patch simulations designed specifi-
cally with reionization-epoch COMAP signals in
mind. These simulations have Lbox ¼ 960 Mpc and
a resolution of Ncells ¼ 56403, thus spanning 6° × 6°
on the simulated sky as well as the CO(1–0) and
CO(2–1) observing frequencies relevant for
COMAP-ERA, while resolving halos slightly below
Mh ≃ 1010M⊙. We again correct peak-patch halo
masses via abundance matching to the halo mass

function of Tinker et al. [94], incorporating high-
redshift corrections from Appendix G of Ref. [92].
We divide each box into nine subfields of 2° × 2°
each, for a total of 144 simulations of CO lines at
z ∼ 7 as would be observed by COMAP.

Here, we apply the two-tier line-broadening model
of Ref. [95] to all simulations. All halos with virial
mass Mh > 1011M⊙ are assigned a random inclination i
and, based on this i as well as the virial velocity vvir of
the halo, also assigned a line profile FWHM given by
vvir sin i=0.866. These halos are then binned in 16 linearly
spaced bins of line width, while the halos with virial mass
Mh < 1011M⊙ are assumed to have negligible line width
compared to the COMAP science channel bandwidth. The
CO temperature cube calculated from each bin of halos is
convolved with a Gaussian kernel of appropriate scale
along the frequency dimension, so that the final line-
broadened CO cube is the sum of the Gaussian-filtered 17
CO temperature cubes.
We randomly pair the 144z ∼ 3 simulations with the

144z ∼ 7 simulations, ending up with 144 simulated
2° × 2° fields. In all cases the Ka-band cube is the sum
of the z ∼ 3 CO(1–0) and z ∼ 7 CO(2–1) signals (with the
instrument beam and survey transfer function applied to
both as detailed for each survey below) with appropriately
scaled Gaussian noise, while the Ku-band cube is the
sum of the z ∼ 7 CO(1–0) signal (again with the beam and
transfer function applied) with appropriately scaled
Gaussian noise.

B. COMAP Pathfinder-like survey: Reconstructing
CO(1–0) with external cross-correlations

As noted above, the principal target for the Pathfinder
survey is z ∼ 3 CO(1–0) emission from the epoch of galaxy
assembly and peak star formation. Here we consider the
possibility of reconstructing this z ∼ 3 signal, with the help
of an overlapping galaxy catalog.

1. Methods

First, we further clarify the generation of mock obser-
vations. After summing the z ∼ 3 CO(1–0) and z ∼ 7 CO
(2–1) signals, we convolve the total Ka-band brightness
temperature into a Gaussian filter with the appropriate
kernel for the beam size given in Table I for the Pathfinder-
like observations, as before. However, we will simulate the
effect of foreground subtraction in more detail than the
simple mean subtraction that we used for simulations
in Sec. IV.
Based on the heuristic form of the COMAP transfer

function given by Ref. [96], and a measurement of ∼70%
main beam efficiency used for both COMAP high-redshift
and Galactic analyses [97,98], we approximate the portion
of the power spectrum transfer function not included in the
Gaussian filter as
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T hpðk⊥; kkÞ ¼
0.49

ð1þ e5−100 Mpc·k⊥Þð1þ e5−200 Mpc·kkÞ :

ð39Þ

We multiply the Fourier transform of the beam-convolved
CO cube by the square root of this function, and then invert
the Fourier transform to obtain a high-pass-filtered signal
scaled appropriately by the beam efficiency. These steps
transform the signal from a physical brightness temperature
into a pseudotemperature, which for convenience we will
notate as T. All power spectra for the remainder of this
whole section are implicitly pseudopower spectra.
By contrast, we will not consider the overlapping galaxy

survey in nearly as much detail, given the limited infor-
mation about each halo in the peak-patch simulations. We
mainly select mock “galaxies” from the halos in the z ∼ 3
simulation with virial mass above a certain Mh;min, with
additional selection possible if desired after that. To gauge
the effect of increasing source density and decreasing
galaxy bias, we try three different types of selection:

(i) We suppose that the spectroscopic galaxy survey
catalogs the locations of all halos with virial mass
above Mh;min=M⊙ ¼ 6 × 1012.

(ii) We suppose that the spectroscopic galaxy survey
catalogs the locations of all halos with virial mass
above Mh;min=M⊙ ¼ 3 × 1012.

(iii) We mock a z ∼ 3 LAE survey similar to the Hobby-
Eberly Telescope Dark Energy Experiment (HET-
DEX; see Refs. [99–101]) by using a slightly
modified version of the LAE model of Ref. [96],
which assumed that 5% of halos with virial mass
above 9.3 × 1010M⊙ would be LAE hosts. Here, we
first select all halos with virial mass above
Mh;min=M⊙ ¼ 1011, randomly select 5% of these
halos (mimicking a Lyman-alpha emission duty
cycle), and then apply a regular mask across the
whole survey field that leaves unmasked 5000 × 5000
squares with centers spaced apart by 10000 in both
angular directions. This masking step culls 3=4 of
the mock LAEs from the catalog and is meant to
mimic the sparse sampling of the HETDEX survey,
although the actual HETDEX window function will
be more complicated. Note that both the 5% duty
cycle and sparse sampling will induce additional
shot noise uncorrelated with the CO signal.

The resulting source counts per patch for each selection are
718þ103

−98 , 2872þ312
−318 , and 5460þ247

−268 (90% intervals) across
144 simulations. Source densities of ∼103 deg−1 per
Δz ¼ 1 at this redshift range are eminently plausible from
currently operating experiments like the aforementioned
HETDEX LAE survey, which expects to lleverage integral
field spectroscopy to catalog roughly 2000 LAE positions
per square degree spanning z ¼ 2–3.5 even with sparse
coverage filling only 1=4.5 of the nominal survey area.

Future facilities will also readily achieve such source
densities, including ground-based highly multiplexed mul-
tifiber spectrographs like DESI-II or MegaMapper target-
ing z > 2 Lyman-break galaxies [102,103] and the Nancy
Grace Roman Space Telescope whose reference survey
strategy includes surveying 2 × 106 [O III] emitters at
z ¼ 2–3 across 2000 deg2 [104].
We simulate the observations in 48 batches of three

fields, mimicking a single COMAP “survey.” Each survey
shares the same LCB and WF coefficients, designed as
follows:

(i) We mimic the feed-feed pseudo-cross-spectrum
(FPXS) estimator used by Ref. [97] for the CO
power spectrum in each field. After generating 38
different mock data cubes with the same signal but
with independently generated Gaussian noise with
standard deviation per voxel of σN

ffiffiffiffiffi
38

p
(assumed to

be 38 disjoint splits, e.g., in detector and elevation
range), we obtain 19 × 18 cross spectra between
these cubes and average them to obtain the FPXS
estimate for the CO autospectrum in that field. We
then use the average of these FPXS estimators across
all fields in the survey as our estimate for PðSÞðkÞ
purely from the noisy mock data rather than directly
from the noiseless input signals. [This method will
slightly bias the signal power spectrum due to the
common presence of background CO(2–1) emis-
sion, but this background is sufficiently subdomi-
nant that the extent of overestimation will be in the
range that the LCB filter has already shown to
tolerate well in Sec. IV D.]

(ii) We obtain the galaxy power spectrum in each field
and average across fields. The three-field average
estimates the value of PðTÞ

1 ðkÞ ¼ D11 required by
Eq. (25) for the LCB filter.

(iii) We now average the mock cubes into a single cube
with noise per voxel of σN and obtain cross spectra
for each field. The average of the cross spectra

across all fields is what we use for D12 ¼ D21 ¼
PðSÞ
12 ðkÞ as required by Eq. (25) for the LCB filter.

With the relevant auto- and cross power spectra estimated
for the whole survey, we apply the LCB and WF recon-
structions to each field, measuring reconstruction power
spectra as well as normalized cross-correlation against the
true (pseudo)signal on a per-field basis.

2. Results

As before, we note expected detectability briefly. We
predict strong detections of CO-galaxy cross spectra with
this Pathfinder-like survey. With either smaller catalogs of
∼700 mass-selected objects or ∼5500 mock LAEs for each
4 deg2 field, the average total (all-k) signal-to-noise ratio
for the cross power spectrum is 21, rising to 27 for larger
mass-selected catalogs of ∼3000 objects per field.
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The CO(1–0) power spectrum is detectable with a total
signal-to-noise ratio of 10 per field on average. This is
consistent with the signal-to-noise forecasts from the
COMAP Collaboration [96] to within a factor of order
unity, once we account for various factors such as the
number of fields, the inclusion of the contribution of
sample variance to noise, differences in voxelization of
the survey volume, approximations made in our transfer
function and noise models, calculation details of line
broadening, and so on. Again, since the focus of this work
is on introducing the reconstruction method rather than
forecasting detectability, we consider the level of agree-
ment adequate.
Figure 5 summarizes results for the less abundant mass-

selected mock galaxy sample withMh;min=M⊙ ¼ 6 × 1012.
Both LCB and WF reconstructions result in significantly

suppressed power spectrum amplitudes, but the LCB filter
is able to leverage cross-correlations to significantly
improve the normalized cross-correlation against the true
pseudosignal, meaning that we recover the correct structure
of fluctuations down to smaller scales. Note that at lower k,
rðkÞ is actually slightly higher on average between the LCB
reconstruction and the true signal than between the mock
galaxies and the true signal. The LCB filter in practice
leverages not only the CO-galaxy cross-correlation but
also the knowledge of expected structure at large scales,
filling in large-scale fluctuations not necessarily completely
mapped by our relatively low-density galaxy sample.
Results are similar with our mock LAE sample, as sown

in Fig. 6. Despite a sample just over 7.5 times more
abundant than the Mh;min=M⊙ ¼ 6 × 1012 sample, the
lower tracer bias and noise-inducing selection of this
sample results in similar detectability and thus similar
reconstruction improvement to the lower-abundance sam-
ple. But compared to that sample, the mock LAE sample
does trace the large-scale modes with higher fidelity,
resulting in slightly (although not significantly) improved
rðkÞ and slightly reduced PðkÞ bias at low k. Of course, this

(b)

(a)

FIG. 5. 90% intervals of reconstruction summary statistics
across our 144 ¼ 48 × 3 simulated Pathfinder-like survey
fields, given an overlapping galaxy sample simulated with
Mh;min=M⊙ ¼ 6 × 1012. We show (a) the obtained power spectra
of the LCB and Wiener filter reconstructions alongside their
expected values (dashed lines), as well as the original input
signal, the total observation including noise and interloper
emission, and the thermal noise power spectrum by itself
(dash-dotted line). We also show (b) the normalized cross-
correlation rðkÞ between the original input signal and the two
reconstructions, as well as between the noiseless CO(1–0) pseu-
dosignal and the galaxy density contrast.

(a)

(b)

FIG. 6. Same as Fig. 5, but now for the mock LAE sample with
sparse sampling.We again show 90% intervals across 144¼48×3
simulated Pathfinder-like survey fields of (a) power spectra for
signal, noise, and reconstructions, as well as (b) normalized cross-
correlations between the noiseless CO(1–0) pseudosignal and
either a reconstruction or the mock galaxy sample.
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in turn slightly increases the advantage over the Wiener
filter reconstruction.
The improvement of the LCB filter over the Wiener filter

is even more significant with a more abundant mass-
selected mock source catalog with Mh;min=M⊙¼3×1012.
Figure 7 shows significantly reduced suppression of the
power spectrum of the LCB-filtered data and even more
marked improvement in the normalized cross-correlation,
which now stays above 50% for all k≲ 0.3 Mpc−1. The
Wiener-filtered data only reach this rðkÞ range for
k≲ 0.1 Mpc−1, where the LCB-filtered data reach typical
rðkÞ values of 70%–80%. With a more abundant galaxy
sample, we also see a reduced difference compared to
Fig. 5 between the normalized cross-correlations of the true
signal against the LCB reconstruction versus the galaxy
sample. This suggests a scenario more similar to that of
Sec. IVwhere the galaxy sample is sufficiently abundant that
the cross-correlation drives the reconstruction at all scales.
We conclude consideration of the Pathfinder-like sce-

nario by showing in Fig. 8 slices of a typical simulation of

signals, observations, and reconstruction, with a source
catalog given by Mh;min=M⊙ ¼ 3 × 1012. Note that the
z ∼ 3 CO(1–0) signal clearly dominates over the z ∼ 7
CO(2–1) background, but noise clearly dominates the total
observation. As a result, the Wiener filter reconstructs a
much weaker set of fluctuations compared to the original
signal, whereas the LCB filter as before reconstructs
something much closer to the original line-intensity fluc-
tuations where the CO contrast coincides with galaxy
density contrast.

C. COMAP-ERA: Isolating CO(2–1)
with internal cross-correlations

The z ∼ 3 CO(1–0) emission dominating over z ∼ 7
CO(2–1) emission presents a boon for the Pathfinder-like
survey, but an interloper and a nuisance for COMAP-ERA,
which needs to access the reionization-epoch signal.
However, as we discussed in Sec. VA, the deployment
of lower-frequency instrumentation will allow observations
of CO(1–0) at the same redshifts. Thus cross-correlations
internal to the COMAP-ERA survey (as opposed to with
external datasets) will isolate the common z ∼ 7 CO signal.

1. Methods

We simulate fields in 48 batches of three, thus mocking
whole surveys at once as in Sec. V B. In fact, most of the
simulation workflow is the same as in Sec. V B, so we
enumerate the main differences.
First, we omit simulation of the FPXS estimation.

However, we also “split” the Ku-band data in two, gen-
erating two data cubes with the same signal but noise per
voxel scaled up by

ffiffiffi
2

p
and treating them as two indepen-

dent observations (which they may be at some level if they
are obtained from, e.g., different subsets of COMAP-ERA
receivers). Thus for the LCB filter we have n ¼ 2, instead
of n ¼ 1 as in the previous case studies. This Ku-band data
split would not be useful if we were simply trying to
reconstruct the z ∼ 7 CO(1–0) signal as the result would
reduce to the Wiener filter as discussed in Appendix C, but
is a handy construction for use with the Ka-band obser-
vation to obtain an unbiased estimate of the CO(2–1) power
spectrum, as described in Sec. II C. As before, this and all
other total auto- and cross power spectra are averaged
across the fields in each survey, with the survey-wide
averages used for LCB filter calculations in each field of the
survey.
We also adjust the power spectrum transfer function

slightly to account for the changed relations between
angular or frequency scales with comoving lengths at z ∼ 7,

T hpðk⊥;kkÞ¼
0.49

ð1þe5−138Mpc·k⊥Þð1þe5−144Mpc·kkÞ : ð40Þ

As the transfer function is calculated as a function of k, we
apply it equally to Ku- and Ka-band CO cubes.

(a)

(b)

FIG. 7. Same as Fig. 5 or Fig. 6, but now for an overlapping
galaxy sample with Mh;min=M⊙ ¼ 3 × 1012, leading to high
source abundances but lower shot noise. We still show 90%
intervals across 144 ¼ 48 × 3 simulated Pathfinder-like survey
fields of (a) power spectra for signal, noise, and reconstructions,
as well as (b) normalized cross-correlations between the noiseless
CO(1–0) pseudosignal and either a reconstruction or the mock
galaxy sample.
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For z ∼ 7 CO(2–1), we offer the Wiener filter
reconstruction the best possible chance to succeed by using
the true signal pseudopower spectrum for each field with
the total Ka-band autopower spectrum to Wiener filter the
data. However, this advantage is entirely irrelevant in the
presence of strong interloper emission, which the results of
Sec. IV D should already suggest.
We also cut Fourier modes with k < 0.01 or k > 0.7

from the LCB reconstruction, as we expect cross-correlation
information at those scales to be spurious at best due to the
COMAP beam and pipeline transfer functions simulated
here. This step is not necessary for theWiener filter, as again
we provide it with the true signal power spectrum.

2. Results

We briefly advertise average signal-to-noise ratio expect-
ations, which are 52 for the Ku-band CO(1–0) signal, 12 for
the Ka-band CO(2–1) signal, and 28 for the cross-band
CO power spectrum. All these values are broadly in linewith
the projections of [38] for the same CO emission model and
suggest that the cross power spectrum has significant
information to aid in reconstruction with the LCB filter.
Figure 9 shows the key results across our simulations.

The qualitative results are largely the same as for the [C II]

survey simulated in Sec. IV D. The principal difference is
that here the cross-correlation target is not an external
sample of discrete galaxies, but other line-intensity map-
ping data. This distinction is irrelevant to the LCB filter,
which recovers the lowest-k modes with rðkÞ exceeding
80% and generally recovers linear-scale CO(2–1) fluctua-
tions much better than the Wiener filter.

3. Limitations of reconstructions

At this point, we have repeatedly established the ability
of the LCB filter to robustly reconstruct the true signal with
significant improvements over the Wiener filter. We now
demonstrate some limitations of these reconstructions, in
the context of examining the relation between CO(2–1) and
CO(1–0) emission surveyed by COMAP-ERA across the
same volume.
The CO(2–1)/CO(1–0) intensity ratio is a key probe of

the environments traced by CO-bright molecular gas, being
associated with the temperatures and densities of molecular
clouds as well as heating from the interstellar radiation
field, and the consequent excitation of the CO rotational
transitions [105–110]. A global measurement of this line
ratio should be a statistical diagnostic for the dynamics and
chemistry of the earliest molecular clouds and galactic dust

FIG. 8. Visualization of a slice of an example COMAP Pathfinder-like simulation, showing six outputs: (a) the total simulated Ka-
band observation, including the CO(1–0) signal from z ∼ 3, the CO(2–1) background from z ∼ 7, and noise; (b) the sum of the noiseless
filtered signal and background CO emission; (c) the noiseless z ∼ 3 CO(1–0) pseudotemperature in isolation; (d) mock galaxy positions
contained in the slice shown of the data cube, including both sources properly contained in the slice’s declination bin (filled circles) and
sources in neighboring declination bins (unfilled circles); (e) the Wiener-filtered data; and (f) the LCB-filtered data. The mock galaxy
sample is generated based on a minimum halo mass of 3 × 1012M⊙.
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in cosmic history and would perhaps improve prospects of
recovering quantities like the cosmic molecular gas density
in a physically motivated fashion.
Since LIM analyses will typically discard informa-

tion about the mean intensity in cleaning the data of
continuum foregrounds, the best that one can infer is the
ratio of CO(2–1) temperature fluctuations to CO(1–0)
temperature fluctuations. For fluctuations on linear scales,
the result will not be the ratio of the line temperatures, but
the ratio of the line temperature-bias products hTbiline,
which we briefly mentioned in Sec. II C as the conversion
between matter density contrast and CO temperature

contrast. That said, in principle, we expect these lines to
correlate strongly (see, e.g., [20]) and trace the underlying
matter density with similar biases. This expectation is
certainly the case for the CO model used in this work. At
z ¼ 6.68 (corresponding to the midpoints of the COMAP
observing frequency bands), the CO(2–1)/CO(1–0) ratio
in hTbi [calculated via Eq. (21), assuming the halo bias
model of Ref. [111] and the same halo mass function used
for peak-patch mass adjustments in Sec. VA 2] is 0.74.
The CO(2–1)/CO(1–0) ratio in hTi, calculated simply by
removing bðMhÞ from the integrand of Eq. (21), is only
around 5% lower at 0.71.

(a)

(b)

FIG. 9. 90% intervals of reconstruction summary statistics for
Ka-band data across our 144 ¼ 48 × 3 simulated COMAP-ERA
survey fields. We show (a) the obtained power spectra of the LCB
and Wiener filter reconstructions alongside their expected values
(dashed lines), as well as the original input signal, the total Ka-
band observation including noise and interloper emission, and the
thermal noise power spectrum by itself (dash-dotted line). We
also show (b) the normalized cross-correlation rðkÞ between the
original input signal and the two reconstructions, as well as
between the noiseless CO(1–0) pseudosignal and the galaxy
density contrast.

FIG. 10. Joint probability distributions, shown using a log color
scale (darker colors indicate higher probability), of CO(1–0) and
CO(2–1) temperature fluctuations at z ∼ 7. We show distributions
for a representative realization of (a) the pair of noiseless
pseudosignals, (b) simulated COMAP-ERA reconstructions using
theWiener filter or the LCB filter as appropriate, and (c) simulated
COMAP-ERA reconstructions using only Wiener filters for each
band. The LCB reconstruction, although failing to help recover the
correct shape of the joint probability distribution, allows recovery
of the correct slope of the correlation and thus the correct global
line ratio in hTbi to within a few percent, modulo bias from
observational distortions. Using onlyWiener filter reconstructions
fails to recover even the correct slope of the correlation line.
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We should be able to find the CO(2–1)/CO(1–0) ratio in
hTbi from simulated COMAP-ERA data in two ways. The
first is by taking the ratio of the CO(1–0)–CO(2–1) cross
power spectrum to the CO(1–0) autopower spectrum on
linear scales. Simulated surveys recover a ratio of 0.75�
0.03 (68% interval) on average across 48 × 3 patches, so
recovery is successful and unbiased. The second is by finding
a linear fit to the reconstructed pseudotemperature fields,
namely the LCB-filtered Ka-band CO(2–1) data and the
Wiener-filtered Ku-band CO(1–0) data. We show the corre-
lation between the reconstructions in Fig. 10 through their
joint probability distribution, alongside the actual correlation
of the original, noiseless pseudotemperature fields.
The original pseudosignals have a CO(2–1)/CO(1–0)

ratio of 0.72 in hTbi with very little scatter from realization
to realization, showing a slight bias relative to the true value
resulting from observational effects (in particular the
smaller beam FWHM and thus reduced beam dilution in
the Ku-band observation compared to the Ka-band obser-
vation). But once we accept this bias between the true ratio
and the pseudosignal ratio, we note that the reconstructions
(which, again, are effectively pseudo-pseudosignals) suc-
cessfully recover the correct pseudosignal ratio, obtaining

0.73� 0.02 (68% interval) across our 48 × 3 simulated
patches. Using only Wiener filter reconstructions naturally
fails to recover the same line ratio, due to strong suppres-
sion of the Ka-band reconstruction by the overwhelming
z ∼ 3 interloper emission.
But while we recover the correct overall slope of the

correlation, the reconstructions evidently do not recover
the actual shape of the joint probability distribution. The
original pseudosignals show a tight correlation at low
pseudotemperatures that broadens for the brightest CO
peaks. These trends are sensible given our model, which
assumes a log-normal scatter in CO(1–0) or CO(2–1)
luminosity for fixed star-formation rate. Because the scatter
is log-normal, at low luminosities and thus for small
temperature fluctuations, the absolute difference between
the CO(1–0) and CO(2–1) signals will be smaller than for
high luminosities and large temperature fluctuations. The
original joint probability distribution, even with distortion
by observational effects, thus contains interesting informa-
tion about the stochasticity of CO emission and its relation
to CO luminosity. No such information is recovered by the
reconstructions, which do show skewed distributions but
not the correct size or shape of skew. This shortcoming is to

FIG. 11. Visualization of a slice of an example COMAP-ERA simulation, showing six outputs: (a) the total simulated Ka-band
observation, including the CO(1–0) interloper from z ∼ 3, the CO(2–1) signal from z ∼ 7, and noise; (b) the sum of the noiseless filtered
signal and interloper CO emission; (c) the noiseless z ∼ 7 CO(2–1) pseudotemperature in isolation; (d) the LCB-filtered Ka-band data,
based on cross-correlation with the Ku-band measurement of CO(1–0); (e) the Wiener-filtered Ka-band data; (f) the total simulated
Ku-band observation including noise; (g) the noiseless Ku-band CO(1–0) signal; and (h) the Wiener-filtered Ku-band data.
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be expected from applying a linear estimator to two highly
non-Gaussian fields. In this context, the LCB and Wiener
filters recover large-scale fluctuations well, but small-scale
statistics less so.
Ultimately, the LCB filter is valuable in translating the

cross-correlation between correlated signals into a redshift-
space map that robustly rejects disjoint systematics and
noise, but will not recover information about global
properties beyond the power spectra used to calculate
the filter. More sophisticated reconstruction techniques,
potentially with sensible informative inbuilt priors, would
likely significantly improve recovery of local statistics of
and between observables.
In concluding discussion of COMAP-ERA simulation

results, we plot slices of various mock observations and
reconstructions from a typical realization of a survey field
in Fig. 11, serving as a qualitative graphical recap.

VI. CONCLUSIONS

We can now decisively answer the questions we posed in
the Introduction:

(i) “Can the LCB filter successfully reconstruct the
structure of line-intensity fluctuations on large linear
scales by exploiting cross-correlations with surveys
of discrete sources?” Yes. We showed this both in
the context of a futuristic [C II] LIM survey and in the
context of near-term observations feasible with
the COMAP Pathfinder. Both normalized cross-
correlation and estimator power spectrum bias rel-
ative to the true signal improve significantly over
the Wiener filter, across a range of different as-
sumptions about the information available to calcu-
late the filter.

(ii) “Can the LCB filter successfully reconstruct the
structure of line-intensity fluctuations on large linear
scales by cross-correlation with a measurement of a
different, correlated line-intensity signal?” Yes.
Simulations of the proposed COMAP-ERA survey
show strong recovery of z ∼ 7 CO(2–1) from Ka-
band data through cross-correlation with Ku-band
data measuring z ∼ 7 CO(1–0), despite the presence
of bright interloper emission in CO(1–0) from z ∼ 3
in the Ka band. The LCB filter should thus enable
COMAP-ERA to robustly map molecular gas in
multiple lines across large volumes spanning the late
epoch of reionization.

As we have stated multiple times—as early as the
Introduction, in fact—the LCB filter is not necessarily
the best estimator to use, given the strong non-Gaussianity
of a line-intensity field that principally traces the gas
content of galaxies. We saw this in the COMAP-ERA
linear reconstructions, which failed to recover the correct
skew of the joint probability distribution between CO(1–0)
and CO(2–1) temperature fluctuations. Furthermore, the
shot noise components of different tracers could become a

significant source of small-scale reconstruction variance in
this formalism. However, at large linear scales where the
signal is approximately Gaussian, the LCB filter appears
successful, suggesting that it or a similarly straightforward
technique may be sufficient for some use cases. For
instance, we hope future work will investigate identification
of large (≳10 Mpc diameter) voids and peaks in the context
of COMAP-ERA reconstructions. (A detailed considera-
tion is beyond the scope of this work but a preliminary
consideration of the [C II] simulations from Sec. IV, as
outlined in Appendix D, suggests reason for optimism.)
Factoring in redshift-space distortions and anisotropic
information, which we have neglected here, would also
likely improve reconstruction.
We also hope that the possibility of robust signal

reconstruction through cross-correlation further motivates
coordination between future LIM surveys and between
LIM and other LSS surveys. Such collaboration will enable
looking beyond statistical constraints on the early cosmic
history of star formation and galaxy assembly, toward
directly mapping these processes across large cosmic
volumes in many different shades.
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APPENDIX A: PROOF OF EQUIVALENCE
OF LCB FILTERING WITH THE ESTIMATOR

OF MANZOTTI AND DODELSON [53]

Weshowhere explicitly that theLCB filter is equivalent to
the optimal map estimator of Manzotti and Dodelson [53].
Although this was shown explicitly for n ¼ 1 by
Weaverdyck et al. [56], we show it for all n, with the only
assumption being that there is zero covariance between
different wave numbers k or between spherical harmonic
multipoles l in the use case of Manzotti and Dodelson [53].
First, we note that the matrix D is defined in much the

same way as we define it in this work, e.g., in Eq. (4).
However, they allocate the observable of interest to index 1;
we will adapt any of their expressions to our convention of
allocating index p ¼ nþ 1. There is an additional covari-
ance for which Manzotti and Dodelson [53] use the
notation C, but to denote the covariance of dp − sp, i.e.,
the sum of the covariances of all components of the
observable p that we are not interested in reconstructing
(noise, other uncorrelated interlopers, and so on). So theirC
is really our PðNÞ.
Manzotti and Dodelson [53] also define a further addi-

tional variance N, and we reproduce the definition of their
Eq. (8) here (albeit with necessary adaptations as described
above),

N−1 ¼ ðPðNÞÞ−1 þ ðD−1Þpp: ðA1Þ

Given this N, we now reproduce the estimator of Manzotti
and Dodelson [53] as defined by their Eq. (9) (with some
adaptations and omitting the dependence on k for brevity),

ŝp ¼ N

�
ðPðNÞÞ−1dp −

Xn
j¼1

ðD−1Þpjdj
�
: ðA2Þ

First, recall that our formalism involves a Cholesky
decomposition of D such that D ¼ LLT , with L being a
lower triangular matrix such that Lij ¼ 0 if i < j. Then
since L−1 is also a lower triangular matrix (and its transpose
L−T is upper triangular),

1 ¼ ðL−1LÞpp ¼
Xp
i¼1

ðL−1ÞpiLip ¼ ðL−1ÞppLpp; ðA3Þ

and

ðD−1Þpp ¼
Xp
i¼1

ðL−TÞpiðL−1Þip

¼
Xp
i¼1

ðL−1Þ2ip ¼ ðL−1Þ2pp ¼ ðLppÞ−2: ðA4Þ

More generally,

ðD−1Þpj ¼
Xp
i¼1

ðL−TÞpiðL−1Þij ¼ ðL−1ÞppðL−1Þpj

¼ ðLppÞ−1ðL−1Þpj: ðA5Þ

Additionally, since LL−1 ¼ I (the identity matrix),

δpj ¼ ðLL−1Þpj ¼
Xp
i¼1

LpiðL−1Þij

¼ LppðL−1Þpj þ
Xn
i¼1

LpiðL−1Þij: ðA6Þ

Then for all j < p, i.e., for all j from 1 to n, putting
together Eqs. (A5) and (A6) gives us

ðD−1Þpj ¼ −
1

L2
pp

Xn
i¼1

LpiðL−1Þij: ðA7Þ

Substituting this result, Eqs. (A1) and (A4) all at once into
Eq. (A2), we find

ŝp ¼ L2
ppPðNÞ

L2
pp þ PðNÞ

�
dp
PðNÞ þ

1

L2
pp

Xn
j¼1

Xn
i¼1

LpiðL−1Þijdj
�

¼ L2
pp

L2
pp þ PðNÞ dp þ

PðNÞ

L2
pp þ PðNÞ

Xn
j¼1

Xn
i¼1

LpiðL−1Þijdj:

ðA8Þ

One may readily see that this is entirely equivalent to
Eq. (10), which is what was to be shown.

APPENDIX B: FURTHER EXPRESSIONS FOR
USE WITH THE LCB FILTER WHEN n > 1

It is straightforward to show that, in general, each
element of the ith row of the Cholesky decomposition of
D may be expressed recursively in terms of the ði − 1Þ ×
ði − 1Þ submatrix preceding it as well as the preceding
elements of that row,

Lii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dii −

Xi−1
j¼1

L2
ij

vuut ; ðB1Þ

Lij ¼
1

Ljj

�
Dij −

Xj−1
k¼1

LikLjk

�
; ðB2Þ

where the latter is for j < i only.
Specifically, in the case of n ¼ 2, where D is a 3 × 3

matrix, we obtain the following elements of L:

L11 ¼
ffiffiffiffiffiffiffiffi
D11

p
; ðB3Þ
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L21 ¼ D21=
ffiffiffiffiffiffiffiffi
D11

p
; ðB4Þ

L22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D22 −D2

21=D11

q
; ðB5Þ

L31 ¼ D31=
ffiffiffiffiffiffiffiffi
D11

p
; ðB6Þ

L32 ¼ ðD32 −D21D31=D11Þ=L22; ðB7Þ

L33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D33 −

D2
31

D11

− L2
32

s
: ðB8Þ

Note that we do not expand L22 and L32 in the expressions
for L32 and L33 respectively, for brevity. It should be clear
that the first three of these expressions are the same as for a
2 × 2 matrix and evaluate to Eqs. (11)–(13) given D as
defined in Eq. (4).
In particular, note that since

L2
pp ¼ Dpp −

Xn
j¼1

L2
pj ¼ PðSÞ −

Xn
j¼1

L2
pj; ðB9Þ

it is always the case that L2
pp þ PðNÞ can be written purely

in terms of the total power spectrum PðSÞ þ PðNÞ of dp and
the upper left n × n submatrix of L, which in turn only
depends on the total power spectra of the other observables.

APPENDIX C: EQUIVALENCE OF THE LCB
FILTER FOR si = sj FOR ALL i AND j WITH
A WIENER FILTER FOR THE INVERSE

NOISE VARIANCE-WEIGHTED
AVERAGE OF ALL DATA

Suppose now that all our observations are of the same
underlying signal, i.e., si ¼ sj for all i and j, and call this
signal s≡ si for all i. The observations still have inde-
pendent, uncorrelated noise, possibly even different levels
of noise. However, importantly, the expected values of the
cross power spectra are the same as the expected value of
the signal autopower spectrum, unbiased by noise. So the
relevant covariance matrix is given by

DijðkÞ ¼
�
PðSÞðkÞ þ δijP

ðNÞ
i if i ≤ n and j ≤ n;

PðSÞðkÞ otherwise:

ðC1Þ

For intuition, consider again the special case of n ¼ 1.
Then Eq. (16) becomes

L2
22

L2
22 þ PðNÞ

2

¼ PðSÞPðNÞ
1

ðPðSÞ þ PðNÞ
1 ÞðPðSÞ þ PðNÞ

2 Þ − PðSÞ2 ; ðC2Þ

and we can rewrite Eq. (15) as

ŝ ¼ PðSÞðPðNÞ
1 d2 þ PðNÞ

2 d1Þ
PðSÞðPðNÞ

1 þ PðNÞ
2 Þ þ PðNÞ

1 PðNÞ
2

¼ PðSÞd�
PðSÞ þ PðN�Þ ; ðC3Þ

where d� denotes the noise inverse variance-weighted
average

d� ¼
d1=P

ðNÞ
1 þ d2=P

ðNÞ
2

1=PðNÞ
1 þ 1=PðNÞ

2

; ðC4Þ

whose power spectrum will be the sum of the signal power
spectrum, which will still be PðSÞ, and a noise power
spectrum that one may readily find equal to

PðN�Þ ≡ 1

1=PðNÞ
1 þ 1=PðNÞ

2

: ðC5Þ

Written in this way, we can easily see that the LCB-filtered
estimator for the signal from the covariance defined in
Eq. (C1) is equivalent to applying a Wiener filter to the
inverse variance-weighted d� in the case of n ¼ 1.
Now consider the more general case. We will

consider the estimator in the form given by Manzotti
and Dodelson [53], which we handily proved equivalent
to the LCB filter in Appendix A. It is straightforward to find
the inverse of the covariance matrix D, given its simple
form. Namely, the upper left n × n submatrix of D−1 is
given by

ðD−1Þij ¼ δij=P
ðNÞ
i ; ðC6Þ

for i ≤ n and j ≤ n. Meanwhile, for i < p, the final row
and final column are both given by

ðD−1Þjp ¼ ðD−1Þpj ¼ −1=PðNÞ
j ; ðC7Þ

and finally,

ðD−1Þpp ¼ 1=PðSÞ þ
Xn
j¼1

1=PðNÞ
j : ðC8Þ

Note that the upper left n × n submatrix is completely
irrelevant to the estimator, but we have provided it here for
completeness.
In any case, the variance N associated with ŝp as given

by Eq. (A1) is

N−1 ¼ 1=PðNÞ þ ðD−1Þpp ¼ 1=PðSÞ þ
Xp
j¼1

1=PðNÞ
j ; ðC9Þ

such that the estimator as given by Eq. (A2) evaluates to
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ŝp ¼
Pp

j¼1 dj=P
ðNÞ
j

1=PðSÞ þPp
i¼j 1=P

ðNÞ
j

: ðC10Þ

But in this general case,

d� ¼
Pp

j¼1 dj=P
ðNÞ
jPp

i¼j 1=P
ðNÞ
j

; ðC11Þ

and

1=PðN�Þ ¼
Xp
i¼j

1=PðNÞ
j ; ðC12Þ

so that the estimator is

ŝp ¼ d�=PðN�Þ

1=PðSÞ þ 1=PðN�Þ ¼
PðSÞd�

PðSÞ þ PðN�Þ ; ðC13Þ

which is equivalent to applying a Wiener filter to the
inverse variance-weighted d�, just as we sought to show for
all n. This is hardly surprising as both the Wiener filter and
the LCB filter are optimal map estimators, and it should not
be possible to obtain extra information from the same data
simply by cross-correlating splits.

APPENDIX D: A PRELIMINARY
CONSIDERATION OF IMPROVEMENTS
IN PEAK IDENTIFICATION WITH LCB

RECONSTRUCTIONS

Due to the varied ways in which one may identify and
qualify peaks and voids in the cosmic web, a detailed
consideration of improvements in peak or void identifica-
tion is well beyond the scope of the present work. However,
with an extremely basic peak identification workflow, we
may demonstrate probable cause to expect a significant
improvement in the ability of a survey to identify line-
intensity peaks through a LCB reconstruction when com-
pared to the Wiener-filtered reconstruction.
For this, we return to the ten SMDPL/UniverseMachine

light cones and their corresponding [C II] simulations
used for Sec. IV. Immediately, based on the size of the
simulation, we note that the survey only measures a
limited number of modes at scales of ∼100 Mpc, so we
discard modes with k < 0.05 Mpc−1 from both the LCB
and Wiener filter reconstructions. We also blur the
data cube with a 3D Gaussian filter with its profile
defined by a comoving rms width of 4.2 Mpc in all
directions. This corresponds to a FWHM of 10 Mpc,
reflecting our qualitative conclusion that the fidelity of the

LCB reconstruction is best suited to identification of
≳10 Mpc diameter features.
From this preprocessed data cube we identify the

brightest voxel as the center of a peak. Assuming the
peak must have a spherical profile, we count the total flux
contained in spherical shells expanding away from the
peak center and consider the extent of the peak to end at
the first shell where the total contained flux ceases to
increase. We then search for the next-brightest peak
excluding all voxels within this extent of the previous
peak, repeating until we have identified the 200 brightest
peaks in the [C II] reconstruction. For comparison, we also
identify the 200 most overdense peaks in LAE density
contrast in an analogous fashion.
We then compare against the 200 brightest peaks

identified analogously in the true [C II] signal and see
how many peaks have a partner peak identified in the
reconstructions (or in the LAE density contrast cube), as
defined by being within ten voxels of the true peak. We
tabulate the results in Table II. The Wiener-filtered data
clearly skew toward identifying fewer partnered peaks,
while both the LAE data and the LCB reconstruction skew
toward identifying more partnered peaks. By the metric, the
LCB reconstruction somewhat outperforms the LAE cube
and significantly outperforms the WF reconstruction.
These results will vary significantly depending on the

number of peaks we choose to identify in each cube, the
definition of the peak extent and selection criterion,
the smoothing scale for preprocessing the data cubes,
and so on. Therefore, what we demonstrate here should
hardly be seen as the limit of what these data and
reconstruction methods can do in recovering cosmic
structure. Nonetheless, the overall outcome demonstrates
on a preliminary level that the LCB reconstruction may
truly provide an improvement in identifying cosmic web
features compared to either the LIM dataset alone or its
cross-correlation target alone (the LAE catalog in
this case).

TABLE II. 68% interval and minima/maxima across ten real-
izations of the number of peaks identified (out of the brightest
200) in the [C II] LIM signal that has a partner peak in either the
reconstruction of the signal (through either the Wiener filter or the
LCB filter) or the overlapping LAE density contrast cube (again
identifying partner peaks from the brightest or most overdense
200 peaks in the mock observation used).

Partner peaks

Data cube searched 68% interval Extrema

WF reconstruction (34, 51) (33, 65)
LAE cube (52, 61) (43, 64)
LCB reconstruction (61, 69) (52, 76)
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