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We design a new observable, the expansion rate fluctuation η, to characterize deviations from the linear
relation between redshift and distance in the local universe. We also show how to compress the resulting
signal into spherical harmonic coefficients in order to better decipher the structure and symmetries of
the anisotropies in the local expansion rate. We apply this analysis scheme to several public catalogs of
redshift-independent distances, the Cosmicflows-3 and Pantheon datasets, covering the redshift range
0.01 < z < 0.05. The leading anisotropic signal is stored in the dipole. Within the standard cosmological
model, it is interpreted as a bulk motion (307� 23 km=s) of the entire local volume in a direction aligned at
better than 4 degrees with the bulk component of the Local Group (LG) velocity with respect to the cosmic
microwave background (CMB). This term alone, however, provides an overly simplistic and inaccurate
description of the angular anisotropies of the expansion rate. We find that the quadrupole contribution is
non-negligible (∼50% of the anisotropic signal), in fact, statistically significant, and signaling a substantial
shearing of gravity in the volume covered by the data. In addition, the 3D structure of the quadrupole is
axisymmetric, with the expansion axis aligned along the axis of the dipole. Implications for the
determination of the H0 parameter are discussed. We find that Hubble constant estimates may show
variation as high as ΔH0 ¼ ð4.1� 1.1Þ km=s=Mpc between antipodal directions along the dipole axis. In
the case of the Pantheon sample, this systematic difference is reduced to ΔH0 ¼ ð2.4� 1.1Þ km=s=Mpc
once model-dependent correction for peculiar velocity flows are implemented. Notwithstanding, the axial
anisotropy in the general direction of the CMB dipole is still detected. We thus show how to optimally
subtract redshift anisotropies from Pantheon data in a fully model-independent way by exploiting the η
observable. As a result, the value of the best fitting H0 is systematically revised upwards by nearly
0.7 km=s=Mpc (about 2σ) compared to the value deduced from the Hubble diagram using the uncorrected
observed redshift. The goodness of fit is also improved.
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I. INTRODUCTION

In accordance with the cosmological principle (CP), the
spatial sections of the universe are maximally symmetric,
that is, rotationally and translationally invariant (e.g., [1]).
This statement about the symmetries of the universe, sealed
in the Robertson and Walker line element, can only be
interpreted in a statistical sense, after convolving the spatial
distribution of matter with large smoothing kernels. This
makes its empirical confirmation difficult and subject to
nontrivial systematicity.
Despite observational hurdles (e.g., [2]), convincing

proofs of isotropy are provided by the angular distribu-
tion of the temperature fluctuations of the cosmic micro-
wave background (CMB) [3,4]. Also, 3D supporting
evidence continues to grow as spectroscopic studies
reveal the structure of ever larger and deeper regions

of the universe [5–14]. Analysis of the spatial distribution
of supernovae, i.e., objects whose distances are estimated
using redshift independent techniques, also provides
tentative confirmation [15–22]. The nature of the con-
firmations remains preliminary, however, and there is no
shortage of evidence to the contrary [23–37]. If some of
these signals are not statistically significant enough to
reject outright the CP, others appear as improbable in the
framework of the standard cosmological model.
However, it has long been known that in the local

outskirts of the Milky Way, at scales r < 150h−1 Mpc,
the CP is violated (e.g., [38,39]). This region represents
about half of the volume used to determine the Hubble
parameter H0, a fundamental constant of the standard
model and a consequence of the cosmological principle
hypothesis. Traditionally, deviations from CP predictions
are treated perturbatively by expanding the cosmological
quantities into a smooth background component and a
fluctuating part. Among the latter, a central role is occupied
by peculiar velocities. These super-Hubble motions contain
a lot of interesting cosmological information (e.g., [40])
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and indeed their amplitude confirms that the deviations from
the CP are in general agreement with the limits imposed by
the perturbation theory of the standard cosmological model
(e.g. [41–44]). However, it was soon realized that many
subtle systematic errors, if not properly subtracted, can
compromise their use as efficient cosmological probes;
non-Gaussian issues, homogeneous and inhomogeneous
Malmquist biases, and incompleteness of mass catalogs
used to predict the amplitude of peculiar velocities are
among the pitfalls that most hamper the analysis [45].
In order to free the investigation of local inhomogeneities

from certain statistical and observational complications,
we explore in this paper another direction. We develop a
completely nonperturbative approach to inhomogeneities
that focuses directly on the scale factor of the universe as a
relevant variable to quantify deviations from uniformity
(see also [46,47] for a similar approach). This is precisely
the parameter that is kept invariant in perturbative analyses,
defining the reference background against which deforma-
tions in the spatial sector of the metric are compared.
In this spirit, we design an observable, the expansion rate

fluctuation η, that provides information about fluctuations
in the local expansion rate and is, at the same time, easily
comparable with theoretical predictions. Indeed we will
show that it provides a model-independent means of
analyzing inhomogeneities, not even requiring the CP
assumption as a prerequisite. This cosmographic approach
(e.g. [48,49]) allows the results to be directly interpretable
in alternative spacetimes and can ideally guide the search
for unconventional line elements that capture the essential
features of the local inhomogeneities.
From an observational point of view, the goal is to

investigate the existence and significance of anisotropies in
the local universe through new methods of investigation; in
this specific case, by decomposing the angular fluctuations
of the expansion rate into spherical harmonics and com-
pressing information about anisotropies into a set of
independent Fourier coefficients.
Multipolar expansion in spherical harmonics provides an

orthogonal insight into the nature of the local redshift-
distance relation and allows to go beyond the simple dipole
model with which anisotropies are traditionally described
in the nearby universe. At the same time, it allows to deepen
and extend studies, such as those of [38,47,50–52] which
attempt to constrain the tidal field component by analyzing
the shear of the velocity field generated by local gravita-
tional fluctuations. In this respect, we focus on the study of
the symmetries and geometric structure of the harmonic
multipoles, showing how their analysis gives a simple and
inexpensive description of the structure of the anisotropies
in the Hubble flow. We demonstrate that the three-
parameter formula encoding such information has predic-
tive power comparable to that of much more complex
numerical studies of peculiar motions.
The paper is organized as follows: in Sec. II we introduce

the observable that optimally extract information about the

fluctuation in the angular expansion rate, while in III
we present the method implemented to estimate the signal
from discrete datasets and to compress it into spherical
harmonic coefficients. We also discuss how we estimate
reconstruction errors, both statistical and systematic. In
Sec. IV, we describe the data analyzed. Results are
presented and interpreted in V. Section VI provides the
summary and conclusion. In the following, we present
results in natural units (c ¼ 1) and we refer to the standard
ΛCDM model, as the flat Friedmann-Robertson-Walker
(FRW) spacetime which best fits the Planck18 data [53].
Redshift is expressed with respect to the CMB rest frame.

II. THE EXPANSION RATE FLUCTUATIONS η

Wemodel the angular anisotropies in the redshift-distance
relation by directly exploiting the local expansion rate as a
target observable. In a perfectly uniform FRW universe, the
ratio z=d between the redshift and the proper distance of
comoving particles is predicted to be constant, independent
from the particular line-of-sight along which it is estimated.
In any generic metric model describing the structure of

local spacetime, i.e. the inhomogeneous distribution of
mass at the periphery of the Local Group of galaxies, it is
possible, at least in the limit of small separations, to relate
the observed redshift z and the proper distance as follows:

z ¼ H̃0ðl; bÞd: ð1Þ
In this expression, H̃0 is a continuous function that depends
only on the angular coordinates (l, b) and can be con-
strained experimentally. It is clear that the angular depend-
ence is in principle theoretically determinable as soon as a
line element is provided. Note that if the observer is only at
rest relative to the CMB, but not comoving with respect to
the surrounding matter, then we expect a dependence of H̃0

on the radial distance even in very local regions of the
Universe. As a matter of fact, in a generic spacetime, the
characteristic distance scale at which the linear limit of
the Eq. (1) is reached is not known apriori.
We actually characterize deviations from isotropy in the

local expansion rate via the (decimal) logarithmic relation

η≡ log

�
H̃0

H0

�
: ð2Þ

Here H0 is a normalizing factor that, in the standard model
of cosmology, coincides with the value of the Hubble
constant. We fix its amplitude by requiring that the average
value of η over the volume covered by data vanishes.
The justification for the choice of this observable is

statistical in nature. Errors are Gaussian only in the distance
modulus μ and not in the redshift-independent distance d if
these latter are estimated as

d̂ ¼ 10
μ−25
5 : ð3Þ
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Therefore, given a sample of objects at spatial position r,
the discrete estimator of the continuous field (2),

η̂ðrÞ ¼ log

�
z
H0

�
þ 5 −

μ

5
; ð4Þ

is a random variable that follows a Gaussian distribution.
Indeed, we assume that the uncertainty δ on η̂ is
induced only by the imprecision with which the redshift-
independent distances are estimated (δ ¼ σμ=5), i.e. we
consider that any error in the redshift estimate is negligible.
As a consequence, η̂ provides an unbiased estimate of η,
as can be easily verified. As an added bonus, Eq. (2) also
makes it possible to quantify anisotropies in the expansion
rate, regardless of the value of the Hubble constant
parameter used to normalize the distance modules μ. A
subtlety must be pointed out. It is implicitly assumed, in the
above argument, that in the limit z ≪ 1, the range we are
concerned with in this paper, d is a fair proxy for both the
luminosity and angular diameter distance, i.e. d ≈ dL ≈ dA.
The expansion rate fluctuation η is not specifically

tailored to have only nice statistical properties. It also
has a physical content. Linear perturbation theory of the
standard cosmological model provides a framework for
interpreting this observable. According to it, the redshift
observed in the CMB rest frame is given by

z ¼ zc þ vð1þ zcÞ; ð5Þ

where zc is the cosmological redshift and v is the line-of-
sight component of the peculiar velocity of the source
(assumed to be nonrelativistic) with respect to the CMB rest
frame. By inserting this last relation into (2) we get

η ¼ log

�
1þ vð1þ zcÞ

zc

�
≈
vð1þ zÞ
z ln 10

; ð6Þ

where we have assumed v ≪ zc ≈ z. The fluctuations in the
expansion rate are excited by radial peculiar velocity and
suppressed in inverse proportion to the object’s distance.

III. EXPANSION RATE FLUCTUATIONS: THE
SPHERICAL HARMONIC DECOMPOSITION

We can compress the information contained in the η
observable into a few coefficients. To this end, we expand the
expansion rate field η in spherical harmonic (SH) compo-
nents. We orthogonally decompose η on a sphere as follows:

η ¼
X∞
l¼0

Xl
m¼−l

almYlmðθ;ϕÞ ¼
X∞
l¼0

ηl; ð7Þ

where

Ylmðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl −mÞ!

4πðlþmÞ!

s
Pm
l ðcos θÞeimϕ; ð8Þ

and Pm
l are associated Legendre polynomials. Thus, the

Fourier coefficients alm can be expressed as

alm ≡
Z

2π

0

Z
π

0

ηðθ;ϕÞY�
lmðθ;ϕÞ sin θ dθdϕ: ð9Þ

Note that, due to the definition, the monopole (l ¼ 0) of η
vanishes.
In addition, one can define the angular power spectrum

of the η anisotropy as

Cl ¼ hjalmj2ie; ð10Þ

where the expectation is intended to be over a statistical
ensemble of universes:

Ĉl ¼ 1

2lþ 1

Xl
m¼−l

jalmj2 ð11Þ

is an unbiased estimator for Cl
Section III A describes in detail the procedure adopted to

reconstruct the field ηðΩÞ from discrete 3D data with
nonuniform sampling rates on the sky. In Sec. III B we
describe how the SH coefficients alm are estimated. We
present the analytical formulas and numerical recipes for
evaluating measurement errors, both statistical and system-
atic, in the Secs. III C and III D, respectively.

A. Estimation of the angular η field

The expansion rate fluctuation estimator η̂ðrÞ is a
discrete random variable. The analysis of this observable
can be simplified, and the underlying theoretical model (2)
can be better traced if we convert it into a stochastic field.
We thus average η̂ðrÞ over all the objects at position r
within a given volume VðΩ; RÞ, where Ω is a solid angle
centered on the observer and R is the depth of the catalog
(i.e. its upper edge). The angular anisotropies seen by the
observer are thus piecewise defined as

ηðΩÞ ¼
P

N
i η̂ðriÞwðriÞWðrijVðΩ; RÞÞP

N
i wðriÞWðrijVðΩ; RÞÞ

; ð12Þ

where N is the number of objects in the catalog, wðriÞ ¼
1=δ2i is a weight that takes into account the precision in the
measurement of the distance of the ith object in the catalog.
WðrjVðΩ; RÞÞ is a window function which evaluates to
unity if ri ∈ V and is null otherwise.
It is clear that averaging has the advantage of reducing

noise at the cost of a lower angular resolution. The latter is
essentially controlled by the aperture of the solid angle Ω,
although it also depends, in principle, on the depth R of the
sample on which the spatial averaging is performed.
In practice, we construct the η 2D field out of a discrete

point process η̂ðrÞ, by first partitioning the sky in Npix
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identical pixels (each subtending a solid angle Ωi) using
HEALPIX [54] and then by applying Eq. (12) to objects
within the volume V subtended by each pixel Ωi. HEALPIX
is an algorithm which tessellates a spherical surface into
curvilinear quadrilaterals, each covering the same area as
every other. Although characterized by a different shape,
the resulting pixels are located on lines of constant latitude.
This property is essential for speeding up computation but
is less than optimal for pixelating the discrete η field. In
fact, the counts can show large variations from pixel to
pixel. In addition, some of the pixels may end up containing
no data at all. To tackle this issue, we first rigidly rotate the
galaxy field randomly, by looking for configurations in
which all the HEALPIX pixels are filled with objects and the
least populated cell contains a maximum number of
objects. If as a result of different rotations, the maximum
number of galaxies in the least populated cells stays the
same, we pick up the configuration for which the distri-
bution of the number of the galaxies in the pixels has the
minimum variance. This allows to minimize pixel-to-pixel
fluctuations in the reconstructed value of η and increase the
signal-to-noise ratio in the determination of the Fourier
coefficients. Note that the rotation trick does not affect the
estimation of the angular power spectrum Ĉl, which is,
by definition, invariant under rotation. However, once the
Fourier coefficients have been estimated, we apply an
inverse rotation to the pixels and η maps so that, for the
sake of clarity, the results are presented in standard galactic
ðl; bÞ coordinates. The whole strategy is graphically illus-
trated in Fig. 1.
The resolution of the HEALPIX grid is calculated as

Npix ¼ 12N2
side, where Nside ¼ 2t, and t ∈ N. The baseline

grid, corresponding to t ¼ 0, has 12 pixels. Our choice of
the resolution in the reconstruction of the angular η map, as
explained in V, is dictated by two criteria: the SH decom-
position must result in multipoles that have a sufficiently
high signal-to-noise ratio and a sufficiently low probability
p to occur by chance in a randomly fluctuating η field.

B. Estimation of the SH coefficients

We estimate the Fourier coefficients of the spherical
harmonic decomposition by slightly modifying the
reconstruction scheme provided by the HEALPIX algorithm.
HEALPIX accomplishes that by means of an iteration
scheme, the so-called Jacobi iteration. The zeroth order
estimator of the coefficients of the expansion field is

âð0Þlm ¼ 4π

Npix

XNpix

p¼1

ηðΩpÞY�
lmðθp;ϕpÞ; ð13Þ

where (θp, ϕp) are the angular coordinates of the center of
each pixel p and ηðΩpÞ is calculated by Eq. (12). The
Fourier coefficients alm are then calculated up to the order
lmax ¼ 3Nside − 1, and the higher orders are

âðkþ1Þ
lm ¼ âðkÞlmþ

4π

Npix

XNpix

p¼1

ðηðΩpÞ−ηðkÞðθp;ϕpÞÞY�
lmðθp;ϕpÞ;

ð14Þ

where

ηðkÞðθp;ϕpÞ ¼
Xlmax

l¼0

Xl
m¼−l

âðkÞlmYlmðθp;ϕpÞ: ð15Þ

In matrix notation,

að0Þ ¼ Aη ð16Þ

FIG. 1. Illustration of the rotation strategy to improve the
estimation of SH coefficients. Upper: the standard HEALPIX pixels
(Nside ¼ 2 and Npix ¼ 48) tessellating the distribution of galaxies
in the galactic coordinates. Note the presence of an empty pixel.
Center: rigid rotation applied to the sample so that in each pixel
falls at least one galaxy (the minimum number is 5 in this
example). Lower: the inverse rotation is applied to both galaxies
and pixels.
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aðkþ1Þ ¼ aðkÞ þ Aðη − ηðkÞÞ ð17Þ

ηðkÞ ¼ SaðkÞ; ð18Þ

where a is the vector of the spherical harmonic coefficients
[containing ðlmax þ 1Þ2 elements], while η and ηðkÞ are
vectors representing the measured and estimated values of η
in each pixel (and thus contain Npix elements). Moreover,

A ¼ 4π
Npix

Y�
lmðθp;ϕpÞ and S ¼ Npix

4π A�T . The calculation of

aðkÞ is repeated until convergence, i.e. until the residual has
zero Fourier coefficients up to lmax.
Instead of going through the iteration scheme, we

proceed in a different way. We estimate analytically the
asymptotic limit að∞Þ that should be ideally obtained in the
limit of an infinite number of iterations. We first write
Eq. (17) as

aðkþ1Þ ¼ aðkÞ þ Aη − ASaðkÞ; ð19Þ

so

aðkþ1Þ ¼ Aηþ ðI − ASÞaðkÞ; ð20Þ

where I is the identity matrix with size ðlmax þ 1Þ2 ×
ðlmax þ 1Þ2. By using að0Þ ¼ Aη we obtain

aðkþ1Þ ¼ að0Þ þ ðI − ASÞaðkÞ: ð21Þ

Under the assumption that this is convergent, for k → ∞,
aðkþ1Þ → aðkÞ we get

að∞Þ ¼ að0Þ þ ðI − ASÞað∞Þ; ð22Þ

which results in

að∞Þ ¼ Mað0Þ; ð23Þ

whereM ¼ ðASÞ−1. Note that we cannot take the inverse of
A or S individually because they are not square matrices.
By this trick, we achieve two goals. First, we minimize
the computing time, moreover, and more importantly, we
obtain a closed form expression which simplifies the
estimation of the error on the SH coefficients, as we detail
in the next section and in Appendix B. The elements of
the vector að∞Þ represent our best estimate (âlm) of the
coefficients of the spherical harmonic decomposition alm.

C. Statistical measurement errors

In the following, we consider the SH coefficients alm as
a deterministic variable whose estimate,

âlm ¼ alm þ ϵlm; ð24Þ

fluctuates due to measurement errors ϵlm induced by
uncertainties in the reconstruction of η. The expectation
over different observational measurements made on the
same sample is thus E½âlm�≡ hâlmi ¼ alm, i.e. we assume
that the estimator provides an unbiased estimate of the
coefficients of the spherical harmonic expansion.
The variance of the estimator is defined as

V½âlm� ¼ V½ϵlm�≡ σ2lm; ð25Þ

and, in general, depends on both modes l and m. An exact
analytical expression for σlm is far from trivial and
unenlightening. It can be evaluated from the knowledge
of the uncertainties in the distance modulus measurements
[see Appendix B and cf. Eqs. (B1) and (23)].
An estimator of the power locked in each harmonic

moment l is the angular power spectrum [cf. Eq. (11)]
estimator

ˆ̂Cl ¼ 1

2lþ 1

Xl
m¼−l

jalm þ ϵlmj2; ð26Þ

which can be expressed as

ˆ̂Cl ¼ 1

2lþ 1

X2l
n¼0

wðlÞ
n ; ð27Þ

where

wðlÞ
n ¼

8>><
>>:

â2l0 n ¼ 0

2ℜ½âln�2 l ≥ n > 0

2ℑ½âlðn−lÞ�2 2l ≥ n > l:

ð28Þ

This decomposition is conveniently chosen to take into
account that al−m and alm are conjugate variables

ðal−m ¼ ð−1Þma�lmÞ. Thus, the variance of ˆ̂Cl reads

V½ ˆ̂Cl� ¼
�

1

2lþ 1

�
2 X2l
n¼0

V½wðlÞ
n �; ð29Þ

where

V½wðlÞ
n � ¼

8>>><
>>>:

2σ4l0 þ 4σ2l0a
2
l0 n¼ 0

8σðRÞ4ln þ 16σðRÞ2ln ℜ½aln�2 l ≥ n > 0

8σðIÞ4lðn−lÞ þ 16σðIÞ2lðn−lÞℑ½alðn−lÞ�2 2l ≥ n > l;

ð30Þ

and where we have defined σðRÞ2lm ¼ V½ℜ½âlm�� and

σðIÞ2lm ¼ V½ℑ½âlm��.
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In Appendix C we show that the analytical estimates
obtained using Eq. (29) provide a fairly good approxima-
tion to those obtained via a numerical Monte Carlo analysis
(see the comparison in Table III). Expression (29) can be
further simplified by making assumptions about the nature
of the errors. If the distribution of the galaxies is isotropic
and all of them have the same error in η (δi ¼ δ), then the
real and imaginary parts of âlm are characterized by the
same variance, and it will not depend on the considered
harmonics (σ2lm ¼ σ2 ≈ 4π

N δ2), so

V½ ˆ̂Cl� ¼
2

2lþ 1
½ðσ2 þ ĈlÞ2 − Ĉ2

l �: ð31Þ

The above formula neatly isolates the two quantities
contributing to the observed variance: the error in the
estimation of the distance modulus and the measured
amplitude of the angular power spectrum Ĉl.
Note, incidentally, that Eq. (31) differs from the

expression that would be obtained by averaging
over a statistical ensemble. Indeed, in this latter case
Ee½âlm� ¼ 0 (so Ĉl will be replaced by zero) and also
Ve½âlm� ¼ Cl þ σ2. It thus follows that the theoretical
expression factoring in the contributions of cosmic vari-

ance is Ve½ ˆ̂Cl� ¼ 2=ð2lþ 1Þðσ2 þ ClÞ2, if, again, it is
assumed that σlm is isotropically distributed.

D. Systematic measurement errors

Equation (26) provides a biased estimate of the local
value of the angular power spectrum Ĉl since its expect-
ation over measurements is

E½ ˆ̂Cl� ¼ Ĉl þ
1

2lþ 1

Xl
m¼−l

σ2lm: ð32Þ

Measurement errors on the distance modulus lead to a
systematic overestimation of the angular power spectrum
Ĉl, and the statistical bias term calculated in Eq. (32) might
not fully remove the systematic shift. Indeed, expression
(32) is strictly valid if the estimator âlm [cf. Eq. (24)] is, as
we assumed, affected only by statistical errors. It is true,
however, that incompleteness and anisotropies in the sky
distribution, as well as the pixelization and resolution
strategy adopted to transform the discrete η observable
into a field, could bias the âlm estimator. Although any
constant systematic term added in (24) does not affect the
variance of the coefficients of âlm, it will result in an
additional (and analytically nontrivial) term in Eq. (32).
The total systematic bias ΔCl affecting the estimator ˆ̂Cl

is thus more conveniently quantified using Monte Carlo
simulations. The way Monte Carlo simulations are con-
structed and analyzed is discussed in Appendix C. There
we also report the values of the systematic bias induced on
the Ĉl estimates (see Table IV).

A different systematic error results from the SH decom-
position of the logarithm of H0 and not of H0 itself. This
choice of the observable, motivated by statistical reasons
(cf. Sec. II), induces spurious higher order multipoles even
if they are absent in H0. This bias is however negligible.
Indeed, in the ideal case in which H̃0 is purely dipolar in
nature H̃0=H0 ¼ ð1þ ϵ cosðαÞÞ (here ϵ is a small expan-
sion parameter), one gets Ĉ0 ¼ 4π, Ĉ1 ¼ 4π

9
ϵ2 and Ĉl ¼ 0

for l ≥ 2. The logarithmic transformation gives a new
dipole power spectrum Ĉ1 ¼ 4π

9ðlnð10ÞÞ2 ϵ
2 þ oðϵ4Þ and indu-

ces a parasitic quadrupole Ĉ2 ¼ 4π
225ðln 10Þ2 ϵ

4 þ oðϵ6Þ. Its

amplitude is however negligible ðĈ2

Ĉ1
≈ 1

25
ϵ2Þ, as it is that of

the high order spurious multipole. This effect is thus largely
subdominant (a factor roughly ∼30) compared to the
typical errors that plague our analysis.
An additional effect that should in principle be consid-

ered is that, although we are not interested in the monopole
of log H̃0 field, since we are not interested in calibrating the
absolute scale of the Hubble constant, a redshift-dependent
value of the parameter H0 in Eq. (2) could lead to a
spurious dipole component. This effect, which occurs if
anisotropically distributed data are projected onto the sky
and analyzed in two dimensions, does not affect the sample
we analyze, for which the monopole amplitude appears to
be fairly independent of redshift. Indeed, we have verified
that hlog H̃0i calculated at z ¼ 0.05 and z ¼ 0.01 changes
by roughly 0.0006 (1.8628� 0.0010 and 1.8622� 0.0014
respectively for the CF3 sample) which corresponds to
ΔH0 ≈ ΔηH0 lnð10Þ ¼ 0.1 for H0 ¼ 70 km=s=Mpc) a
negligible amount if compared to the errors affecting the
analysis.

IV. DATA

Here we briefly describe the samples of redshift-
independent distances used to estimate η.

A. The Pantheon sample

The Pantheon SNIa compilation [55] is comprised of
1048 objects lying in the interval 0.01 < z < 2.26. The
catalog was assembled using data from the Supernova
Legacy Survey (SNLS) [56], the Sloan Digital Sky Survey
(SDSS) [57,58], Pan-STARS1 (PS1) [55], [59–63] the
Carnegie Supernova Project (CSP) [64] and various surveys
made possible by the Hubble Space Telescope (HST),
namely CANDLES/CLASH [65–67], GOODS [68] and
SCP [69].
Although many previous investigations of kinematical

anisotropies rely on the analysis of the full Pantheon
sample, in this study we follow a pretty conservative
approach and consider only a SNIa subsample with
maximal spatial uniformity. To this end, we require the
data to sample in a fairly isotropic manner the sky and also
to display sufficient homogeneity in the radial coordinate.
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The goal is to minimize possible biases and systematic
effects induced by incomplete spatial sampling without
sensibly reducing the statistical constraining power of
the data.
In Fig. 2 (the first row) the angular distribution of the

Pantheon data is shown together with the differential
number counts profile dNðzÞ as a function of redshift.
There are no objects in the very local patch of the universe,
below z ¼ 0.01, and the sample becomes quickly aniso-
tropic as soon as the redshift is larger than z ¼ 0.05. It also
becomes inhomogeneous, i.e. the scaling of dN is not
anymore proportional to z2, for z≳ 0.04. As a conse-
quence, a trade-off threshold value z ¼ 0.05 is chosen for
selecting the SNIa sample to be used in this study. This
leaves us with a subsample containing 158 SNIa.

B. The Cosmicflows-3 data

For the purposes of our analysis, we complement the
Pantheon supernovae sample with the Cosmicflows-3
catalog [70]. This is an all-sky galaxy catalog comprised
of 17669 nearby galaxies z ≤ 0.116 for which redshift-
independent distances are inferred using the correlation
between galaxy rotation and luminosity (Tully-Fisher law),
or the Fundamental Plane methods.
This galaxy catalog offers three key advantages: a

completely independent way of estimating galaxy distances
and a richer collection of distance moduli μ (nearly 100

times more than those contained in the supernovae catalog).
It is this large statistical figure that helps beating down the
large error with which the individual galaxy distances are
estimated. These uncertainties are shown in Fig. 3, where
they are also compared to the typical inaccuracies that
characterize the SNIa distances. The latter are at least a
factor of 2 smaller than those based on the Tully-Fisher
or the Fundamental Plane estimates (so each is 4 times
or more valuable in a statistical weighting scheme). An
additional benefit is that the association of galaxies to
groups allows local nonlinear contributions to the observed
redshift to be averaged away. In this way, the redshift is less
sensitive to the local gravitational field at submegaparsec
scales and more directly reflects the large-scale properties
of spacetime.
The angular and radial distribution of the Cosmicflows-3

galaxies is shown in Fig. 2 (the second and the third rows).
They are fairly evenly distributed in both redshift and
position in the sky except for redshifts greater than 0.05.
So, we do not include the galaxies beyond this redshift
since the sample becomes too sparse and covers the sky
anisotropically. We also exclude from the sample, galaxies
with redshift less than 0.01, in order to facilitate the
comparison with the results obtained from the Pantheon
data. We, therefore, focus our analysis on the Cosmicflows-
3 subsample which is constrained in the range 0.01 < z <
0.05 and includes 13661 galaxies. We add in this respect
that the purpose of our analysis is to obtain a coarse-grained
description of the expansion rate. In the periphery of the
Local Group, the geometry and dynamics of the metric are
instead dominated by a few large nonlinear structures, and,
as a consequence, the galaxies poorly track the large-scale
gravitational field we are interested in.
Within this redshift range, the CF3 catalog contains 286

galaxies hosting a SNIa (Fig. 2, third row) for which the
distance modulus is known using the standard candle
method. Although systematically homogenized, this com-
pilation of SNIa-based distances remains fundamentally

FIG. 2. Upper left: Mollweide projection, in galactic coordi-
nates, of the distribution of the Pantheon SNIa with redshift
0.01 < z < 0.05. Upper right: histograms of the number of
counts as a function of redshift. The second and the third rows
are the same as the first, but for the CF3g and CF3sn samples
respectively.

FIG. 3. The probability distribution of the relative error in
the distances (Δd=d ≈ Δμ ln 10=5) measured in samples CF3g,
CF3sn and Pantheon in the interval 0.01 < z < 0.05.
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heterogeneous, with distance moduli derived from different
light curve fitters. Although this dataset contains the
Pantheon as a subsample, we use it as a control sample
to check the robustness of the results we obtain using the
Pantheon dataset alone. In what follows, we will refer to the
CF3 subsample with SNIa-based distances as CF3sn and
indicate the complementary set with the acronym CF3g.

V. RESULTS

In this section, we present and comment on the results
obtained by applying the formalism to various datasets. The
relevant parameters of the SH analysis of the expansion rate
field are quoted in Table I. Note that for each entry in this
table we do not report the bare value returned by the
spherical harmonic estimator, but that obtained after
subtracting the systematic bias factors quoted in
Table IVof Appendix C. The quoted statistical uncertainties
are those estimated numerically by means of 1000
Monte Carlo simulations, although, as we have highlighted
in the previous section, analytical estimations are effec-
tively comparable (see Table III in Appendix C).
Figure 4 shows the η field for the CF3 sample tessellated

according to different resolutions (192, 48 and 12 pixels).
Smoothing mainly affects the errors with which the relevant
SH parameters are estimated, with the error generally
decreasing as the number of pixels decreases (as judged
on the basis of systematic and statistical errors determined
by Monte Carlo simulations, see Tables IV and III in
Appendix C). The central values of the SH parameter,
instead, are statistically stable: they fluctuate from one
reconstruction to the next, but the discrepancies are within
what is expected from a random sampling of a common
underlying Gaussian distribution. The results are thus
globally independent of the pixelization strategy adopted.
However, a valid pixelization scheme for one sample

may not be suitable for reconstructing the signal in another
catalog. A 48-pixel smoothing is for example less than
optimal for sizing even the dipole of the sparse SNIa
sample. Only when the analysis is performed by tessellat-
ing the sky at lower resolution (12 pixels) we can unpack
the information contained in the lowest multipoles. The
price to pay is that now the higher multipoles cannot be
estimated: already the multipole l ¼ 3 becomes now too
noisy and therefore unresolved.
The strongest contribution to the signal is provided by

the dipole term, whose maximal intensity is about 1% of the
signal locked in the normalizing term logH0, i.e. ∼4.5%
of H0. The power locked in the dipole (as determined
using the CF3g sample) is Ĉ1 ¼ ð4.0� 0.6Þ × 10−4, an
estimation characterized by a high signal-to-noise ratio
(snr ∼ 6.6). Consistently, this value is in excellent agree-
ment (well within 1σ) with that estimated from both the
CF3sn and the Pantheon sample (ð3.7� 1.5Þ × 10−4 and
ð3.5� 2.7Þ × 10−4 respectively).

Due to the increased statistical power, the angular position
of the dipolar anisotropy axis is better resolved when
the whole CF3 sample is analyzed (ld ¼ 285� 5,
bd ¼ 11� 4). The 95% confidence level (CL) uncertainty
region falls within the 68%CL uncertainty region defined by
any one of the SNIa samples. We remark that this direction is
not far away from that of the Shapley Concentration which
also roughly coincides with that of the Great Attractor [71].
We will further develop the physical implications of this
preferential axis when we discuss bulk flows in Sec. V B.
We then ask whether this long-range dipole correlation

found in each data sample is statistically significant. To
answer the question we compare our hypothesis (occur-
rence of a truly physical anisotropic dipole) against the
probability of the occurrence of a dipole, as a statistical
fluctuation, in a model where the fluctuations in H0 are
uncorrelated. To this end, we perform Monte Carlo sim-
ulations to reconstruct the p-value statistics to invalidate
our null hypothesis against observed data. Specifically, we
consider a model of the expansion rate fluctuation η that
contains only the monopole and no higher order terms and
generate 10000 Monte Carlo mock catalogs simulating
each dataset. This is done by replacing the model distances
with a fictitious one randomly drawn from a Gaussian
distribution Gðη; σηÞ, where ση is the observational error
quoted for each object in the various data samples. For each
simulation, we calculate the power in the resulting dipole
(Ĉsim

1 ) and compare it with the observed one Ĉobs
1 . We then

estimate the frequency p with which Ĉsim
1 > Ĉobs

1 . A
standard rule of thumb consists in rejecting the null
hypothesis, i.e. refute the statistical significance of the
signal we observe, if p > 5%. On the contrary, we find that
p is virtually zero i.e. p < 10−4 for CF3g and also critically
low p ¼ 0.3% and 4.4% for CF3sn and the Pantheon
sample respectively (see Table I), thus confirming the
nonaccidental nature of the dipolar anisotropy.
We further note that the dipole in the expansion rate

fluctuations is consistently tracked by the various samples
of galaxies and supernovae. Its intensity and direction agree
fairly well and fluctuations from one catalog to the next are
within what is expected from a random sampling of a
common underlying value. Since the distances and the
associated measurement errors are reconstructed using
different and independent methods and calibrations for
galaxies and supernovae, it is difficult to interpret these
signals as simple statistical fluctuations and to relegate this
coincidence to the role of a fluke. These results, on the
contrary, seem to suggest that both the galaxy sample and
the SNIa sample trace the same anisotropic background
expansion rate, despite differences in the uncertainties with
which the distance moduli are determined and in the
sampling frequency of large-scale structures.
We find that the contribution of the quadrupole compo-

nent to the anisotropies observed in the η expansion field
is significant both in terms of its amplitude, which is
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comparable to that of the dipole [maxðη2Þ ∼maxðη1Þ], and
in terms of its statistical significance measured by the
signal-to-noise ratio (snr ∼ 3.25 for CF3g and snr ∼ 1.2 for
CF3sn). Again, a p-value analysis of its significance
performed simulating 1000 mock catalogs still confirms
that the chances of this signal being a statistical artifact are
minimal (the probability of reconstructing a quadrupole
larger than the observed one due to a random fluctuation is
effectively zero for CF3g and smaller than 3.3% for
CF3sn). The probability is reduced even more dramatically
if the test is run to answer the question; what is the
likelihood of finding a dipole and quadrupole of similar
intensity to that observed in the case where the underlying
expansion field is uniform? This result, both independently
and in combination with what was found for the dipole
term, confirms that the probability of the observed
anisotropy being a statistical artifact is very small.

More intriguingly we find that the maximum of the
quadrupole signal is aligned with the dipole direction (see
Fig. 4). This peculiar alignment is consistently and inde-
pendently confirmed by both galaxy (CF3g) and SNIa
(CF3sn) samples (see Fig. 5 and Table I).
We highlight the fact that inferences made with the

different samples are consistent, but there is one difference
that deserves attention and further investigation: there is no
evidence of a quadrupole component in the Pantheon data
as judged from the amplitude of the Ĉ2 power, both in terms
of its snr and of its p-value. This result confirms a similar
null detection obtained by [47] although in a different
redshift range and using an alternative method which is not
based on the Fourier decomposition of the signal but on the
maximum likelihood adjustment of quadrupolar coeffi-
cients. The possible reasons for this lack of signal will
be analysed in Sec. VA.

FIG. 4. Upper panel: the angular η field traced by the CF3. From left to right are shown different resolution maps corresponding to the
tessellation of the sky with 192, 48 and 12 HEALPIX cells. The dipole η1 (second panel from the top), quadrupole η2 (third panel from the
top), and octupole η3 (bottom panel) components are also shown.
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Interestingly, we find evidence (snr ∼ 2.5) that the
contribution of the octupole is also not negligible, at least
when the whole CF3 sample is analyzed with a 48 HEALPIX

pixel smoothing. The power stocked in this component is
roughly half that in the quadrupole although the intensity
peaks at a value comparable to the maximum intensity of
the quadrupole. Even more unexpected is the fact that the

direction of the maximum of the octupole component
(lt ¼ 284� 7, bt ¼ 12� 5) appears to be aligned with
that of the dipole (ld ¼ 283� 6, bd ¼ 12� 5) and of the
quadrupole (lq ¼ 310� 11, bq ¼ 4� 8) (see Table I).
The fact that we cannot confirm the octupolar signal

independently in the 192 and 48 pixels maps suggests the
need to pursue another route to quantify its amplitude and

FIG. 5. Left panel: the η field tessellated into 48 pixels and traced by the CF3g sample. The dipole η1 (second panel from the top),
quadrupole η2 (third panel from the top), and octupole η3 (bottom panel) components are also shown. Right panel: same as above, but
now the expansion rate fluctuation field is tessellated into 12 pixels and traced by the CF3sn sample.
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direction, and also to ensure the general robustness of our
results. We have thus determined the value of the SH
parameters (direction of the dipole and power spectrum
coefficients) not by Fourier calculating them via Eq. (23)
but by considering them as free fitting parameters to be
determined by means of a maximum likelihood analysis. In
the ideal case of zero noise, the best approximation theorem
ensures that the Fourier coefficients are also those that
minimize the difference (in the L2 norm) between the
signal and its decomposition on a finite orthonormal basis.
This statistical approach is independent from any tessella-
tion scheme adopted to convert the estimator of η
[cf. Eq. (4)] into a stochastic field. Indeed, we directly
minimize the difference between the discrete random

variable η̂ðrÞ and the SH model (7). In the presence of
errors, however, it does not protect against power spilling
in and out from multipolar coefficients of different orders.
The method and results are detailed in Appendix C (see
Tables Vand VI where we quote the least-square best fitting
amplitudes together with the 68% CL)
Overall, the central values and errors deduced by means

of this statistical procedure are in excellent agreement with
the Fourier determinations reported in Table I and provide
independent confirmation of the soundness of our findings.
Interestingly, the detection of the octupolar component is
confirmed, at least for the whole CF3 sample. The best
fitting amplitude Ĉfit

3 ¼ 0.6� 0.2 is consistent with what is
determined by the Fourier analysis (Ĉ3 ¼ 0.5� 0.2), and

FIG. 6. Left panels: the η field (upper), its dipolar (center) and quadrupolar (lower) components traced by the CF3 sample in the
redshift interval 0.01 ≤ z ≤ 0.03. Right panels; the same as before but for galaxies in the deeper redshift range 0.03 ≤ z ≤ 0.05.
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also the direction of the axis of maximum intensity is in the
general direction of the dipole (l ∼ 287; b ∼ 9). Also the
minimum value of the normalized χ2 statistic is of
relevance. This implies that the 2D model (7) provides
an adequate fit to data that depends, in principle, on the 3D
spatial position. This fact further supports our claim on the
validity, in the limit z ≪ 1, of the ansatz (1).
The advantage of a SH analysis of anisotropies over

other approaches is that the fact that Fourier coefficients
represent projections on an orthonormal basis implies that
adding additional higher order terms to the SH expansion
does not alter the characteristics (amplitude and direction)
of the low-order components. It is however critical to assess
whether their curious structure is the result of a fortuitous
averaging coincidence, i.e. the accidental combination of
different patterns at different depths, or it is a persistent
feature independent from the radial depth of the survey.
To investigate this issue we repeat the analysis separately

in two redshift intervals 0.01≤ z≤ 0.03 and 0.03≤ z≤0.5.
These are the smallest subvolumes that still provide
detections with acceptable snr and low risk of misinter-
pretation (low p-value), if only for the CF3 sample. Results
are shown in Fig. 6.
The direction of the dipole and the quadrupole recon-

structed in the two volumes consistently point in the same
direction (to within about 1σ) and is also in excellent
agreement with the results found for the whole samples.
This confirms that the alignment phenomenon is not a
random overlap but rather physical in nature. There is,
instead, a significant change in the power spectrum
amplitude of the multipoles. The Ĉ1 component decreases
by more than about 5.5σ as the redshift of the sample
doubles. The same decrement with depth (∼3σ) is observed
for the amplitude of the Ĉ2 coefficient.
As a further check, we investigated whether quadrupole

or octupole components are spuriously generated by the
anisotropic and inhomogeneous distribution of galaxies
and supernovae. To this end, we simulate an expansion rate
fluctuation field that has a dipole component of the same
intensity as that detected by the data, but with zero
quadrupole and octupole. We then perturb the model’s
redshift-independent distances by adding Gaussian noise
that mimics observational errors. Finally, we apply the SH
analysis pipeline and examine the detection rate of a
quadrupole or octupole of the same intensity as those
measured from the real data. The power in both channels
(Ĉ2 and Ĉ3) is on average an order of magnitude lower than
that inferred from the CF3 dataset. For example, 10000
Monte Carlo replicas of the CF3 sample, analyzed with a
smoothing of 48 pixels, give, on average, Ĉ2 ¼ 0.1� 0.1
and Ĉ3 ¼ 0.09� 0.06. Moreover, the probability of simu-
lated values even more extreme than those actually
observed is effectively zero ðp < 10−4Þ. Furthermore, if
a dipole and a quadrupole of the same amplitude as the
measured ones are inserted into the H̃0 map itself, instead

of η, we find that the systematic and statistical errors as
determined by the analysis of the Monte Carlo simulations
induce on average a signal Ĉ3 ¼ 0.1� 0.06. Also the
p-value for an even more extreme octupole than the one
measured is negligible (p ¼ 0.01%).

A. Axial symmetry of the multipoles

In Fig. 7 we show the 3D structure of the quadrupole
component of the expansion rate fluctuations η recon-
structed using either the galaxy or the supernovae sample.
This figure offers a different perspective on the dipole-
quadrupole alignment. It shows that both quadrupoles
independently reconstructed using galaxy and supernova
data present an axially symmetric configuration which
strongly polarizes in the direction defined by the dipole.
This additional symmetry, although physically unex-

pected since it seems to imply extreme fine-tuning in the
local distribution of matter fluctuations, makes it possible
to simplify, at least mathematically, the analysis of the
anisotropies of the eta field. The fact that the direction
(ld, bd) along which the multipoles align (Apex direction)
defines not only a preferred axis, but indeed an axis of
symmetry implies that the expansion rate fluctuation field η
effectively depends only on a single variable, the polar

FIG. 7. The 3D structure of the multipole component η2 of the
CF3g sample (upper panel) and for the CF3sn sample (lower
panel). The radial coordinate represents the absolute value for η;
the red and blue colors indicate positive and negative signs
respectively. For reference, the gray surface represents the
orientation of the galactic plane while the black arrow gives
the direction of the dipole as reconstructed for each sample.
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angle α between between the line of sight of an object and
the direction (ld, bd). A simple expansion of the field in
Legendre polynomials Plðcos αÞ, as opposed to the full
spherical harmonics machinery, is thus enough for seizing
the essential functional behavior of the η field.
The average value ηðαÞ reconstructed in open spherical

sectors of identical width having the center on the axis of
symmetry and angular separation α from the apex direction
is shown in Figs. 8 and 9 for the galaxy and SNIa samples.
The Fourier coefficients of the expansion,

ηðαÞ ¼
X3
l¼1

alPlðcos αÞ; ð33Þ

are computed as

al ¼ 2lþ 1

Nbins

XNbins

i¼1

ηðαiÞPlðcos αiÞ; ð34Þ

and the results are quoted in Table II. Again, since the
Legendre basis is orthogonal, the inclusion of the higher
moments does not modify the value already calculated for

the lower order terms. As a check of the stability of the
estimation, we have also calculated the Legendre coeffi-

cients as al ¼
ffiffiffiffiffiffiffiffi
2lþ1
4π

q
al0, where the coefficient al0 is the

SH component [cf. Eq. (9)] reconstructed after rotating the
z axis into the position defined by the symmetry axis. We
find that the results from the two methods are effectively
indistinguishable.
The first thing we remark on is that the coefficients

computed for different samples are all compatible among
themselves, within 1-σ uncertainty. For this reason, the data
from various samples shown in Figs. 8 and 9 are compared
to the best-reconstructed template, the one with smaller
errors, i.e. that resulting from the analysis of the whole CF3
sample. This helps in judging the consistency of different
datasets in tracing the same underlying expansion rate
fluctuation field. Concerning the contributions to the signal,
we see that the dipole term alone, as expected, on the basis
of the results of the previous section provides a poor
description of the angular modulation of η. This is true for
both the CF3g and CF3sn samples. An analysis of the
goodness of fit with a reduced χ2 statistic gives 6.55 and
1.57 respectively, i.e. a probability p ∼ 0 and p ∼ 7%

FIG. 8. Upper left: average value of η, for the CF3 sample, in open spherical sectors of identical width Δ cos α ¼ 2=15 and angular
separation α from the direction l ¼ 285, b ¼ 11. The dotted line corresponds to the dipolar model (a1 ¼ 1.9 × 10−2), the dashed line
includes also the contribution of a quadrupole term (a2 ¼ 1.1 × 10−2). The effects of adding the octupole term (a3 ¼ 1.1 × 10−2) are
shown by the solid line. These models are compared to CF3g data (upper right), the CF3sn data (lower right) and the Pantheon data
(lower right). In this latter case, note the absence of data in the rightmost bin, i.e. along the direction in which the low-order multipoles of
the CF3 sample align.
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respectively of being wrong in rejecting the dipolar model.
Although the latter value is formally higher than the
traditional rejection threshold of 5%, and thus the risk of
rejecting a good model is not negligible, it is equally true
that once the quadrupole and octupole terms calculated for
the CF3 sample are added to the model, the description of
the CF3sn data improves, as evidenced by the systematic
decrease in the χ2 statistic.

As already discussed in Sec. V the Pantheon sample
provides an exception, in that it does not show sign of a
quadrupolar or higher order multipole components. A
simple dipole optimally captures the angular modulation
of the fluctuations of the expansion rate η (χ2=dof ¼ 0.66).
Moreover, by including the quadrupole and octupole terms,
the goodness of fit systematically degrades. The lack of
signal is explained by the concomitance of two effects: the

FIG. 9. The same as Fig. 8, with the same curves, but the number of bins is 10 here.

TABLE II. The coefficient of Legendre expansion for 15 and 10 bins in cos α where α is the angle between the open spherical sectors
and the apex direction ðl; bÞ ¼ ð285; 11Þ. The error is calculated by the error of average η for each bin. al is calculated by Eq. (34).

Sample Nbins a1 (10−2) a2 (10−2) a3 (10−2) χ21=dof χ22=dof χ23=dof vb (km=s)

CF3
15 1.9� 0.1 1.1� 0.2 1.1� 0.2 7.22 4.35 1.97 318� 22

0.01 < z < 0.05
CF3g

15 2.0� 0.1 1.0� 0.2 1.0� 0.2 6.55 4.07 2.23 334� 24
0.01 < z < 0.05
CF3sn

15 1.7� 0.4 1.2� 0.6 1.4� 0.6 1.57 1.48 1.10 244� 64
0.01 < z < 0.05
CF3

10 1.7� 0.1 0.9� 0.2 0.6� 0.2 8.50 4.83 2.71 292� 21
0.01 < z < 0.05
CF3g

10 1.8� 0.1 0.9� 0.2 0.5� 0.2 7.59 4.34 2.83 307� 23
0.01 < z < 0.05
CF3sn

10 1.3� 0.4 0.5� 0.5 0.4� 0.5 1.53 1.40 1.18 195� 57
0.01 < z < 0.05
Pantheon

10 1.6� 0.7 0.1� 0.7 −0.8� 0.5 0.46 0.46 0.54 243� 110
0.01 < z < 0.05
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larger error bars with which the η observable is recon-
structed from the sparse Pantheon sample and also,
importantly given the alignment between the dipole and
quadrupole found in the CF3g and CF3sn samples, the lack
of objects along such a critical direction in the Pantheon
sample.

B. Bulk motion model

The perturbation theory of the standard cosmological
model provides a framework for interpreting our results. If
peculiar velocity is random and uncorrelated in a given
angular direction, the average expansion field η vanishes in
that direction. Consider instead a peculiar velocity field vb
which is constant in both direction and amplitude over a
typical scale R. If we choose α as measuring the angle
between its direction and the line of sight, the expansion
field is predicted to vary as [cf. Eq. (6)]

ηðαÞ ¼ vb
ln 10

hð1þ zÞ=zi cos α: ð35Þ

Suppose that hð1þ zÞ=zi, the average over the volume
subtended by circular bands of angular separation α from
the direction of the bulk motion, does not depend on α,
which is a fairly good approximation for large samples.
Then, by comparing (35) with (33), we deduce that the
bidimensional expansion field η is compatible with being
the sky projected realization of a three-dimensional bulk
flow model. The amplitude of the bulk velocity follows
from the amplitude of the dipolar parameter a1 (the
coefficient of the expansion on the Legendre basis P1):

vb ¼
a1 ln 10

hð1þ zÞ=zi : ð36Þ

Assuming 500 km=s as a typical value for the peculiar
velocity of galaxies, we expect the latter relation to apply
fairly well for objects with z ≥ 0.01, those considered in
our analysis. Note that in this picture, the amplitude of the
bulk is controlled by the amplitude of the dipolar parameter
a1 and also by the depth of the survey volume.
The direction of the bulk motion for the three samples is

shown in Fig. 10. This direction results from separating in
the SH analysis the direction of the dipole from that of other
higher order multipoles. However, due to the alignment of
the lower multipoles, the direction of the bulk coincides
fairly well with the direction of maximum anisotropy in
the η maps.
It is interesting to note that the direction of the bulk flow

of the CF3g sample agrees remarkably well (∼4° apart)
with that of the bulk component of the Local Group
velocity (∼455 km=s in the direction l ∼ 299, b ∼ 15).
This latter is obtained subtracting from the velocity of the
LG with respect to the CMB (∼631 km=s in the direction
l ∼ 270, b ∼ 27 [72]) the local perturbations due to the

infall of the LG onto the Virgo cluster (∼185 km=s in the
direction l ∼ 284, b ∼ 74 (e.g. [73,74])) as well as to the
repulsion from the local void (259 km=s in the direction
l ∼ 210, b ∼ −2) [73]). This alignment suggests that most
of the LG motion is indeed generated by sources at a
distance not less than the depth of the samples analyzed
here, i.e. z ∼ 0.05.
We also confirm that the bulk motion traced by the CF3g

sample points in the general direction in which the most
massive concentrations in this region of the sky are located,
namely Hydra-Centaurus (∼302, l ∼ 21) and the Shapley
supercluster (l ∼ 311, b ∼ 32) (which are about 6 and
19 degrees away, respectively).
The amplitude of the bulk flow estimated from the

CF3sn (vb ¼ 195� 57 km=s) is comparable with that
measured using the Pantheon sample (243� 110 km=s)
and both values are statistically compatible with the result
obtained using the CF3g sample (307� 23 km=s),
although the large error on the latter sample makes
agreement almost a foregone conclusion. These different
samples also agree on the direction of the velocity field
which is best determined using the total CF3 sam-
ple ðl ¼ 285� 5; 11� 4).
Comparing our results with those in the literature, we

find 2σ overlap with those of [75], who, using a different
compilation of redshift-independent distances covering
approximately the same volume of the CF3 sample, found
vb ¼ 252� 11, l ¼ 293� 5, b ¼ 14� 5. They also com-
pare favorably with those of [76] (vb ¼ 292� 28 km=s,
l ¼ 296� 16, b ¼ 19� 6), [77] (vb ¼ 249� 76 km=s,
l ¼ 319� 18, b ¼ 7� 14) and [78] (257� 44 km=s
l ¼ 279, b ¼ 10). Regarding the results of [79], although
there is general agreement on the bulk amplitude, the
directions are misaligned by about 40 degrees.
Finally, note that in addition to the bulk component, the

velocity field also exhibits a quadrupole modulation.

FIG. 10. Likelihood contours (1σ and 2σ) for the direction of
the dipole reconstructed using 12 pixels for the CF3g (red lines),
CF3sn (purple lines) and Pantheon (blue lines) samples. For
reference, the direction of the motion of the barycenter of the
Local Group with respect to the CMB ðl; bÞ ≈ ð270; 27Þ [72] is
marked (black triangle) together with the direction of its bulk
component ðl; bÞ ≈ ð299; 15Þ (black square).
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The magnitude of this additional contribution is simply
given by vq ¼ a2=a1vb. As discussed above, this compo-
nent is not negligible, at least for samples CF3g and CF3sn.

C. Effects of anisotropies on the Hubble diagram

As a consequence of the alignment of the maximal
intensities of its dipole, quadrupole and octupole compo-
nents, the expansion field displays an “apex” towards
which the rate of expansion is significantly higher than
average and an antiapex where the expansions is coherently
lower than the monopole component. This preferred axis
characteristically shows up in the Hubble diagram.
Figure 11 shows the difference between the best

estimates of H0 deduced from the Hubble diagram
analysis in two antipodal directions. In practice this is
achieved by fitting the relation μ ¼ 5 logðz=H0Þ þ 25

separately to the distance modulus of the Pantheon objects
falling in two cones of total width 120° (about 25% of the
sky) centered on the observer and whose axes point in
antipodal directions (apex and antiapex). Objects in sky
regions where the expansion rate is larger (apex direction)
do show systematically lower values of the distance
modulus. The maximal deviation observed is ΔH0 ¼
4.1� 1.1 km=s=Mpc in the direction ðl ¼ 305; b ¼ 30Þ.
For the sake of comparison, the difference is ΔH0 ¼
Hapex

0 −Hantiapex
0 ¼ 5.1� 0.4 km=s=Mpc for the CF3g

sample [in the direction ðl ¼ 295; b ¼ 5Þ], ΔH0 ¼ 5.9�
1.2 km=s=Mpc for the CF3sn dataset [in the direction
ðl ¼ 280; b ¼ −5Þ] all values compatible with that
obtained for Pantheon to better than 1σ.
In the standard cosmological model, anisotropies in the

expansion rate are accounted for by peculiar motions.

FIG. 11. Upper left panel: solid and dashed lines represent positive and negative isocontours of ΔH0 ¼ Hapex −Hantiapex
0 calculated

using Pantheon SNe with angular separation ≤ 60° from an axis of coordinates ðl; bÞ. Different thicknesses correspond to different
amplitudes, as indicated by the labels. Isocontours are superimposed to the smoothed signal-to-noise map. Bottom left panel: the dipole
component (12 pixel map) of the expansion rate fluctuation calculated using the observed redshifts. Central panels: as above, but after
subtracting from the redshift of each object the peculiar velocities listed in the Pantheon catalog. Right panels: as above, but after
correcting the redshift using the ηðαÞ model (33) with Fourier coefficients computed from the CF3g data (and quoted in the fifth row of
Table II). The maximum antipodal anisotropies detected are ðl; b;ΔH0Þ ¼ ð305; 30; 4.1� 1.1Þ; ð305; 30; 2.4� 1.1Þ and ð360; 40; 1.9�
0.9Þ respectively. The best reconstructed dipolar amplitudes (ΔH0 ¼ η1ðmaxÞH0 ln 10) instead are ð334; 6; 2.6� 1.0Þ, ð341; 11; 1.6�
1.1Þ and ð29; 7; 1.3� 1.2Þ respectively.
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When estimating H0 using the Hubble diagram, it is
essential to correct the observed redshifts to remove their
contributions. This is done by using velocity maps derived
from the linear perturbation analysis of large-scale mass
fluctuations. This correction can be applied to the Pantheon
catalog since, for each entry, the radial velocities (derived
from the analysis of [80]) are given. Figure 11 shows the
maximal antipodal anisotropy ΔH0 after such a correction
is implemented.
As it can be seen, factoring out the noncosmological

contribution induced by peculiar motions reduces the
amplitude of the dipolar anisotropy (now the maximal
change between antipodal directions, ΔH0 ¼ 2.4� 1.1, is
reduced in both amplitude and signal to noise). Although
this removal is in the direction of making the results more
consistent with what the standard model predicts (see, for a
similar conclusion, [81]), the remaining anisotropic signal
still has a nontrivial structure that makes it incompatible
with being a residual fluctuation of random nature. In fact,
the largest residual deviations are also the most statistically
significant, as can be seen by contrasting the map of the
residual signal with the signal-to-noise ratio maps (see the
upper central panel of Fig. 11). The former clearly shows
that, for a given distance, redshifts are systematically higher
than expected over a large and contiguous region of sky.
A second remarkable fact is that the direction of the

dipolar anisotropy in the Pantheon sample is not affected
by removing the peculiar velocity distortions. A spherical
harmonic decomposition of the expansion rate fluctuation
field η (using a 12 pixel tessellation and cosmological
redshifts) confirms that the angular structure of the fluc-
tuation is preserved and only its amplitude is rescaled.
Indeed, the lower central panel of Fig. 11 shows that the
dipole map reconstructed after correcting the redshifts for
peculiar velocities still displays an anisotropy axis pointing
in the direction ðl ¼ 341; b ¼ 11Þ. This latter is only
22 degrees away from the direction of the expansion rate
reconstructed using the observed (uncorrected) redshifts
(l ¼ 334, b ¼ 6), and still close to the direction of the bulk
component of LG motion, which is in turn close to that
of the CMB dipole. However, the power locked in this
component is Ĉ1 ¼ 1.4 × 10−4 nearly a factor 3 lower than
what was measured by neglecting peculiar velocity
effects (Ĉ1 ¼ 3.9 × 10−4).
We checked whether this residual systematicity was the

result of incorrect redshift determinations in the Pantheon
catalog. In this respect, we redid the analysis using the
redshift catalog made available by [82] which should also
provide updates on the angular position of the host
galaxies. The systematic is still detected, but this time
with an even greater significance. The maximal variation
of the Hubble constant between antipodal directions
before applying any peculiar velocity correction is ΔH0 ¼
ð4.5� 1.1Þ km=s=Mpc in the direction ðl ¼ 305; b ¼ 30Þ,
After correction, both the systematic difference

(ΔH0 ¼ ð2.9� 1.1Þ km=s=Mpc in the direction
ðl ¼ 305; b ¼ 30Þ) and the residual dipolar power
(Ĉ1 ¼ 1.7 × 10−4) are larger than in the original
Pantheon catalog.
This residual signal might indicate flaws in our under-

standing of gravity on a local scale and might even motivate
the exploration of new physics beyond the standard model.
However, we will show in the following that these results
rather highlight the need for further efforts to calibrate SN
data if they are to be used to constrain the value of H0 even
more accurately. Mapping the observed redshift z of
supernovae into the cosmological redshift zc by subtracting
from each object the peculiar velocity reconstructed at that
spatial position by linear perturbation theory is indeed a
far from trivial task. In addition to the uncertainties and
systematics inherent to the reconstruction scheme adopted
and to the samples of galaxies used to trace the matter
density fluctuations, such a reconstruction is model de-
pendent. It inevitably involves the choice of a gravitational
theory and therefore the value of cosmological parameters
such as, for example, the matter density parameter Ωm.
The observable η, on the other hand, provides a neat way

to take into account systematic perturbations in the expan-
sion rate in a completely model-independent manner. We
have shown that, as expected, galaxies and supernovae
trace, within observational errors, the same underlying
anisotropies. When estimating H0 via the analysis of the
Hubble diagram of supernovae, it is thus sufficient to
remove the η fluctuations estimated from the independent
galaxy catalog of redshift-independent distances. Indeed
the estimated amplitude of the distance modulus is

μ ¼ 5 log

�
z
H0

�
þ 25 − 5η; ð37Þ

where z is the observed redshift of the SNIa data and where
η is approximated using the Legendre expansion (33) with
Fourier coefficients computed from the CF3g data (and
quoted in the fifth row of Table II).
The difference between the best fitting H0 recovered in

various antipodal directions by means of Eq. (37) is shown
in the upper right panel of Fig. 11. The distribution of ΔH0

values has an amplitude that is now not only reduced but
also more centered on zero. Also the spherical harmonic
analysis of the residual expansion rate fluctuation field
ηðpantheonÞ − ηðCF3gÞ shows that the axial anisotropy is
now effectively removed: the residual dipolar modulation
points in the direction (l ∼ 40; b ∼ 15) and the power
locked in this component is Ĉ1 ¼ 0.8 × 10−4, about twice
as small than the residual signal obtained after correcting
redshifts with the peculiar velocity field model.
The advantages of this debiasing scheme are not

insignificant. First, we achieve better anisotropy subtrac-
tion with a three-parameter model [cf. Eq. (33)] than using
corrected distance modules using numerical grids of
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peculiar velocities. In addition, correcting for η fluctua-
tions has a significant impact on the estimate of H0. The
Hubble parameter that best fits the Pantheon sample
(in the range 0.01 < z < 0.05) is larger by 2σ than that
determined on the basis of observed redshifts alone
(δH0 ¼ 0.7 km=s=Mpc). Also the normalized χ2 (for
157 degrees of freedom) improves in a statistically
significant way (from 1.03 to 0.96), signaling that data
are better described by a linear redshift-distance relation.

D. The scale of anisotropies

How far does this anisotropic pattern extend? For galaxy
samples, the determination of redshift-independent distan-
ces becomes problematic at high redshift. Only SN data
give access to the deep regions of the universe. However,
the SN sample is very incomplete in its coverage of the sky,
a fact that prevents the extension of the study of angular
anisotropies beyond the z ¼ 0.05 limit.
Many studies seem to agree that the expansion rate is

slightly higher in the direction of the generic CMB dipole

(see [83] for a review) even at redshifts much higher than
those we investigated. However, the reported magnitude of
this anisotropy depends on the sample analyzed and, for the
same sample, seems to depend on the technique used to
measure it (e.g. [17]). The statistical significance of
deviations from uniformity is also at stake. For example,
with regard to studies of supernovae samples, some papers
either indicate their significance, and thus the potential
biasing effect on the inference of cosmological parameters
[36], or refute them as pure statistical fluctuation [19,84].
Figure 12 shows the difference between the best fitting

H0 in the apex and antiapex direction also including all
objects in the CF3 sample (also those beyond the z ¼ 0.05
cut imposed for our analysis, i.e. N ¼ 739 objects in the
apex direction and N ¼ 159 in the antiapex direction). It is
fair to say that the problem of characterizing the extent of
the radial scale of the local anisotropy remains unanswered
by current data.
It is clear that, from the point of view of the Standard

Model, the anisotropy of the Hubble diagram should be
suppressed as a function of distance if the amplitude of the
peculiar motions has an upper limit. Therefore, it would be
surprising if the anisotropy of the expansion rate fluctuation
extended consistently beyond z ∼ 0.1. However, as detailed
above, even if the contribution of the peculiar velocities
is modeled and subtracted, the structure of the residual
anisotropy in the expansion rate fluctuations remains
unchanged. This is a fact that should not be overlooked,
as it could be an indication of possible shortcomings of the
standard gravitational paradigm.

VI. CONCLUSION

The failure to converge on a consensus value of the
Hubble’s constant triggered investigations into the reliabil-
ity of geometric descriptions of the local spacetime that
deviate from the standard cosmological metric. The ques-
tion that arises is whether metrics with lower symmetries,
while still simple, provide a reliable description of the
data in the local patch of the universe where global
uniformity is violated.
We address this problem, from a new angle, trying to go

beyond the standard perturbative approaches by which
nonuniformities in the local expansion rate are accounted
for in the standard model. To this end, we have designed an
observable that captures, in a statistically unbiased way, the
average angular fluctuations in the local expansion rate.
The observable η is fully model independent not requiring
any knowledge about the metric, the gravity model or the
amount of matter in the Universe. On the contrary, it is
sensitive, and therefore instrumental to understand local
violations of the cosmological principle, i.e. how far the
spatial distribution of matter is from being homogeneous
and how far the kinematics of the cosmic expansion is
from being isotropic. In the limit of small fluctuations, a
perturbative expansion around the FRW expectation shows

FIG. 12. Difference between the best fitting antipodal values of
H0 for CF3 objects. The Hubble diagram is constructed using
objects within 60° from the apex ðl ¼ 285; b ¼ 11Þ and antiapex
directions. Points represent estimates in the cumulative intervals
0.01 < z < zmax (upper panel) and in differential intervals
(lower panel).
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that η ∝ δH0=H0, i.e. it measures the relative fluctuations
in the Hubble parameter. For this reason, the monopole of
the expansion rate field vanishes and the η observable is
practically insensitive to the actual value of H0.
We have estimated the η field using catalogs of redshift-

independent distances such as the Cosmicflows-3 galaxy
sample and the Pantheon sample of supernovae. We have
then compressed the resulting signal into independent
spherical harmonics components to better analyze the
structure of the anisotropies in the linear redshift-distance
relation. Particular care was paid to assess the reliability of
the reconstructions, either analytically, computing the vari-
ance of relevant SH parameters, or numerically by means of
Monte Carlo simulations. This last approach has the advan-
tage of also correcting the systematic bias induced by the
scarcity and incompleteness of the data used in our analysis
as well as by the pixelization strategies applied to them.
All data samples analyzed consistently suggest the

existence of a preferred axis in the local universe (0.01 <
z < 0.05), in the direction ðl; bÞ ¼ ð285� 5; 11� 4Þ,
along which the local redshift-distance relation displays
a dipolar pattern. Within the standard model of cosmology,
notably its linear perturbative extension, this dipolar modu-
lation of the angular expansion rate can be understood as the
imprint of a large-scale bulk flow model. We find that
galaxies inside the survey volume r < 150h−1 Mpc coher-
ently moves with an average speed vb ¼ ð299� 22Þ km=s.
This direction agrees fairly well with the estimated direction
of the bulk component of the Local Group velocity
(l; bÞ ≈ ð299; 15Þ [73] and confirms that the LG participates
in a bulk flow that extends out to distances of at least
z ¼ 0.05.
Interestingly, the SH analysis suggests that a simple

dipole provides a poor representation of the angular
fluctuations in the local expansion rate. A more sophisti-
cated description is necessary if we are to properly model
the anisotropies in the redshift-distance relation. We find
that about 50% of the anisotropic signal is contributed by a
quadrupole component. This is independently confirmed
by the CF3g and CF3sn samples, which also consistently
show that the axis of maximal expansion of the quadrupole
is aligned with the direction of the dipole. This intriguing
feature persists when the sample is split in two and the
analysis is repeated in two separate spherical shells of
different depths. This evidence allows us to exclude the
possibility that the observed alignment is a casual coinci-
dence, that is, a volume-dependent fluke. The analyses of
both samples also agree on the shape of the quadrupole. It is
a rather axisymmetrical configuration, with no indication of
prominent secondary axes.
The findings about the alignment of the quadrupole in

the general direction of the dipole independently confirms
results of [50] or, more recently, of [38] who, using smaller
samples, showed that the eigenvector expansion of the
shear tensor (a proxy for the quadrupole moment) is aligned

in the direction of the Hydra-Centaurus/Shapley super-
clusters. We extend the validity of these results over a
volume 4 times larger through a separate analysis of the
galaxy and SN samples. Furthermore, we find that the
octupole is also involved in the alignment. Despite
the large errors induced by the sparsity of the sample
and the relatively large coarse graining of the multipole
reconstruction scheme, there is indeed tentative evidence
for the detection of an octupole signal, at least for the CF3
sample of galaxies. Its intensity is of similar amplitude to
that of the quadrupole. Its configuration is also quite
peculiar, with its axis of maximal intensity collinear with
the axes of the dipole and the quadrupole.
We note, as a curiosity, that the direction where the

quadrupole of the expansion field has a maximum does not
coincide with that where the quadrupole of the CMB
temperature fluctuations reaches its maximum. Also their
configuration is different: planar for the CMB and axisym-
metric for the local expansion field.
There are several independent indications confirming

the robustness of our findings about the geometry of the
multipolar structure of the expansion rate fluctuation field:
(a) the anisotropies detected in different samples agree both
in amplitude and direction, (b) the probability that they are
random fluctuations is ruled out by Monte Carlo analyses,
and (c) the random alignment of the independent dipole,
quadrupole and, tentatively, octupole moments is sta-
tistically improbable. Given that the amplitude of the
dipole, quadrupole and octupole components of the fluc-
tuation field scale differently with distance from the
gravitational sources (R, R3 and R5, respectively), one
would expect that their peculiar configuration is due either
to an extraordinary fine-tuning in the alignment of the
sources themselves or to the dominant role of a single
structure dominating the gravitational dynamics in the local
universe. We note that indeed [85] finds evidence that the
LG lies approximately on the line joining the barycenter of
three large cosmic structures, the Shapley concentration
and the Great Attractor on one side, and a large galactic
underdensity in the diametrically opposite direction. We do
not dwell on this and other possible explanations in this
article, but will address this in a further study.
According to the standard model, the departures from

uniformity are the manifestation of deviations from como-
bility induced by local gravitational fields. After factoring
out from the Pantheon sample the contribution of these
peculiar velocities (reconstructed by applying prescriptions
of the theory of linear perturbations to the observed
fluctuations in the spatial distribution of galaxies), we
observe that the H0 perturbations, although reduced in
amplitude, do not distribute as random (Gaussian) resid-
uals. Curiously, the structure of the expansion rate field still
presents an axial anisotropy in the same general direction as
the CMB dipole. We find that the power in the residual
dipole component, as quantified by the coefficient Ĉ1, is
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reduced only by about 50%, and that, as a consequence, the
Hubble parameter still has a sinusoidal modulation of
amplitude ΔH0 ¼ 1.6� 1.1 km=s=Mpc between the apex
and antiapex directions (as opposed to ΔH0 ¼ 2.6� 1.0
before any peculiar velocity corrections).
This residual systematicity does not indicate the failure

of the standard model, but rather the need to improve
methods of reconstructing peculiar velocities. In this regard
we show how to exploit the expansion rate fluctuation
field η to subtract redshift anisotropies in a fully model-
independent way. In practice, we correct the distance moduli
of the Pantheon samplewith a neat three-parameter Legendre
expansion formula [see Eq. (33)] calibrated (and not fitted)
using information extracted from the analysis of the CF3g
galaxy sample. Despite its simplicity, the approach proves
effective: not only is the dipole pattern suppressed by a factor
of about 5 in power, but even its direction is now offset from
the general direction of the CMB dipole. The low signal-to-
noise ratio of the residuals is also consistent with the virtual
absence of any systematicity. As a result, the best-fit Hubble
parameter is 0.7 km=s=Mpc higher than if the distance
modulus were calculated with the observed redshifts, and
also the goodness of fit, as measured by the χ2ν, improves in a
statistically significant way.
In addition to the similarities among results inferred from

independent samples, there are also differences that require
further study. Of these, the most intriguing is the fact that
no quadrupole nor octupole component shows up in the
Pantheon catalog. This is essentially due to the fact that this
catalog contains virtually no objects in the direction where
the l ¼ 1, 2, 3 multipole aligns. This also explains why the
axisymmetric η model calibrated using the CF3g and
CF3sn datasets, and which incorporates quadrupolar and
octupolar contributions, also effectively explains the purely
dipolar anisotropies characteristic of the Pantheon data
sample. It would therefore be very useful to look for SN
candidates in this critical region of the sky if one wants to
advance towards a more solid understanding of the anisot-
ropies in the local expansion rate.
To conclude, a key objective has been to show, as a proof

of concept, the potential power of a new observable, the
expansion rate fluctuation η, both to study the structure of
the anisotropies in the redshift-distance relation and to
minimize eventual systematics in the locally inferred value

of H0. It is thus necessary, in follow-up papers, to build on
the current formalism by doing a more intensive data
analysis. This will include the use of updated and expanded
datasets, including Cosmicflows-4 [86], Pantheonþ [87]. It
will also involve parallel analysis of large suites of N-body
simulations of local patches of the universe to assess the
typicality of the results we have found by taking into
account the cosmic variance. It will be also interesting to
explore the theoretical consequences of our analysis and
interpret the salient features of the local expansion field in
terms of alternative metrics (e.g. [88,89]) with the goal of
extending the predictive power of the FRW model to
subuniform cosmic scales.
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APPENDIX A: DEALING WITH HEALPIX

MATRICES

We estimate the SH coefficients alm by passing the
HEALPIX iteration scheme and exploiting, instead, the
closed-form expression given by Eq. (23). To compute it
in practice, it is necessary to compress the SH alm
coefficients into a 1D matrix, that is, to suppress a labeling
index. There are many ways to do this; we do it so that the
row vector a contains as elements

aT ¼fa00;a10;a20;…;almax0
;a11;a21;…;almax1

;…;almaxlmax
;

a1−1;a2−1;…;almax−1;…;almax−lmax
g:

If we identify with the index j (starts from 1) each vector
component, the relations between j and l and m are

mj ¼

8>><
>>:

−⟦
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlmax þ 1

2
Þ2 þ 2ðlmax þ 1 − jÞ

q
− 1

2
− lmax⟧; j ≤ ν

⟦
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlmax þ 1

2
Þ2 − 2ðj − νÞ

q
− 1

2
− lmax⟧; j > ν;

where ν is the number of alm with m ≥ 0 until lmax, so ν ¼ 1
2
ðlmax þ 1Þðlmax þ 2Þ, and ⟦⟧ is the floor function.

lj ¼ j −N mj
þ lmax

and
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j ¼ N m þ l − lmax;

where N m is

N m ¼
(
mðlmax þ 1

2
Þ þ lmax þ 1 − m2

2
; m ≥ 0

ðlmax −mÞðlmax þ 1
2
Þ þ lmax þ 1 − 1

2
ðl2

max þm2Þ; m < 0:

The elements of the matrix A [cf. Eq. (16)] are thus

Ajp ¼ 4π

Npix
Y�
lj;mj

ðθp;ϕpÞ

and its dimension is given by ðlmax þ 1Þ2 × Npix. It follows
that

âð0Þljmj
¼

XNpix

p¼1

AjpηðpÞ:

Since S ¼ Npix

4π A�T , and M ¼ ðABÞ−1, we can thus write
Eq. (23) explicitly as

âlimi
¼

Xðlmaxþ1Þ2

j¼1

Mija
ð0Þ
ljmj

;

where âlm are the elements of the vector að∞Þ.

APPENDIX B: VARIANCE OF THE
ESTIMATOR âlm

The statistical errors affecting the estimates of the SH
coefficients can be estimated analytically. We start by
noticing that the zeroth order value of the SH coefficients
is given by Eq. (13). The variances of its real and imaginary
parts are

V½ℜ½âð0Þlm�� ¼
�

4π

Npix

�
2XNpix

p¼1

σ2ðpÞðY�
lmðθp; 0Þ cos ðmϕpÞÞ2

V½ℑ½âð0Þlm�� ¼
�

4π

Npix

�
2XNpix

p¼1

σ2ðpÞðY�
lmðθp; 0Þ sin ðmϕpÞÞ2;

where

σ2ðpÞ ¼ 1PNgðin pixel pÞ
i¼1

1
δ2i

is the variance affecting the estimate of ηðpÞ, the expansion
rate fluctuation in pixel p. Note that complex conjugation is
not anymore effective since Ylmðθp; 0Þ is real. Since also η
is a real field, then al−m ¼ ð−1Þma�lm, which implies that
the SH coefficients are not independent random variables.

To overcome this issue we express að∞Þ
lm as a linear

combination of að0Þlm, with m ≥ 0. To this end we need to

decompose M [see Eq. (23)] into its real (R), and
imaginary (I ) parts, so that

ℜ½að∞Þ
limi

� ¼
Xlmaxþ1

j¼1

Rijℜ½að0Þlj0
�

þ
Xν

j¼lmaxþ2

½ðRijþð−1ÞmjRiðjþν−lmax−1ÞÞℜ½að0Þljmj
�

− ðI ijþð−1Þmjþ1I iðjþν−lmax−1ÞÞℑ½að0Þljmj
��

and

ℑ½að∞Þ
limi

�¼
Xlmaxþ1

j¼1

I ijℜ½að0Þlj0
�

þ
Xν

j¼lmaxþ2

½ðRijþð−1Þmjþ1Riðjþν−lmax−1ÞÞℑ½að0Þljmj
�

þðI ijþð−1ÞmjI iðjþν−lmax−1ÞÞℜ½að0Þljmj
��:

We thus obtain

V½ℜ½âlimi
��

¼
Xlmaxþ1

j¼1

R2
ijV½ℜ½að0Þlj0

��

þ
Xν

j¼lmaxþ2

½ðRij þ ð−1ÞmjRiðjþν−lmax−1ÞÞ2V½ℜ½að0Þljmj
��

þ ðI ij þ ð−1Þmjþ1I iðjþν−lmax−1ÞÞ2V½ℑ½að0Þljmj
���

and

V½ℑ½âlimi
��

¼
Xlmaxþ1

j¼1

I2
ijV½ℜ½að0Þlj0

��

þ
Xν

j¼lmaxþ2

½ðRijþð−1Þmjþ1Riðjþν−lmax−1ÞÞ2V½ℑ½að0Þljmj
��

þðI ijþð−1ÞmjI iðjþν−lmax−1ÞÞ2V½ℜ½að0Þljmj
���

and, in the end, the variance

σ2lm≡V½âlm� ¼V½ℜ½âlm��þV½ℑ½âlm��: ðB1Þ

KALBOUNEH, MARINONI, and BEL PHYS. REV. D 107, 023507 (2023)

023507-22



APPENDIX C: MONTE CARLO ESTIMATION OF
MEASUREMENT ERRORS

We determine the errors, both statistical and system-
atic, that plague the SH reconstruction by means of
Monte Carlo simulations. We consider as input model
the Fourier coefficients (up to lmax) measured from the

data, and we use them to simulate a fiducial η field. We
then randomly perturb the expansion field, at the angular
position of the objects, by means of a Gaussian noise with
mean value η and with standard deviation δ. We construct
in this way a suite of 1000 mock catalogs which are
tessellated with HEALPIX and Fourier transformed in

FIG. 13. Distribution of relevant SH parameters recovered from analyzing, with the same pipeline used for real data, 1000
Monte Carlo simulations of the CF3 galaxy sample [0.01, 0.05] (48 pixels). The parameters of interest are the power spectrum
coefficients Ĉl and the direction of the dipole (in galactic coordinates). The black line displays the simulated input value (fiducial
model), while the dashed black line corresponds to the average of the distribution.
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exactly the same way as the data. This means we apply
the same rotation scheme to fill all the pixels with objects,
and the same numerical scheme to calculate the power
spectrum (up to lmax). The resulting distribution of
the output signals, notably the sky coordinates where
the dipole and quadrupole signals are maximal and the
amplitude of the power spectrum coefficient Ĉl is finally
reconstructed and analyzed to assess the confidence level
with which our analysis pipeline retrieves the fiducial
input values.
Results for the CF3 and CF3sn samples are shown in

Figs. 13 and 14 respectively, and quantitatively summa-
rized in Tables IV and III. Both Figs. 13 and 14 show that
the systematic errors that affect our analysis, defined
as the difference between the input parameter and the
average value inferred by means of the Monte Carlo
simulations, are always smaller than the statistical error.
However, they are non-negligible and we thus correct the

observational measurements presented in Table I for
these bias factors.
In Table III we compare the standard deviation of the

Ĉl coefficients estimated by Monte Carlo simulations
with that obtained by applying Eq. (29). There is an
excellent agreement between the numerical and analytical
estimates. The small remaining discrepancy can be
mainly attributed to two effects. First, the estimator
âlm is a biased estimator for alm and that is not included
in Eq. (29). Also the finite number of Monte Carlo
realizations (1000) contributes to the small discrepancies
we observe.
An alternative strategy to test the reliability of the

reconstruction consists in determining the value of
the coefficients alm not via a deterministic scheme
[cf. Eq. (23)] but by means of a maximum likelihood
analysis. We thus look for the set of SH parameters that
minimize the quantity

FIG. 14. Same as in Fig. 13, but for the CF3sn sample [0.01, 0.05] (12 pixels).
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TABLE III. The standard deviation of the Ĉl coefficients reconstructed using the various samples displayed in the first column. For
each sample, and for each Ĉl, we compare error estimates obtained numerically (by means of 1000 Monte Carlo simulations) and
analytically [by means of Eq. (29)].

σĈ1
(10−4) σĈ2

(10−4) σĈ3
(10−4)

Sample Npix Numerical Analytical Numerical Analytical Numerical Analytical

CF3
192 1.6 1.6 0.9 1.0 0.4 0.4

[0.01, 0.05]
CF3

48 0.8 0.9 0.3 0.3 0.2 0.2
[0.01, 0.05]
CF3g

48 1.0 1.2 0.4 0.4 0.2 0.3
[0.01, 0.05]
CF3

12 0.8 0.8 0.3 0.3 � � � � � �
[0.01, 0.05]
CF3g

12 0.6 0.7 0.4 0.4 � � � � � �
[0.01, 0.05]
CF3sn

12 1.5 1.9 1.5 1.4 � � � � � �
[0.01, 0.05]
Pantheon

12 2.7 3.1 1.4 1.7 � � � � � �
[0.01, 0.05]
CF3

12 1.0 1.2 0.6 0.7 � � � � � �
[0.01, 0.03]
CF3

12 0.7 0.7 0.3 0.4 � � � � � �
[0.03, 0.05]

TABLE IV. The systematic bias factor for different parameters of the SH reconstruction. The systematic error is computed using 1000
Monte Carlo simulations of the catalogs displayed in the first column.

Sample Npix Δld Δbd ΔC1 (10−4) Δlq Δbq ΔC2 (10−4) Δlt Δbt ΔC3 (10−4)

CF3
192 0 −2 −0.5 1 0 −0.1 5 −2 −0.4

[0.01, 0.05]
CF3

48 −5 −2 0.3 −1 −4 0 −2 −3 0
[0.01, 0.05]
CF3g

48 0 −2 1.3 5 1 −0.1 −16 −2 0
[0.01, 0.05]
CF3

12 −1 −4 0 −5 3 0.1 � � � � � � � � �
[0.01, 0.05]
CF3g

12 0 −4 0 12 7 0 � � � � � � � � �
[0.01, 0.05]
CF3sn

12 17 −11 0.6 11 5 −0.5 � � � � � � � � �
[0.01, 0.05]
Pantheon

12 13 −14 −1.1 � � � � � � −1.0 � � � � � � � � �
[0.01, 0.05]
CF3

12 0 −5 0.7 1 −3 0.5 � � � � � � � � �
[0.01, 0.03]
CF3

12 1 1 −0.3 2 7 0.1 � � � � � � � � �
[0.03, 0.05]
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χ2 ¼
XN
i¼1

�
η̂ðriÞ − ηðθi;ϕiÞ

δ2i

�
2

; ðC1Þ

where N is, depending on the catalog, either the number of
galaxies or SNIa. The theoretical model that describes the
expansion rate fluctuations is

ηðθ;ϕÞ ¼
Xlmax

l¼lmin

Xl
m¼−l

almYlmðθ;ϕÞ ¼
Xlmax

l¼lmin

�
al0Yl0ðθ;ϕÞ

þ 2
Xm¼l

m¼1

ðℜ½alm�Ylmðθ; 0Þ cosðmϕÞ

− ℑ½alm�Ylmðθ; 0Þ sinðmϕÞÞ
�
; ðC2Þ

TABLE V. Best fitting SH parameters obtained by minimizing the χ2 difference between the expansion field η̂ðrÞ and a model given by
cutting the SH decomposition at l ¼ 2. A total of eight alm parameters are fitted to the data.

Sample ld bd Ĉ1 (10−4) Ĉ2 (10−4)
χ2min
dof

CF3
287� 5 10� 4 4.3� 0.8 1.2� 0.3 1.26

[0.01, 0.05]
CF3g

290� 5 5� 4 5.3� 0.9 1.3� 0.3 1.25
[0.01, 0.05]
CF3sn

293� 14 0� 10 5.5� 2.6 1.8� 1.1 1.60
[0.01, 0.05]
Pantheon

311� 32 35� 36 3.4� 2.1 0.5� 0.9 0.98
[0.01, 0.05]
CF3

280� 5 11� 4 8.0� 1.4 2.4� 0.5 1.37
[0.01, 0.03]
CF3

324� 17 10� 12 1.4� 0.8 1.4� 0.5 1.16
[0.03, 0.05]
CF3sn

274� 14 −5� 11 8.2� 4.3 3.1� 1.9 1.81
[0.01, 0.03]
CF3sn

325� 23 6� 18 5.9� 5.0 0.9� 1.1 1.24
[0.03, 0.05]

TABLE VI. Best fitting SH parameters obtained by minimizing the χ2 difference between the expansion field η̂ðrÞ and a model given
by cutting the SH decomposition at l ¼ 3. A total of 15 independent parameters are fitted to the data.

Sample ld bd Ĉ1 (10−4) Ĉ2 (10−4) Ĉ3 (10−4) χ2min
dof

CF3
282� 5 13� 4 5.0� 0.9 1.0� 0.2 0.6� 0.2 1.26

[0.01, 0.05]
CF3g

285� 5 8� 4 6.0� 1.2 1.1� 0.3 0.7� 0.2 1.25
[0.01, 0.05]
CF3sn

285� 16 2� 11 5.6� 3.1 2.4� 1.4 1.5� 1.1 1.60
[0.01, 0.05]
Pantheon

247� 34 20� 23 7.3� 8.4 2.0� 3.2 2.4� 2.3 1.01
[0.01, 0.05]
CF3

279� 6 15� 5 7.3� 1.5 2.2� 0.4 1.1� 0.3 1.36
[0.01, 0.03]
CF3

323� 21 14� 14 1.5� 1.0 1.6� 0.7 0.2� 0.2 1.16
[0.03, 0.05]
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where lmin and lmax are the lowest and maximum multi-
pole fitted. The above expression accounts for the fact that
al−m and alm are not independent coefficients since η
is a real field and we only have to choose one of them as a
free parameter in the fit. The χ2 statistic is then minimized
with respect to the real and imaginary part of alm
(with m ≥ 0).
We choose lmin ¼ 1 and run two independent analyses

using lmax ¼ 2 and lmax ¼ 3 respectively. The resulting
best fitting parameters together with the associated errors,
are reported in Tables V and VI.
The estimates deduced by means of this statistical

approach are in excellent agreement with the Fourier
determinations (cf. Table I). This provides independent
supporting evidence of the robustness of the results
obtained in Sec. V. Also the minimum value of the
normalized χ2 statistic is of relevance.
Finally, we also quantify the probability that the mea-

sured multipolar signals are statistical flukes due to the
sparsity and angular anisotropy of the analyzed samples. To
this end we compute, using 10000 Monte Carlo simula-
tions, the probability (p-values) of measuring a power
spectrum coefficient greater than a given nonzero value
when the underlying input model does not have any
multipole. Results for the CF3, CF3sn samples are shown

FIG. 15. Probability (p-values) of obtaining a power spectrum
coefficient larger than Ĉl=10−4, when the underlying model does
not have any multipole. The black dashed line displays the value
of Ĉl actually measured in the CF3 sample, partitioned into
48 pixels. Estimates are based on 10000 Monte Carlo simulations
of the CF3 sample. The p-values for the Ĉl actually measured are
0%, 0%, 0.01%, 8.27% respectively for the first four Ĉl. The
black solid line indicates the value of Ĉl which has the threshold
p-value for acceptance (5%).

FIG. 16. Same as in Fig. 15 but using simulations of the CF3sn
sample tessellated into 12 pixels.
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in Figs. 15 and 16 respectively (see Table I for the
other samples).
Comparing these results with the values of the

power spectrum coefficients Ĉl inferred from the

CF3g data, we see that the chance of an accidental
signal is negligible for l ≤ 3. Similarly, the risk of
misinterpreting the CF3sn sample results is insignificant
for l ≤ 2.
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