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The temperature measurements, T, of the perturbed cosmic microwave background, performed by the
cosmic background explorer satellite (COBE), are considered. A dichotomist function, f ¼ �1, is defined
such that f ¼ þ1 if δT > 0 and f ¼ −1 if δT < 0, where δT stands for the fluctuation of T. Then, it is
assumed that behind the appearance of these fluctuations there is local realism. Under this assumption,
some specific Clauser-Horne-Shimony-Holt (CHSH) inequalities are proved for these fluctuation temper-
atures measured by COBE in the different sky directions. The calculation of these inequalities from the
actual temperature measurements shows that these inequalities are not violated. This result cannot be
anticipated by calculating the commutators of the cosmic density quantum operators. This must be
remarked here since, in the case of a system of two entangled spin 1

2
particles, its CHSH inequalities

violation can be inferred from the nonvanishing value of the corresponding spin measurement
commutators. The above nonviolation of the observed cosmic CHSH inequalities is compatible with
the existence of local realism behind the cosmic measurement results. Nevertheless, assuming again local
realism, some new cosmic CHSH inequalities can be derived for the case of the WMAP measurements
whose accuracy is better than the one of the above considered COBE measurements. More specifically, in
the WMAP case, some significant cross correlations between the temperature and polarization maps are
detected, and the new cosmic CHSH inequalities are the ones built with these cross correlations. Now, the
occasional violation of these CHSH inequalities would mean the failure of the assumed local realism in
accordance with the quantum origin of the primordial temperature and polarization fluctuations in the
framework of standard inflation.
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I. INTRODUCTION

In the cosmic inflationary model, primordial density
fluctuations could have a quantummechanical origin [1–4].
Then, it would be very interesting to be able to test this kind
of origin to rule out alternative classical scenarios [5], as the
scenarios considered in [6,7].
To begin with, notice that the universe produced by

inflation is highly entangled. Then, perhaps it could be
possible to mimic the Bell inequalities and their possible
violation [8] substituting the spin measurements by the
corresponding cosmic density fluctuation measurements.
However, there is a first difficulty to mimic Bell inequalities
in this way such that the new inequalities can be violated.

In order to explain the difficulty, we point out that the
Bell-like inequalities we are going to consider here are
some more general inequalities, named the Clauser-Horne-
Shimony-Holt (CHSH) inequalities [9], from the names of
the authors. Then, we will introduce in the next section the
expression of the CHSH inequalities, and we will show that
these inequalities can only be violated if some commutators
of the spin operators are nonzero, as can be seen by a
simple inspection of the next identity, Eq. (5). On the other
hand, substituting the present spin operators by the corre-
sponding cosmic density operators, just mentioned before,
and assuming local realism, we will obtain some, let us say,
“cosmic CHSH inequalities.” Thus, to see whether these
cosmic CHSH inequalities can be violated or not, and to
conclude that they cannot, we will need first to clarify if
some identity like Eq. (5) can be constructed from the
corresponding cosmic density operators.
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Now, in the beginning of this Introduction, we have
talked of the inflationary origin of the primordial density
fluctuations and implicitly of the corresponding measure-
ments. Obviously, no observer was measuring anything at
such a distant epoch, but, following the appearance of these
fluctuations, they have been propagating across the cosmos,
reaching us now as the current observed spectrum of the
cosmic microwave background. But, in this travel the
primordial fluctuations become modified during the epoch
of the thickness of the “last-scattering surface” (roughly
speaking between the values of the redshift z ¼ 1100 and
z ¼ 1000) due to different cosmic effects, called primary
fluctuations (Sachs-Wolfe, adiabatic perturbations and
Doppler effect) [10] and secondary ones added along the
path between the last-scattering surface and today’s
observer (Rees-Sciama, gravitational lensing, Sunyaev-
Zel’dovich, …) [11–14]. Thus, even in the case that we
could define some cosmic CHSH inequalities for this
observed spectrum, it seems that we could not expect to
find any violation of these hypothetical inequalities since
the present observed fluctuations are not the same as the
primordial ones, the only assumed to have a quantum origin.
However, the degree of this modification of the primordial
density fluctuations is very limited for large enough scales
(though not for shorter ones) [15,16]. Then, perhaps we
could expect a violation of the cosmic CHSH inequalities in
the particular case of these large scales. Or in the alternative
case where we could delimit the modification level of these
primordial fluctuations. Nevertheless, in the present paper,
we are not interested in these possibilities.
Our point of view is that, in the framework of the

standard cosmology, after inflation, the Universe has
evolved according to the laws of classical physics. Then,
imagine that the appearance of the primordial density
fluctuations at the end of inflation violates local realism.
In such a case, the subsequent observed fluctuation
spectrum of the cosmic microwave background, the fluc-
tuation spectrum evolving according to the determinism of
classical physics, will violate local realism too. This
conclusion could be erroneous if, in their cosmic evolving,
the primordial density fluctuations could lose their initial
local character. But this is impossible, since, given any two
primordial observing cosmic directions spatially separated
in the relativistic sense of the word, this separated character
increases in the cosmic time. Further, in our cosmic case,
this primordial separation is present, roughly speaking, for
α > 4 arc degrees, where angle α is the one defined by both
directions (see the Appendix), this limiting angle allowing
the presence of data enough to make the corresponding
statistical population. Thus, our goal is to analyze whether
the observed microwave background violates or not the
corresponding cosmic CHSH inequalities. We will see that
there is no such a violation in the present cosmic back-
ground explorer satellite (COBE) [17] case and thus there is
no failure of local realism in this case. In other words, as far

as the primordial density fluctuations detected by the
COBE measurements are concerned, there is no proof
of a quantum origin of these fluctuations. If such a proof
could be obtained, using WMAP or Planck measurement
results [18,19] and violating some suitable cosmic CHSH
inequalities, is an open question that we will consider at the
end of the present paper.
The present paper is organized as follows. First, in

Sec. II, a well-known proof of the original CHSH inequal-
ities [9] (for spin measurements) under the local realism
hypothesis is given. In Sec. III, a kind of CHSH inequality,
involving cosmic density measurements instead of spin
measurements, is also settled under local realism hypoth-
esis. This kind of CHSH inequality is called cosmic CHSH
inequalities. In Secs. IV and V, the calculation and
computation results of the mean values appearing in these
cosmic inequalities is presented. Then in Sec. VI it is shown
that these cosmic CHSH inequalities are not violated, for
the data of the COBE satellite [17]. Discussion in the last
section, including the possible violation of the new cosmic
CHSH inequalities related to the WMAP or Planck
measuring results, concludes the paper, before the
Appendix, dealing with the conditions to insure the cosmic
angular spacelike separation of the measurements.

II. RECALLING THE CHSH INEQUALITIES
AND THEIR PROOF

Let us consider a quantum system of two entangled spin
1
2
particles. The system has been prepared in such a way that

the two particles move towards, respectively, two spin
measurement devices placed at A and B, the correspon-
ding two measurement directions being x⃗ and y⃗. We will
assume that the two measurement events are in a spacelike
configuration, which means that we assume causality. After
both measurements are performed a new run is considered:
the system is prepared in the same state, the two measure-
ments are performed again, and so on. Then, for each run, x⃗
takes randomly one of the two values, a⃗ or a⃗0, and similarly
and independently, there are also two values b⃗ or b⃗0 for y⃗.
Finally, depending on the context, A and B, will represent
too the corresponding measurement values. In this case we
will have

A ¼ �1; B ¼ �1; ð1Þ
where the spin value has been normalized to unity.
Then, let us consider the four expecting values of the

product AB denoted by hABix⃗ y⃗, according to the four

possible cases ða⃗; b⃗Þ; ða⃗; b⃗0Þ; ða⃗0; b⃗Þ; ða⃗0; b⃗0Þ. With a view to
facilitating the readability, we will be using a more compact
notation: henceforth, A and A0 will still represent the
measurement operators in the place of A in the directions
a⃗ and a⃗0, respectively, and in the same way for B and B0.
With this notation the four expecting values will be written
hABi; hAB0i; hA0Bi; hA0B0i, with the values
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A; A0 ¼ �1; B; B0 ¼ �1: ð2Þ

Now let us define the operator C as

C≡ AðBþ B0Þ þ A0ðB − B0Þ: ð3Þ

Assuming local realism, the following inequality, called
CHSH inequality, can be proved:

jhCij ¼ jhAðBþ B0Þi þ hA0ðB − B0Þij ≤ 2: ð4Þ

By definition, realism means that there exists some
hidden variables, λ, previous to measurements, such that
the values, �1, of A, A0, B and B0, are well-defined
functions of λ and the corresponding measurement direc-
tion, that is, in an obvious notation, we are allowed to write
A ¼ Aða⃗; λÞ ¼ �1 and A0 ¼ A0ða⃗0; λÞ ¼ �1, and similarly
for B and B0. As the used notation suggests, A and A0 cannot
depend on b⃗ or b⃗0 and the same for B and B0 in relation to a⃗
and a⃗0. When this nondependence is assumed, as we do in
the present case, we say that the assumed realism is local.
This local character expresses the spacelike condition of the
two measurement events of each run, a condition that was
demanded at the beginning of the present section.
Now, we follow the paper [5] to complete the proof of

inequality (4). First, notice that for each value of the hidden
variablewe can have eitherB ¼ −B0 orB ¼ B0. But, because
of the assumed causality, the measurement results for B and
B0 do not depend onwhether wemeasureA orA0. Thismeans
that in the two terms of the right-hand side of Eq. (3),wemust
put the same equality, B ¼ −B0 or, alternatively, B ¼ B0,
depending on the chosen λ value. In each of the two cases
either the first term in Eq. (3) cancels or the last term cancels.
Therefore, the maximum value of jCj is two. This completes
the proof of inequality (4).
To be more explicit, notice that, if the B and B0 values

were causally connected with the A and A0 ones, we should
write something like BA and B0

A in the first summand of the
right-hand side of inequality (4), and similarly, BA0 , B0

A0 , in
the second summand. Then, we had not been able to
complete the proof.
To finish the present section, and following [5], we take

the square of the operator C. An elementary calculation
gives

C2 ¼ 4 − ½A; A0�½B;B0�; ð5Þ

with the involution conditions A2 ¼ A02 ¼ I and B2 ¼
B02 ¼ I and where ½A; A0� and ½B;B0� stand for the corre-
sponding commutators. Obviously, only when both com-
mutators are nonzero the inequality (4), the CHSH
inequality, may be violated.
It is to be remarked that the inequality (4), on the one

hand, and the expression (5), on the other hand, make
reference to a very different kind of measurements. In (4),

any of the four possible pairs of measurements, let us say
ðA;BÞ, ðA; B0Þ, ðA0; BÞ, or ðA0; B0Þ, are performed on the
same given state of the entangled system, and for simplic-
ity, the two measurements of each pair can be taken at the
same proper cosmic time. Differently, in (5), the four
possible pairs of measurements, let us say ðA; A0Þ, ðA0; AÞ,
ðB;B0Þ, ðB0; BÞ, are pairs of consecutive measurements,
such that, the first one of any pair is performed on the same
given initial state of the entangled system, while the second
one is performed on the resulting collapsed state of the
respective first one measured.
We will come back to the question in Sec. VII, where

we show that in the cosmic case there is not an expression
like (5) that would allow us to calculate indirectly the left-
hand side of our cosmic CHSH inequality (17). Contrarily
to this, in the case of the entangled spin system described in
the present section, the relation (5) can be used to conclude
indirectly if the corresponding CHSH inequalities (4) are or
are not violated.

III. THE COSMIC CHSH INEQUALITIES

Let us consider the cosmic microwave background with
its anisotropic disturbance. Imagine that we measure its
temperature, T, in many sky radial directions, x⃗, distributed
in an isotropic way, like it has been done, for instance, by
the COBE satellite. As we know, one finds

Tðx⃗Þ ¼ T0 þ δTðx⃗Þ; ð6Þ

with T0 the mean uniform temperature, about 2.73°K, and
δTðx⃗Þ the depending on x⃗ disturbance. Roughly speaking
δTðx⃗Þ=T0 ≈ 5 × 10−5 (see, for instance, [20]).
Now, let us consider the measuring values of δTðx⃗Þ in the

different directions, x⃗. Then, define the quantities Fðx⃗Þ, in
the following way:

Fðx⃗Þ ¼ þ1 if δTðx⃗Þ > 0; and ð7aÞ

Fðx⃗Þ ¼ −1 if δTðx⃗Þ < 0: ð7bÞ

Further, we consider any two radial measurement direc-
tions, x⃗ and y⃗, whose common angle is α > 4° arc degrees
in order to ensure that the two sky places, identified by x⃗
and y⃗, are spacelike separated (see the Appendix). On the
other hand, as explained next, at Sec. IVA, we should take
α > 6° according to Peebles [16].
That is, if we denote by x̂ and ŷ the unit vectors along the

outside directions x⃗ and y⃗, respectively, by definition we
have

cos α≡ x̂ · ŷ: ð8Þ

We will denote by hFðx̂ÞFðŷÞ; αi the mean value of the
product Fðx̂ÞFðŷÞ all over the direction pairs satisfying
Eq. (8) for a given constant angle α. It is to be understood
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that, regarding these measurement pairs, the only ones to be
considered are the ones present in the database of the
measures actually performed. Further, we will also use the
simplified notation hFðx̂ÞFðŷÞ; αi≡ hαi.
Next we consider four different values for the constant

angle α, that is αi, i ¼ 1, 2, 3, 4, and the corresponding four
mean values hαii. Now, the question is the following one:
can we, using these cosmic four mean values, prove some
cosmic inequalities similar to the proven CHSH inequal-
ities (4), under the local realism assumption?

A. Local realism: The cosmic case

Here, in this cosmic case, we define local realism in the
same way we have already defined it in the precedent
section [in the paragraph just after Eq. (4)]. Thus, we will
say that we have local realism in our cosmic case if some
hidden variables, λ, previous to the measurements, exist
such that the following function, f, is defined:

fðx̂; λÞ ¼ Fðx̂Þ ¼ �1; ð9Þ

with the condition that f cannot depend on any direction ŷ,
whose sky image be spacelike separated from the image
of x̂.
In the inflationary cosmic model, if we assume local

realism, λ must include the particular cosmic time, t, in
which the end of inflation occurs at each sky locality
pointed out by direction x̂. Then, in a more explicit
notation, we will write Eq. (9) as

fðx̂; t; λÞ ¼ Fðx̂Þ ¼ �1; ð10Þ

In all, could we mimic, in the present cosmic case, the
proof of the original CHSH inequalities, expression (4),
performed in the previous section, in order to prove some
similar CHSH cosmic inequalities?

B. Mimicking the CHSH inequalities in the cosmic case

To begin with, this mimicry could only be possible if the
above four angles, hαii, admit the existence of four unit
vectors, â; â0; b̂; b̂0, such that

â · b̂ ¼ cos α1; â · b̂
0 ¼ cos α2;

â0 · b̂ ¼ cos α3; â0 · b̂
0 ¼ cos α4: ð11Þ

If this is the case, the corresponding directions,
a⃗; a⃗0; b⃗; b⃗0, defined by these four unit vectors, could play
a similar role than the one played by the equally named
directions when proving ordinary CHSH inequalities in
Sec. II. Thus, we show next that Eqs. (11) can be proved for
some αi four values, but not for any four ones. In order to
do this, we express the hypothetical four vectors, â; â0; b̂; b̂0,
through their components referred to some orthogonal frame.
Then, without loss of generality, we always can write:

â ¼ ð1; 0; 0Þ; ð12aÞ

â0 ¼ ðcos β; sin β; 0Þ; ð12bÞ

b̂ ¼ ðcos θ; sin θ cos ρ; sin θ sin ρÞ; ð12cÞ

b̂0 ¼ ðcosφ; sinφ cos μ; sinφ sin μÞ; ð12dÞ

with angles β; θ;φ taking values between 0 and π, and ρ, μ,
between 0 and 2π. Hence, the hypothetical four unit
vectors â; â0; b̂; b̂0, solution of Eq. (11), should satisfy the
conditions

cos θ ¼ cos α1; ð13aÞ

cosφ ¼ cosα2; ð13bÞ

cos β cosα1 þ sin β sin α1 cos ρ ¼ cosα3; ð13cÞ

cos β cosα2 þ sin β sin α2 cos μ ¼ cosα4; ð13dÞ

for each value of β, that is, for each vector â0. Now, Eqs. (13c)
and (13d), can be written

cos ρ ¼ cos α3 − cos β cos α1
sin β sinα1

; ð14aÞ

cos μ ¼ cosα4 − cos β cos α2
sin β sinα2

: ð14bÞ

But since j cos ρj < 1 and j cos μj < 1, the following
inequalities,

jcos α3 − cos β cos α1j ≤ sin β sin α1; ð15aÞ

jcos α4 − cos β cos α2j ≤ sin β sin α2; ð15bÞ

have to be satisfied. Later, in Sec. IV, we will prove that
there exist some αi values such that Eq. (11) are satisfied.
The proof is obtained by construction of the existing αi
through the suitable numerical calculations.

C. Proof of the cosmic CHSH inequalities

Then, since Eqs. (11) can be satisfied for some αi values,
it seems that all we need to prove some cosmic CHSH
inequalities is to reproduce here, for these αi, the argument
developed after Eq. (4) which proves the ordinary CHSH
inequalities. But, to verify that it is the case, we need to use
a suitable version for the mean values, hFðx̂ÞFðŷÞ; αi,
x̂ ¼ â; â0, and ŷ ¼ b̂; b̂0, appearing at the occasional cosmic
CHSH inequalities. Actually, the number of summands,
nðx̂; ŷÞ, involved in the mean value hFðx̂ÞFðŷÞ; αi, depends,
not exactly on the value of cos α≡ x̂ · ŷ, but really of some
narrow width δα centered on α. If we take this width, δα, to
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be constant, i.e., independent of α, then the corresponding
number nðx̂; ŷÞ depends on α (see Fig. 1 in Sec. IV B).
Instead of this, the four expecting values, hABi; hAB0i,

etc., appearing at the ordinary CHSH inequalities (see the
precedent section), involve the same number of summands.
The mere consideration of this difference shows right away
that the proof of the ordinary CHSH inequalities, such as
they are, cannot be mimicked to produce a proof of the
cosmic ones.
However, this difficulty can be easily circumvented by

taking a variable δα width, that is, one depending on α.
More precisely, a δα width fitted as to lead to a constant
(that is, independent of α) number nðx̂; ŷÞ. Then, the door is
open to mimic the proof of the ordinary CHSH inequalities
performed in Sec. II, for the purpose of proving our cosmic
CHSH inequalities. In all, assuming local realism, we want
to prove the following cosmic CHSH inequalities:

jhCij≡ jhFðâÞFðb̂Þ; α1i þ hFðâÞFðb̂0Þ; α2i
þhFðâ0ÞFðb̂Þ; α3i − hFðâ0ÞFðb̂0Þ; α4ij ≤ 2; ð16Þ

by mimicking the reasoning that in the previous section led
to the original CHSH inequalities.
First of all, we will use a generic rotation, R, to write the

mean values hFðx̂ÞFðŷÞ; αi, of inequality (16), in the alter-
native way hFðRx̂ÞFðRŷÞi. With this notation, the inequality
(16) can be written

jhCij≡ jhFðRâÞ½FðRb̂Þ þ FðRb̂0Þ�i
þhFðRâ0Þ½FðRb̂Þ − FðRb̂0Þ�ij ≤ 2; ð17Þ

where the (αi), defined by (11), remain implicit. Then,we can
have either FðRb̂Þ ¼ −FðRb̂0Þ or FðRb̂Þ ¼ FðRb̂0Þ. But,
because of the assumed causality, the measurement results
for the directions Rb̂ and Rb̂0 do not depend on whether we
measure Râ or Râ0. This means that in the two terms of the
right-hand side of inequality (17), we must put the same
equality, FðRb̂Þ ¼ −FðRb̂0Þ or FðRb̂Þ ¼ FðRb̂0Þ. In each of
the two cases either the first term in inequality (17) cancels or
the last term one cancels. Therefore, the maximum value
of jhCij is two. This completes the proof of inequality (17).

IV. DATA PROCESSING

In next sections we will describe some of the most
relevant aspects related with the numerical calculations we
have performed. To begin with, say that our final aim is to
present the numerical results obtained for the quantities
hFðRx̂ÞFðRŷÞ; αi≡ hαi, described in the prior section,
which are the necessary ingredients of the inequalities
(17). For this purpose we will use some of the datasets
provided by COBE satellite containing the proper neces-
sary information, that, in this case, we can find in Ref. [17].
Detailed information can be found, for instance, in [21–23].

A. On the data source

From the downloaded COBE FITS (flexible image
transport system) image file, including maps of the
CMB temperature and its uncertainty, certain parameters
and other data, a table with the galactic coordinates
(longitude, latitude) and its corresponding temperature
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104

0 20 40 60 80 100 120 140 160 180
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FIG. 1. The number of unit vector pairs, Nα, contained in a certain interval centered at α, that is ½α − δα; αþ δα�, is presented. In the
upper panel the interval width is built with a constant value of δα ¼ 0.1 deg., while the bottom one is constructed from a constant
relative percentage δα=α ¼ 0.1%.
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(including the uncertainty) is built. This file contains a total
of 6067 records which accounts for the same number of
different possible vector directions in the sky.
Next step is to design a set of unit vector pairs that

will define, through the expression (8), a population of
0 < α ≤ π angles. To achieve it, we combined all these
6067 directions obtaining a total number of 18,401,211
angles. If ðθi;φiÞ and ðθj;φjÞ stand for the longitude and
latitude coordinates of certain unit vector pair, say x̂i and ŷj,
respectively, then the subtended angle 0 < αij ≤ π is easily
obtained from

αij¼ arccos½cosφicosφjcosðθj−θiÞþsinφi sinφj�: ð18Þ

But the available number of pairs has to be reduced
discarding the causal connected directions at the last
scattering surface. This can be achieved by imposing the
condition αij ⪆ 4° (see the Appendix for details). However,
according to Peebles (see [16]), during the galaxies for-
mation epoch, the CMB is significantly altered due to the
interaction with free electrons. Nevertheless this circum-
stance just affected small scales inhomogeneities, in such a
way that αij > 6° is a “safety” confidence margin. Taking
values of α > 6° do not suppose any loss of information in
the numerical computation of the COBE dataset, whose
angular resolution is of 7° [24].
On the other hand, for each realization αij two tempera-

tures are associated Ti and Tj, linked with its correspond-
ing directions x̂i and ŷj, respectively.

B. Selection criteria

As mentioned in previous section, the calculation of each
one of the quantities of interest hFðx̂ÞFðŷÞ;αi for a fixed
value of α, actually involves a certain number of angles αij,
with 6° < αij ≤ 180° included in a narrow interval, cen-
tered on α, of width δα > 0, that is αij ∈ ½α − δα; αþ δα�.
In such a case, we have to specify the δα selection criteria
and then, once it has been fixed, review the resulting
sampling distribution. In Fig. 1 we represent the obtained
results for a fixed value of δα (same δα value for any of the
considered α angle), and for a relative fixed value of δα
(same δα=α value for any of the considered α angle).
Different simulations have been performed, depending

on the value of certain parameter values such as α stepping,
α initial value or the interval width δα. As it can be
appreciated in Fig. 1, in any case, the number of vector
pairs in each interval ½α − δα;αþ δα�, named, nðx̂; ŷÞ in the
previous section, varies with α. Hence, the main component
of our expecting value, that is a certain number of temper-
ature pairs, depends on α, and we may write Nα.

C. Sampling validation

Next we focus on the suitability of the sample size.
To this end, statistical criteria have been used to estab-
lish a minimum population of items in each interval
½α − δα; αþ δα� [25]. In this sense, two confidence levels
have been examined: 2σð∼95%Þ and 3σð∼99.7%Þ.
Now, remember that in Sec. III C, the constancy of

nðx̂; ŷÞ was required in order to be able to prove the
expression (17). Thus, for those confidence levels and for
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FIG. 2. These two illustration panels show several curves of a number of unit vector pairs, Nα, as a function of α, the left one for a
constant relative percentage δα=α ¼ 0.1%, and the right one when a constant value of δα ¼ 0.1 deg is considered. The solid blue curves
(red solid curves) represent the minimum sample size for a confidence level of 2σ (3σ), while the black one is the real amount of
measures. Green slashed lines are the maximum value for the 2σ confidence level curves.
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both cases considered in Fig. 1 (fixed δα or fixed δα=α),
Fig. 2 shows that it is possible to select a constant value of
Nα (see slashed green line, designed for the 2σ confidence
level), in such a way that

(i) It will be valid enough in terms of sample size, due
to the fact that it has been selected as the maximum
value of the 2σ curve (blue solid line).

(ii) The α covering range interval is maximized. The
black curve represents the number of available pairs
as a function of the α angle. Observe that the only α
range in degrees, delimited by the intersections of
the aforementioned black curve and the slashed
green line, that is excluded, is �0; 12.5½∪�178; 180�
for a relative width, and �0; 29½∪�175; 180� for a
fixed width.

According to both panels of Fig. 2, it is explicit that
inside of the nonexcluded range of the α’s, the number of
pairs exceed the selected constant value of Nα (4,269 pairs
in both cases).
Several tests have been executed: (i) the randomly

selected over the oversampled pool have been repeated
50 times, and (ii) the same calculations have been repeated
again, including the full sample set for each α. In this
respect, we will just add that, in the aforementioned pairs
selection, the isotropy has been taken into account so that it
covers the whole sky without any preferred direction. The
results have been about the same, actually the differences
just affected the nonsignificant figures.

V. EXPECTED VALUES PRESENT IN THE
COSMIC CHSH INEQUALITIES

A set of selected data consists of a certain number of Nα

pairs of temperatures ðTi; TjÞ for a given value of
αij ∈ ½α − δα; αþ δα�. For each of a such selected dataset,
the expected value hFðx̂ÞFðŷÞ; αi is calculated. This is
accomplished through the following expression:

hFðx̂ÞFðŷÞ; αi ¼ Pðþ;þ; αÞ þ Pð−;−; αÞ
− Pðþ;−; αÞ − Pð−;þ; αÞ; ð19Þ

where PðX; Y; αÞ stands for the probability of getting the
result of Xð�1Þ for Fðx̂Þ and Yð�1Þ for FðŷÞ [see the F
function definition expressions (7) in Sec. III], for example,
Pðþ;þ; αÞ represents the probability to obtain both tem-
peratures of the two directions subtending the angle α
greater than the mean uniform temperature T0. The T0

value that has been used is T0 ¼ 2.728� 0.004 K and it
has been selected from COBE files [17].

A. Unmixed probabilities

Let us consider the accounting for the dichotomized
value �1 of function F for certain direction x̂, according
to expressions (7) criteria. The frequency is established
from δT solely in such a way that its value is a 100% þ1 or

100% −1. This is a first, easy, and fast way of calculating.
In the next subsection, a most sophisticated method for
building probabilities will be developed.
Consequently, these probabilities in Eq. (19) are easily

computed from

PðX; Y; αÞ ¼ νðX; Y; αÞ
Nα

; ð20Þ

where νðX; Y; αÞ is the collected frequency for the resulting
case ðX; Y; αÞ. In Fig. 3 we have included, within two
panels, some of the resulting curves of the function
hFðx̂ÞFðŷÞ; αi, wherein those ones analyzed in Figs. 1
and 2, have also been incorporated.
Looking at the resulting curves enclosed in Fig. 3,

it is suggested that a suitable fit to a straight line,
hαi ¼ mαþ n, is possible. It is imperative to point out
that, for the fit procedure, just the validated interval range
for the alpha angles—described in prior section—has been
taken into account. The results of those fittings, using the
method of least squares, are summarized in Table I. From
these results two immediate assertions can be done: (i) the
R2 ∼ 0.999 coefficient of determination indicates a reliable
fit, and (ii) the obtained values for fitting parameters m and
n are almost equal, independently of the considered width,
m ≈ 0.62 and n ≈ −0.97.

B. Mixed probabilities

On this occasion our starting point will be the proba-
bilities p�ðx̂Þ of getting the dichotomized value �1 of
function Fðx̂Þ defined in statements (7), respectively. These
probabilities are built considering the absolute error in
δTðx̂Þ quantities that are derived from the COBE original
dataset.
Hereafter, for a fixed direction x̂, the εaðδTÞ will

represent the absolute error in δT. Based on the δT interval
defined by ½δT − εaðδTÞ; δT þ εaðδTÞ� for a fixed direction
x̂, the aforementioned p�ðx̂Þ are defined as follows: if we
call εþ the positive section of the interval ½δT − εaðδTÞ;
δT þ εaðδTÞ� the probability pþðx̂Þ can be defined as

pþðx̂Þ≡ εþ
2εaðδTÞ

; ð21Þ

while

p−ðx̂Þ≡ 2εaðδTÞ − εþ
2εaðδTÞ

; ð22Þ

where, for simplicity, the x̂ dependence in δT has been
omitted.
From this definition, the four probabilities pþþ, pþ−,

p−þ, and p−− representing the probability of getting the
values þþ, þ−, −þ, and −−, respectively, for a single
vector pair ðx̂; ŷÞ are pXYðx̂; ŷÞ ¼ pXðx̂Þ · pYðŷÞ.
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Finally, the probabilities PðX; Y; αÞ that appear in
Eq. (19), assuming we have a total number of Nα pairs
of vectors ðx̂; ŷÞ subtending certain angle α, are

PðX; Y; αÞ ¼
XNα

i¼1

pXYðx̂; ŷÞi
Nα

; ð23Þ

with X ¼ �1, Y ¼ �1, and Nα the number of selected
pairs of temperatures for each value of α, following the
criteria established in Sec. IV. These statements allow
us to calculate the expected value hFðx̂ÞFðŷÞ; αi from
expression (19).
For each angle α, the absolute error, hereafter referred to

as εXYðαÞ, in the four PðX; Y; αÞ probabilities, is calculated
at the 2σ level thorough the standard statistics as [25]

εXYðαÞ ¼ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðX; Y; αÞ½1 − PðX; Y; αÞ�

Nα

s
; ð24Þ

where Z stands for a z score whose value is Z ¼ 1.96 at the
2σ level. Once these four errors have been collected, the
error for the expected value hαi≡ hFðx̂ÞFðŷÞ; αi defined
in (19) is easily reached from

εa½hαi� ¼ ðεþþ2 þ εþ−
2 þ ε−þ2 þ ε−−

2Þ12: ð25Þ

And the same technique provides the error for jhCij
quantity defined in (16), built from four α values, say
α1, α2, α3, α4; that is,

TABLE I. Information about some of our resulting fits to a straight line, obtained through the least squares
method. The first column indicates the selected δα width, columns two and three contain the obtained value for the
slope of the line,m, in degrees or radians including the error, respectively. The forth one contains the intercept n and
its error, and the final one encloses theR2 goodness estimator. In the first two rows, a relative constant width δα=α is
considered, while the third and fourth ones refer to the α fixed width case.

Width m (α in deg) m (α in rad) n R2

0.10% −0.01090� 0.00004 −0.6245� 0.0023 0.981� 0.004 0.9991
0.50% −0.01088� 0.00003 −0.6234� 0.0023 0.980� 0.004 0.9992
0.05 deg −0.01094� 0.00002 −0.6234� 0.0011 0.9845� 0.0012 0.9991
0.10 deg −0.01089� 0.00004 −0.6240� 0.0023 0.979� 0.004 0.9992

FIG. 3. Four different expected values curves hαi≡ hFðx̂ÞFðŷÞ; αi are represented in these two panels. As in previous figures, two
different types of intervals for α are shown: the left one corresponds to a relative constant width while in the right one, a fixed width is
settled. In both panels two cases are plotted: δα=α ¼ 0.1% and δα=α ¼ 0.5% for the relative constant width case and δα ¼ 0.5 and
δα ¼ 0.1 deg for the fixed width one. For each case, the curve has been fitted to a straight line, see Table I.
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εaðjhCijÞ ¼ ½εa2ðhα1iÞ þ εa
2ðhα2iÞ þ εa

2ðhα3iÞ
þ εa

2ðhα4iÞ�12: ð26Þ

Using this method, a reasonable fit to a straight line, was
not possible. An expected value hFðx̂ÞFðŷÞ;αi sample curve
is plotted in Fig. 4, it has been built accurately with a small
step value for α (0.2 deg) and a narrow width δα (0.05 deg).
Notice that, this expected value curve, that results when the
mixed probabilities are considered, is some more similar to
a cosine type curve. Both curves are plotted together in
Fig. 4. Remarkably, the obtained expected value curve is a
perfectly weighted cosine function, having an amplitude of
0.6, that is hαiðαÞ ≈ 0.6 cosðαÞ.

VI. NUMERICAL EVALUATION OF THE jhCij
VALUES AND THE NONVIOLATION OF THE

COSMIC CHSH INEQUALITIES

Next, to test the cosmic CHSH inequalities, let us
return to the main expression (17) and provide some details
about the followed procedure to test the aforementioned
inequality:

(i) For all the different feasible expected values ana-
lyzed, a scanning code procedure, whose objective
of finding four α’s values which maximized function
jhCij, was written.

(ii) Depending on the α’s angles partition method
(which defines a set of αi ’s angles pool), a certain
number of possible four angles combinations
are obtained, those are our four-angle candidates.
Nevertheless, not all these four-set candidates are
viable, to be acceptable, conditions (15a) and (15b)
have to be fulfilled. Once a four-set candidate
has been selected, the only free parameter in the

aforementioned conditions is the β angle. So, a β
value that honors the referred conditions has to be
found out. To accomplish this, a loop routine looks
for it. If no β value is found, the four-set candidate is
discarded, on the contrary, if a β value is found, the
four-angle set is approved to be processed.

(iii) For each acceptable four-set, the jhCij is computed.
Those calculated jhCij values that exceed a prees-
tablished threshold (and its corresponding four α’s)
are stored into a file and then, this resulting file is
analyzed.

For instance, for a partition of 871α’s angles there are a
number of 23,815,827,035 combinations, however, there
are four permutations of fα1; α2; α3; α4g which leave jhCij
unaltered. In such a case, the total rises to 95,263,308,140.
As a result, a maximum value for jhCij ¼ 1.71� 0.03
was achieved when fα1 ¼ 125; α2 ¼ 39.2; α3 ¼ 135;
α4 ¼ 139g deg.
To conclude the current section, our simulations, that

have been executed with different parametrizations (as α
stepping, δα amplitude, etc.), have confirmed that there is
no cosmic CHSH inequalities (16) violation, when COBE’s
data are considered.

VII. DISCUSSION AND CONCLUSIONS

The main result of the previous section and of the all
present paper is that the COBEmeasuring detections do not
violate the cosmic CHSH inequalities (17). A first comment
to make about this result is that this no-violation cannot be
inferred from a kind of relation such as (5) applied to our
cosmic scenario, and so we have needed to calculate
directly this no-violation. This is at variance with what
happens in the case of the entangled spin system considered
in Sec. II where the no-violation of inequality (4) can be
inferred from (5).

FIG. 4. The expected values curve hαi≡ hFðx̂ÞFðŷÞ; αi, calculated through a mixed probabilities method, is presented in this figure
for a fixed width δα ¼ 0.05 deg. The obtained curve hαi is well approached by the function 0.6 cosðαÞ (solid red line), while the solid
blue one is the function cosðαÞ.
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At first sight, it seems that in our cosmic case we could
write an equation similar to (5), given that both cases, the
cosmic one and the one referred to (5), respectively, involve
the same sort of measurements, A, A0, B, and B0. However,
the pairs of measurements actually performed from these
four possible single measurements are very different
according to the case, the cosmic one or the one related
to (5), that we are considering. Thus, in this second case, let
it be in particular the commutator ½A; A0�, present in the
Eq. (5), or more specifically the product A0A. As explained
at the end of the Sec. II, this product describes the A
measurement performed on the initial state of the entangled
spin system, followed by the A0 measurement on the
collapsed state resulting of the Ameasurement. But nothing
similar to these two consecutive measurements can be
present in our cosmic case. In this case, A and A0 are two
cosmic measurements performed, respectively, in two
known sky directions, at two corresponding times belong-
ing to the epoch of the end of inflation. But these two times
are not known. Then, in particular, we do not know if they
are or are not two consecutive times, which means that from
the observational data we cannot infer the value of the
corresponding ½A; A0� commutator in the cosmic case. In
other words, there is not a similar version of Eq. (5) in our
cosmic case. There is not a similar version in the sense that
we cannot use the commutator values to make easier the
calculation of (17) since these values remain unknown. All
the same, what is important for us is if the new cosmic
CHSH inequality (17) is violated or not, such that, looking
for a similar cosmic equation to Eq. (5), a similar equation,
actually nonexistent, would only have the interest of
making the calculation of (17) easier.
Therefore, it makes sense to test the validity or violation

of the cosmic CHSH inequalities, and to quantify
the results. The mixed probabilities treatment (used in
Sec. V B) provides an expected values curve hαi ¼
0.6 cosðαÞ. This cosðαÞ shape is the expectation value
for the product of two spin 1

2
measurements in the directions

of two unit vectors a⃗ and b⃗, on a suitable entangled
quantum system of two spin 1

2
particles, such that

a⃗ · b⃗ ¼ cosðαÞ. See Ref. [8] for details.
To finish the paper, we could ask what would be the

final result if, instead of working with the COBE data,
we worked with the more accurate WMAP data [18] and
Planck data [19] which include polarization results.
Would we still be able to prove, under the local realism
assumption, a new cosmic CHSH inequality similar to
(17)? Furthermore, a new cosmic inequality that became
violated?
Trying to answer these questions, let us consider the

following Kogut paper [26], where the WMAP has mapped
the full sky in Stokes parameters I, Q, and U, the I
parameter corresponding to the temperature and Q and U
parameters to the polarization. In Kogut’s paper some
significant correlations between the measured temperature

and the measured polarization are detected. The simplest
measure of this correlation is given by the two-point
angular cross-correlation function [see this specific
cross-correlation in the cited paper [26], Eq. (6)]. In all,
a correlation between I, on one hand, and Q, U, on the
other hand. Then, on the base of this specific cross-
correlation, a new cosmic CHSH inequality like Eq. (17)
can be proved under the local realism assumption (work in
progress to be addressed elsewhere). More specifically, we
can define

hCIQi≡ hFIðâÞFQðb̂Þ; α1i þ hFIðâÞFQðb̂0Þ; α2i
þ hFIðâ0ÞFQðb̂Þ; α3i − hFIðâ0ÞFQðb̂0Þ; α4i; ð27Þ

where FI and FQ are dichotomized measures for the
corresponding Stokes parameters. Then, we can prove a
sort of inequality (17):

jhCIQij ≤ 2ϵ; ð28Þ

where the I Stokes parameter is normalized to the unity and
then dichotomized, such that it takes for each measure one
of the two possible values�1. Furthermore, ϵ ≈ 10−2 is the
maximum value of the correction polarization terms to the
above normalized and dichotomized I parameter. Notice
that this normalization and dichotomy are already present
in the cosmic CHSH inequality (17) that has been proved
for the COBE data under the local realism assumption.
Further, the inequality is in accordance with the resulting
calculation from the data, as it has been shown in the
preceding section.
This maximum ϵ value, ϵ ≈ 10−2, is a rough estimation

that comes from the interpretation of Fig. 1 in Ref. [26],
where IQ correlations (in square micro-Kelvin) are
given in terms of the angular separation θ (in degrees).
This graph presents an absolute minimum at the point

P ≈ ð35°;−7 μK2Þ. Thus, taking δTðx⃗Þ
T0

≈ 5 × 10−5 for the
mean values of relative disturbances in temperature
intensities, the ϵ value at the point P of the graphic
is ϵðPÞ ≈ 7

25
× 10−2.

But, the question is if we could expect that the new
cosmic CHSH inequality, similar to (17), that we have just
commented on, would be violated for the WMAP or Planck
data with their including polarization results. Our pedes-
trian but practical answer to the question is that, strictly
speaking, we do not know any reasons to expect or not such
a violation, but considering the great significance of this
dilemma, that is, reject or not the local realism, and then
reject or not the quantum origin of the inflation, we could
find interesting to test in a future paper the possible
violation, for the WMAP or Planck data, of our new
cosmic CHSH inequalities (28). Even more, in the case
of cosmic CHSH inequalities (17), where there is no
violation, the measured quantity is a three scalar, the

DALE, LAPIEDRA, and MORALES-LLADOSA PHYS. REV. D 107, 023506 (2023)

023506-10



cosmic energy density, while in the case of an entangled
spin system, where violation is present, the measured
quantity is the spin. Finally, the measured quantities for
the new cosmic CHSH inequalities, the WMAP/Planck
data including the polarization results, involve three-vector
directions. Then, the suspicion would be that, from the
three cases we have just considered, only the one measuring
three-scalar quantities would lead to a no violation of the
corresponding CHSH inequalities, while in the new cosmic
case (like happens too in the spin one) we could expect the
presence of a violation. Then, it could be interesting to test
such a violation.
We have studied a particular application to CMB, based

on the original Bell inequality formulated for a two-partite
system, and related with the two-point correlation function
CðθÞ of CMB temperature fluctuations (also with the
equivalent power spectrum Cl). However, there exist
extended inequalities for the multipartite case [27,28]. A
future task would be obtaining a new set of multipartitelike
inequalities to be applied to the CMB. Deviations from the
Gaussian character of the CMB spectrum are constrained
from correlation measurement in temperature fluctuations
on three and four sky positions. If such a deviation has a
quantum origin, it should be manifested by extending the
present study to check a violation of these cosmic multi-
partite inequalities.
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APPENDIX: THE NONCAUSAL
CORRELATION CONDITION

How far away do two of our cosmic measurement
events, let us say A and B, have to be to be able to ensure
that they are in a spacelike configuration? To answer
this question, we consider the comoving distance, xd,
traveled by a photon that leaves the observer at the end
of inflation and reaches its destination at the decoupling
time (this is a purely geometric question, because we do not
consider the incessant dispersion produced by an ionized
medium). The differential equation for this photon trajec-
tory xðtÞ (in a spatially flat universe), taking the speed of
light c ¼ 1, is

dx ¼ dt
a
¼ da

a _a
¼ da

Ha2
; ðA1Þ

where t refers to cosmological time, aðtÞ is the cosmic scale
factor, H is the Hubble function, and _a≡ da

dt .

On the other hand, setting a0 ¼ 1 at the present
time, the cosmic redshift z is given by 1þ z ¼ a−1.
Then dz ¼ −a−2da, and substituting in (A1), one has

dx ¼ −H−1dz ¼ −H−1
0 ð1þ zÞ−3=2dz; ðA2Þ

under the assumption of a matter dominant era (neglecting
the cosmological constant contribution), with H0 the
Hubble constant.
Then, we will integrate Eq. (A2) from the end of

inflation, in a given locality to, let us say, the decoupling
instant. That is, in terms of z, from ze þ δzðxÞ to zd. Here,
ze, stands for the mean value of z at the end of inflation,
δzðxÞ is the perturbation ofze in the cosmic locality x, and
zd the value of z for the decoupling instant. Hence, the
corresponding integration of Eq. (A2) gives for Δx≡ xd:

xd ¼ 2H−1
0 ½ð1þ zdÞ−1=2 − ð1þ ze þ δzÞ−1=2�; ðA3Þ

where zd ≈ 1000 and ze ≈ 1026. Thus, since ze is huge
compared to zd, we have, irrespective of the value of δzðxÞ,

xd ≈ 2H−1
0 z−1=2d : ðA4Þ

Now, the above comoving distance value, xd, has to be
compared with the comoving last scattering surface diam-
eter, 2xr. To obtain xr, let us take Eq. (A1) with the opposite
sign: dx ¼ −a−1dt. Thus, using z for the referring cosmic
time, one obtains Eq. (A2) with the reversed sign, which
after integration from zd to z ¼ 0, leads to

xr ≈ −2H−1
0 : ðA5Þ

Therefore, we have the quotient value

xd
jxrj

¼ z−1=2d ≈ ð1100Þ−1=2 ≈ 1

33
; ðA6Þ

that is, to ensure that the measurement events A and B
define a spacelike configuration, the angular separation
between them has to be double the angle θ obtained from
tanðθÞ ¼ xd

jxrj, so 3°280 at least.
To estimate the contribution of the cosmological con-

stant, Λ, in the previous reasoning, we should replace the
relation

H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

q
ðA7Þ

into (A2) and integrate the corresponding expressions
numerically. TakingΩm ¼ 0.3, andΩΛ ¼ 0.7 for the matter
density and cosmological constant parameters, respec-
tively, we obtain xd

jxrj ¼ 1
29
, that is an angle θ ≈ 2°, which

corresponds to an angular separation of 4° at least for two
measurement events A and B in spacelike configuration.
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