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The measurement of the inflationary stochastic gravitational wave background (SGWB) is one of the
main goals of future GWexperiments. In direct GWexperiments, an obstacle to achieving it is the isolation
of the inflationary SGWB from the other types of SGWB. In this paper, as a distinguishable signature of the
inflationary SGWB, we argue the detectability of its universal property: antipodal correlations, i.e.,
correlations of GWs from the opposite directions, as a consequence of the horizon reentry. A phase-
coherent method has been known to be of no use for detecting the angular correlations in SGWB due to a
problematic phase factor that erases the signal. We thus investigate whether we can construct a phase-
incoherent estimator of the antipodal correlations in the intensity map. We found that the conclusion
depends on whether the inflationary GWs have statistical isotropy or not. In the standard inflationary
models with statistical homogeneity and isotropy, there is no estimator that is sensitive to the antipodal
correlations but does not suffer from the problematic phase factor. On the other hand, it is possible to find a
nonvanishing estimator of the antipodal correlations for inflationary models with statistical anisotropy.
SGWB from anisotropic inflation is distinguishable from the other components.
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I. INTRODUCTION

Inflation [1–4] is a strong candidate for the mechanism to
seed the structure of our universe. According to the
standard paradigm, the accelerated expansion during infla-
tion stretches the microscopic quantum fluctuations of the
inflaton field to superhorizon scales, which are converted to
the primordial density fluctuations in the postinflationary
universe. An inevitable prediction is that inflation also
generates the primordial gravitational waves (GWs) from
tensor-type quantum fluctuations of spacetime [5–7]. Thus,
the detection of the inflationary GWs gives strong evidence
for inflation.
In direct-detection experiments, the inflationary GWs are

observed as a stochastic gravitational-wave background
(SGWB), i.e., GWs coming from all directions in the sky.
The detection of the inflationary SGWB is challenging
because it has a tiny amplitude in typical inflationary

models. As well as improving the sensitivity of GW
detectors, we need to isolate it from SGWB generated
by the other sources: a superposition of GWs from many
unresolvable astrophysical and cosmological sources (see,
e.g., Refs. [8–13]). Numerous studies have been carried out
on methods for separating the astrophysical components in
SGWB: spectral separation [14–19], subtraction [20–24],
anisotropies [25–32], polarization [33–39], and so on.
These methods work well to place upper limits on the
inflationary SGWB. However, in these methods, it is
impossible to guarantee that the remaining exotic compo-
nent is of inflationary origin without a priori assumptions
on an inflationary model as well as on the other cosmo-
logical sources. For example, although the slow-roll infla-
tion predicts the spectral density ShðfÞ ∝ f−αðα ≃ 3Þ, it is
not a universal prediction of inflation. Inflation can predict
a wide variety of spectra, especially in models generating
SGWB detectable by upcoming experiments [12,40,41].
The main purpose of this paper is to investigate whether

the inflationary SGWB is distinguishable from the other
components in direct-detection experiments without any
a priori assumptions, focusing on a unique and universal
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prediction of inflation: the generation of superhorizon
modes.1 Superhorizon modes are generated by inflation
but not by any causal mechanism in the postinflationary
universe. In consequence, the inflationary GWs have a
standing-wave nature after the horizon reentry [42–46]. As
reviewed in Sec. III B, the standing-wave nature is
observed as unusual properties of SGWB, most notably,
correlations between GWs from opposite directions.
Although this property has been already noticed in the
literature, we would like to emphasize it as a unique
prediction of inflation and name it antipodal correlations.
The astrophysical SGWB, or any type of SGWB from
localized sources, will not have such correlations because
GWs from distant sources are uncorrelated with each other.
Therefore, it is a unique signature for the inflationary
SGWB.
About 20 years ago, however, Allen et al. [43] showed

that the unusual properties of the inflationary SWGB above
cannot be detected in the strain correlation analysis. The
antipodal correlations rapidly oscillate due to interference
between GWs from opposite directions. It is inevitably
smoothed out by averaging over frequencies unresolvable
because of the finite observation time. Moreover, it was
recently pointed out in Margalit et al. [47] that metric
perturbations along the line of sight randomize the GW
phases. This effect reduces the detectability of the antipodal
correlations because the observed quantity is the strain
smoothed over the sky with the finite angular resolution of
a detector. The above two effects have been also pointed out
for the three-point correlation function in Refs. [48–50]. As
noted in Refs. [47,50], we need to use phase-incoherent
methods such as the intensity map [51,52] to avoid these
problems of interference. In this paper, we thus investigate
whether we can construct a phase-incoherent estimator of
the intensity map to detect the antipodal correlations. We
found that the conclusion depends on whether the infla-
tionary GWs have statistical isotropy or not. In the standard
inflationary models with statistical homogeneity and isot-
ropy, there is no estimator that is sensitive to the antipodal
correlations but does not suffer from the problematic phase
factor. On the other hand, it is possible to find a non-
vanishing estimator of the antipodal correlations for infla-
tionary models with statistical anisotropy. SGWB from
anisotropic inflation is distinguishable from the other
components.
This paper is organized as follows. In Sec. II, we briefly

review possible properties of SGWB and define the
antipodal correlation. In Sec. III, we show the standing-
wave nature of the inflationary GWs and how it leads to the
antipodal correlations in SGWB. In Sec. IV, after reviewing
the detectability of the antipodal correlations in the strain

correlation approach, we consider the intensity correlation
approach. Our conclusions are summarized in Sec. V. In the
Appendix, we also discuss the detectability of the antipodal
correlations in the time-domain analysis.

II. STOCHASTIC GRAVITATIONAL
WAVE BACKGROUND

In this section, we shortly review how SGWB can be
characterized with emphasis on the unusual statistical
properties of the inflationary SGWB.
The stochastic gravitational wave background is defined

by a superposition of GWs from all directions of the sky.
In the transverse-traceless gauge, it can be expanded as2

ĥijðt; xÞ ¼
X
A

Z
∞

−∞
df

Z
d2n ĥAðf; nÞeAijðnÞe−2πifðt−n·xÞ;

ð1Þ
in terms of plane waves with a frequency f and a
propagating direction n.3 The tensors eAijðnÞ are the
polarization tensors for the two GW polarization states
with normalization eAijðnÞeB;ijðnÞ ¼ 2δAB. To simplify the
expressions below, we specialize to a circular polarization
basis e�ijðnÞ: they are related to the “plus-cross” polariza-

tion vectors as e�ijðnÞ ¼ eP:ijðnÞ � ieC:ij ðnÞ and thus satisfy

e�ijð−nÞ ¼ e∓ijðnÞ. We define t ¼ 0 as the start time of
observation.
The Fourier amplitudes ĥAðf;nÞ are random variables

and their statistical distribution characterizes the stochastic
background. Usually, we make the following assumptions
on the statistical distribution:
(a) Gaussianity: all the statistical information in SGWB

can be characterized by the two-point correlation
function hĥ†Aðf1; n1ÞĥBðf2; n2Þi.

(b) Isotropy: the correlation functions are invariant
under the rotation on the celestial sphere, i.e.,
hĥ†Aðf1;n1ÞĥBðf2; n2Þi depends on n1 and n2 only
through n1 · n2.

(c) No angular correlations4: GWs from different
directions are not correlated with each other, i.e.,
hĥ†Aðf1;n1ÞĥBðf2; n2Þi ∝ δ2ðn1; n2Þ.

(d) Stationarity: the correlation functions are invariant under
the time translation, i.e., hĥ†Aðf1; n1ÞĥBðf2; n2Þi ∝
δðf1 − f2Þ.

1Several alternatives of inflation have been proposed to generate
the superhorizon modes (see, e.g., Sec. VI.5 in Ref. [12]). To be
exact, our argument is also applied to these scenarios.

2In this paper, we denote a stochastic quantity with a hat.
3We follow the notations in Maggiore’s book [53]. In some

literature, n is used for a direction on the sky, which is opposite to
the propagating direction.

4Note that the statistical isotropy (b) does not forbid the
angular correlations as is the case with the temperature map of
cosmic microwave background (CMB). The properties (b) and (c)
are independent assumptions.
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(e) Unpolarized: different polarization modes are
independent and have the same statistics, i.e.,
hĥ†Aðf1; n1ÞĥBðf2; n2Þi ∝ δAB, and the coefficient is
independent of the polarizations.

When all these assumptions are satisfied, SGWB is
characterized as

hĥ†Aðf1;n1ÞĥBðf2;n2Þi ¼
SðDÞh ðf1ÞδAB

4π
δðf1 − f2Þδ2ðn1;n2Þ;

ð2Þ

with a (double-sided) spectral density SðDÞh ðfÞ.
As shown in Refs. [42–46], the inflationary SGWB does

not satisfy the two assumptions (c) and (d) as well as the
last assumption (e)5: the correlation function has an addi-
tional component as

hĥ†Aðf1; n1ÞĥBðf2; n2Þi

¼ SðDÞh ðf1ÞδAB
4π

δðf1 − f2Þδ2ðn1; n2Þ

þ AðDÞ
h ðf1ÞδAð−BÞ

4π
δðf1 þ f2Þδ2ðn1;−n2Þ: ð3Þ

Here, we have defined SðDÞh ðfÞ and AðDÞ
h ðfÞ as double-sided

quantities. The corresponding single-sided spectral den-
sities are defined by

ShðfÞ≡ SðDÞh ðfÞ þ SðDÞh ð−fÞ ¼ 2SðDÞh ðfÞ; ð4Þ

AhðfÞ≡ AðDÞ
h ðfÞ þ AðDÞ

h ð−fÞ ¼ 2Re½AðDÞ
h ðfÞ�; ð5Þ

respectively. The second new term in Eq. (3) shows that
GWs from the opposite directions are correlated, i.e., it
corresponds to the antipodal correlations. In the next
section, we will show that inflation universally predicts
such correlations.

III. ANTIPODAL CORRELATIONS

In this section, we show how the inflationary GWs cause
the antipodal correlations, i.e., the correlations between
GWs from the opposite directions, in the observed SGWB.
Although most arguments in this section have been
presented in the literature [42–46], we rederive them in
terms of realizations instead of statistically averaged
quantities for the later arguments on the construction of
the estimator in Sec. IV.

A. Traveling-/standing-wave nature of stochastic
gravitational wave background

The expansion (1) can be derived from the Fourier
transform of GWs (see, e.g., Sec. 1.2 of Ref. [53]):

ĥijðt; xÞ ¼
X
A¼�

Z
d3k
ð2πÞ3 ĥAðt; kÞe

A
ijðnkÞeik·x; ð6Þ

where ĥ†�ðt; kÞ ¼ ĥ�ðt;−kÞ. The vector nk is the unit
vector along k: nk ≡ k=jkj. In the local universe,
ĥijðt; xÞ satisfies the wave equation □ĥij ¼ 0 in a good
approximation and therefore ĥAðt; kÞ can be expanded into
the positive and negative frequency modes as

ĥAðt; kÞ ¼ ÂðpÞ
A ðkÞe−ikt þ ÂðnÞ

A ðkÞeikt: ð7Þ

Here, the coefficients ÂðpÞ
A ðkÞ and ÂðnÞ

A ðkÞ are the integra-

tion constants and satisfy ÂðnÞ
� ðkÞ ¼ ½ÂðpÞ

� ð−kÞ�† from the
reality condition of ĥijðt; xÞ. In Eq. (7), the first (second)
term represents a plane wave moving along n ¼ nk (−nk)
with the frequency f ¼ k=2π ð−k=2πÞ. Therefore, the
amplitude ĥAðt; nÞ in Eq. (1) is read as

ĥ�ðf; nÞ ¼
�
f2ÂðpÞ

� ð2πjfjnÞ for f > 0;

f2ÂðnÞ∓ ð−2πjfjnÞ for f < 0:
ð8Þ

Note that the relation ½ĥ�ðf; nÞ�† ¼ ĥ∓ð−f;nÞ is satisfied
as expected from the reality condition of ĥijðt; xÞ.
The coefficients ÂðpÞ

A ðkÞ and ÂðnÞ
A ðkÞ are determined by

the initial conditions and characterize the GW sources.
When all of them are independent, the GW background (1)
is given by the superposition of independent traveling
waves. This is expected for SGWB from localized sources.
However, this is not the only possibility even when the
statistical homogeneity is assumed [45]: the statistical

homogeneity forbids the correlations between ÂðpÞ
A ðkÞ,

ÂðnÞ
A ðkÞ with different values of k but not those between

ÂðpÞ
A ðkÞ and ÂðnÞ

A ðkÞ with the same value of k:

h½ÂðpÞ
A ðkÞ�†ÂðnÞ

A ðkÞi ≠ 0: ð9Þ

From Eq. (8), this leads to the correlation between GWs
with opposite frequencies and directions, i.e., the Ah term in

Eq. (3).6 In the next subsection, we will show that ÂðpÞ
A ðkÞ

5The second term in Eq. (3) is proportional to δAB in Ref. [43].
As we will show in the next section, it should be replaced by
δAð−BÞ.

6This argument shows that SGWB can only have the antipodal
correlations as angular correlations when the statistical isotropy
and homogeneity are assumed for ĥijðt; xÞ. It can be also shown
that the polarization dependence is restricted by imposing the
invariance under the rotation around nk, for which the circular
polarization basis is transformed as e�ijðnkÞ → e�2iψe�ijðnkÞ.
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and ÂðnÞ
A ðkÞ have almost the same magnitude for the

inflationary GWs. This means that the inflationary GWs
have a standing-wave nature [42–46].

B. Propagation in the homogeneous universe

To make the basic idea clearer, let us consider the
propagation of the inflationary GWs in an idealistic
homogeneous universe,

ds2 ¼ a2ðηÞ½−dη2 þ ðδij þ hijÞdxidxj�; ð10Þ

wherewe have introduced the conformal time η and the scale
factor aðηÞ. The scale factor is normalized as aðη0Þ ¼ 1 for
the start time of observation η ¼ η0. Thus, the comoving
wave number below can be identifiedwith the physicalwave
number in Eq. (6). Inhomogeneities of the universe have
large effects on the GW phases [47–49]. However, this does
not change our conclusion on the detectability in the next
section, Sec. IV, as we will give comments there.
Inflation generates stochastic GWs from vacuum fluc-

tuations. A remarkable point is that inflation can generate
the superhorizon modes with kη ≪ 1 whereas the other
causal mechanism in the postinflationary universe cannot.
On superhorizon scales, the solutions of the evolution
equation in the expanding universe

ĥA
00 þ 2HĥA

0 þ k2ĥA ¼ 0; ð11Þ

are constituted by constant and decaying modes. Here,H is
the conformal Hubble parameter: H≡ a0=a. The prime 0
denotes the derivative with respect to the conformal time η.
Shortly after the horizon crossing during inflation, the
amplitude of the decaying mode decreases quickly and thus
the Fourier amplitude ĥAðη; kÞ only contains a single
statistical variable:

ĥAðη; kÞ → χkðηÞĥðprimÞ
A;k ; ð12Þ

where χðkÞ is the transfer function with χkðηÞ → 1 for
kη ≪ 1. In the standard inflationary scenario, the primor-

dial amplitudes ĥðprimÞ
A;k are Gaussian random variables with

statistical homogeneity and isotropy:

h½hðprimÞ
A;k1

�†ĥðprimÞ
B;k2

i ¼ δABPhðk1Þδ3ðk1 − k2Þ: ð13Þ

Matching the local solution (7) to the superhorizon

solution (12), we find that the two amplitudes ÂðpÞ
A ðkÞ,

ÂðnÞ
A ðkÞ should be correlated with each other for the

inflationary GWs.
We can estimate the correlations between the positive

and negative frequency modes by solving the following
evolution equation for the transfer function:

χ00k þ 2Hχ0k þ k2χk ¼ 0: ð14Þ

In the subhorizon regime, it has the WKB solutions
χkðηÞ∝ e�ikη=a. Imposing the initial condition χkðηÞ→ 1
in the superhorizon regime, the subhorizon solution has
both positive and negative frequency modes with the same
amplitude because χk should be real:

χkðηÞ ¼
αke−ikη þ α�ke

ikη

aðηÞ ; ð15Þ

where αk is a constant. We can find an analytic solution,

χkðηÞ ¼
eikη − e−ikη

2ikη
; ð16Þ

in the radiation-dominated era, where the relevant modes
for the GW interferometers reenter the horizon. This
solution can be rewritten as

χkðηÞ ¼
aðηkÞ
aðηÞ

�
eikη − e−ikη

2i

�
; ð17Þ

introducing the horizon reentry time ηk by kηk ¼ 1. The
coefficients αk in Eq. (15) at the present time are obtained
by connecting this solution to the late-time universe. Unless
a nonadiabatic transition occurs, the solution at the present
time is given in the form (17) (see Refs. [54,55] for a more
accurate transfer function).
Comparing Eq. (17) with Eq. (7), we find

ÂðpÞ
A ðkÞ ¼ T̄ ke−iðkη0−

π
2
ÞĥðprimÞ

A;k ;

ÂðnÞ
A ðkÞ ¼ T̄ keiðkη0−

π
2
ÞĥðprimÞ

A;k ; ð18Þ

with

T̄ k ≡ 1

2

aðηkÞ
aðη0Þ

: ð19Þ

Here, we have rewritten the conformal time η in terms of
the cosmic time t as η ≃ η0 þ t=aðη0Þ.7 The damping
factors and phase shifts in Eq. (18) are geometrically

determined. As expected, the two amplitudes ÂðpÞ
A ðkÞ,

ÂðnÞ
A ðkÞ are represented by the single statistical variable

ĥðprimÞ
A;k and thus are correlated with each other. Substituting

these results to Eq. (8), we find

7We have estimated the cosmic time as t ¼ R
η
η0
aðη0Þdη0 ≃

aðη0Þðη − η0Þ by neglecting the evolution of aðηÞ during the
observation.

ZHEN-YUAN WU, NOBUYUKI SAKAI, and RYO SAITO PHYS. REV. D 107, 023503 (2023)

023503-4



ĥ�ðf; nÞ

¼
� f2T̄ 2πjfje−2πifη0þ

iπ
2 ĥðprimÞ

�;2πfn for f > 0;

f2T̄ 2πjfje−2πifη0−
iπ
2 ĥðprimÞ

∓;2πfn for f < 0;
ð20Þ

and thus the following relation:

h�ðf;nÞ ¼ −e4πifη0h∓ð−f;−nÞ: ð21Þ

This relation shows that
(i) There is a one-to-one correspondence between

realizations of SGWB with the opposite frequen-
cies, directions, and circular polarizations.

(ii) Their amplitudes are the same.
(iii) Their phase difference is huge and proportional to

the frequency f.
These results can be easily understood from Fig. 1. The

inflationary GWs induce coherent standing waves on the
constant-time hypersurface η ¼ ηk; left- and right-moving
modes are emitted with the same amplitude and the definite
phase difference at each point. The positive (negative)
frequency modes at the observer’s position O are the right-
(left-) moving modes coming from the point P̄L (P̄R). The
amplitudes of the positive and negative frequency modes
are the same at the same rate. Since the phase is conserved
along the null geodesic, the phase difference is given by the
number of cycles between P̄L and P̄R, 2kη0, with a small
correction from the intrinsic phase difference between the
right- and left-moving modes on the hypersurface η ¼ ηk.

Using Eq. (21), it is easy to find the relation

AðDÞ
h ðfÞ ¼ −SðDÞh ðfÞe4πifη0 ð22Þ

between the two spectral densities in Eq. (3). Therefore,
inflation predicts large antipodal correlations.

IV. (UN)DETECTABILITY OF THE
ANTIPODAL CORRELATIONS

A. The argument in Allen et al. (1999) [Ref. 43]

We review the argument in Allen et al. (1999) [43] on the
undetectability of the Ah term in Eq. (3). The Ah term in
Eq. (22) is a highly oscillating function of f. Its period is of
the order of 1=Tage for the age of the Universe Tage ∼ η0.
This oscillation has a clear physical interpretation: it is
interference between GWs from the antipodal points P̄L

and P̄R in Fig. 1.
The point of the argument is that ĥAðf; nÞ is not an

observable: our frequency resolution is fundamentally lim-
ited by the observation time T as Δf ∼ 1=T ≫ 1=Tage. To
take into account the finite-frequency resolution, we intro-
duce the smoothed quantity,

ĥA;Tðf; nÞ≡
Z

∞

−∞
df0WTðf − f0ÞĥAðf0; nÞ; ð23Þ

and consider it as observable. Here, WTðfÞ is the window
function with the width Δf ∼ 1=T. For example, when we
use the short-time Fourier transform,

ĥA;Tðf; nÞ ¼
Z

T

0

dt ĥAðt; nÞe2πift; ð24Þ

the window function is given by

WTðfÞ ¼
eiπfT sinðπfTÞ

πf
: ð25Þ

Computing the antipodal correlations for the smoothed
quantity (23), we find

hĥ†�;Tðf;nÞĥ∓;Tð−f;−nÞi

¼
Z

∞

−∞
df0jWTðf − f0Þj2AðDÞ

h ðf0Þ; ð26Þ

and thus

hĥ†�;Tðf; nÞĥ∓;Tð−f;−nÞi

¼ −
Z

∞

−∞
df0jWTðf − f0Þj2SðDÞh ðf0Þe4πif0η0 ; ð27Þ

using the relation (22). Therefore, evenwhenwe take the best
resolution Δf ∼ 1=T, the Ah term is erased by smoothing

FIG. 1. Propagation of the inflationary GWs in the homo-
geneous universe (vertical: the time direction; horizontal: the
spatial direction parallel to k). The point O represents the
observer’s position. The points P̄L and P̄R represent the points
where right- and left-moving null geodesics cross the constant-
time hypersurface η ¼ ηk, respectively.
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over the unresolvable frequencies in Eq. (26) unless the

spectral density SðDÞh ðfÞ has a very sharp peak with a width
much less than 1=Tage. The situation becomes worse when
we take into account the inhomogeneities. The inhomoge-
neities introduce then-dependent phasee2πifη0ϕ̂ðnÞ inEq. (22)
with the function ϕ̂ðnÞ written in terms of the gravitational
potential along the line of sight [47–49]. Thus, the Ah term
also rapidly oscillates for the direction n and vanishes when
smoothed over n. In conclusion, provided that the spectral
density ShðfÞ slowly varies with respect to f, the correlation
function for the smoothed field becomes

hĥ†A;Tðf1; n1ÞĥB;Tðf2; n2Þi

¼ SðDÞh ðf1ÞδAB
8π

δTðf1 − f2Þδ2ðn1; n2Þ; ð28Þ

where

δTðf1 − f2Þ≡
Z

∞

−∞
df0WTðf1 − f2 þ f0ÞW�

Tðf0Þ; ð29Þ

and indistinguishable from a noninflationary SGWB (2).
The root of the cancellation is the fact that the phase

difference between h�ðf; nÞ and h∓ð−f;−nÞ is rapidly
oscillating with respect to the frequency f [see Eq. (21)].
This motivates us to use the intensity map,

ÎAðf; nÞ≡ jĥAðf; nÞj2; ð30Þ

to detect the antipodal correlations. From Eq. (21), it is easy
to see that there is a coincidence between the realizations of
the intensity with the opposite directions:

Î�ðf; nÞ ¼ Î�ðf;−nÞ; ð31Þ

by using the reality condition ½ĥ�ðf; nÞ�† ¼ ĥ∓ð−f; nÞ.
This relation is not modified much even when we take into
account the propagation through the inhomogeneous uni-
verse, because the modification is the order of the cosmo-
logical perturbations [56]. Since there is no problematic
phase factor in Eq. (31), the intensity map would work to
detect the antipodal correlations. In the next subsection, we
will discuss this possibility.

B. Antipodal correlations in the intensity map

In this subsection, we discuss whether the antipodal
correlations can be detected by using the intensity map,

ÎAðf; nÞ≡ jĥAðf; nÞj2: ð32Þ

To take into account the finite-frequency resolution, we
introduce the intensity of the smoothed quantity (23) by

ÎA;Tðf; nÞ≡ jĥA;Tðf; nÞj2; ð33Þ

and investigate whether the antipodal relation (31) can be
confirmed through it. We would like to remark that the
quantity (33) is not the smoothing of the intensity (32):

ÎA;Tðf;nÞ ≠
Z

∞

−∞
df0jWTðf − f0Þj2ÎAðf0; nÞ; ð34Þ

while it is true when the ensemble average is taken:

hÎA;Tðf; nÞi ¼
Z

∞

−∞
df0jWTðf − f0Þj2hÎAðf0; nÞi: ð35Þ

By using the relations (20), we can rewrite the smoothed
intensity (33) as

ÎA;Tðf; nÞ

¼
Z

∞

−∞
df0

Z
∞

−∞
df00W�

Tðf − f0ÞWTðf − f00Þ

× f02f002T̄ 2πjf0jT̄ 2πjf00je−2πiðf
00−f0Þη0 ½ĥðprimÞ

A0;2πf0n�†ĥðprimÞ
A00;2πf00n;

ð36Þ

where A0 and A00 are þA for f0; f00 > 0 and −A for
f0; f00 < 0. We can see that the problematic phase factor
e−2πiðf00−f0Þη0 in the smoothed intensity ÎA;Tðf;nÞ remains
unless the other factor in the integrand has a sharp peak
at f00 ¼ f0 with the width jf00 − f0j ≪ 1=Tage. This is not
the case for the realization (33). Therefore, unlike the
unsmoothed intensity (32), the antipodal relation (31) does
not hold for the realizations of the smoothed intensity
ÎA;Tðf; nÞ:

Î�;Tðf; nÞ ≠ Î�;Tðf;−nÞ: ð37Þ

The different phase factor eþ2πiðf00−f0Þη0 appears for
Î�;Tðf;−nÞ instead of e−2πiðf00−f0Þη0 in Eq. (36).
Here, we discuss whether it is possible to test the

antipodal relation (31) by constructing an appropriate
estimator. First, we can see that the higher-order statistics
is of no use for this purpose. This becomes clear by
decomposing the smoothed intensity ÎA;Tðf; nÞ into the
ensemble average and the deviation from it:

ÎA;T ¼ hÎA;Ti þ δÎA;T: ð38Þ

These two terms hÎA;Ti and δÎA;T correspond to the
contributions from f00 ¼ f0 and f00 ≠ f0, respectively, in
the integral (36) because h½ĥðprimÞ

A;2πf0n�†ĥðprimÞ
A;2πf00ni contains

δðf00 − f0Þ. Therefore, the problematic phase factor remains
in the deviation δÎA;T and spoils the antipodal relation.
In fact, we can show that the antipodal contribution in the
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two-point function vanishes with assuming the Gaussianity
of ĥAðf; nÞ:

CIðn1; n2Þ≡ hδÎA;Tðf1; n1ÞδÎB;Tðf2; n2Þi; ð39Þ

can be rewritten in terms of the correlation functions of
ĥA;Tðf; nÞ as

CIðn1; n2Þ ¼ jhĥ†A;Tð−f1; n1ÞĥB;Tðf2; n2Þij2
þ jhĥ†A;Tðf1; n1ÞĥB;Tðf2; n2Þij2; ð40Þ

where the reality condition ĥ†A;Tðf; nÞ ¼ ĥA;Tð−f; nÞ has
been used. Using the expression (28) for the correlation
functions of ĥA;Tðf;nÞ, we can find

CIðn1; n2Þ ∝ δ2ðn1; n2Þ; ð41Þ

and the coefficient is written only in terms of the spectral
density ShðfÞ. From similar arguments, we can show that
higher-point functions are of no use for testing the
antipodal relation (31).
The remaining possibility is a one-point function. The

problematic phase factor in Eq. (36) is erased in the
ensemble average

hÎA;Tðf; nÞi≡ IA;Tðf; nÞ; ð42Þ

because h½ĥðprimÞ
A;2πf0n�†ĥðprimÞ

A;2πf00ni contains δðf00 − f0Þ. This
quantity is used for mapping SGWB in the literature,
e.g., Refs. [51,57]). However, the averaging simultaneously
erases the directional dependence in the intensity when the
statistical isotropy is assumed: introducing the anisotropies

ΔIA;Tðf; nÞ≡ IA;Tðf; nÞ − ĪA;TðfÞ; ð43Þ

with the angular average in the sky ĪA;TðfÞ,

ΔIA;Tðf; nÞ ¼ 0: ð44Þ

Therefore, we cannot find an estimator of the intensity
that is sensitive to the antipodal correlations but does not
suffer from the problematic phase factor in the standard
inflationary modes with the statistical homogeneity and
isotropy (13). We have illustrated the situation in Fig. 2.
The situation changes for inflationary models with

statistical anisotropy, i.e., hypothesis (b) in Sec. II is
broken (see, e.g., Refs. [58–61] for concrete models):

h½hðprimÞ
A;k1

�†ĥðprimÞ
B;k2

i ¼ δABPhðk1Þδ3ðk1 − k2Þ: ð45Þ

In this case, the anisotropies in the averaged intensity are
not erased,

ΔIA;Tðf; nÞ ≠ 0; ð46Þ

while the sharp peak δðf0 − f00Þ still appears due to the
statistical homogeneity and thus the problematic phase
factor disappears:

IA;Tðf; nÞ

¼
Z

∞

−∞
df0jWTðf − f0Þj2f04T̄ 2

2πjf0jPhð2πf0nÞ: ð47Þ

The intensity (47) satisfies the antipodal relation for the
anisotropies

ΔI�;Tðf; nÞ ¼ ΔI�;Tðf;−nÞ; ð48Þ

as a consequence of the standing-wave nature of the infla-
tionary GWs (18). Therefore, the inflationary SGWB can be
distinguished from the other components if we detect (i) non-
vanishing anisotropies ΔIA;Tðf; nÞ and (ii) their antipodal
relation (48).
Let us also comment on the case when hypothesis (e) on

polarization is broken [62–69]. In this case, we can show
antipodal relations for all the Stokes parameters through the
relation (20). With the same arguments above, these antipo-
dal relations are undetectable in the isotropic case and
detectable in the anisotropic case. In the detectable case,
they will give more evidence for the inflationary GWs.

FIG. 2. Angular correlations in the intensity map. Circle of the
dotted line represents the intersection between the past light cone
and the hypersurface η ¼ ηk. The direction and length of the
arrows indicate the moving direction and intensity of GWs,
respectively. The intensity of GWs is the same for modes with
parallel moving directions and uncorrelated between modes with
nonparallel moving directions [see Eq. (13)]. Radius of the
shaded circles represents the expectation values of the intensity.
It is independent of the moving direction and the emission point
in the standard inflationary models with statistical homogeneity
and isotropy as depicted in the figure.
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Before closing this section, it might be noteworthy to
mention a difference from CMB. In contrast to GWs,
electromagnetic waves (EMWs) are scattered many times
by electrons in the early universe. Therefore, the angular
correlations intrinsic in EMWs are erased, and there is no
counterpart of the antipodal correlations in the CMB
anisotropies. Instead, the CMB angular correlations are
a tracer of the inhomogeneous background: the intensity is
spatially modulated in the vicinity of an emission point by
long-wavelength perturbations, and EMWs in these
regions are scattered into the line-of-sight direction. The
statistical isotropy at each emission point is locally broken
by the long-wavelength perturbations. Moreover, the long-
wavelength perturbations also break the statistical homo-
geneity among the emission points in Fig. 2. Therefore, the
argument of Eq. (44) is not applied to this type of angular
correlation.

V. CONCLUSION

The measurement of the inflationary SGWB is one of the
main goals of future GW experiments. One obstacle to
achieving it is the isolation of the inflationary SGWB from
the other components generated by the unresolvable
astronomical and cosmological GW sources. In this paper,
we argued the detectability of a unique and universal
property of the inflationary SGWB: antipodal correlations,
i.e., correlations of GWs from opposite directions.
It was argued in Allen et al. [43] that the conclusion is

negative when we use a phase-coherent method, i.e., the
standard strain correlation analysis, due to the phase
oscillation unresolvable in the observation time. We thus
investigate whether we can construct a phase-incoherent
estimator of the intensity map to detect the antipodal
correlations. We found that the conclusion depends on
whether the inflationary GWs have statistical isotropy or
not. Under the standard assumption of statistical homo-
geneity and isotropy, it is impossible to find an observable
that is sensitive to the antipodal correlations but does not
suffer from the problematic phase factor: the intensity
constructed from the observed GW strain still has the
annoying phase factor that erases the antipodal correlations.
The ensemble average can get rid of the phase factor but
simultaneously drops the angular information due to stat-
istical isotropy. However, the latter argument is not applied
to the inflationarymodels with statistical anisotropy.We can
find a nonvanishing observable for the antipodal correlations
and thus conclude that SGWB from anisotropic inflation is
distinguishable from the other components.
Our argument can be applied to other types of angular

correlations. The problematic phase factor erases any types
of angular correlations in the strain and nonaveraged
intensity. The ensemble average can get rid of the prob-
lematic phase factor but simultaneously drops the angular
information under statistical isotropy. On the other hand,
we can measure the angular correlations in CMB even

under statistical isotropy. A natural question is thus whether
we can find a way to measure the angular correlations in
SGWB8 and what kind of angular correlations are detect-
able. As we have remarked in Sec. IV B, the local violation
of statistical isotropy and homogeneity by long-wavelength
perturbations is crucial for the detectability of the CMB
angular correlations. Because the CMB angular correla-
tions are detectable, it would be possible to find an
estimator for the SGWB angular correlations induced by
long-wavelength perturbations, e.g., through propagation
and long-short wavelength mode couplings [29,30,56,71].
In a subsequent paper, we will discuss how we should
define the estimator to get rid of the problematic phase
factor with (partially) keeping the angular information.
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APPENDIX: CORRELATION ANALYSIS
IN THE TIME DOMAIN

In the main text, we have shown that the antipodal
correlations cannot be detected with the maps of the Fourier
amplitude. In both methods, the root of the undetectability
is the fundamental limitation in frequency resolution due to
the finite observation time. In this appendix, we will show
the same fact for the original signal (1) without taking its
finite-time Fourier transform (24) to confirm that the
undetectability discussed in Sec. IVA is not a result of
the limitation of the Fourier analysis.
We compute the following correlation functions in the

time domain:

hĥAðt − τ=2; n1ÞĥBðtþ τ=2; n2Þi; ðA1Þ

where

ĥAðt; nÞ≡
Z

∞

−∞
df ĥAðf;nÞe−2πift: ðA2Þ

The correlation functions of the filtered signals and the
intensity map can be written in terms of them.
For the standard contribution n1 ¼ n2ð¼ nÞ, the corre-

lation functions (A1) are computed as

8The Boltzmann approach [70] is widely used to estimate the
SGWB anisotropies as well as the CMB anisotropies. Our
argument implies that we need to carefully discuss how an
estimator of the distribution function (intensity, energy density)
should be defined.
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hĥAðt − τ=2; nÞĥBðtþ τ=2; nÞi

¼ δAB

Z
∞

−∞
df SðDÞh ðfÞe2πifτ: ðA3Þ

The result is independent of t. Therefore, we can use
ĥAðt − τ=2; nÞĥBðtþ τ=2; nÞ for different values of t as
samples to estimate

CSðτÞ≡
Z

∞

−∞
df SðDÞh ðfÞe2πifτ: ðA4Þ

The function CSðτÞ is not small for sufficiently small values
of τ because

CSð0Þ ¼
Z

∞

−∞
df SðDÞh ðfÞ; ðA5Þ

and the spectral density SðDÞh ðfÞ is positive semidefinite. We

can estimate the spectral density SðDÞh ðfÞ by taking the
short-time Fourier transform of CSðτÞ. This corresponds to
the fact shown in the previous section. To further increase
the sensitivity, in the standard correlation analysis, we
usually apply the optimal filter QSðτÞ to the estimator of

CSðτÞ assuming the shape of SðDÞh ðfÞ (e.g., Ref. [53]):
Z

T

0

dτCSðτÞQSðτÞ ¼
Z

∞

−∞
df SðDÞh ðfÞQS;TðfÞ; ðA6Þ

where QS;TðfÞ is the short-time Fourier transform of

QSðτÞ.9 The positive semidefiniteness of SðDÞh ðfÞ ensures
that the signal (A6) for the overall amplitude of the
spectrum can be enhanced compared to the noise by
choosing the filter function QSðτÞ appropriately.
For the antipodal contribution n1 ¼ −n2ð¼ nÞ, the

correlation functions (A1) are computed as

hĥAðt − τ=2; nÞĥBðtþ τ=2;−nÞi

¼ δAð−BÞ

Z
∞

−∞
df AðDÞ

h ðfÞe−4πift: ðA7Þ

The result is independent of τ. Therefore, we can use
ĥAðt − τ=2; nÞĥBðtþ τ=2;−nÞ for different values of τ as
samples to estimate10

CAðtÞ≡
Z

∞

−∞
df AðDÞ

h ðfÞe−4πift

¼ −
Z

∞

−∞
df SðDÞh ðfÞe4πifðη0−tÞ: ðA8Þ

Here, we have used Eq. (22) in the second line. The
discussion seems to be parallel to the standard one.
However, the problem is that CAðtÞ is extremely small
compared to CSðτÞ. Due to the phase factor e4πifη0, the large
contributions to CAðtÞ come from the modes with
f ≲ 1=η0 ∼ 1=Tage. Moreover, when we take into account
the n-dependent phase from the inhomogeneities,
e2πifη0ϕ̂ðnÞ, it will effectively work as the overlap reduction
function: it suppresses contributions other than low-fre-
quency modes with f ≲ 1=ðϵη0Þ. Here, ϵ represents the
typical magnitude of ϕ̂ðnÞ, i.e., the order of the scalar
perturbations. However, the signal hAðt;nÞ does not contain
such low-frequency modes because any detector cannot
detect GWs that do not vary over the observation time T.
Therefore, CAðtÞ is extremely small and almost impossible
to be detected. In Sec. A 1 of the Appendix, we explicitly

give CAðtÞ for some examples of SðDÞh ðfÞ. We can also see
that a filter for t, QAðtÞ, is not effective in increasing the
sensitivity. Applying the filter QAðtÞ, we obtain

Z
T

0

dtCAðtÞQAðtÞ

¼ −
Z

∞

−∞
df SðDÞh ðfÞe4πifη0QA;Tð−2fÞ; ðA9Þ

whereQA;TðfÞ is the short-time Fourier transform ofQAðtÞ.
For any choice of the filter function QAðtÞ, the support of
QA;TðfÞ has a width larger than 1=T ≫ 1=η0. It is also
impossible to cancel the phase factor e4πifη0 by QA;TðfÞ.
To achieve the cancellation, the inverse Fourier transform
of QA;TðfÞ should have a sharp peak at t ≃ η0 ∼ Tage but
t ∼ Tage is not included in the support of the inverse Fourier
transform of QA;TðfÞ: Tage ∉ ½0; T�. Therefore, the signal
cannot be greatly enhanced for any filter function QAðtÞ.

1. Some examples of CAðtÞ
Here, we will compute CAðtÞ,

CAðtÞ ¼ −
Z

∞

−∞
df SðDÞh ðfÞe4πifðη0−tÞ

¼ −
Z

∞

0

df ShðfÞ cos½4πfðη0 − tÞ�; ðA10Þ

for some examples of ShðfÞ. Here, we have rewritten the
integral in terms of the single-sided spectral density (4).

9To be exact, the integration domain for τ is not ½0; T�.
However, we do not need to care about it because the optimal
filter QAðτÞ decays quickly as τ increases.

10Note that the subscript A of CA is not the index of the
polarization but represents that it is a quantity for the antipodal
correlations.
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a. Power-law spectrum

First, we consider the power-law spectrum ShðfÞ ∝ f−α

as usually assumed for the inflationary SGWB with α ≃ 3.
As we have commented in this appendix, the signal does
not contain the low-frequency modes with f ≲ fmin ≡ 1=T
for the observation time T. Moreover, the spectrum should
have an upper cutoff frequency fmax or the spectral index
should satisfy α > 3 in order that the total GW energy
density is finite. Therefore, we consider the following
integral;

Z
fmax

fmin

df f−αeifT� ; T� ≡ 4πðη0 − tÞ; ðA11Þ

whose real part gives CAðtÞ. Because the phase fT� is very
large in the integral domain, we can estimate the integral
by using the method of steepest descent. By deforming
the path to ½fmin; fmin þ i∞� ∪ ½fmin þ i∞; fmax þ i∞� ∪
½fmax þ i∞; fmax�, we can evaluate the integral (A11) as

Z
fmax

fmin

df f−αeifT�

¼
Z

∞

0

dp ðfmin þ ipÞ−αeifminT�−T�p

−
Z

∞

0

dp ðfmax þ ipÞ−αeifmaxT�−T�p; ðA12Þ

where we have dropped the contribution from the path
½fminþi∞;fmaxþi∞� because limp→∞ðfþipÞ−αe−T�p¼0.
Since the damping factor e−T�p suppresses contributions
other than p < 1=T� ≪ fmin < fmax, we obtain

Z
fmax

fmin

df qf−αeifT� ≃
f−αmine

ifminT� − f−αmaxeifmaxT�

T�
: ðA13Þ

Therefore, CAðtÞ is estimated to be

CAðtÞ ¼ −
ShðfminÞ sinðfminT�Þ − ShðfmaxÞ sinðfmaxT�Þ

T�
;

ðA14Þ

with T� ≡ 4πðη0 − tÞ. On the other hand, CSð0Þ given in
Eq. (A5) is estimated to be

CSð0Þ ¼
ShðfmaxÞfmax − ShðfminÞfmin

1 − α
: ðA15Þ

Comparing Eq. (A14) with Eq. (A15), we find that the
antipodal contribution is suppressed at least by the small
factor 1=ðfminT�Þ ∼ T=Tage ¼ Oð10−10Þ compared to the
standard one.

b. Gaussian spectrum

Next, we consider the Gaussian spectrum ShðfÞ ∝
exp½−ðf − f�Þ2=2σ2f� as an example of a spectrum with
a peak. We consider the following integral:

Z
∞

−∞
df e

−ðf−f�Þ2
2σ2

f eifT� ; T� ≡ 4πðη0 − tÞ; ðA16Þ

where we have extended the integral domain by assuming
that the peak is sufficiently sharp. This integral can be
estimated as

ffiffiffiffiffiffi
2π

p
σfeif�T�e−

σ2
f
T2�
4 ; ðA17Þ

and thus CAðtÞ is

CAðtÞ ¼ −
ffiffiffiffiffiffi
2π

p
σfShðf�Þ cosðf�T�Þe−

σ2
f
T2�
4 ; ðA18Þ

with T� ≡ 4πðη0 − tÞ. On the other hand, CSð0Þ given in
Eq. (A5) is estimated to be

CSð0Þ ¼
ffiffiffiffiffiffi
2π

p
σfShðf�Þ: ðA19Þ

Comparing Eqs. (A18) and (A19), we find that the
antipodal contribution is suppressed by the small factor
expð−σ2fT2�=4Þ compared to the standard one. Therefore,
the antipodal contribution is extremely small unless the
peak width σf is much less than 1=T� ∼ 1=Tage.
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