
Regularization of single field inflation models

Josh Hoffmann * and David Sloan
Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom

(Received 30 August 2022; accepted 19 December 2022; published 3 January 2023)

There are many single field inflationary models that are consistent with the recent Planck 2018
measurements of the spectral index ns and tensor-to-scalar ratio r. Despite good agreement with
observational data some of these models suffer from having unregularized potentials which would
produce a collapsing universe shortly after the end of inflation. In this paper we show that how one chooses
to correct the behavior potential toward the end of inflation can have a significant effect on the inflationary
predictions of the model, specifically in the case of quartic hilltop and radiatively corrected Higgs inflation.
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I. INTRODUCTION

Cosmological inflation represents one of the most impor-
tant aspects of modern cosmology and is the focus of a great
amount of theoretical and experimental physics [1–6].
Inflation is a period of exponential expansion of the early
universe some time between 10−36 and 10−32 seconds after
the big bang and is essential for understanding the structure
of the CMB, a cornerstone of observational cosmology
[4–7]. The theory of cosmological inflation was originally
posited as a means to explain several observations about
our universe, namely the horizon, flatness, and monopole
problems [8]. However its true success is in providing a
mechanism for structure formation in the early universe
[9–22]. Inflation allows for quantum mechanical density
perturbations in the otherwise homogeneous matter content
of the early universe to become amplified to large scales,
eventually leading to the formation of structures we are more
familiar with today such as stars, galaxies, and the CMB. As
such, it is important to provide an explanation as to how
inflation occurs and to corroborate this with experimental
observations.
It has been particularly fruitful to study the inflationary

paradigm through the introduction of a homogeneous field
ϕðtÞ (typically a scalar) minimally coupled to gravity and
governed by a potential VðϕÞ which essentially defines the
model. The Planck 2018 [23] survey has made it possible
to precisely test a huge variety of inflationary models. Two
important and model dependant cosmological observables
are the scalar tensor ratio r and spectral index ns. These
parameters and their compatibility with the parameter space
determined by the Planck 2018 results are studied for many
models in [24].

The Planck 2018 survey estimates ns ¼ 0.9649�
0.0042 at 68% C.L. & r≲ 0.056 at 95% CL. However a
more recent BICEP/Keck array measurement [25] further
constrained this to r≲ 0.036 at 95% C.L.
The spectral index ns and tensor fraction are directly

related to the inflationary potential through the slow-roll
parameters εðϕÞ and ηðϕÞ

ns ¼ 1 − 6εþ 2η ð1Þ

r ¼ 16ε ð2Þ

where

εðϕÞ ¼ 1

2
m2

pl

�
V 0ðϕÞ
VðϕÞ

�
2

ð3Þ

ηðϕÞ ¼ m2
pl
V 00ðϕÞ
VðϕÞ ð4Þ

and thus allow us to directly test our inflationary models by
specifying a form of the potential VðϕÞ.
A number of the single scalar field models analyzed in

[24], including some of those most favored by the Planck
survey, involve potentials which are unbounded from below
after the end of inflation. Such models may be able to
provide satisfactory inflationary dynamics, however if they
are taken to be valid beyond inflation the potentials quickly
become negative and due to their unboundedness, lead to
universes that collapse on a timescale τ ∼H−1. Clearly this
is not the cosmology we observe today, so such behavior
must be corrected by regularizing the potentials to intro-
duce a local minima shortly after inflation ends. Naturally
one may ask if modifying the behavior after the end of
inflation significantly changes the models predictions of
inflationary observables such as the tensor fraction and
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spectral index, even 50–60 e-folds before the end of
inflation.
In this paper we explore the effect of generic correction

terms on a collection of inflationary models. The correction
terms are designed only to be the simplest possible options
that prevent collapse of the universe after the end of
inflation. Such terms which stabilize the inflaton vacuum
expectation value (VEV) may, and do, appear in more
physically motivated in other physically motivated models.
Although in this work we do not attempt to explain the
physical origin of such terms. We show that such correc-
tions will have an effect on the inflationary predictions of
the model. Thus, regardless of how corrections of these
forms may appear, they do indeed need to be accounted for
before the inflationary predictions of the model can be
trusted.
We show that the addition of correction terms designed to

stabilize the inflaton VEV affect the reheating temperature
Tre predicted by the model as a function of the spectral
index ns at a given number of e-folds before the end of
inflation Nk. Therefore by requiring that the predicted
reheating temperature stays within the loose bounds set
by the big bang nucleosynthesis scale and the energy scale
of inflation, 0.01 GeV ≤ Tre ≤ 1016GeV, the model under
consideration may fall into a further restricted region of
r − ns space that is acceptable under the Planck 2018
results. Thus we arrive at a key result of our analysis: In
considering models which require regularization, it is
insufficient to examine their predictions without taking
such regularization into account. We have chosen to remain
agnostic on the form that such regularization should take,
motivating the correction terms solely by their role in
ensuring that the potential remain positive with zero mini-
mum. This allows us to demonstrate that generic regulari-
zations should be taken into account regardless of their
physical origins. In specific cases there are good physical
reasons which inform the precise nature of the regulariza-
tion, such as the contribution of higher loop corrections to
the radiatively corrected Higgs inflation from the Jordan
frame. However our goal is not simply to test specific
models and regularizations but to make the broader point
that since regularizations do make an impact on physical
observables for such models, a wide range of potentials
requiring regularization should only have their observatio-
nal consequences examined with such regularizations
in place.
In [26] we addressed for the case of quartic hilltop

inflation, a model well favored by Planck, corrected by one
particular modification scheme which involves squaring the
potential. It is shown that modifying the quartic hilltop
potential in this way does have a significant effect on the
final ðr; nsÞ parameter space that is consistent with the
Planck 2018 results. In this paper, we explore several
different modification types for quartic hilltop, radiatively
corrected Higgs inflation and exponential SUSY inflation.

These are all single field inflation models featured in [24]
which all suffer from the same issue of unboundedness. We
consider generic corrections to these models, motivated only
by preventing collapse of the universe after the end of
inflation, but we show that should such correction terms
arise from physical motivations, they may have significant
effects on the inflationary predictions of the models.
Therefore one must carefully consider exactly how a
candidate potential exits inflation. As we will show in this
paper, it can have a significant effect on the inflationary
predictions. Models that produce such a collapsing universe,
must be corrected before calculations of r and ns are
compared to data. In all three models we explore the effects
of simply squaring the potential to form a potential that is
bounded below (for quartic hilltop this is investigated in
detail in our previous paper [26]). We then explore the
simplest possible correction terms that may be used to
extend the models, these are polynomial and inverse
polynomial terms for QH and RCHI respectively.
The rest of this paper is structured as follows. In Sec. II

we will recap the quartic hilltop model (QH), a promising
candidate potential. We summarize the current comparisons
of the hilltop model predictions to the Planck 2018 survey.
We also review recent analytical investigations of the model
in [26,27]. Polynomial corrections are then added to the
hilltop model and their effects on inflationary observables
are investigated. In Sec. III we move on to the second model
identified in Encyclopaedia Inflationaris [24], radiatively
corrected Higgs inflation (RCHI), which suffers from the
same unboundedness issue as quartic hilltop. We explore a
squared version of the potential as well as adding inverse
polynomial correction terms to modify the behavior of the
potential toward the end of inflation, and their effects are
investigated. It is certainly worth noting that the RCHI
model derives from calculating quantum corrections to the
Higgs inflation model in the Jordan frame and only then
transforming to the Einstein frame potential. However there
exists another method of consistently correcting the RCHI
model, in which the quantum corrections are calculated in
the Einstein frame [28,29], this will be discussed in more
detail in Sec. III. In Sec. IV we discuss the final model,
exponential SUSY inflation (ESI). ESI also suffers from
the same unboundedness as QH and RCHI but is one of the
most promising in terms of its compatibility with Planck
2018. We find that using the approximation techniques in
this paper, it is not possible to give the ESI potential a local
mininma near where the field exits inflation at ϕ ¼ 0 by
adding inverse polynomial terms. However, a squared
version of this potential is investigated.

II. HILLTOP MODELS

A. Recap of hilltop inflation and its current state

After the Planck 2018 survey, one of the most
popular inflationary models that was consistent with the
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observational data was the quartic hilltop model. This
model belongs to the wider class of hilltop models, those
defined by a potential of the form

VðϕÞ ¼ V0

�
1 − λ

ϕn

mn
pl
þ � � �

�
ð5Þ

The characteristic features of hilltop models make them
very attractive for the slow-roll approximation. Namely
that, in hilltop models contain a broad, flat plateau (or
“hilltop”) near ϕ ¼ 0. The two most popular cases are
quadratic and quartic hilltop models, which have n ¼ 2
and n ¼ 4 respectively. Early analytical investigations of
hilltop models [30] found that for n > 2, provided the
higher order terms are heavily suppressed during inflation,
the spectral index when the cosmological scale exits the
horizon should be

ns ≃ 1 − 2

�
n − 1

n − 2

�
1

N
ð6Þ

where N is the remaining number of e-folds of inflation
after the scale k� exits the horizon. For the n ¼ 4 case of
quartic hilltop inflation

VðϕÞ ¼ V0

�
1 − λ

�
ϕ

mpl

�
4
�

ð7Þ

the spectral index at N ¼ 50 and N ¼ 60 is ns ¼ 0.94 and
ns ¼ 0.95 respectively. This is far too low considering the
2σ Planck 2018 bound of ns ≳ 0.9607.
The n ¼ 2 case is simply that of Higgs inflation for

ϕ ≪ mpl [31,32] for which

ns ¼ 1 −
2

N
; r ¼ 8

N
ð8Þ

The spectral index at N ¼ 50 and N ¼ 60 are within an
acceptable range, however the tensor fraction is far larger
than that allowed by the Planck 2018 bound r≲ 0.1.
This initial analytical treatment of the hilltop potential

was reliant on two key assumptions. First that during
inflation, the value of the scalar field is much smaller than
its vacuum expectation value ϕ0 ¼ mplλ

−1
4. Second, in

order to calculate the spectral index and tensor fraction
as functions of N, one must first calculate

NðϕÞ ¼ 1

mpl

Z
ϕ

ϕend

VðϕÞ
V 0ðϕÞ dϕ ð9Þ

In the initial calculations in [30], it is assumed that the
contribution from the value of the inflaton field at the end of
inflation is negligible. This is essentially a statement that
the model can be assumed to exit inflation on the plateau
where V ≃ V0.

The numerical analysis of these models carried out in
[24] however revealed that such models can be compatible
with observational data from the Planck 2013 survey if one
considers the correct parameter range for λ. Namely λ ≪ 1
such that the VEV is super Planckian hϕi ≫ mpl. In the
Planck 2018 measurements of the spectral index and tensor
fraction, the quartic hilltop (QH) model was featured as one
of the more favorable models. [23]. The results from the
extensive numerical investigations of the quartic hilltop
model in [24] were still found to be compatible with the
tighter constraints put on ns and r from the 2018 mea-
surements. However numerical simulations alone do not
explain why the model behaves in this way, only the results
that we should expect in such a parameter range. The
behavior of the QH model was made fully transparent by a
recent analytical calculation of the spectral index and tensor
fraction [27], in which the two previous assumptions are
relaxed. When performing these calculations one finds
specifically that the contribution of the inflation field at the
end of inflation ϕend is

Nend ¼
1

4
ffiffiffi
λ

p ð10Þ

which is clearly large for sufficiently small λ. This
analytical treatment of the quartic hilltop model made it
possible to derive a closed form expression for the tensor
fraction r as a function of the spectral index ns and
remaining number of e-folds of inflation (after the scale
exits the horizon) N.

rðns; NÞ ¼ 8

3
ð1 − nsÞ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½2ð1 − nsÞN − 3�p

ð1 − nsÞN
�

ð11Þ

Equation (11) explains exactly the behavior of the QH
model in numerical simulations [24,33]. The relaxing of the
assumptions of previous analytical investigations allows
the value of the field during inflation to come closer to its
VEV which is super-Planckian in the small λ regime, where
the potential’s plateau is broader and flatter allowing for
more e-folds of inflation to take place. We are also provided
with an explanation for why the ϕend contribution cannot be
disregarded in Eq. (9), since this contribution is propor-
tional to λ−

1
2. It’s clear that in order for the QH model to be

reconcile with observational data, we must take care in
considering how the model exits inflation since ϕðNÞ is
allowed to come close to its VEV. Furthermore, it is well
established that the potential (7) approximates a linear
potential near the VEV, which is already known to be
incompatible with the recent Planck data. Thus to accu-
rately calculate the predictions of hilltop inflation, one has
to account for the contribution of the vacuum stabilising
terms in the potential which are suppressed during early
inflation when ϕðNÞ is small but become significant around
the VEV.
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The importance of these terms is discussed extensively in
[34]. The authors consider general hilltop potentials of the
form (5) (reproduced here for brevity)

VðϕÞ ¼ V0

�
1 − λ

ϕn

mn
pl
þ � � �

�
ð12Þ

stabilized by corrections, denoted “...”, which generically
give the potential a local minima at ϕ0 ¼ λ−1=nmpl. For
such models, in the limit λ ≫ 1, inflation ends before ϕ is
near the VEV, and since ϕ ≪ ϕ0 for the duration of
inflation, the ambiguity in the stabilizing terms does not
affect the predictions of ns and r, so it is suitable to
disregard them in this limit. Of course, as we have outlined,
the predictions of hilltop models in this limit are known to
be poorly compatible with recent measurements, and the
model is only a suitable fit in the λ ≪ 1 regime where the
behavior of the potential around the VEV becomes sig-
nificant. However the behavior of the quartic hilltop model
is vastly unphysical in this region. Since the QH potential is
unbounded from below, after inflation ends, the potential
soon becomes negative and the inflaton field has access to
arbitrarily low energy states, and the universe would begin
to collapse on a timescale t ∼H−1. As the authors in [34]
point out, this is a generic result of potentials Vðϕ=μÞ
which are unbounded from below, and such models should
be excluded from the space of candidate inflationary
potentials as they do not produce any sensible inflationary
cosmology. Only those models with regularized potentials
can be considered suitable candidates. Considering the QH
model specifically, there are many ways of ensuring that the
potential has a stable vacuum. The simplest options would
just be to add terms which are higher order in ðϕ=mplÞn.
One could also capture the effect of infinitely many such
terms by simply taking the square of the QH potential as
suggested in [34]

VðϕÞ ¼ V0

�
1 − λ

�
ϕ

mpl

�
4
�
2

ð13Þ

For small ϕ this potential is VðϕÞ ≃ V0ð1 − 2λϕ4=m4
plÞ,

thus the behavior is only modified near the VEV. This
“quartic hilltop-squared” (QHS) potential has been inves-
tigated numerically in [34], and like its quartic hilltop
cousin, was found to be in good agreement with the Planck
2018 constraints on r and ns, but with the added benefit of
producing sensible, and physically viable inflationary
cosmology due to the vacuum stabilizing terms contained
in its series expansion.
Accounting for these terms also makes the potential

suitable for analysing reheating after inflation. Which is

ultimately necessary as the inflationary predictions of the
model must be compatible with its predictions of the
temperature at the end of reheating Tre and the number
of e-folds of reheating Nre which constrain N.

B. Corrected hilltop models

While the predictions of the tensor fraction and spectral
index for the QHS model are consistent with the Planck
2018 bounds, the numerical analysis that these results are
derived from still acts in an opaque manner. It tells us only
the results that we should expect for rðnsÞ and not precisely
why the model behaves in a certain way. Further more, this
analysis is incomplete with regards to reheating after
inflation. Since the QHS potential is UV regulated, there
exists a local minima of the potential just after inflation
ends around which the inflaton oscillate. The damped
oscillations cause the inflaton field to dump its energy
into the thermal bath of the universe, leading eventually
the production of ordinary matter. The temperature of the
universe at the end of reheating Tre and the number
of reheating e-folds Nre depend explicitly on the number
of e-folds of inflation after the scale exits Nk.

Tre ¼ V0

��
43

gre

�1
3

�
a0T0

k

�
Hke−Nk

�
45

π2gre

�
− 1
3ð1þwreÞ

�3ð1þwreÞ
3wre−1

ð14Þ

Nre ¼
4

1 − 3wre

�
1

4
ln
π2gre
45

þ 1

3
ln

11

43gre
þ ln

a0T0

k

− ln
V

1
4

end

Hk
− Nk

�
ð15Þ

where gre is the effective number of relativistic species at
the end of reheating, T0 is the present day CMB temper-
ature, Vend is the value of the inflaton potential at the end
of inflation, Hk is the value of the Hubble parameter when
the scale exits and wre is the effective equation of state
parameter of the inflaton during reheating. Throughout
this paper we will assume a mean reheating parameter of
wre ¼ 1 as this providers the most conservative estimates
on the predictions of reheating [35].
For a fixed value of Nk, we see that the ðr; nsÞ

predictions of the QH model differ quite drastically from
the QHS model, this behavior can be better understood
by also preforming an analytical investigation of the QHS
model. The analytical methods developed in [27] to
investigate the quartic hilltop model have also been used
in [26] to analyze the inflationary predictions of QHS. In
that analysis we derive a closed form expression for rðnsÞ
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r ¼

8>>><
>>>:

1
4N

�
12Nñs−2N2ñ2s−15þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8Nñs−15

p
4Nñs−N2ñ2sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8Nñs−15

p
�
½1þ gþðñs; NÞ�½gþðñs; NÞ − 7�; λ ≥ λc

1
4N

�
12Nñs−2N2ñ2s−15−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8Nñs−15

p
4Nñs−N2ñ2s−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8Nñs−15

p
�
½1þ g−ðñs; NÞ�½g−ðñs; NÞ − 7�; λ < λc

ð16Þ

where

g�ðñs; NÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12Nñs þ 62N2ñ2s − 16N3ñ3s − 15� ð1þ 16NñsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Nñs − 15

p
12Nñs − 2N2ñ2s − 15� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Nñs − 15
p

s
ð17Þ

and the critical parameter value is λc ¼ ð60NÞ−1
2. As noted

previously, in the QH model, there is a contribution NQH
end ¼

1=4
ffiffiffi
λ

p
to the total e-folds of inflation coming from the

value of the field at the end of inflation ϕend. In the QHS
model this contribution is found to be NQHS

end ¼ 1=8
ffiffiffi
λ

p
(when λ ≪ 1) the contribution is half as small as in the
QHS model, for small λ the higher order terms begin to
contribute significantly, and push the field out of slow roll
inflation sooner than in QH. For all of the corrected quartic
hilltop models in this paper, we work in the small λ regime,
where the symmetry breaking scale μ ¼ mplð4λÞ−1=4 is
large [36], thus avoiding the region of parameter space that
is not compatible with the Planck results.
Furthermore, the authors complete the analysis of QHS

model by computing its reheating temperature and e-folds.
Computing the reheating parameters allows us to further
constrain the parameter space for QHS by demanding
that the reheating temperature be bounded below by the
big bang nucleosynthesis scale TBBN ≲ 0.01 GeV≲ Tre
and bounded above by the energy scale of inflation
Tre ≲ 1016 GeV. In fact, the size of the acceptable region
in ðr; nsÞ space of the QHS model reduces significantly
after reheating consistency is taken into account. Before
reheating, while only bounded by the Planck 2018 data, the
QHS model was constrained to the region defined by

0.9607≲ ns ≲ 0.9691

55≲ Nk ð18Þ

whereas after taking into account reheating consistency,
this is reduced to

0.9607≲ ns ≲ 0.9691

63≲ Nk ≲ 68 ð19Þ

The fact that the inflationary potential must be UV
regularized and that the models predictions of the tensor
fraction and spectral index must be consistent with reheat-
ing bounds significantly constrains the models parameter
space which is in agreement with the Planck 2018 bounds.

Choosing to regularize the potential by squaring it, is
simply one possibility out of a great many. In this work, we
show that how one chooses the regularize the shape of the
potential near the end of inflation can have an important
and quantifiable effect on the models predictions of ns
and r. The QHS potential essentially amounts to adding
a ðϕ=mplÞ8 correction term to the original QH potential,
which is seen simply by expanding out the potential and
rescaling the coupling parameter λ.

VQHðϕÞ ¼ V0

�
1 − λ

�
ϕ

mpl

�
4
�
2

ð20Þ

VQHSðϕÞ ¼ V0

�
1 − 2λ

�
ϕ

mpl

�
4

þ λ2
�

ϕ

mpl

�
8
�

¼ V0

�
1 − λ̃

�
ϕ

mpl

�
4

þ 1

4
λ̃2
�

ϕ

mpl

�
8
�

ð21Þ

Figures 1 and 2 illustrate the shape of the QH and QHS
potentials respectively. As well as squaring the potential,
one may also consider what the effect of adding single
polynomial terms ϕp to the potential are. We only wish
to correct the behavior of the potential for large ϕ, so we
look at positive values of p. Furthermore, the coefficient of
the ϕp term must be fine-tuned to ensure that the VEV
remains at Vðϕ0Þ ¼ 0 so that inflation ends in a finite time.
Therefore consider potentials of the form

VðϕÞ ¼ V0

�
1− λ

�
ϕ

mpl

�
4

þ αp

�
ϕ

mpl

�
p
�
; p > 4 ð22Þ

The potential has stationary points at

ϕ3ðpαpϕp−4 − 4λÞ ¼ 0 ð23Þ

and thus the VEV is located at

ϕ0 ¼
�

4λ

pαp

� 1
p−4 ð24Þ

Requiring that Vðϕ0Þ ¼ 0 allows us to solve for the fine-
tuning of the coefficient αp
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αp ¼ 4λ
p
4p−p

4ðp − 4Þp−44 ð25Þ

So to add polynomial corrections to the quartic hilltop
model, we work with potentials of the form

VðϕÞ ¼ V0

�
1 − λ

�
ϕ

mpl

�
4

þ 4λ
p
4p−p

4ðp − 4Þp−44
�

ϕ

mpl

�
p
�

ð26Þ

Henceforth we will refer to such models as QHp, with the
quartic hilltop squared model being equivalent to QH8 as
per Eq. (21).
The lowest order term that we can add to modify the

small-field behavior of the potential but retain its plateau
and large-field shape is p ¼ 5 since the QH model already
contains a ϕ4 term. As we shall see from the results later in
this section, there is no need to investigate larger than
p ¼ 10, so we consider only terms in this range. Starting
from p ¼ 5 through to p ¼ 10 we have calculated the
tensor ratio r as a function of the spectral index ns and
the temperature at the end of reheating Tre as a function of
the spectral index between 50 ≤ Nk ≤ Nk ¼ 70. We then
determine which of these curves are reheating-consistent by
demanding that they lie within the rectangle on the Tre − ns
plots. The horizontal bounds on the reheating temperature
plots are 0.01 GeV≲ Tre ≲ 1016GeV. The reheating
temperature is bounded below by the energy scale of big
bang nucleosynthesis (BBN) [37,38] TBBN ∼ 10 MeV.
Measurements of the CMB anisotropies constraining the
tensor fraction r are equivalent to upper bounds on the
energy scale of inflation [23,38,39] since

V
1
4� ¼

�
3π2As

2
rmpl

�1
4 ≲ 1016 GeV ð27Þ

where V� is the energy scale of inflation and As is the
amplitude of scalar perturbations. This bounds Tre from
above.
In all of the following r − ns plots, we produce results

from numerical solutions of the tensor fraction and spectral
index and the corresponding temperature at the end of
reheating for QHp models with p ¼ 5, 10. Figures for
p ¼ 6, 7, 9 are contained in Appendix B (omitting
QH8 ≡ QHS). The solid and dashed black curves are the
Planck 2018 1σ and 2σ bounds respectively. The horizontal
black line is the BICEP/Keck Array bound on the tensor
fraction r < 0.036 [39]. Similarly, in all following Tre − ns
plots, the upper horizontal line is the energy scale of inflation
bound Tre ≲ 1016 GeV and the lower horizontal line is the
BBN bound 0.01 GeV≲ Tre. The vertical solid lines
represent the Planck 2018 bounds 0.9607≲ ns ≲ 0.9691.
Starting with the QH5 model, only those curves with 58≲

Nk ≲ 68 are within the acceptable region of reheating
temperate and spectral index in Fig. 3(b). However when
one also takes into account the 1σ region in Fig. 3(a) this is
further reduced to 60≲ Nk ≲ 68. Requiring that we consider
both the Planck-consistent and reheating-consistent curves
thus drastically reduces the acceptable region of r − ns
parameter space for the corrected quartic hilltop model.
This is significant as the corrections themselves are required
for such models to even be taken seriously as candidates for
single-field slow-roll inflation as without regularizing the
potentials they produce a cosmology entirely incompatible
with a universe that does not immediately collapse after
inflation ends.
For QH5, the resulting acceptable region on the r − ns

plot lies in the mid to upper-left corner of the 1σ bound. If
further, more precise measurements were to constrain the
tensor fraction and spectral index away from this region,
QH5 would quickly become untenable.
Considering the QH10 in Fig. 4(a), we see that increasing

p causes more curves to enter the 1σ region of the r − ns

FIG. 1. The quartic hilltop potential at λ ¼ 10. This value if λ is
chosen only to clearly illustrate the shape of the potential, much
smaller values of λ are required to produce a spectral index and
tensor fraction in agreement with the Planck 2018 measurements.

FIG. 2. The quartic hilltop squared potential with λ ¼ 1 for
illustrative purposes.
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plot. If one were to not consider reheating consistency this
would place a lower bound of 56≲ Nk on the number of
e-folds of inflation after the scale exits. However as we
increase the power of the correction term, the curves in the

(log) reheating temperature plot move very slowly and by
p ¼ 10 no new curves have entered or left the acceptable
region in Fig. 4(b). Reheating consistency of QH10 thus
still requires 60≲ Nk ≲ 68 just as with the lowest order

FIG. 3. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the QH5 model over the 50 ≤ Nk ≤ 70. (b) The
(log) reheating temperature of the QH5 model against the spectral index ns over 50 ≤ Nk ≤ 70.

FIG. 4. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the QH10 model over the 50 ≤ Nk ≤ 70. (b) The
(log) reheating temperature of the QH10 model against the spectral index ns over 50 ≤ Nk ≤ 70.

FIG. 5. (a) The QH5 potential at λ ¼ 1. (b) The QH10 potential at λ ¼ 1.
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correction QH5. In contrast to QH5 we see that now the
curves for which 54≲ Nk ≲ 58 have now entered the 1σ
region in Fig. 4(a) however must still reject these as they
remain outside the acceptable region of the reheating plot.
In Figs. 5(a) and 5(b) we plot the potentials of two of the

corrected hilltop models QH5 and QH10 for λ ¼ 1. The
potentials now have a stable vacuum about which the field
can oscillate during the reheating phase.
Overall, the region of reheating-consistent parameter

space in the r − ns plot actually increases with increasing
p, as the distance between the curves remains relatively
constant and they are only shifted along laterally. Initially it
may then seem that one could simply add arbitrarily high
powers to the quartic hillop model in order to increase the
region of validity.

III. RADIATIVELY CORRECTED
HIGGS INFLATION

The case of the quartic hilltop model demonstrates
clearly that we must only consider those potentials that
are regularized and will not collapse the universe immedi-
ately after exiting inflation. How one regularizes the
potential is important if the model is to be compared to
measurements. A huge number of candidate single field
inflation models are analyzed in [24]. Out of these models
there are two which suffer from the same vacuum stabi-
lization as quartic hilltop. The first of these is the radiatively
corrected Higgs inflation (RCHI) model. This model
derives from taking into account 1-loop corrections to
the Higgs inflation model, in which the inflaton is a Higgs
particle [31,40–43]. If one considers the standard model
with the Higgs nonminimally coupled to classical gravity,
the simplest such action in the Jordan frame is

ST ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
m2

plRþ ξH†HRþ LSM

�
ð28Þ

whereH† is the Higgs doublet and ξ > 0 is a dimensionless
coupling parameter.
If we consider only the graviscalar sector of the theory

and make use of the unitary gauge for which H ¼
ð0; h= ffiffiffi

2
p Þ where h is a real scalar field, then the action

of interest is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
FðhÞR −

1

2
∂μh∂μh −WðhÞ

�
ð29Þ

the functions FðhÞ andWðhÞwhich we define now for later
convenience are

F1ðhÞ ¼ ðm2
pl þ ξh2Þ; WðhÞ ¼ λ

4
ðh2 − ν2Þ ð30Þ

where ν is the electroweak symmetry breaking scale. After
a conformal transformation of the metric

gμν → θðxÞgμν; θðxÞ ¼ m2
pl

m2
pl þ ξh2

ð31Þ

we obtain the Einstein frame action

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
m2

plR−
1

2
m2

plKðθÞ∂μθ∂μθ−VðθÞ
�

ð32Þ

in which the scalar field θ has a nontrivial kinetic term

KðθÞ ¼ 1

4jajθ2
�
1 − 6jajθ
1 − θ

�
; a ¼ −

ξ

1þ 6ξ
ð33Þ

After rescaling to a canonically normalized field the action
becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
m2

plR −
1

2
∂μϕ∂

μϕ − VðϕÞ
�

ð34Þ

where the field ϕ satisfied the differential equation

1

M2
pl

�
dϕ
dθ

�
2

¼ KðθÞ ð35Þ

The exact solution, which we omit here for brevity, is given
in [31]. At tree level, where the coupling in the Jordan
frame ξ is large and a ≃ 1=6 the Einstein frame potential is
approximately

VðϕÞ ¼ M4
plλ

4ξ2
ð1 − e

−
ffiffi
2
3

p
ϕ

mplÞ
2

ð36Þ

We see from Eq. (36) that the Higgs self coupling λ and
coupling to gravity ξ only enter the potential through its
overall normalization so the ratio

ffiffiffi
λ

p
=ξ is completely

determined from the CMB normalization. However, the
1-loop radiative corrections to the effective action (29) in
the Jordan frame contribute more significantly at large
values of ξ, so it is not sufficient to consider only the tree
level approximation [44]. The radiative corrections modify
the functions FðhÞ and WðhÞ. To first order these correc-
tions are

FðhÞ ¼ m2
pl þ ξh2 þ C

16π2
h2 ln

�
m2

plh
2

μ2

�
ð37Þ

WðhÞ ¼ 1

4
λðh2 − ν2Þ2 þ λA

128π2
h4 ln

�
h2

μ2

�
ð38Þ

The modifications to these functions change the result-
ing Einstein frame potential from which we compute
the inflationary observable ns and r. The RCHI potential
is thus
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VðϕÞ ≃ V0

�
1 − 2e

− 2ϕffiffi
6

p
mpl þ AI

16π2
ϕffiffiffi
6

p
mpl

�
ð39Þ

where AI is a free parameter as given in Eq. (4.12) of [24].
Before moving on to calculating corrections terms to the

RCHI model we take note that there exists in the literature a
modification to the Higgs inflation model that produces a
regularized potential [as opposed to Eq. (39)] which is
unbounded from below. First, in the literature there has
been debate over the validity of the Higgs inflation model
due to its UV cutoff being very close to the energy scale of
inflation H ∼

ffiffiffi
λ

p
mpl=ξ [28,29,45–47] The cutoff scale,

at which unitarity is broken for tree-level amplitudes, is
calculated in [29] as Λ ∼mpl=ξ in the Einstein frame.
For nonminimal coupling ξ and λ ∼Oð1Þ the effective field
theory may not be a valid description of inflationary
dynamics. In [28] the authors point out that these calcu-
lations of the cutoff scale are performed in the small field
approximation ϕ ≈ h. However the authors note that the
inflationary regime has ϕ ≫ 1, in which the Einstein frame
potential is

VðϕÞ ≈ λ

4ξ2
ð1þ e−

2ϕffiffi
6

p Þ2

≈
λ

4ξ2
ð1þ 2e−

2ϕffiffi
6

p Þ ð40Þ

If one considers the series expansion of the potential in
powers of ϕ, the result is quite different to what would have
been obtained in the small field approximation

VðϕÞ ≈ 3λ

4ξ2
−

λ

ξ2
ffiffiffi
6

p ϕþ λ

6ξ2
ϕ2 −

λ

9
ffiffiffi
6

p
ξ2

ϕ3 þ � � � ð41Þ

thus the one-loop quantum corrections will contribute a
cutoff

Λ ∼
ξ2

λ
mpl ð42Þ

This unitarity bound is well above the energy scale of
inflation and so the effective field theory remains a safe
description of inflationary physics with a regularized
potential given by Eq. (40). In this paper however we
focus only on the RCHI model featured in [24] as a means
of demonstrating the effect of correction terms required by
such unregularized potentials.
The radiatively corrected Higgs inflation model shares

similarities to quartic hilltop in that it also fits within the 1σ
region of the Planck 2018 data over a given range of its free
parameter AI, but does not produce a cosmology consistent
with a universe that does not collapse.
In Fig. 6(a) that there are indeed a few curves that fit well

within the 1σ region provided by the Planck 2018 data,
specifically those with 50≲ Nk ≲ 60. When we take into
account reheating consistency over the same parameter
range in Fig. 6(b) we see that lie within the acceptable
region formed by the rectangular bounds, essentially ruling
out this model as a possibility. Like the quartic hilltop
model, this potential also fails to produce a cosmology
compatible with what we observe today. In the RCHI
model, we exit inflation at small ϕ and shortly after the
potential becomes negative. This behavior of the potential
needs to be corrected. There are a variety of ways one
may correct the behavior of this potential, as we did to form
the QHS model. As such we could first consider simply
squaring the potential to produce one which is regularized.
However for RCHI, the potential only needs to be corrected
at small field values as we would like to retain the flatness of

FIG. 6. (a) Numerical solutions for tensor fraction r and spectral index ns of the RCHI model over the range 1 ≤ AI ≤ 40 for
50 ≤ Nk ≤ 70. The solid and dashed curves represent the Planck 2018 1σ and 2σ bounds, respectively. The horizontal black line is the
BICEP tensor fraction bound r ≲ 0.032. (b) Numerical solutions for reheating temperature Tre and spectral index ns of the RCHI model
over the range 1 ≤ AI ≤ 40 for 50 ≤ Nk ≤ 70. The vertical solid lines represent the Planck 2018 spectral index bounds 0.9607 ≲ 0.9691
and the horizontal solid lines represent the reheating temperature bounds 0.01 GeV ≲ Tre≲ 1016 GeV.
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the potential during slow-roll. Squaring the potential does
not achieve this very well as it makes the potential very
steep at large ϕ.
Compared to the standard RCHI model, the r − ns

curves in Fig. 7(a) are elongated and far more dramatically
curved outside of the 2σ region. While the curves with
50≲ Nk ≲ 58 lie within the 1σ region, it still remains the
case that none of the curves are able to be made reheating-
consistent. Furthermore, it is also worth noting that one
needs at least 60 e-folds of inflation to solve the horizon
problem, making a squared version of the RCHI potential
even less favorable. Figure 8 illustrates the shapes of the
RCHI and RCHI-Squared potentials.
The simplest such terms that one could add the only

modify the potential at small ϕ are inverse powers of the
form ϕ−p where p > 0. Henceforth we refer to such models
as RCHIp. Just as we did when adding polynomial

correction to the quartic hilltop model, we must ensure
that the coefficient of the correction term keeps the scalar
fields VEV at zero in order for inflation to end in a finite
time. That is, consider a potential of the form

VðϕÞ ¼ 1 − 2e
− 2ϕffiffi

6
p

mpl þ AI

16π2
ϕffiffiffi
6

p
mpl

þ αp6
p
2ϕ−p ð43Þ

The coefficient αp must be such that Vðϕ0Þ ¼ 0, where
ϕ0 is the field value at the minimum of the potential and
therefore satisfies V 0ðϕ0Þ ¼ 0

4ϕ0ffiffiffi
6

p
mpl

e
− 2ϕ0ffiffi

6
p

mpl þ AI

16π2
ffiffiffi
6

p
mpl

− pαp6
p
2ϕ−ðpþ1Þ

0 ¼ 0 ð44Þ

Equation (44) cannot be solved analytically for ϕ0 but
we may make use of an approximation. The minima of the
potential is at small field values ϕ0=mpl ≲ 1 and thus

FIG. 7. (a) Numerical solutions for tensor fraction r and spectral index ns of the RCHI-squared model over the range 1 ≤ AI ≤ 40 for
50 ≤ Nk ≤ 70. The solid and dashed curves represent the Planck 2018 1σ and 2σ bounds respectively. The horizontal black line is the
BICEP tensor fraction bound r ≲ 0.032. (b) Numerical solutions for reheating temperature Tre and spectral index ns of the RCHI model
over the range 1 ≤ AI ≤ 40 for 50 ≤ Nk ≤ 70. The vertical solid lines represent the Planck 2018 spectral index bounds 0.9607≲
ns ≲ 0.9691 and the horizontal solid lines represent the reheating temperature bounds 0.01 GeV ≲ Tre≲ 1016 GeV.

FIG. 8. (a) The RCHI potential at AI ¼ 1. (b) The RCHI-squared potential at AI ¼ 1.
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e
− 2ϕ0ffiffi

6
p

mpl ≈ 1 −
2ϕ0ffiffiffi
6

p
mpl

ð45Þ

The ϕ−ðpþ1Þ
0 term will dominate the expression and thus we

may solve for ϕ0ðαpÞ

ϕ0 ≃
ffiffiffi
6

p �
16π2pαpmpl

AI þ 64π2

� 1
pþ1 ð46Þ

Now substituting approximate solution (46) into
Vðϕ0Þ ¼ 0 allows us to solve for the coefficient

αp ¼
�

16π2mpl

AI þ 64π2

�p

ppð1þ pÞ−ðpþ1Þ ð47Þ

and so we work with an approximate potential

VðϕÞ ¼ 1 − 2e
− 2ϕffiffi

6
p

mpl þ AI

16π2
ϕffiffiffi
6

p
mpl

þ
�

16π2mpl

AI þ 64π2

�p

ppð1þ pÞ−ðpþ1Þ6
p
2ϕ−p: ð48Þ

In the following figures we display the r − ns and
Tre − ns plots for RCHIp with 1 ≤ p ≤ 10. The bounds
on the parameter spaces are the same as in all previous
figures.
Starting with the RCHI1 model which contains a ϕ−1

correction term, it can be seen in Fig. 9, that the 1σ region
contains those curves with 50≲ Nk ≲ 62. Taking into
account reheating consistency in Fig. 9(b), we see that
the reheating-consistent curves are thosewith 58≲ Nk ≲ 62.
However, these curves only slightly fit into the acceptable
region of the Tre − ns plot over the parameter range
1 ≤ AI ≤ 40, so the likelihood that they would survive
any further constraining bymore precise measurements of ns
is low.

FIG. 9. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the RCHI1 model over the 50 ≤ Nk ≤ 70. (b) The
(log) reheating temperature of the RCHI1 model against the spectral index ns over 50 ≤ Nk ≤ 70.

FIG. 10. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the RCHI10 model over the 50 ≤ Nk ≤ 70.
(b) The (log) reheating temperature of the RCHI10 model against the spectral index ns over 50 ≤ Nk ≤ 70.
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As we increase the power of the correction term through
to p ¼ 10, the effect of this term in the potential is of course
much stronger at small ϕ where the model exits inflation,
and much weaker at large ϕ where it starts. Figures for
2 ≤ p ≤ 9 are given in Appendix C. The effect on the
r − ns plot compared to that of RCHI1 is to push out of a
few of the curves, leaving those with 50≲ Nk ≲ 60 in the
1σ region. This is a relatively small change in the r − ns
parameter space. Conversely, in Fig. 10(b) we see that all of
the curves have been pushed out of the acceptable in the
reheating plot, leaving none that are reheating consistent
over this parameter range.
Clearly the models become less viable as one increases

the strength of the correction term. We also see from
Figs. 11(a) and 11(b) that as the power of the correction
term increases the approximation for the coefficient αp
given in Eq. (47) becomes less accurate and the local
minima is displaced from Vðϕ0Þ ≃ 0. Given that the RCHI1
model only just survives reheating-consistency, it is likely
that RCHI and corrections thereof will not fair well under
any future, more precise measurements.

IV. EXPONENTIAL SUSY INFLATION

The final model we will investigate is that of exponential
SUSY inflation (ESI). ESI models are governed by poten-
tials of the form

VðϕÞ − V0ð1 − e
−q ϕ

mplÞ ð49Þ

where q is the free parameter of order 1.
Potentials of this form appear in a broad range of

literature [48–52], so we will not discuss the precise nature
in which they occur in detail and only focus on the
inflationary predictions of the potential (49) and modifi-
cations thereof. Exponential SUSY inflation is a large field
inflation model, one can calculate exactly the field value
when inflation ends [24]

ϕend

mpl
¼ 1

q
ln

�
1þ qffiffiffi

2
p

�
ð50Þ

For q ∼Oð1Þ, inflation ends at small field values
ϕend=mpl ≲ 1, after which the potential becomes negative.
The ESI model is another of the single field inflation
models featured in [24] which fits well within the Planck
2018 bounds. However like RCHI and QH, the potential
remains unregularized and thus the model cannot lead to
any physically realized cosmology.
If one considers only the r − ns plot in Fig. 12(a), ESI is

among the most promising of the three models investigated
in this paper, with all curves between 52≲ Nk ≲ 68 lying
within the 1σ region. In Fig. 12(b) however, only the curves
for 56≲ Nk ≲ 64 lie withing the acceptable region, and
much like for the RCHIp models, only a small proportion of
the curves fit within the Planck 2018 ns bounds, particularly
for larger Nk, making it difficult for this model to remain
viable if the parameter space were to be further constrained
toward the center of the rectangular bound. Of course we
argue that these results are of little significance due to the
unregularized behavior of the potential. Just as with QH and
RCHI this can be corrected by taking the square of the
potential and calculating the resulting spectral index, tensor
fraction and temperature at the end of reheating.
Just as with quartic hilltop and RCHI, one may try simply

squaring the ESI potential to obtain a new potential that is
bounded below. The squaring of the potential is motivated
simply as a means of obtaining a new potential which
behaves similarly to the original potential during inflation
but has modified behavior as the inflaton exits inflation.
Namely that the potential is bounded from below and has a
stable vacuum. From both Figs. 13(a) and 13(b) we see that
squaring the potential does little to change the inflationary
predictions of the model but gives allows the potential to
produce a cosmology compatible with a universe that does
not immediately collapse after inflation. The reheating-
consistent curves remain thosewith 56≲ Nk ≲ 64, although

FIG. 11. (a) The RCHI1 potential at AI ¼ 1 (b) The RCHI10 potential at AI ¼ 1.
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they still cover only a small fraction of the parameter space
in Fig. 13(b). Figure 14 illustrates the shapes of the ESI and
ESI-Squared potentials.
Unlike QH, we cannot add polynomial terms as an option

to correct the ESI model at the end of inflation, since the
exponential function will dominate over any ϕp term we can
add toward the end of inflation. We could however, consider
adding an inverse power correction of the form ϕ−p as we
did with RCHI to form the family of RCHIp models.
Consider a potential of the form

VðϕÞ ¼ 1 − e
−q ϕ

mpl þ αpϕ
−p ð51Þ

Just as with the QHp and RCHIp models, we must adjust
the coefficient αp to ensure that the potentials at the VEV
remains at Vðϕ0Þ ≃ 0 to first order so that inflation ends in a
finite time. The VEV ϕ0 satisfies V 0ðϕÞ ¼ 0 and thus

q
mpl

e
−q ϕ0

mpl − pαpϕ
−ðpþ1Þ
0 ¼ 0 ð52Þ

For sufficiently small ϕ0 Eq. (52) is dominated by the

ϕ−ðpþ1Þ
0 term and thus to first order

ϕpþ1
0 ≃

pαpmpl

q
ð53Þ

FIG. 13. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the ESI-squared model with 0 < q < 10 over
50 ≤ Nk ≤ 70. The solid and dashed curves represent the Planck 2018 1σ and 2σ bounds respectively. (b) The (log) reheating
temperature of the ESI-squared model with against the spectral index ns with 0 < q < 10 over 50 ≤ Nk ≤ 70. The vertical solid lines
represent the Planck 2018 spectral index bounds 0.9607≲ ns ≲ 0.9691 and the horizontal solid lines represent the reheating temperature
bounds 0.01 GeV ≲ Tre≲ 1016 GeV.

FIG. 12. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the ESI model with 0 < q < 10 over
50 ≤ Nk ≤ 70. The solid and dashed curves represent the Planck 2018 1σ and 2σ bounds, respectively. (b) The (log) reheating
temperature of the ESI model with against the spectral index ns with 0 < q < 10 over 50 ≤ Nk ≤ 70. The vertical solid lines represent
the Planck 2018 spectral index bounds 0.9607≲ ns ≲ 0.9691 and the horizontal solid lines represent the reheating temperature
bounds 0.01 GeV≲ Tre≲ 1016 GeV.
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Demanding that the potential at the VEV is zero, one arrives
at the equation

ϕ0

�
1þ 1

p

�
¼ 0 ð54Þ

for generic p this would require αp ¼ 0, thus to a first
approximation in the methods used here, there are no such
correction terms that we can find for ESI. There may be
other regularization methods outside the scope of this
analysis which could perform this role.

V. DISCUSSION

In this paper we have investigated three promising
candidate single field inflation models. These models all
belong to the subset of candidate inflation models that are
capable of producing acceptable an acceptable spectral
index and tensor fraction in light of the Planck 2018 data,
but do not predict any kind of sensible cosmology that is
consistent with what we are simply around to observe the
universe today. The issue lies in the unstabilized nature of
the potentials after inflation ends. The quartic hilltop,
radiatively corrected Higgs and exponential SUSY poten-
tials do not posses local minima and so there is no stable
vacuum about which the inflaton may oscillate and reheat
the universe after expansion. In fact, since the potentials
are unbounded from below, if the energy density of the
universe continues to be dominated by the inflaton it will
collapse on a timescale t ¼ H−1 after the end of inflation.
This is a generic feature of any such potential that is not
stabilized after inflation. The question remains as to
whether regularizing the behavior of these potentials has
a significant effect on the inflationary predictions of the
models, which indeed it does.
The corrections that are made to the inflationary poten-

tials in this model are not motivated by a particular physical
principle, however such potentials do indeed have to be

corrected, otherwise the resulting cosmology is simply not
compatible with the cosmology we observe today. We show
that any such correction terms are significant in terms of
their effect on the inflationary predictions of the model.
There are of course examples of more physically motivated
corrections to inflationary models that previously suffered
from the same issue of unboundedness. Brane inflation
models featured in [24] can be consistently modified in a
way that does not introduce new fine tuning parameters, to
fit the Planck 2018 data in KKTLI inflation [53]. Likewise,
the Higgs inflation model featured also has a physically
motivated modification scheme that is consistent with
Planck [28,29]. In this approach, the corrections to the
functions FðhÞ and WðhÞ in Eqs. (37) and (38) are
calculated in the Einstein frame, giving an inflationary
potential (40) that is everywhere positive with a local
minima.
Potentials with regularized behavior may undergo the

reheating period after inflation without the universe col-
lapsing in the process. The reheating temperature must at
least as large as the BBN energy scale, and no greater than
the energy scale of inflation, and so is loosely bounded by
0.01 GeV≲ Tre ≲ 1016GeV. Since Tre depends explicitly
on the amount of inflation that has occurred, through Nk
and Hk. Demanding reheating-consistency further con-
strains the acceptable region of the r − ns parameter space
when combined with the Planck 2018 and BICEP/Keck
Array measurements. Furthermore, at least approximately
60 e-folds of inflation are required to solve the horizon
problem [8], this consideration also allows us to pinpoint
the regions of r − ns and Tre − ns inhabited by these
regularized models.
For the quartic hilltop model investigated in [26], before

taking into account reheating consistency, one may fit all
curves with 53≲ Nk into the acceptable region of r − ns
parameter space, however after regularizing to form the
QHS model, reheating consistency reduces this to only the

FIG. 14. (a) The ESI potential at q ¼ 1. (b) The ESI-squared potential at q ¼ 1.
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curves with 63≲ Nk ≲ 68 corresponding to reheating
temperatures 1.8 × 10−2 GeV≲ Tre ≲ 6.0 × 104 GeV. In
this paper we investigate further options for correcting
the behavior of QH by adding polynomial terms ϕp

forming the class of QHp models for 5 ≤ p ≤ 10. The
lowest order corrected model QH5 has reheating consis-
tent curves 60≲ Nk ≲ 68 corresponding to reheating
temperatures 1 GeV≲ Tre ≲ 7.2 × 1010GeV. As we
increase the strength of the correction term through to
QH10, the reheating-consistent curves in the r − ns param-
eter space still remain only those with 60≲ Nk ≲ 68 as
the spectral index and tensor fraction Nk e-folds before
the end of inflation are not particularly sensitive to the
strength of the correction term which kicks in toward the
end of inflation. However the reheating temperature is
sensitive to this change and for QH10 these curves
correspond to reheating temperatures of 8.2 × 10−2 GeV≲
Tre ≲ 1.1 × 1013GeV.
The next model in our discussion is that of radiatively

corrected Higgs inflation. Out of the three models con-
sidered in this paper, RCHI appears to be the least
favorable, having already started in a precarious position
even before regularization. Unregularized RCHI potential
allows only those curves with 50≲ Nk ≲ 60 in the
acceptable region of r − ns parameter space, considering
that we require at least 60 e-folds for the horizon problem
that leaves only a singular curve Nk ≃ 60 as a potential
candidate. However, none of the curves enter the region of
reheating-consistency in the Tre − ns space. As we did
with quartic hilltop, we may attempt to regularize this
model by simply squaring the potential. The RCHI-
Squared potential however only admits curves with 50≲
Nk ≲ 58 in the acceptable region of r − ns space, so it does
not address the horizon problem, which is an important
corner stone of scalar field inflation models. Squaring the
RCHI potential significantly alters the shape of the
potential during inflation, so we may look for options
that only affect the potential toward the end of inflation
when the inflation field ϕ is small. The simplest such
choices would be inverse power corrections of the form
ϕ−p, forming a family of RCHIp models. We investigate
these for 1 ≤ p ≤ 10. RCHI1 admits curves with 58≲
Nk ≲ 62 in the acceptable region of r − ns space, further
constrained to 60≲ Nk ≲ 62 to be consistent with the
horizon problem, corresponding to reheating temperatures
2.4 × 107 GeV≲ Tre ≲ 3.6 × 109GeV. This simple cor-
rection makes the model very tightly bound and ideal
for further analysis under more precise measurements of
the spectral index and tensor fraction. As we increase the
power of the correction term, there are less reheating-
consistent curves available in the r − ns parameter space.
The highest order corrected model we look at, RCHI10
contains no reheating-consistent curves at all.

The final model discussed in this paper is that of
exponential SUSY inflation. This potential in its unreg-
ulairzed form already inhabits promising regions of the
r − ns and Tre − ns parameter spaces. When squared to
form a regularized ESI-squared model, the reheating
consistent curves are those with 56≲ Nk ≲ 64. Taking
into account the horizon problem this is further reduced to
60 ≲ Nk ≲ 64, a corresponding bound on the reheating
temperature of 1.5 × 102 GeV ≲ Tre ≲ 4.9 × 108 GeV.
Unlike QH, adding polynomial corrections to ESI does
not stabilise the potential as the exponential function
dominates any such term that we could add. We show
also that is it not possible to add inverse power terms that
can be investigated analytically to first order.
Single field inflation models provide a versatile landscape

of models to approach the problem of explaining cosmo-
logical inflation, but one must take great care that any model
under consideration produces a cosmology after inflation
that is consistent with what we observe today. In particular, it
is important that the inflationary models we consider in this
paper have stable vacuums which prevent the universe from
collapsing shortly after inflation ends. This is an important
consideration for as we have shown in the cases of quartic
hilltop and radiatively corrected Higgs inflation, how one
decides to regularize the potential can have significant
effects on the observable that we measure today and may
determine the viability of a given model when compared to
observational data. In this work we make use of polynomial
and inverse power correction terms, it is certainly worth
noting that for a scalar field theory in d ¼ 4 dimensions,
only ϕ4 interaction terms are renormalizable [54,55]. So
even models such as these with corrected potentials cannot
be quantized to form self-consistent QFT’s, they can only be
considered as classical effective field theories for computing
inflationary observables.

APPENDIX A: NUMERICAL SIMULATIONS

Throughout this work we make frequent use of numeri-
cal simulations to calculate the spectral index, tensor
fraction and temperate at the end of reheating. These
calculations are performed using a bespoke Mathematica
notebook available at https://github.com/JoshHoffmann/
SFSRIA. This code allows for the analysis of generic
single field slow-roll inflation models by numerical inte-
grating the exact equations of motion at a fixed number of
remaining e-folds of inflation Nk, over parameter ranges
and suitable initial conditions set by the user. Integrating
the equations of motion up to the end of inflation allows
one to extract the spectral index ns and tensor fraction r as
well as the energy density of the scalar field at the end of
inflation and Hubble parameter when the picot scale exits
the horizon Hk. Thus we are also able to calculate the
reheating temperature and number of reheating e-folds
given by Eqs. (14) and (15) respectively.
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APPENDIX B: QHp CORRECTION FIGURES

FIG. 15. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the QH6 model over the 50 ≤ Nk ≤ 70. (b) The
(log) reheating temperature of the QH6 model against the spectral index ns over 50 ≤ Nk ≤ 70.

FIG. 16. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the QH7 model over the 50 ≤ Nk ≤ 70. (b) The
(log) reheating temperature of the QH7 model against the spectral index ns over 50 ≤ Nk ≤ 70.

FIG. 17. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the QH9 model over the 50 ≤ Nk ≤ 70. (b) The
(log) reheating temperature of the QH9 model against the spectral index ns over 50 ≤ Nk ≤ 70.
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APPENDIX C: RCHIp CORRECTION FIGURES

FIG. 18. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the RCHI2 model over the 50 ≤ Nk ≤ 70. (b) The
(log) reheating temperature of the RCHI2 model against the spectral index ns over 50 ≤ Nk ≤ 70.

FIG. 19. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the RCHI3 model over the 50 ≤ Nk ≤ 70. (b) The
(log) reheating temperature of the RCHI3 model against the spectral index ns over 50 ≤ Nk ≤ 70.

FIG. 20. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the RCHI4 model over the 50 ≤ Nk ≤ 70. (b) The
(log) reheating temperature of the RCHI4 model against the spectral index ns over 50 ≤ Nk ≤ 70.
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FIG. 21. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the RCHI5 model over the 50 ≤ Nk ≤ 70. (b) The
(log) reheating temperature of the RCHI5 model against the spectral index ns over 50 ≤ Nk ≤ 70.

FIG. 22. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the RCHI6 model over the 50 ≤ Nk ≤ 70. (b) The
(log) reheating temperature of the RCHI6 model against the spectral index ns over 50 ≤ Nk ≤ 70.

FIG. 23. (a) Numerical solutions of the tensor-scalar ratio r and spectral index ns for the RCHI7 model over the 50 ≤ Nk ≤ 70. (b) The
(log) reheating temperature of the RCHI7 model against the spectral index ns over 50 ≤ Nk ≤ 70.
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