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Extended sources of the stochastic gravitational backgrounds have been conventionally searched on the
spherical harmonics bases. The analysis during the previous observing runs by the ground-based
gravitational-wave detectors, such as LIGO and Virgo, have yielded the constraints on the angular power
spectrum Cl, yet it lacks the capability of estimating other parameters such as a spectral index. In this
paper, we introduce an alternative Bayesian formalism to search for such stochastic signals with a particular
distribution of anisotropies on the sky. This approach provides a Bayesian posterior of model parameters
and also enables selection tests among different signal models. While the conventional analysis fixes the
highest angular scale a priori, here we show a more systematic and quantitative way to determine the cutoff
scale based on a Bayes factor, which depends on the amplitude and the angular scale of observed signals.
Also, we analyze the third observing runs of LIGO and Virgo for the population of millisecond pulsars and
obtain the 95% constraints of the signal amplitude, ϵ < 2.7 × 10−8.

DOI: 10.1103/PhysRevD.107.023024

I. INTRODUCTION

Since the dawn of gravitational wave (GW) astronomy [1],
a series of Gravitational Wave Transient Catalog (GWTC)
published by the LIGO Scientific, Virgo, and KAGRA
Collaboration (LVK) [2–5] have confirmed 90 GW signals
in total from compact binary coalescences (CBCs) in the
Universe. In upcoming observing runs by ground-based
GW detectors, the detector network will be expanding
with the Advanced Laser Interferometer Gravitational-
wave Observatory (LIGO) [6] and Virgo [7] as well as
KAGRA [8] and LIGO-India [9]. Additionally, the next
generation of ground-based detectors such as the Einstein
Telescope (ET) [10–13] and the Cosmic Explorer (CE) [14]
have been proposed to further increase the sensitivity to
various types of GW sources.
A stochastic gravitational-wave background (SGWB) is

the incoherent superposition of GWs emitted from many
sources that are too faint to be resolved individually (see
e.g., [15] for the detailed review). It is composed mainly of
astrophysical sources such as binary black holes and binary
neutron stars [16–20], supernovae [21–25], or ultralight
bosons corotating around a black hole (BH) [26–31].
Alternatively, cosmological sources can contribute to

the SGWB, which include signals emitted during an
inflationary era [32–40], phase transitions in the early
Universe [41–43], and primordial BH [44–47]. These
theoretical models, in general, predict a characteristic
background amplitude, spectral shape or angular distribu-
tion [48–59]. Therefore, one can not only detect but also, in
principle, distinguish the different models by comparing
these signatures in observed signals.
In contrast with established detections of CBCs, SGWBs

have not yet been detected and hence it is one of the next
milestones in the future observing runs. Conventional
searches for a SGWB are mainly categorized into two
types; isotropic [60–63] and directional searches [64–68].
While the former assumes isotropic energy distribution of
GWs over the sky and estimates the overall amplitude of
the SGWB, the latter targets for its anisotropic distribution.
Regarding the directional searches, two different method-
ologies have been adopted depending on signal models to
pursue, e.g., using radiometer analyses [69–71] for point-
like sources or the spherical harmonics decomposition
(SHD) analysis [72] for extended sources.
Inspired by the SHD analysis approach, our work

presented in this paper describes a Bayesian parameter
estimation formalism targeted for an anisotropic distribu-
tion of GW energy. In the literature, similar targeted
searches for different anisotropic sources have been*leo.tsukada@ligo.org
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introduced [73,74], both of which construct the maximum-
likelihood estimator of an overall amplitude of the GW
energy density and provide its upper limit. Unlike these
methods or the conventional SHD method which produces
an estimator for each spherical harmonics mode of the
energy distribution, our formalism described here assumes
an anisotropy model as known and infers other model
parameters, e.g., an energy spectrum or an overall ampli-
tude, through stochastic sampling. This can be seen as the
extension of a parameter estimation for an isotropic back-
ground [75,76] by adding higher spherical harmonics
modes in a signal model. As will be discussed in the rest
of the paper, this also allows us to perform a selection
across different anisotropy models and to optimize a spatial
cutoff scale in the signal model.
This paper is structured as follows. First, Sec. II provides

an overview of the conventional SHD analysis. Second, in
Sec. III we describe our parameter estimation formalism
based on the Bayesian framework. Following the procedure
of data simulation and signal injection described in Sec. IV,
from Secs. V–VII we show the results of various studies to
assess the parameter inference consistency, the model
selection and the optimization of the spatial cutoff scale.
Subsequently, in Sec. VIII we analyze the real data from the
third observing run (O3) by the Advanced LIGO and Virgo
based on a population of millisecond pulsars (MSPs).
Finally, in Sec. IX we discuss future prospects on the
precision of parameter estimation and the constraints on
model parameters by simulating several planned future
detectors.

II. ANISOTROPIC STOCHASTIC
GRAVITATIONAL WAVE BACKGROUND

The anisotropy of the SGWB can be expressed in terms
of the dimensionless energy density Ωgw [15,77,78]

Ωgwðf; Ω̂Þ≡ f
ρc

d3ρgw
dfd2Ω̂

; ð1Þ

where d3ρgw is the GW energy per unit frequency f
and solid angle Ω̂, ρc is the critical energy density
required to have a spatially flat universe, and H0

is the Hubble constant. Assuming that Ωgw can be
factorized into frequency and sky-direction dependent
terms, i.e.,HðfÞ and PðΩ̂Þ respectively, the above equation
reads

Ωgwðf; Ω̂Þ ¼
2π2

3H2
0

f3HðfÞPðΩ̂Þ: ð2Þ

This assumption has been shown [78,79] to hold across the
frequency range in which LVK stochastic searches are most
sensitive. Most of the literature adopts a power-law form for
the frequency spectrum HðfÞ ¼ ðf=frefÞα−3, for example,

α ¼ 2=3 as predicted for a CBC background [80].
This spectral model is used to perform a broadband search
where one constructs sky maps by integrating different
detector outputs over a broad range of frequencies.
For the sky-position dependent term PðΩ̂Þ, we apply

the SHD,

PðΩ̂Þ ¼
X
l;m

PlmYlmðΩ̂Þ; ð3Þ

where YlmðΩ̂Þ is a spherical harmonics function evaluated
at the sky position Ω̂. One uses the SHD to search for
extended sources with a large angular scale. We first
construct the dirty map Xν, which is essentially a cross-
correlation between different detector outputs, and its
covariance matrix Γμν projected onto spherical harmonics
bases. We then produce a clean map as a nonbiased
estimator of Plm, deconvolving the dirty map by the
covariance matrix

P̂μ ¼
X
ν

ðΓ−1ÞμνXν: ð4Þ

Here μ, ν subscripts represent a spherical harmonics mode,
i.e., μ≡ ðl; mÞ, and Γ−1 is the inverted covariance matrix.
To constrain anisotropies of a SGWB, we introduce the

following estimator of the angular power spectrum

bCl ¼
�
2π2f3ref
3H2

0

�
2 1

2lþ 1

X
m

½jP̂lmj2 − ðΓ−1Þlm;l0m0 �; ð5Þ

which we compare to theoretical predictions.

III. FORMALISM

A. Bayesian inference

Bayesian inference has been employed to estimate model
parameters in the context of GW astronomy, such as
signals from CBCs [81–83] and an isotropic GW back-
ground [75,76]. The cross spectral density (CSD) at the
frequency f and the timestamp t between outputs of the two
detectors is defined as

Cðf; tÞ≡ 2

τ
s̃1ðf; tÞs̃�2ðf; tÞ; ð6Þ

where s̃ðf; tÞ is a short-term Fourier transform of the time
series sðtÞ within an interval ½t − τ=2; tþ τ=2�. Let the
anisotropic background depend on a set of model para-
meters fθ⃗g. In the presence of the anisotropic background,
the CSD on a two-dimensional ðf; tÞ pixel map has the
mean [72]

hCðf; tÞi ¼ γμðf; tÞPμðf; fθ⃗gÞ; ð7Þ
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where γμðf; tÞ denotes the overlap reduction function
(ORF) [84] projected onto the spherical harmonics basis
represented by μ ¼ ðl; mÞ [79], and Pμðf; fθ⃗gÞ is a generic
form of a spectral model with the anisotropic distribution.
The Greek subscript implies the summation across the
spherical harmonics modes. The covariance of this CSD in
the weak-signal approximation reads

hjCðf; tÞj2i − jhCðf; tÞij2 ≈ P1ðfÞP2ðfÞ
τΔf

; ð8Þ

where PiðfÞ is the power spectral density (PSD) of the ith
detector and Δf is the frequency resolution. Hence, these
properties fully specify the Gaussian distribution, which
represents the probability of obtaining the observable for a
given signal model M and its relevant parameters,
pðfCftgjfθ⃗g;MÞ. In the Bayesian context, this is equiv-
alent to the likelihood and one aims to estimate the model
parameters based on the posterior distribution

pð ⃗fθgjfCf;tg;MÞ ¼ pðfCftgjfθ⃗g;MÞpð ⃗fθgÞ
pðfCftgjMÞ ; ð9Þ

where pð ⃗fθgÞ is a prior distribution of the model para-
meters. Note that pðfCftg;MÞ in the denominator is called
the Bayesian evidence

pðfCftgjMÞ ¼
Z

d ⃗fθgpðfCftgjfθ⃗g;MÞpð ⃗fθgÞ; ð10Þ

which is used for a selection test across different hypo-
theses (see Sec. VI).

B. Plm-specific Bayesian analysis

We further make several assumptions to simplify Eq. (7).
First, we decouple the frequency dependence from the
anisotropy of the signal model. Second, the only free
parameter relevant to the anisotropy is its overall amplitude
ϵ. In other words, the signal model can be factorized as
follows:

Plmðf; fθ⃗gÞ ¼ ϵH̄ðf; fθ0!gÞPlm; ð11Þ

where H̄ðf; fθ⃗0gÞ and Plm are normalized such that

H̄ðf; fθ0!gÞ≡ Hðf; fθ0!gÞ
Hðfref ; fθ0

!gÞ
; Plm ≡ Plm

P00

; ð12Þ

respectively. Although one can relax these assumptions and
consider a signal model with a more generic form,
Plmðf; fθ⃗gÞ, in this paper we strict ourselves to this
simplified case to perform Plm-specific Bayesian analysis

so that M → P̄lm, and leave its generalization as future
work. Lastly, we set the cutoff on spatial scale characterized
by lmax and hence the subscript in Eq. (7) implies

γμðf; tÞPμ ¼
Xlmax

l¼0

Xl
m¼−l

γlmðf; tÞPlm: ð13Þ

With these assumptions, the likelihood obeys the
Gaussian distribution as below

pðfCftgjfϵ; θ0
!g;lmax;PlmÞ

∝ exp

�
−
1

2

X
f;t

jCðf; tÞ − ϵH̄ðf; fθ0!gÞγμðf; tÞPμj2
P1ðf; tÞP2ðf; tÞ

�
:

ð14Þ

Note that in the case of lmax ¼ 0, this likelihood
expression reproduces the one for the isotropic stochastic
background analysis [75,76]. Also, for the rest of this
paper, the amplitude factor ϵ is normalized by
ð 2π
3H2

0

f3ref
ffiffiffiffiffiffi
4π

p Þ−1 so that this factor corresponds to Ω̂0 in

the isotropic search [60–63]. Therefore, this formalism
serves as a natural extension of parameter inference
performed for the isotropic background.
While this formalism yields results dependent on a

specific anisotropy modeled by P̄lm, one can benefit from
novel features as summarized below. First, the Bayesian
evidence shown in Eq. (10) allows one to perform a model
selection test by comparing those between different

H̄ðf; fθ⃗0gÞ or Plm models. Second, the anisotropy model
P̄lm also depends on the angular scale cutoff one imposes,
and this can be optimized similarly by evaluating the
Bayesian evidence across different lmax values (see
Sec. VII). Third, since Eq. (14) essentially computes the
residual in the CSD Cðf; tÞ, the likelihood shown in
Eq. (14) does not involve the inversion of a covariance
matrix Γμν. In other words, this formalism is free from the
regularization of an ill-conditioned covariance matrix,
which otherwise would suffer from extra complexity just
like the conventional SHD analysis [72].
For a given dataset and a signal model to recover, the

pipeline stochastically samples over a multidimensional
parameter space and iteratively evaluates the likelihood
based on Eq. (14) for each sample until the posterior
distribution can be sufficiently constructed. Regarding this
implementation, we adopt a nested sampling algorithm
DYNESTY [85], implemented in the BILBY package [82,83].

IV. DATA SIMULATION

The studies we conduct in the subsequent sections
simulate a large set of noise data, e.g., the CSD Cðf; tÞ,
to assess statistical results. Here, we summarize our
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procedure of this data simulation and describe how it will
be used for likelihood evaluation.

A. Simulating noise data products

Given a set of the model parameters fϵ; θ⃗g and the signal
model to recover, fH̄ðf; fθ⃗0gÞ;Pμg, the full expression of
Eq. (14) can be written as

2 ln ½pðfCftgjfϵ; θ0
!g;lmax;PlmÞ�

¼ − ln ½ð2πÞdjΣCC0 j� −
X
f;t

�
τΔfjCðf; tÞj2
P1ðf; tÞP2ðf; tÞ

�

þ 2ϵRe½P̄�
μXμ� − ϵ2P̄�

μΓμνP̄ν; ð15Þ

where Xμ;Γμν are defined as

Xμ ¼
X
f

X
t

γ�μðf; tÞ
τΔfH̄ðf; fθ0!gÞ
P1ðf; tÞP2ðf; tÞ

Cðf; tÞ ð16Þ

and

Γμν ¼
X
f

X
t

γ�μðf; tÞ
τΔfH̄2ðf; fθ0!gÞ
P1ðf; tÞP2ðf; tÞ

γνðf; tÞ; ð17Þ

respectively. In the weak signal limit, the covariance matrix
of the CSD, ΣCC0 , can be approximated as a diagonal matrix
whose elements are given by Eq. (8) with its dimension
being

d ¼ ð# of frequency binsÞ × ð# of time segmentsÞ: ð18Þ

The likelihood in Eq. (15) is evaluated for a single baseline
formed by a detector pair. For a general configuration of
multiple baselines represented by D, assuming uncorrelated
noise among the detectors, the joint likelihood is given by a
product of individual likelihood values computed for each
distinct detector pair fIJg

pðfCD
f;tgjfϵ; θ⃗0g;lmax; P̄lmÞ

¼
Y
I

Y
I>J

pðfCIJ
f;tgjfϵ; θ⃗0g;lmax; P̄lmÞ: ð19Þ

Since the dirty map and the Fisher matrix need to be
constructed based on Eqs. (16) and (17) every time a
pipeline draws a parameter sample during its stochastic
sampling process, the two-dimensional integration over
frequencies and time segments can be a computational
bottleneck. Hence, after synthesizing Cðf; tÞ based on the
colored Gaussian noise, we precompute and store the time
integration part in Eqs. (16) and (17), i.e.,

Xμ ¼
X
f

H̄ðf; fθ⃗0gÞ
X
t

τΔfγ�μðf; tÞCðf; tÞ
P1ðf; tÞP2ðf; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
precomputed

ð20Þ

Γμν ¼
X
f

H̄2ðf; fθ⃗0gÞ
X
t

τΔfγ�μðf; tÞγνðf; tÞ
P1ðf; tÞP2ðf; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
precomputed

; ð21Þ

including other static data products such as jΣCC0 j and
X
f;t

�
τΔfjCðf; tÞj2
P1ðf; tÞP2ðf; tÞ

�
: ð22Þ

B. Signal injection

Following the pre-computation approach described
above, we discuss how Eq. (15) should be modified in
the presence of a background signal. Specifically, we
consider the background signal which contributes to the
CSD such that

Cðf; tÞ ¼ Cnðf; tÞ þ ϵinjH̄injðf; fθ⃗injgÞγμðf; tÞP̄inj
μ ; ð23Þ

where Cnðf; tÞ is the noise CSD with zero mean. After
substituting Eq. (23) into Eq. (15) with some expansion, the
following terms will appear in the likelihood

− 2ϵinjRe½ðP̄inj
μ Þ�Xinj

μ � − ðϵinjÞ2ðP̄inj
μ Þ�Γinj

μνP̄
inj
ν

þ 2ϵϵinjRe½P̄�
μΓ

ðcÞ
μν P̄

inj
ν �; ð24Þ

where Xinj
μ and Γinj

μν follow the same definition as Eqs. (16)

and (17) except replacing H̄ðf; fθ⃗0gÞ and Cðf; tÞ with
H̄injðf; fθ⃗injgÞ and Cnðf; tÞ, respectively. We note that the
last term in Eq. (24) involves the coupled Fisher matrix,
which reads

ΓðcÞ
μν ¼

X
f

X
t

γ�μðf; tÞ
τΔfH̄H̄inj

P1ðf; tÞP2ðf; tÞ
γνðf; tÞ: ð25Þ

As we will describe in the subsequent section, the validity
of this injection scheme can be shown by the statistical
consistency in the injection recovery, e.g., Fig. 4.

V. STATISTICAL STUDIES

In order to assess the statistical consistency of the
injection recoveries, we perform injection campaigns using
synthesized background signals with a specific anisotropy
model, P̄lm. To begin with, we summarize the setup of the
injection set, simulated data, and the parameter inference.
Finally, the implication from the injection campaigns will
be described in Sec. V C.
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A. Setup

(i) Dataset:
Following the procedure in Sec. IV, we simulate

unfolded dataset for a one-year observation divided
into 192-second segments with the frequency reso-
lution of 0.25 Hz starting from 20 Hz to 500 Hz. The
CSD is produced from the cross-correlation between
the two LIGO detectors with the projected O4
sensitivity (∼190 Mpc of the binary inspiral range)
shown in [86,87].

(ii) P̄lm model:
As a toy model, we set P̄lm to be a mock Galactic

plane shown in Fig. 1. When injecting and recov-
ering this model, we adopt lmax value consistent
between the injection and recovery, ranging across 3,
5, and 7. We choose the highest lmax ¼ 7 because
we find that the spherical harmonics components
above it only have negligible contribution to the total
anisotropies. Also, note that the injected anisotropies
with these lmax values appear to be blurred com-
pared to Fig. 1.

(iii) H̄ðfÞ model:
We assume H̄ðfÞ is a simple power-law (PL)

model, i.e.,

HPLðf; αÞ ¼
�

f
fref

�
α−3

; ð26Þ

where fref ¼ 25 Hz and the “−3” in the exponent is
added so that ΩGW ∝ fα [see Eq. (2)].

(iv) Injections and prior distributions:
Given the H̄ðfÞ model above, the signal model

has the two free parameters to infer, ðϵ; αÞ. In order
to obtain a reasonable P-P plot, we adopt the same
distributions consistently for both random draws of
the injected parameters and the prior distributions of
the same set of parameters for recovery as follows;
for ϵ, a log-uniform distribution in 10−8 to 10−5, and
for α, a Gaussian distribution with the mean of 5 and
the standard deviation of 0.5. While the result of
individual injection recoveries is found to be robust

against changes in prior distributions, we select the
above distributions so that most of the injections can
be detected with great significance and their injected
parameters are precisely inferred.

B. Injection recovery

We follow the injection scheme described in Sec. IV B
and attempt to recover the injected values of the parameters
by constructing the posterior distribution in the multidi-
mensional parameter space. Here, we demonstrate two
examples of injection recoveries performed with lmax ¼ 7.
In one case, an injection is loud enough to be detected and
the parameters are precisely inferred. Figure 2 shows that
the both parameters of ðlog10 ϵ; αÞ are inferred to the
precision of 0.01 and the injected values (the red star)
are located close to the bulk of the posterior samples,
staying inside the 68% level of contours. As will be
discussed later, the slight deviation of the injected values
from the peak of the posterior distribution can be explained
by the statistical error.
In contrast, the other case makes an injection with a

smaller amplitude such that the injection is not recovered
with sufficient significance and that instead the posterior
distribution provides the constraints on the inferred
parameters. Figure 3 indicates the excluded region of
the two parameters outside the contours. We note that, in
order to thoroughly cover the parameter space, the prior
distribution for this particular injection recovery is chosen
to be a log-uniform distribution from 10−13 to 10−5 for ϵ,
and a Gaussian distribution with the mean of 0 and the
standard deviation of 3.5 for α. The analysis with this
configuration is performed separately from the setup
described in Sec. VA for the purpose of demonstrating
the parameter constraints.

FIG. 1. Distribution of a mock Galactic plane visualized by
Mollweide projection with HEALPix [88] pixelization of
nside ¼ 16. The brighter color represents larger energy density.

FIG. 2. Posterior distribution for one of the detected injections.
The injected values are ðlog10 ϵ; αÞ ¼ ð−6.584; 3.857Þ and the BF
is ∼24000.
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C. Probability-probability plot

We perform 500 injection recoveries using P̄lm; H̄ðfÞ
models and the prior distributions described in Sec. VA.
Given the posterior samples of each recovery, we compute a
percentile of the injected parameters with regard to the
posterior probability. For example, if the injected values in
Fig. 2 sit on the red contour, we would assign 68th
percentile for the injection recovery. A collection of these
percentiles in turn provides the cumulative fraction at each
percentile value in the ascending order among the 500
injections. Eventually, we obtain the recovery database,
each of which contains the percentile and the cumulative
density. We plot them in Fig. 4, which is referred to as a
probability-probability (P-P) plot. Since the posterior

distributions without systematic error yield percentiles
uniformly distributed between 0 and 1, a trace in the plot
is expected to stay close to the diagonal with some
statistical fluctuation. Figure 4 shows that the traces for
all the three cases of lmax ¼ 3; 5; 7 stay within the 95%
credible error region. This demonstrates the validity of data
simulation, injection scheme and posterior construction.
Throughout this study, we consistently use the same lmax
value for both the injection and its recovery. However, the
lmax value for the recovery can be different from that for
the injection and we discuss the potential bias caused by the
lmax inconsistency in the Appendix.

VI. MODEL SELECTION

It is sometimes challenging to correctly interpret the
underlying model from observed data. For instance, a
broken power law (BPL) H̄ðf; fθ⃗0gÞ model with similar
exponents could easily be mistaken by a simple PL model,
especially for low signal-to-noise ratio (SNR). As men-
tioned in Sec. III A, this formalism allows us to quantita-
tively compare the preference across multiple signal
models. Here, we will demonstrate this aspect of the
pipeline using toy models.

A. Bayes factor

The fundamental tool to distinguish between two models
within the Bayesian framework is the odds ratio. Given two
models M1 and M2 and the data D, it is defined as

OM1

M2
¼ pðM1jDÞ

pðM2jDÞ ¼
pðDjM1Þ
pðDjM2Þ

πðM1Þ
πðM2Þ

; ð27Þ

where πðMiÞ is the prior probability for model Mi,
i ¼ 1; 2. Since, in our case, the prior odds for the both
models are assumed to be equal, the odds ratio reduces to
the BF,

BM1

M2
¼ pðDjM1Þ

pðDjM2Þ
: ð28Þ

We assess the statistical significance of a model relative to
the other in terms of the BF. The evidence in favor of the
modelM1 is recognized to be strong around B

M1

M2
∼ 10 and

decisive from ∼100 [89].
Our tests proceed as follows: First, we synthesize the

noise CSD from the cross-correlation between the two
LIGO detectors with the projected O4 sensitivity. Then, we
inject a signal simulated from a certain model M1 into the
synthetic dataset. We recover it both with M1 and another
modelM2 involving different H̄ðfÞ or P̄lm model. Finally,
we compute the BF for different sets of injected parameters
until we obtain a heatmap showing a distribution of the BF
over the parameter space.

FIG. 3. Posterior distribution for one of the nondetected
injections. The injected values are ðlog10 ϵ; αÞ ¼ ð−10.0;−2.5Þ
and the BF is ∼ − 0.35.

FIG. 4. Probability-probability plot for 500 of the injection
recoveries. Different colors indicate each value of lmax ¼ 3, 5, 7.
The gray region is the 95% confidence region expected from the
Poisson fluctuation.
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B. H̄ðf ; fθ⃗0gÞ model selection

The first case of the model selection studies tests under
which conditions our pipeline is able to distinguish a BPL

H̄ðf; fθ⃗0gÞ from a PL. While we follow the PL model
shown in Eq. (26), H̄BPLðfÞ is defined, prior to the
normalization in Eq. (12), as

H̄BPLðfÞ ∝
� ðf=f0Þα1−3 if f < f0
ðf=f0Þα2−3 if f ≥ f0

: ð29Þ

We model the BPL case with four free parameters, i.e.,
three of them from H̄BPLðfÞ as well as the overall amplitude
parameter, ϵ. An example posterior is shown in Fig. 5. For
this analysis, we inject the BPL model with α1 ¼ 2=3 and
f0 ¼ 100 Hz fixed, hence exploring the ðϵ; α2Þ parameter
space. We adopt the prior distributions for each parameter
as follows; for ϵ, a log-uniform distribution from 10−12 to
100, for α1 and α2, a Gaussian distribution with the mean of
0 and the standard deviation of 3.5, and for f0, a uniform
distribution in 20 Hz and 500 Hz. The P̄lm model is taken
as the sky distribution of the Galactic plane shown in Fig. 1
with lmax ¼ 7.
The heatmap in Fig. 6 suggests that higher values of ϵ

result in the identification of the correct model with greater
significance, transitioning around ϵ ∼ 10−7–10−6. The BF
tends to increase for higher values of α2. Also expectedly,
the gap in α2 ¼ 2=3 is observed because this is equal to the
fixed value of α1, in which case the BPL model becomes
completely degenerated with a PL of α ¼ 2=3, leading to
the equal odds between the two models BBPL

PL ∼ 1.

C. P̄lm model selection

Similar to the study summarized above, here we compare
two different P̄lm models, fixing H̄ðfÞ to be a PL model.
We do not introduce any new free parameter in P̄lm and
explore only the (ϵ, α) parameter space.
To demonstrate the capability of P̄lm model selection, we

inject a background signal of the Galactic plane P̄lm with
lmax ¼ 7 and identify the parameter space where one can
distinguish it from purely isotropic model, i.e., P̄lm ¼ 0 if
l ≠ 0 or m ≠ 0. We note that given the normalization, an
arbitrary P̄lm skymap with l ¼ 0 reduces to an isotropic
model. We explore different injected values over the ðϵ; αÞ
parameter space, obtaining the heatmap shown in Fig. 7. The
heatmap indicates that the analysis prefers the Galactic plane
P̄lm model at around ϵ ¼ 10−6 in the most conservative
case, similar to the previous study. This threshold decreases
for high values of α, which enhance the signal for high

FIG. 5. Example posterior of an injection recovery based on the
BPL model, with lnBBPL

PL ¼ 417. The recovery is consistent with
the injection, indicated by the red markers and lines.

FIG. 6. Heatmap showing the BF for the BPL vs PL H̄ðfÞ
recovery models across grids of ϵ and α2 values for injected BPL
H̄ðfÞ with f0 ¼ 100 Hz, α1 ¼ 2=3.

FIG. 7. Heatmap showing the BF for the Galactic plane vs
isotropic P̄lm recovery models across grids of ϵ and α values for
injected Galactic plane P̄lm model.

BAYESIAN PARAMETER ESTIMATION FOR TARGETED … PHYS. REV. D 107, 023024 (2023)

023024-7



frequencies. Hence, for the darker part of the parameter
space, the pipeline is capable of detecting the signature of
higher-order spatial modes and distinguishing it from the
isotropic background.

VII. lmax OPTIMIZATION

As mentioned in Sec. III B, the likelihood in our
formalism involves the angular scale cutoff, lmax as a
hyperparameter to be tuned. The study in Appendix
suggests the systematic bias in the parameter inference
due to potential mismatch in lmax value. Also, it has been
known that unreasonably high lmax causes overfitting to
observed data, and thus several approaches have been taken
to optimize the lmax value. In the conventional SHD
analysis (see e.g., [61]), the lmax value is chosen in the
consideration of the diffraction limit. However, this rea-
soning can be established only for a two-detector configu-
ration, and also the lmax choice depends on the shape of a
signal spectrum, e.g., the power-law index of H̄ðfÞ.
Reference [90] further investigated this in the case of a
pointlike source with different signal amplitudes. The
authors found that the larger lmax yields greater localization
of the source, while the smaller lmax tends to recover larger
SNR. This indicates the potential sweet spot of the lmax that
compromises between the angular resolution and the signal
detection, although the optimal choice potentially depends
on the signal amplitude in the data. They also suggested
that, for sufficiently loud signals, the lmax value can
possibly surpass the one predicted from the diffraction
limit argument. Yet, their conclusion cannot be directly
applied to extended source models, which we consider in
this work. Here, we describe a more generic and quanti-
tative method to optimize the choice of lmax based on the
Bayesian framework.

A. Method

Thrane et al. [72] first discussed the approach to assess
the validity of a chosen lmax by computing the Bayesian
evidence given by

pðfCftgjlmaxÞ ¼
Z

dP̄lmpðfCftgjP̄lm;lmaxÞpðP̄lmÞ:

ð30Þ

Although this approach can be applied, in principle, for
arbitrary signal models or amplitudes, the number of
marginalized parameters, which scales with ðlmax þ 1Þ2,
makes it practically unfeasible to evaluate the integration
above with sufficient precision within a reasonable time-
scale. Instead, in the P̄lm-specific analysis, the Bayesian
evidence is computed for a fixed P̄lm model as well as lmax

by marginalizing over only the model parameters, fθ⃗g,
which do not necessarily involve high dimensionality
[see Eq. (10)].

Subsequently, we evaluate the odds ratio of a signal
hypothesis (S) over the noise hypothesis (N ), which reads
as a function of lmax

OS
N ðlmaxÞ ¼

pðS;lmaxjfCftgÞ
pðN jfCftgÞ

ð31Þ

¼ pðfCftgjS;lmaxÞ
pðfCftgjN Þ

πðS;lmaxÞ
πðN Þ : ð32Þ

Following the methodology in Sec. VI A, we assign equal
prior odds to each signal and noise hypothesis and hence
only consider the BF

BS
N ðlmaxÞ ¼

pðfCftgjS;lmaxÞ
pðfCftgjN Þ ð33Þ

as the deciding factor. We note that the evidence for the
noise hypothesis is given by the likelihood without any
signal component subtracted, i.e., its exponent proportional
to Eq. (22). Since the Bayesian evidence quantifies the
degree to which the real signal in the data can be described
by the recovered signal model, we identify the lmax that
maximizes BS

N as its optimal choice.

B. Results

We conduct a series of simulations using four kinds of
the 1-year synthesized data with the projected O4 sensi-
tivity as described in Sec. VA. Three of them include a
signal injection based on the PL H̄ðfÞ (fref ¼ 25 Hz and
α ¼ 4) and the Galactic plane P̄lm model shown in Fig. 1
with the injected lmax ¼ 7 and increasing amplitudes of
ϵ ¼ 10−8; 10−7; 10−6. The four datasets are analyzed by
recovering the signal model consistent with the injection
while varying lmax values from 0 to 10 for each dataset. For
the parameter estimation, we take ðϵ; αÞ as free parameters
to infer and set their priors as a log-uniform distribution
from 10−13 to 10−5 and a Gaussian distribution with the
mean of 0 and the standard deviation of 3.5, respectively.
For each dataset and the lmax value for recovery, the

same analysis is repeated using 10 different realizations of
the noise data and the BF is computed each time. Figure 8
shows its mean and 1-sigma error bar as a function of the
recovered lmax. We find that the BF in log scale overall
scales with roughly ϵ2 as expected from Eq. (14), and its
peak is located at the lmax value consistent with the
injection (lmax ¼ 7 indicated by the black dashed line)
for all the three datasets. The BF for the noninjection
dataset, on the other hand, does not indicate any significant
detection and show a relatively flat structure across the
recovered lmax values. Also, we note that the error bars
tend to reduce relative to the mean for larger signal
amplitudes. This observation implies that the optimal
lmax is determined by the cutoff scale of the background
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signal present in data and that its significance increases
with the signal amplitude.

VIII. O3 MSP ANALYSIS

As an example of astrophysically motivated analyses
beyond the toy models we described so far, we adopt a
MSP P̄lm model and search for the signal model using the
publicly available data [91] from O3 of the LVK. We apply
the same preprocessing and gating to the O3 timeseries data
collected from the two LIGO and Virgo detectors as
described in [67], resulting in the CSD with different
livetime for each detector pair (i.e., 169 days for HL,
146 days for HV, and 153 days for LV baseline, respec-
tively). Subsequently, the CSD is folded to one sidereal day
using the method in [92], and the static data products are

computed by the PyStoch pipeline [93,94] and stored
following the procedure similar to Sec. IVA.
Previously, similar searches for the MSP were conducted

based on the isotropic [95] or targeted [73] analysis. The
both searches provide the upper limit on averaged ellip-
ticity of the MSP population and the number of MSP in the
observed frequency band. Regarding the MSP population
in our analysis, we adopt the P̄lm model developed in [73]
using the Gaussian density profile for the pulsar radii, as
shown in Fig. 9. Note that the model developed for the sky
distribution is in the pixel basis (HEALPix [88] grid) and can
be converted to the spherical harmonic basis. The same
spectral model follows H̄ðfÞ ¼ f4pðfjμ; σÞ where
pðfjμ; σÞ is a probability density function of the log-
Gaussian form with the mean of μ and the standard
deviation of σ. Unlike [73], we set ϵ and μ as free
parameters to sample, which obey the priors of a log-
uniform distribution from 10−15 to 10−5 and a Gaussian
distribution with the mean of 6.1 and the standard deviation
of 0.2 respectively, while σ is fixed to be 0.58. These
choices of μ and σ are motivated by the best fit values found
in [96].
We analyze the O3 data with different lmax values from 0

to 5, evaluating the likelihood without any injection,
Eq. (15), which provides the BF and posterior results.
The computedBF values do not have any strong dependence
on lmax values, fluctuating around −0.2. Therefore, we do
not identify any evidence of the SGWB from the MSP
population. Figure 10 shows the posterior result from the
analysis with lmax ¼ 5 using the HLV data, which indicates
that the posterior of μ is similar to its prior and hence that we
do not obtain its meaningful constraints. We find that the
95% upper limit of the amplitude ϵ ≤ 2.7 × 10−8 with the
HLV data, being in good agreement with [73]. We also note
that the posterior results given by other lmax values produce
a similar structure and the upper limits on ϵ.1

FIG. 8. Recovered BF as a function of recovery lmax. Different
colors represent each magnitude of the background injection,
ϵ ¼ 10−6; 10−7; 10−8 and no injection. The dashed black line at
lmax ¼ 7 is the lmax used for the injected signal model.

FIG. 9. Distribution of the MSP population visualized by
Mollweide projection with HEALPix [88] pixelization of
nside ¼ 16. The brighter color represents larger energy density.

1The 95% confidence upper limit from [73] is ϵ ≤ 6.7 × 10−8

assuming a log-uniform prior with the same range as mentioned
in our analysis. The difference may arise from the sky resolution
used in the analysis and variation of μ.
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IX. FUTURE PROSPECTS

Given the current sensitivity of ground-based GW
detectors, it is challenging to detect any kind of anisotropic
SGWB at this point. Rather, it would be of our greater
interest to assess the future prospect of detectability or
constraints on model parameters using projected sensitivity
of current and next-generation detectors. Here, we present
the results of simulated analyses using three different
baseline configurations as follows:

(i) the two LIGO, Virgo and KAGRA detectors with
their design sensitivities (HLVK design),

(ii) the two LIGO, Virgo, KAGRA and LIGO-India
detectors with the Aþ sensitivities (HLVKI A+),

(iii) the two LIGO, Virgo, KAGRA and LIGO-India
detectors with the Aþ sensitivities as well as Cosmic
Explorer (HLVKIþ CE).

For each 1 sidereal-day dataset, we conduct two analyses
with and without a background signal injected. The injected
signal model follows the PL H̄ðfÞ and the Galactic plane
P̄lm model with the same injected parameters ðϵ; αÞ ¼
ð2.608 × 10−6; 3.857Þ as the one in Sec. V B and lmax ¼ 7.
This injected signal is recovered with the consistent signal
model using the same prior distribution as the injection
recovery in Fig. 2, and the 2D posterior result for each
dataset is shown in Fig. 11, where the injected values are
indicated by the red star. The inner and outer contours
represent the 65% and 95% confidence region, respectively.
We find the BF of these signal recoveries to be

roughly 105; 107; 1012 for the injection in the “HLVK
design”,“HLVKI Aþ”,“HLVKIþ CE” datasets, respec-
tively. Regarding the uncertainty in parameter inference,
the “HLVK design” network improves it by a factor of 2
compared to that shown in Fig. 2, where the network
configuration contains only the two LIGO detectors with
the same design sensitivity. Furthermore, the uncertainties
for “HLVKI Aþ” (“HLVKIþ CE”) network decrease by
another one (three) order(s) of magnitudes. Nevertheless,

we should note that these future configurations would
be so sensitive that the energy spectrum of a background
signal itself might act as another source of noise back-
ground. Since the current formalism does not account for
the effect of this additional noise, we regard the results
shown in Fig. 11 as highly optimistic and leave more
thorough analysis without the weak-signal assumption as
future work.
On the other hand, the results for the noninjection

analysis are presented in Fig. 12. For each dataset, we
use the same prior distribution as the signal recovery in
Fig. 3 and draw a contour that represents the 95%
confidence region. While all the datasets yield similar
constraints for α, the upper limit of ϵ becomes more

FIG. 10. Posterior distribution of ðϵ; μÞ parameters for the MSP
population with lmax ¼ 5 using the HLV data.

FIG. 11. Posterior distribution for the same detected injection
as Fig. 2. The inner and outer contour for each distribution
represent 1σ ð68%Þ and 2σ ð95%Þ credible region.

FIG. 12. Posterior distribution for dataset using each future
detector network without any injection. The contours for each
distribution represent 2σ (95%) credible region for parameter
constraints.
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stringent by a half (three) order(s) of magnitudes for
“HLVKI Aþ” (“HLVKIþ CE”) compared to Fig. 3.
This demonstrates how significantly the constraints on
the background amplitudes would improve for next gen-
erations of GW detector networks.

X. CONCLUSION

In this paper, we introduced a parameter estimation
formalism targeted for an anisotropic SGWB from
extended sources. Following the Bayesian framework, this
formalism provides the posterior distribution of model
parameters for a given anisotropy model P̄lm, which can
be seen as an extension from the Bayesian parameter
estimation for isotropic SGWB with higher spatial modes
in a signal model. We also developed data simulation and
signal injection tools on the spherical harmonics
bases, which allow us to conduct injection studies to assess
statistical consistency of posterior results. The study we
conducted using the Galactic plane model showed
validity of the posterior results given by our analysis
(see Fig. 4).
Also, this formalism brings additional novelties such as a

model selection between different P̄lm or H̄ðfÞmodels and
a systematic method to optimize lmax value for given P̄lm,
both of which make use of the comparison of the BF. In
particular, we explored the parameter region where our
pipeline can distinguish two different signal models in
various cases, e.g., PL and BPL H̄ðfÞ models, or isotropic
and the Galactic plane P̄lm models. We noted that the
structure of the distinguishable parameter region was
consistent with our expectation [see Figs. 6 and 7].
Regarding the lmax optimization, we found that, throughout
injected signal amplitudes that are loud enough, the
recovery lmax maximizes the BF when it was matched
with the lmax value used for the signal injection.
(see Fig. 8).
Finally, we conducted an analysis to search for the

MSP population using the real data from the LVK’s O3.
We didn’t have any strong evidence of such a
SGWB signal in the data and placed the constraints on
the amplitude ϵ ≤ 2.7 × 10−8 (95% upper limit). We also
simulated analyses using the projected sensitivities of
future GW detector networks. The analyses demonstrated
that the upgrade to the Aþ sensitivity or the addition of
CE improves the precision of parameter estimation
by one or three orders of magnitudes, respectively. We
also assessed the constraints potentially placed on the same
parameters and obtain similar degrees of the improvements.
This indicates promising insights into the search for
anisotropic SGWB in the future observations.
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APPENDIX: POTENTIAL BIAS
IN ISOTROPIC ANALYSIS

In the injection studies shown in Sec. V, we adopt the
same lmax for both the injection and its recovery, and verify
the statistical consistency in the parameter inference. In
reality, however, we do not know the spatial scale of a
background signal in nature a priori, and it is possible that
one does not recover the signal with a consistent lmax
value. Especially, isotropic SGWB searches (i.e., lmax ¼ 0
for recovery) always ignore any higher spherical-harmonics
mode and hence, for future configurations with greater
sensitivities, it is crucial to investigate the potential impact
of the lmax inconsistency to the parameter inference. Here,
we describe the results of an injection study similar to what
is shown in Sec. V C.
We use the same dataset with injections produced from

the same signal model and parameter values of (ϵ, α) as
used for Sec. V C, setting lmax ¼ 3. Each of these
injections is recovered with the consistent signal model
as well as the same prior distribution except lmax ¼ 0
to simulate an isotropic SGWB analysis. Figure 13

FIG. 13. Posterior distribution for one of the detected injections
that indicate a strong bias in the signal recovery. The injected
values are ðlog10ϵ;αÞ¼ð−6.428;5.447Þ and the BF is ∼5.6×107.
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exemplifies a typical bias of the parameter inference seen
in one of the 2D posterior results. Given the relatively
large BF (∼6 × 107) found for the injection shown in
Fig. 13, we note that this bias tends to be more noticeable
for louder injections.
In order to assess a statistical picture, a P-P plot

for these injection recoveries is produced and shown in
Fig. 14. Apart from the percentile computed for the 2D
α − ϵ posterior as explained in Sec. V C, we also plot
percentiles evaluated for each of the 1D marginalized
posteriors. Unlike the lmax ¼ 3 case in Fig. 4, all three
curves clearly deviate from the 95% error region.
Therefore, this result suggests that the parameter inference
is systematically biased when the recovery lmax is not
consistent with the one characterizing a real signal, which
will be particularly impactful in the conventional isotropic
analysis in the future. Aiming to avoid this bias, we
discuss a quantitative approach to optimize the recovery
lmax in Sec. VII.
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