
Normal and quasinormal modes of holographic multiquark star

Supakchai Ponglertsakul ,1,* Piyabut Burikham ,2,† and Sitthichai Pinkanjanarod 3,‡

1Strong Gravity Group, Department of Physics, Faculty of Science, Silpakorn University,
Nakhon Pathom 73000, Thailand

2High Energy Physics Theory Group, Department of Physics, Faculty of Science,
Chulalongkorn University, Bangkok 10330, Thailand

3Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

(Received 8 October 2022; accepted 19 December 2022; published 27 January 2023)

The quadrupole normal-mode oscillation frequency fn of a multiquark star are computed for n ¼ 1–5.
At the transition from low to high density multiquark in the core region, the first two modes jump to larger
values, a distinctive signature of the presence of the high-density core. When the star oscillation couples
with spacetime, gravitational waves (GW) will be generated and the star will undergo damped oscillation.
The quasinormal modes (QNMs) of the oscillation are computed using two methods, direct scan andWKB,
for QNMs with small and large imaginary parts respectively. The small imaginary QNMs have frequencies
1.5–2.6 kHz and damping times 0.19–1.7 secs for a multiquark star with mass M ¼ 0.6–2.1 M⊙ (solar
mass). The WKB QNMs with large imaginary parts have frequencies 5.98–9.81 kHz and damping times
0.13–0.46 ms for M ≃ 0.3–2.1 M⊙. They are found to be the fluid f −modes and spacetime curvature
w −modes, respectively.
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I. INTRODUCTION

The late-time gravitational waves signal from compact
sources is prominently dominated by characteristic ring-
down phase. This phase is described by a so-called
quasinormal modes (QNMs). In principle, one can deter-
mine the nature of the source by measuring damping time
of gravitational waves amplitude. Moreover, linear stabil-
ities of compact objects can also be verified by the QNMs.
An exponential decay of perturbation mode indicates that a
perturbed object is stable under a linear perturbation. The
studies of black hole quasinormal modes can be traced back
to 1970, where Vishveshwara calculates an oscillation of a
Gaussian wave packet around the Schwarzschild black hole
[1]. It turns out that, the frequency and damping of these
oscillations are solely characterized by its mass. Since then,
numerous of a similar study have been explored with
various types of black holes and fields (see Refs. [2–4] for a
nice review on this subject). Beyond general relativity,
QNMs of black holes in modified gravity are studied in
great numbers. For instance, extended analyzes for black
hole/string in massive gravity and generalized spherical
symmetric background [5–9] demonstrate rich structure of
the black hole QNMs and remarkable connections to the
strong cosmic censorship.

Similarly, the study of stellar pulsation in general rela-
tivity has a long history [10–17]. In Refs. [18,19], a new
family of oscillation modes of neutron stars are discovered,
i.e., w −modes or spacetime modes. The w −modes are
much closer to black hole QNMs than the fluid modes, i.e.,
f, p, g, and r −modes. In addition, the w −modes are
oscillating with very rapid damping time. We refer an
interested reader to Ref. [3] for a classification of neutron
stars oscillationmodes including subfamily of the spacetime
modes. Moreover, the investigation of gravitational waves
signal emitted from neutron stars can prove to be useful.
It is expected that gravitational radiations from neutron
stars carry information about the star’s internal structure
such as its radius, density, and properties of nuclear and
quark matter [20–22].
There have been a series of investigations on the physical

properties of massive neutron star (NS) with exotic quark-
matter core in the form of multiquark (MQ) phase from the
holographic Sakai-Sugimoto (SS) model [23–27]. There
are also other types of holographic models, e.g., top-down
models D3-D7, D4=D8=D8 and a bottom-up V-QCD
model considered in the study of neutron stars and hybrid
stars [28–32]. In the top-down SS model, the dual gauge
theory has many similar properties to the QCD, e.g.,
confinement/deconfinement phase transition, chiral sym-
metry breaking/restoration. Baryon can be added to the
model by introduction of baryon vertex attached to Nc
strings from the AdS boundary. Multiquark states can be
constructed by adding equal numbers of string in and out of
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the baryon vertex [24]. It is interesting that when the bulk
spacetime contains horizon and the chiral symmetry is
broken by the connecting D8-D8 configuration, the multi-
quark phase is found to be the most thermodynamically
preferred nuclear phase in the SS model for moderate
temperature (less than ×1012 K) and high density [24].
Such physical condition is expected to be found in the core
of massive compact astrophysical object such as neutron
star. Consequently, aged massive NS above 2 solar masses
is likely to contain the multiquark core and nuclear crust
according to the SS model.
At the beginning of neutron star/hybrid star formation,

e.g., after supernovae explosion, white dwarfs merging,
excess mass intake of a neutron star; the resulting ultra-
dense compact object could have an extremely high
temperature, comparable to deconfinement phase transition
temperature. In such circumstances, the compact star
resulting from the collapse could be entirely in the
deconfined MQ phase (or even contain quark-gluon plasma
(QGP) core if core temperature is sufficiently large), where
the coupling between quarks is still sufficiently strong to
form bound states even when the quarks are deconfined
within the much larger deconfined region. It is thus
interesting to investigate the physical properties of massive
compact stars entirely consisting of the MQ matter by
assuming temperature at the star surface to be higher than
the transition temperature between multiquark and ordinary
nuclear matter. In Ref. [26], radial pulsations of the holo-
graphic MQ star have been analyzed and six characteristic
frequency modes are determined.
In this work, we calculate the normal and quasinormal

modes (QNMs) of holographic MQ stars in the SS model,
in both the fluid-oscillation (Newtonian f −modes) and
spacetime (w −modes) modes. By comparison to obser-
vations, these modes can be used to identify the MQ star/
core with holographic equations of state in addition to other
specific physical properties studied in Refs. [25–27]. The
results can also be compared with frequencies of other
possibilities of massive compact object such as strangeon
stars (SS) [33] or other phases with different equations of
state such as color-superconductivity (CSC) [34,35] (see
Ref. [36] and references therein).
The work is organized as the following. Section II

presents the equations of state (EoS) for holographic multi-
quark matter in the SSmodel and the perturbation equations
of motion. Section III considers normal modes of fluid MQ
star oscillation. QNMs for fluid and spacetime modes are
calculated in Sec. IV. Section V concludes our work.

II. THEORETICAL SETUP: EQUATIONS
OF STATE AND EQUATION OF MOTION

A. Equations of state

“Neutron stars” generically cool down rather quickly
to temperatures lower than 0.1 MeV (∼109 K). At such

moderate temperatures below the quark-gluon plasma
formation, the coupling of strong interaction could still
be strong. With extreme densities inside the neutron star,
hadronic matters, e.g., neutrons and protons could not
withstand extreme pressure, and the boundary between
hadrons could overlap. Quarks inside one hadron might
leak into others and could form multiquark bound states
within an even larger confinement radius inside the star.
During the earlier stage of the cool down process, the
entire ultradense star could have temperature in the range
109 K < T < 1012 K, where the holographic MQ phase
is the most thermodynamically preferred phase (see
Refs. [24,25]). During this period, the young “neutron
star” could actually be the MQ star. And in the later time,
the aged “NS” could actually be the hybrid star with MQ
core. Another scenario where MQ star could be formed is
when the massive NS gains more mass, collapses and heats
up until most of the star is in the MQ phase.
At present, there is still no effective theory derived from

QCD that could describe the hydrodynamic and thermody-
namicbehavior of theMQstates due to their strongly coupled
nature. We thus adopt the EoS of MQ matter from holo-
graphic SS model originally computed in Ref. [23]. At high
densities, the holographic MQ phase was found to be more
thermodynamically preferred over the stiff nuclear matter
described by chiral effective theory or CET in Ref. [25] and
the KSZ(Kim-Sin-Zahed) models [37,38] in Ref. [27]. It
shouldbenoted that theMQphase can be extended to include
CSC when diquark condensate is formed at relatively low
temperature, and include strange quark flavor to address the
possibility of strangematter emergence, with andwithout the
presence of strong coupling effects.
Correspondingly, the multiquark matter inside the star

can be described by relations between pressure P and mass
density ρ, written as a function of the number density n, as
described in Ref. [23]. The EoS for the small n (“mql”)
multiquark can be expressed in the dimensionless form as

P ¼ an2 þ bn4;

ρ ¼ μ0nþ an2 þ b
3
n4; ð1Þ

where μ0 is the initial value of the chemical potential for the
multiquark phase, while a, b are the parameters associated
with the small n holographic multiquark EoS. On the other
hand, for large n (“mqh”)

P ¼ kn7=5;

ρ ¼ ρc þ
5

2
Pþ μcðn − ncÞ þ kn7=5c −

7k
2
n2=5c n; ð2Þ

where a critical mass density, chemical potential, and
number density at the transition from large to small
multiquark number density, represented by ρc, μc, and
nc, respectively.
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Equations (1) and (2) are expressed in dimensionless
form where all parameters are provided in Table I. For both
ns ¼ 0 and 0.3 cases, the parameter k ¼ 10−0.4. This
implies that the MQ at high density is independent of
the color charges as they have similar characteristics.
Notably, these EoS are shown to be insensitive to temper-
ature in the range 109 K < T < 1012 K [23]. The EoS for
multiquark depends on two free parameters: the color
charge of the multiquark state ns and the energy density
scale ϵs [23,24]. Converting to SI units, the pressure P and
mass density ρ are proportional to the energy density scale
ϵs. As a result, the pure MQ-star mass and radius have the
same scaling M;R ∼ ϵ−1=2s . Remarkably, the compactness
M=R is thus unaffected by ϵs. In this work, we will set
ϵs ¼ 26 GeV fm−3.

B. Equations of motion

We use the convention of Refs. [18,19]. The metric is
expressed as

ds2 ¼ −eνð1þ rlH0Yl
meiωtÞdt2 − 2iωrlþ1H1Yl

meiωtdtdr

þ eλð1 − rlH0Yl
meiωtÞdr2

þ r2ð1 − rlKYl
meiωtÞðdθ2 þ sin2 θdϕ2Þ; ð3Þ

where ν; λ; H0; H1; K are functions of radial coordinate r
and the spherical harmonics is denoted by Yl

m. The fluid
4-velocity sourcing the spacetime perturbation for even
parity modes are given by [13] (with rl rescaling),

u0¼e−ν=2
�
1−

1

2
rlH0Yl

meiωt
�
; ur¼rl−1e−ðνþλÞ=2

∂tWYl
m;

uθ¼−rl−2e−ν=2∂tV∂θYl
m; uϕ¼0; ð4Þ

where W ¼ Wðt; rÞ and V ¼ Vðt; rÞ. Generally, perturbed
Einstein field equations yield five first order differential
equations for H0; H1; K;W; V. However, they are not all
linear independent. In fact, the Einstein equation implies
the following [18]

ð2M þ Nrþ Q̄ÞH0 ¼ −½ðN þ 1ÞQ̄ − ω2r3e−ðλþνÞ�H1

þ
h
Nr − ω2r3e−ν −

eλ

r
Q̄ð2M

−rþ Q̄Þ
i
K þ 8πr3e−

ν
2X; ð5Þ

with Q̄ ¼ M þ 4πr3P and N ¼ ðl − 1Þðlþ 2Þ=2. The
new function X is introduced [16]

X ≡ ω2ðPþ ρÞe−ν=2V þ ðPþ ρÞ
2

eν=2H0

−
P0

r
eðν−λÞ=2W: ð6Þ

The equations of motion governing the perturbations of
fluid in a spherically symmetric star with no rotation are
given by the Einstein field equations,

H0
1 ¼

eλ

r

�
−½ðlþ 1Þe−λþ 2

M
r
þ 4πr2ðP− ρÞ�H1þH0þK

− 16πðPþ ρÞV
�
;

K0 ¼ 1

r

�
H0þðNþ 1ÞH1−

�
lþ 1−

rν0

2

�
K

− 8πðPþ ρÞeλ=2W
�
;

W0 ¼−ðlþ 1ÞWr−1þ reλ=2
�
1

2
H0þKþðγPÞ−1e−ν=2X

−lðlþ 1Þr−2V
�
;

X0 ¼−
l
r
Xþ 1

2r
ðρþPÞeν

2

��
1−

ν0r
2

�
H0þðr2ω2e−ν

þðNþ 1ÞÞH1þ
�
3

2
ν0r− 1

�
K−

lðlþ 1Þν0
r

V

−
�
8πðρþPÞeλ

2 þ 2ω2e
λ
2
−ν− r2

�
ν0

r2e
λ
2

�0�
W
�
: ð7Þ

Remark that, we can eliminate H0 and V using (5)
and (6) respectively from the perturbation equations (7).
Thus we obtain four first order differential equations for
fH1; K;W; Xg.
We will solve these perturbation equations with appro-

priated boundary conditions. As a result, one obtains
specific frequency ω. For the calculation of normal
modes, the boundary condition at the star surface r ¼ R
is simply XðRÞ ¼ 0 (zero pressure and density at the
surface) and there is no need to do the matching with
the outer region of the star. The normal modes correspond
to real frequency. Boundary conditions and numerical
procedure for obtaining QNMs and their corresponding
quasinormal frequency can be found below in Sec. IV.

TABLE I. Parameters associated with EoS expressed in Eqs. (1) and (2) in dimensionless units.

ns a b μ0 k ρc μc nc

0 1 0 0.17495 10−0.4 0.0841077 0.564374 0.215443
0.3 0.375 180.0 0.32767 10−0.4 0.0345996 0.490069 0.086666
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III. NORMAL MODES OF MULTIQUARK STAR

In this section, the normal modes quadrupole oscilla-
tions and QNMs of the multiquark star are numerically
calculated. The normal mode quadrupole oscillations are
computed under the assumption that the energy loss to
the gravitational waves is negligible and the frequency
f ¼ ω=2π is purely real. These Newtonian modes are
simply fluid nonradial oscillations confined by gravity of
the star with boundary conditions X ¼ 0, r ≥ R. In Figs. 1
and 2, the five lowest frequency modes (n ¼ 1–5) are
displayed as a function of MQ star’s mass and star’s
compactness C≡M=R respectively (note that the MQ
star with mass smaller than 1.4 M⊙ is most likely hypo-
thetical but we choose to present them for comparison to
the typical NS with other nuclear EoS). The frequencies are
found to be monotonically increasing with M and C. At
high mass M ≳ 2 M⊙ and compactness when the star has
the high density “mqh” core, the behavior of the frequen-
cies become nontrivial. The high-density core acquires its
own fundamental oscillation resulting in the appearance of
the lowest mode f1. At the same time, the second mode
jumps to higher value while f4 and f5 start to decrease with
increasing M, C at higher masses while f3 coincidentally
stays monotonic. In the presence of very small Newtonian
damping, these normal modes obtain very small imaginary
part in the frequency and become the f −modes discussed
in Sec. IV.
In comparison, typical f −mode frequencies of the

neutron star with nuclear matter content are in the range
1.5–3 kHz [3,16] while the p1 −mode frequencies are
around 4–7 kHz. For the multiquark star with masses
around 1.4 solar masses, the f2 is the lowest mode and its
value is 2.6–2.7 kHz. The multiquark oscillation has
relatively high fundamental frequency comparable to
the nuclear matter with high mean density. This is con-
sistent with the fact that the multiquark phase consists
of extremely dense bound states of quarks. The “mql”
multiquark behaves very similar to baryon. Only when the

density becomes even higher that “mqh” multiquark EoS
emerges and the most fundamental frequency f1 appears in
the massive multiquark star above 2 solar masses.

IV. QUASINORMAL MODES
OF MULTIQUARK STAR

For compact objects with extreme density, quadrupole
oscillations of star can couple to the spacetime generating
GWs which carry energy away. In this case, the oscillation
will be damped resulting in the QNMs of the dense massive
star. Depending on the physical modes, coupling between
spacetime and fluid content of the star could be drastically
different. While normal-mode quadrupole oscillations are
f −modes, oscillatory modes with small spacetime-fluid
coupling could have small imaginary parts of ω.
The QNMs are calculated using two methods, the direct

scan and WKB. Both methods find solution with zero
incoming waves. Direct scan is used to find the QNMs with
very small Imω, the ratio of incoming to outgoing waves
are in the order of 10−6 at far distance r ¼ 55Reω. For
WKB, the outer wave solutions of QNMs are verified that
they contain less than 10−3 of the incoming/outgoing waves
ratio at far distance r > 50Reω. Figures 3–5 show real and
imaginary parts of ω in dimensionless unit (note that the
MQ star with mass smaller than 1.4 M⊙ is most likely
hypothetical but we choose to present them for comparison
to the typical NS with other nuclear EoS). The value of Reω
can be translated to the frequency f in the SI units by
the conversion factor fcon ≡ 1.73603

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵs=ðGeV fm−3Þ

p
¼

8.85206 kHz for ϵs ¼ 26 GeV=fm3. The damping time
τ≡ 1=Imω can be translated to time unit by the conversion
factor tcon ≡ 0.01797943211 ms (scales with 1=

ffiffiffiffi
ϵs

p
).

A. The inner solution of the star

To ensure the condition XðRÞ ¼ 0 is satisfied, we use the
same procedure as Ref. [16] to solve Eqs. (7) in the form

FIG. 1. Quadrupole oscillation frequency fn; n ¼ 1, 2, 3, 4, 5
vs M of the MQ star.

FIG. 2. Quadrupole oscillation frequency fn; n ¼ 1, 2, 3, 4, 5
vs compactness C of the MQ star.
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dY
dr

¼ Pðr;l;ωÞ · Y; ð8Þ

where Y ¼ ðH1; K;W; XÞ and the matrix P can be read off
from (7) after using constraints from the equations of
motion to eliminate V;H0. Then three independent sol-
utions with XðRÞ ¼ 0 are numerically solved from the
surface to the radius r ¼ R=2 and two independent solu-
tions are solved from the center out to r ¼ R=2. The
general solutions can be expressed as

YinðR=2 ≤ r ≤ RÞ ¼ a1Y1ðrÞ þ a2Y2ðrÞ þ a3Y3ðrÞ;
Yinð0 ≤ r ≤ R=2Þ ¼ a4Y4ðrÞ þ a5Y5ðrÞ: ð9Þ

The physical inner solution requires the matching

a1Y1ðR=2Þ þ a2Y2ðR=2Þ þ a3Y3ðR=2Þ
¼ a4Y4ðR=2Þ þ a5Y5ðR=2Þ: ð10Þ

B. The outer solutions

At surface of the star, the inner and outer solutions
are matched via the transformation related to Zerilli
function Zðr�Þ

FIG. 3. QNMs with small Im ω vs mass of the MQ star.

FIG. 4. QNMs vs mass of the MQ star.

FIG. 5. QNMs with small Im ω and large (WKB) Im ω vs
compactness M=R of the MQ star.
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�
0 1

1 0

��
r−ðlþ1ÞH1ðrÞ
r−lKðrÞ

�
¼

�
fðrÞ gðrÞ
hðrÞ kðrÞ

��
Zðr�Þ
Z0ðr�Þ

�
;

ð11Þ

where Z0ðr�Þ≡ dZ
dr�
,

fðrÞ ¼ NðN þ 1Þr2 þ 3NMrþ 6M2

r2ðNrþ 3MÞ ; gðrÞ ¼ 1;

hðrÞ ¼ −Nr2 þ 3NMrþ 3M2

ðr − 2MÞðNrþ 3MÞ ; kðrÞ ¼ −r2

r − 2M
;

and the tortoise coordinate r� is

r� ¼ rþ 2M log
�

r
2M

− 1

�
: ð12Þ

Outside the star, there is no source of matter and the
spacetime resembles the Schwarzschild metric. Therefore
the perturbation equations reduce to a single wavelike
equation [39]. Generically, the wave equation (Zerilli’s
equation) in the exterior of the star is given by

d2Z
dr2�

þ ðω2 − VðrÞÞZ ¼ 0; ð13Þ

where the effective potential is

VðrÞ¼ 2ð1−2M=rÞ
r2ðNrþ3MÞ2
× ððNþ1ÞN2r3þ3N2Mr2þ9NM2rþ9M3Þ: ð14Þ

For real ω, there are two linearly independent solutions to
the Zerilli’s equation,

Z−ðr�Þ ¼ e−iωr�
X∞
j¼0

αjr−j;

Zþðr�Þ ¼ eiωr�
X∞
j¼0

ᾱjr−j; ð15Þ

where Z−ðZþÞ represents the purely outgoing (incoming)
waves respectively. The coefficient ᾱj is the complex
conjugate of αj, they can be found by the recursive relation
(e.g., in Ref. [40]) using conventional Frobenius method.
The generic solution in the outer region is then given by

Zout ¼ AðωÞZ− þ BðωÞZþ; ð16Þ

where the ratio BðωÞ=AðωÞ ¼ 1, 0 for normal and quasi-
normal modes respectively.

C. QNMs with small Im ω

A method although laborious yet effective in finding the
QNMs with small imaginary parts is to scan for solution
with BðωÞ=AðωÞ ¼ 0 by varying ω.
The results are shown in Fig. 3. These modes have less

than 10−6 of the incoming/outgoing waves ratio at far
distance r ¼ 55Reω. As the MQ-star mass increases, the
real and imaginary part of quasinormal frequencies increase
with the MQ-star mass. Interestingly, polar QNMs of
neutron star in massive scalar-tensor gravity also share a
similar trend [41].

D. WKB

For the WKB method, the approximate wave solution is
given by replacement Z∓ → ZWKB∓ where

ZWKB∓ ðrÞ ¼ Qðr�Þ1=2 exp
�
∓i

Z
r�
QðyÞdy

�
; ð17Þ

and

Qðr�Þ ¼ ðω2 − VðrÞÞ1=2

in Eq. (16) respectively. The ratio of the incoming and
outgoing waves is thus [18]

BðωÞ
AðωÞ ¼ e−2iQðRÞ

QðRÞ − i
h
Z0
inðRÞ

ZinðRÞ þ
Q0ðRÞ
2QðRÞ

i

QðRÞ þ i
h
Z0
inðRÞ

ZinðRÞ þ
Q0ðRÞ
2QðRÞ

i ; ð18Þ

where the prime indicates derivative with respect to r�. The
QNMs can be determined by numerical evaluation of the
roots of BðωÞ=AðωÞ ¼ 0, by first substituting a trial value
of ω and solve for the inner solution ZinðrÞ within the star.
The resulting roots for ω is then fed back to the equation of
motion to find a new inner solution and repeat the process
until ω converges to a single value. Figure 4 shows QNMs
of multiquark star with large Imω determined by the WKB
method, the physical value scales with

ffiffiffiffi
ϵs

p
. In contrast to

Fig. 3, the real and imaginary part of quasinormal frequen-
cies decrease monotonically with the MQ-star mass.
Similar behavior is found for the axial perturbation of
neutron star in R2 gravity [42].
In order to understand more on the physical origin of the

two kinds of modes, we plot ω versus compactnessM=R in
Fig. 5. The small-Imω modes have Reω increasing with
compactness while Imω increases with C until a maximum
around C ≃ 0.25–0.26 then it decreases. In contrast, WKB
modes (with large Imω) have ω as a decreasing function of
C for both real and imaginary parts. Reω and Imω can be
converted to SI units by conversion factors fcon and tcon,
respectively.
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In addition, the small imaginary modes (the upper two
plots in Fig. 5) appear to follow the universal relations of
QNMs of neutron star reported in [20] in a small compact-
ness region, i.e., C < 0.25. However, our results on the
WKB modes do not share the universality found in [20].

This discrepancy may allow us to distinguish the gravita-
tional radiation from the MQ star.
From the range of numerical values of the QNMs for

both kinds and the approximate linear behavior of the
frequencies shown in Fig. 6 (ρ̄ ¼ M=R3, average density of
the star), we can conclude that the small-Imω modes are
the f −modes, and the WKB QNMs are the curvature
w −modes according to the criteria in Refs. [3,43].
Moreover, the damping time of the WKB modes is an
increasing function of compactness as shown in Fig. 7,
consistent with the property of the curvature w −modes.
The spacetime metric perturbations H1; K of these modes
clearly are dominant as shown in Appendix A.

V. CONCLUSIONS AND DISCUSSIONS

The oscillatory modes of holographic MQ star/core of
massive stars in the SS model with the energy density scale
ϵs ¼ 26 GeV fm−3 have been calculated. We obtain normal
and quasinormal modes of MQ star by using direct scan and
WKB methods. We find that the stars with higher mass and
compactness oscillate with higher frequencies. By direct
scanning of the solutions satisfying boundary condition of
the quasinormal modes, i.e., zero incoming gravitational
waves from infinity in the outer region of star, QNMs with
very small Imω are found with frequencies in the order of
1.5–2.6 kHz, and damping times 0.19–1.7 s for MQ star
with massM ¼ ð0.6 − 2.1Þ M⊙ (note that the MQ star with
mass smaller than 1.4 M⊙ is most likely hypothetical,
however we choose to present them for comparison to
the typical NS with other nuclear EoS). By using WKB
method, QNMs with larger Imω are found with
f ¼ 5.98–9.81 kHz, damping times 0.13–0.46 ms for
M ≃ ð0.3 − 2.1Þ M⊙. These are the f −modes and curva-
ture w −modes of MQ star respectively. Both modes can be
fit with approximate empirical linear relations found in
Ref. [43] as shown in Fig. 6. For MQ f −modes, since the
EoS is not a single power law, the approximate linear
relation can fit well only around the high mass region of the
star in Fig. 6. For w −modes, the linear relation fit is quite
excellent even though there appears to be a transition from
one fitting linear relation to another when the MQ star
changes from the star with high density “mqh” core to pure
“mql” star.
Massive neutron star around and above two solar masses

could have multiquark core whence further gravitational
collapse would generate fluid and spacetime excitations in
the f, p, g, r, and w −modes. The GW from these
excitations could be detected after such collapse, e.g., in
aftermath of supernovae explosion and neutron stars
collision. It is thus possible that these QNMs would be
generated by such extreme events and subsequently
detected at LIGO/Virgo and future gravitational waves
detection facilities. The sensitivities of these GWevents are
estimated in Appendix B.

FIG. 6. Frequencies f ¼ Reω=2π of f −modes vs
ffiffiffiffiffiffi
Gρ̄

p
(upper) and fR of WKB w −modes vs C (lower). The red/dense
dots on the high C values show MQ star with high-density
“mqh” core.

FIG. 7. Damping time τ ofWKBw −modes vsC. The dense dots
on the high C values show MQ star with high-density “mqh” core.
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APPENDIX A: PERTURBATION PROFILES
OF WKB H1ðrÞ, KðrÞ, WðrÞ, XðrÞ INSIDE

THE MQ STAR

Perturbations inside the MQ star for the WKB modes
(spacetime curvature w −modes) at M ¼ 2.04 M⊙ (where
“mqh” disappears and only “mql” exists) MQ star are
shown in Fig. 8. The spacetime metric perturbations H1; K
are clearly dominant for this mode.

APPENDIX B: SENSITIVITY OF GW SIGNALS
FROM f −MODE AND w−MODE
OSCILLATIONS OF MQ STAR

In order to estimate the sensitivities of GW from
oscillating MQ star at the detection facilities, we adapt
the approximation formula for GW amplitude heff by
Andersson and Kokkotas [43,44],

heff ∼ 2.2× 10−21
�

E
10−6 M⊙c2

�
1=2

�
2 kHz
f

�
1=2

�
50 kpc

r

�
;

ðB1Þ
and

heff ∼9.7×10−22
�

E
10−6 M⊙c2

�
1=2

�
10 kHz

f

�
1=2

�
50 kpc

r

�

ðB2Þ
for thef−mode andw −mode respectively.E is the available
energy in GW form and r is the distance to the source.
The sensitivity at a detector is then given by

strain=
ffiffiffiffiffiffi
Hz

p
≃ heff=10

ffiffiffiffiffiffi
Hz

p
for signal bandwidth 100 Hz.

ForM¼Mmax¼2.11M⊙, the lowest f −mode (w −mode)
f ¼ 2.55ð5.98Þ kHz, the required minimum sensitivity
for detection is 1.54ð1.0Þ × 10−24=

ffiffiffiffiffiffi
Hz

p
for E ¼

10 × 10−6 M⊙c2; r ¼ 20Mpc respectively. Large uncer-
tainties come from the amount of available energy in each
mode of GW since heff ∼

ffiffiffiffi
E

p
. With our estimate of

E ¼ 10 × 10−6 M⊙c2 and by comparison to Table II, the
GW signals in these modes are still beyond the discovery
sensitivity of present detection facilities, LIGO/Virgo, for
nearby source at 20 Mpc (half the distance of GW170817).
However, the future detection facilities such as the Einstein
Telescope and Cosmic Explorer have the potential to
discover GW signals from these modes for events with
E ∼ 10 × 10−6 M⊙c2 at 20 Mpc.
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