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Optical interferometers may not require a phase-stable optical link between the stations if instead sources
of quantum-mechanically entangled pairs could be provided to them, enabling long baselines. We
developed a new variation of this idea, proposing that photons from two different astronomical sources
could be interfered at two decoupled stations. Interference products can then be calculated in post-
processing or requiring only a slow, classical connection between stations. In this work, we investigated
practical feasibility of this approach. We developed a Bayesian analysis method for the earth rotation fringe
scanning technique and showed that in the limit of high signal-to-noise ratio it reproduced the results from a
simple Fisher matrix analysis. We identify candidate stair pairs in the northern hemisphere, where this
technique could be applied. With two telescopes with an effective collecting area of ∼2 m2, we could detect
fringing and measure the astrometric separation of the sources at ∼100 μas precision in a few hours of
observations, in agreement with previous estimates.
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I. INTRODUCTION

In a traditional Michelson stellar interferometer [1–3], a
single photon is accepted into two telescope apertures at
different locations, and then brought together along two
paths to interfere. The resulting fringe pattern is sensitive to
the phase difference incurred due to differences in the
photon’s path length to each aperture. Assuming that
photon occupies a plane wave mode, the interference
pattern will be sensitive to changes on an angular scale
of Δθ ∼ λ=B from the source, where B is the baseline, or
separation between the apertures, and λ is the photon
wavelength. The Michelson setup necessitates maintaining
a stable optical path between the stations, which typically
limits practical baselines of optical interferometers to a few
100s of meters [4–6].
Single-photon optical interferometry is very similar to

the radio interferometry, where the wavelength can be of
the order of meters to millimeters. In VLBI (very long
baseline interferometry) the baselines can be thousands of
kilometers with observatories spread around the Earth. The
astronomical radio VLBI is greatly facilitated by the fact

that the electromagnetic waveforms for the radio frequency
scales can be recorded independently and interfered offline
later, which is not the case in the optical. Radio VLBI has
provided some of the most high-resolution observations in
astronomy with one of the recent successes undoubtedly
the first image of the supermassive black hole in M87 [7].
However, the resolution in the optical should be better for
the same baseline of the same wavelength since it scales
with the wavelength. The signal-to-noise ratio cannot be
immediately compared between the two, because the
emission mechanism, candidate sources and detection
techniques are very different in the two cases. Radio
VLBI and optical interferometry (both classical single-
photon and two-photon version described here) are highly
complementary astronomical techniques.
This manuscript discusses a novel type of optical inter-

ferometer first proposed in our previous work [8,9] that
utilizes quantum interference effects between two photons
from two astronomical sources. By using two sky sources,
the proposed interferometer bypasses the traditional neces-
sity of establishing a live optical path connecting detection
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sites, so the baseline distance can be made, in principle,
arbitrarily large, and consequently, an improvement of
several orders of magnitude in angular resolution could be
attainable. This development can be considered as a variation
of pioneering ideas described in the work of Gottesman,
Jennewein and Croke in 2012 [10] to employ a source of
path-entangled photon pairs to measure the photon phase
difference between the receiving stations, whichwere further
developed inRefs. [11–15]. In our case the second sky source
is used to produce similar second order correlations of
intensity in the two-photon interference.
We note, also, that our technique has considerable

overlap with the Hanbury Brown and Twiss (HBT) inten-
sity correlation astronomical technique [16–18], which is
used to resolve angular star dimensions by employing two-
photon correlation effects. One of the first notable results
using the intensity interferometry was to measure the
properties of α Virginis binary stars [19] by Herbison-
Evan in 1970.
This technique grew into a mature field over the past

decades with applications in numerous projects [20–23]. A
recent study [24] also showed that intensity interferometry
could provide better astrometry compared to the classical
interferometry for close binary star systems, confirming
original studies [19,25–27]. In contrast to the classical
intensity interferometry, the new approach, advocated here,
allows high-precision measurements of relative astrometry
for two sources with considerable angular separation.
In our previous work [8] we proposed to determine the

difference in sky positions between the sources employing
oscillations of the fringe pattern due to the Earth rotation.
This technique of fringe ratemeasurement allows to improve
the astrometric precision as it has more favorable scaling
with the experiment duration compared to the standard
technique of photon counting. And since the Earth rotation
rate is very stable the measurement can be reliably repeated
to study periodic behavior of targeted sources.
The main purpose of this work is to update a simple

Fisher matrix calculation presented in [8] with a more
realistic one, and selecting optimal observables for an
upcoming on-sky demonstration. Additional goals are also
to identify basic parameters of the apparatus that could be
able to detect the signal, and to present a concrete algorithm
for inferring the parameters of interest from a list of time
coincidences of registered photons from the sky sources.
For the first time, we aim to determine the applicability of
the aforementioned technique employing direct simulations
based on the real star pairs and to compare it with
theoretical estimations obtained earlier.
The numerical approach followed here is not meant to

model all realistic instrumental effects. It assumes realistic
photon fluxes and an actual (simulated) list of events, but
the collecting apparatus is still assumed to be ideal.
Realistic apparatus effects affect the measurement in at
least two ways: (i) through the total photon counts, which

can be reduced due to various inefficiencies such as photon
detection inefficiency and transmission losses; and (ii) spu-
rious background photon detection and atmospheric fluc-
tuation effects [28,29]. The former effect can be
incorporated into an effective collecting area and the latter
one results in a reduced visibility, so we parametrize and
study these effects using these variables.
The rest of the paper is organized as follows: Section II

explains principles of the new two-photon interferometer
and Earth rotation fringe scan technique. Then Sec. III
describes in detail the observables to be used and
their modelling and fitting procedure. Section IV dis-
cusses selection of possible star pairs for imminent
proof-of-principle observations and numerical simula-
tions. Section V describes results of the Markov Chain
Monte Carlo (MCMC) procedure [30] which is used to
evaluate the astrometric precision for some of the selected
pairs. Lastly, Sec. VI presents a discussion of the results
and conclusions.

II. EARTH ROTATION FRINGE RATE
SCANNING TECHNIQUE

In this section we briefly review the proposed two-
photon interferometer and then describe the Earth rotation
fringe scan technique.

FIG. 1. Schematic picture of the two-photon amplitude inter-
ferometer. We assume that there are two sources which can be
observed simultaneously from two stations, L andR, with single
spatial mode inputs a, b and e, f. Both sources send out photons
in the form of plane wave, the path length difference between the
two stations yielding phase delays δ1 and δ2 between the photons
observed at channels a, e from source 1 and b, f from source 2,
respectively. If the two detected photons are close enough in
frequency and arrival time, then the pattern of coincidences
measured at the outputs c, d and g, h will be sensitive to the
difference of the phase differences, ðδ1 − δ2Þ, after interference at
the symmetric beam splitter in each station.
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A. Two-photon interferometer

The basic arrangement of the novel interferometer is
shown in Fig. 1, following closely the detailed description
in [8]: the two sources 1 and 2 are both observed from
each of two stations, L andR. The key requirement is that
photons from Source 1 be coupled into single spatial
modes a at station L and e at station R; while those from
Source 2 are separately coupled into the two single spatial
modes b and f as shown. The photon modes a and b at
station L are then brought to the inputs of a symmetric
beam splitter, with output modes labeled c and d; and the
same for input modes e and f split onto output modes g
and h at station R. The four outputs are each viewed by a
fast, single-photon sensitive detector. We imagine that the
light in each output port is spectrographically divided into
small bins and each spectral bin then constitutes a separate
experiment with four detectors. If the two photons are
close enough together in both time and frequency, then
due to quantum mechanical interference the pattern of
coincidences between one detector in L (“c” or “d”) and
one detector in R (“g” or “h”) will be sensitive to the
difference in phase differences ðδ1 − δ2Þ for the two
sources; and this in turn will be sensitive to the relative
opening angle between them.

B. Fringe rate scanning

The overall geometry is illustrated in Fig. 2, which
shows two stations and two sources on the sky. A tangent
plane coordinate system is used to describe the position of
the source pair and the baseline of the two telescopes. The
origin of the tangent plane is defined to be the midpoint
between the two sources. dE and dN are the two basis
pointing in the azimuth direction and to the north pole,
respectively. Let us first consider a simple case that the
baseline B between the two stations is straight East-West
and both sources lie on the celestial Equator. The light path
differences will then be gradually modulated by Earth’s
rotation together with observed pair coincidences as a
function of time. As shown in [8], this fringe angular rate
ωf provides a direct measure of the opening angle between
the sources Δθ if all the other parameters are known. In the
limit of small opening angle the fringe rate is just propor-
tional to Δθ

ωf ¼ 2πBΩ sin θ0
λ

Δθ; ð1Þ

where λ is the photon wavelength, θ0 is the position of
source 1 at the epoch chosen as t ¼ 0, and Ω¼7.29×10−5

rad=sec is the angular velocity of the Earth’s rotation.
Generally, measurements of frequency across a time

domain are among the most precise allowing us to outline
possible strategy of astrometric measurements. We can
make a measurement of ωf every day at the same θ0; and

then day-by-day changes in ωf over a season would
provide information on the evolution of Δθ due to parallax,
orbital motions, gravitational lensing, etc., as well as
relative overall proper motion.

III. METHOD

In this section we provide exact expressions for the
geometry and explain the measurement methodology
including detailed simulations and derivation of the like-
lihood function.

A. Geometry

In a single source interferometry, the fringe is
cased by changing of the path length difference in arrival
times of the photon to the telescope. In two source
interferometry, we are sensitive to the difference in the
two path length differences. In [8] we have considered a
simple geometry where both the telescope baseline and
the stair pairs are aligned in the East-West direction. We
will now calculate this geometry in a general case so we
can apply it to the real star pairs. We will work in small
angle approximation for both the telescopes (i.e. baseline
is much smaller than the radius of the earth) and sources
(the intersource separation in radians is much smaller
unity), which should be acceptable for all practical
purposes.
Without loss of generality, we can put telescopes at

longitude 0 and latitude θL. It can be shown that the
baseline vector is given by

FIG. 2. Schematic drawing of the experiment geometry con-
sidering an arbitrary baseline and star pair. Two tangent planes are
defined by a unit vector point from the center of Earth to the
midpoint between the baseline, B, and the separation vector
between the two sources. Two coordinates, dN and dE, are
introduced to characterize the position of the star pair where the
origin is defined to be the midpoint of separation vector, which is
the black dot between the two stars. dE points in the azimuth
direction or into the page, and dN points up to the north pole.
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B⃗ ¼ BN

0
B@

− sin θL
0

cos θL

1
CAþ BE

0
B@

0

1

0

1
CAþ BV

0
B@

cos θL
0

sin θL

1
CA; ð2Þ

where BN and BE are the North-South and East-
West components of the baseline, and BV is the vertical
component of the baseline. We note that BV is negligibly
small for the typical baselines (∼200 m) that we con-
sider here.
A vector to the pair of source points toward

ŝ ¼

0
B@

cos δ cosϕ

cos δ sinϕ

sin δ

1
CA; ð3Þ

where δ is declination of the source pair and ϕ is the local
hour angle. In this setup, when ϕ ¼ 0, the source transits.
We work in the Earth fixed frame, so ϕ varies with time as
ϕ ¼ Ωt, where Ω ¼ 2π=ð1 dayÞ is the Earth angular
velocity. By taking derivatives of ŝ with respect to δ and
ϕ and appropriately renormalizing, we find that the vector
connecting the two source can be written as

Δs⃗ ¼ dN

0
B@

− sin δ cosϕ

− sin δ sinϕ

cos δ

1
CAþ dE

0
B@

− sinϕ

cosϕ

0

1
CA; ð4Þ

where dN and dE and the source separations in radians
toward the North and East on the celestial sphere.
We thus find that the difference in path difference can be

expressed as

ΔL ¼
�
BN

BE

�
T
�
sin θL sin δ cosϕþ cos θL cos δ sin θL sinϕ

− sin δ sinϕ cosϕ

��
dN
dE

�
ð5Þ

B. Coincidence rate

In the two-photon interferometry setup shown in Fig. 1
there are four types of observed coincident pairs with one
photon at each station L and R, namely cg, dh, ch and dg,
referring to the beam splitter output channels in the figure.
The rate for each pair type will show fringes, with cg and
dh both moving together and ch and dg both moving
oppositely:

R�ðtÞ ¼ n̄

�
1� V cos

�
2πΔL
λ

þ ψ

��
; ð6Þ

where, in notation of [8]:

Rþ ¼ ncg þ ndh

R− ¼ nch þ ndg; ð7Þ

and V is the fringe visibility (see below). Here we use nxy
for the rate of pair coincidences in the x and y outputs,R� is
the combined rate for each co-moving set of pairs, and n̄ is
the fringe-averaged value of R. [31].
We can then relate n̄ to the source intensities and the

assumed parameters of the light collection and single
photon detection:

n̄ ¼ ðS1 þ S2Þ2τ
4

�
AΔν
2hν

�
2

; ð8Þ

where S1;2 are the fluxes of corresponding sources
expressed as energy per unit time per unit collecting area

and per unit bandwidth; A is the effective collecting area at
each of the four apertures, here assumed to be identical; ν
and Δν are the photon frequency and allowed bandwidth;
and τ is the arrival time window over which the two
photons can be considered in coincidence.
To observe quantum interference between photons, path

alternatives for the photons in output modes after the
beamsplitters must be indistinguishable, meaning that the
product of the differences in their measured arrival times Δt
and their frequencies Δν must satisfy 2πΔtΔν < ∼1. This
means that if our detector time resolution is τ then the natural
choice of frequency bin width Δν will be Δν ¼ ð2πτÞ−1,
which is what we use in the simulations here. The total signal
grows linearly with bandwidth. The factor of 8 stems from
considering the number of all possible quantum-mechanically
allowed photon coincidences. The factor in brackets converts
the flux in Jy to the number of photons per unit time. The
factor of 2 in that denominator accounts for the fact that
conventionally S is the total flux density over both photon
polarizations, while the interference condition requires both
photons to be in the same polarization mode, and so we
assume only one polarization is accepted.
Classically, V ¼ 2S1S2=ðS1 þ S2Þ2, which is maximized

at V ¼ ½ when S1 ¼ S2. A more careful quantum-
mechanical calculation for the case of two thermal sources
results in V ¼ 2S1S2=ððS1 þ S2Þ2 þ S21 þ S22Þ in the limit
of both sources individually unresolved by the interfero-
metric baseline. This final expression gives a maximum
visibility of V ¼ 1=3, but for each case considered in this
paper, we evaluated the visibility individually in the fit
providing corresponding values.
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C. Simulations

In order to get datasets as realistic as possible, we need to
simulate coincidences that follow the prescribed Poisson
process. The fringing frequency that modulates the coinci-
dence rate is considerably faster than the total observation
time, which makes brute-force simulation in terms of small
time bins impractical. Instead we split the simulation
process into two steps: (i) identifying which fringe cycles
will contain an event and (ii) placing events into those
cycles. See Fig. 3 for a visual guide on how coincidences
are simulated.
We first determine the edge of fringe cycles, i.e. times for

which 2πΔL=λþ ψ ¼ 2Nπ for an integer N, for a given ψ
and ϕ ¼ Ωt [see Eq. (5)]. We then calculate the number of
event occurrences in each fringe cycle of the coincidence
rate curve by sampling from n̄Δt, where Δt is the duration
of that particular cycle. This assumes that the timescale of a
single fringe cycle is small compared to the timescale of the
Earth rotation, i.e. Δt ≪ 2π=Ω, where Ω is the angular
velocity of Earth rotation.
The second part involves placing events within each

cycle. The relative probability within cycle follows
1� V cosðαÞ, where α ¼ 2πt=Δt measures the phase
within cycle. We place an event through inverse transform
sampling. A random number r is drawn from a uniform
distribution on the interval [0, 1] and then α is found so that
it solves

CDFðαÞ ¼ α ∓ V sinðαÞ þ π

2π
¼ r α ∈ ½−π; π� ð9Þ

In practice, this equation is solved by constructing a set
of cumulative distribution functions CDFðαÞ [32] and

interpolating it with an appropriate spline. The value of
α is then converted to the actual timestamp. While this
assumes thatΔL ∝ ΔT during an individual cycle, which is
an excellent approximation, we correctly account for
changing cycle duration due to projection effects.
The result of this process is a collection of time tags for

simulated coincidence events for both R� branches of
events. We now use these data for constructing a likelihood
for a given model.

D. Likelihood

Coincidences as a Poisson process have a rate, which
varies with time. It can be shown that the log probability of
obtaining a set of events at times ti from a Poisson process
observed between t ¼ 0 and t ¼ T is given by

logPðtijRðtÞÞ ¼
X
i

logRðtiÞ −
Z

T

0

RðtÞdt ð10Þ

This can be derived by considering a set of finite bins in
time and letting the limit of bin width going to zero.
Assuming a constant rate RðtÞ, the above expression is
maximized for R ¼ C=T, where C is the total number of
events observed in time T as expected. However, we are not
interested in the absolute rates, but instead in the shape of
RðtÞ and therefore we can safely ignore the second term.
In our case, R depends on 4 parameters: θ ¼ fdN; dE;

ψ ; Vg. The Bayes theorem for the probability of these
events requires the log likelihood

Pðθjtþ; t−Þ∝ ðtþ; t−jθÞ¼
X
i

logRþðtþi Þþ
X
i

logR−ðt−i Þ;

ð11Þ

where t�i are the events occurring the in� branches of data,
Fortunately, at the level of sensitivity under consideration,
the Equation (11) can be evaluated numerically for a
reasonable number of events. This is a very important
aspect, because it allows us to work directly with the
likelihood, rather then with phenomenological algorithms.
This ensures optimality of the analysis.

E. Posterior exploration

We employ the likelihood derived above in a Markov-
Chain Monte Carlo (MCMC) procedure [33]. We use a
simple Metropolis-Hasting algorithm as implemented in
the APRIL software packages [34]. In total, there are four
parameters to vary and perform the error estimation in the
MCMC simulation. The two-point source visibility, or V, is
the first parameter which contains the information of the
relative brightness between the two sources. There are two
parameters, dN and dE, corresponding to relative separation
between the sources. Since dN and dE are the separation of
North-South and East-West direction of the tangent plane, it

FIG. 3. Schematic explanation on how simulated coincidences
are generated. (i) We first determine the period of each fringe
cycle denoted by Δt’s, and then the number of event occurrences
in each fringe cycle (denoted by the orange points) is determined
by Poisson distribution with expected number of coincidences
equal to n̄Δt. Note that in practice there will be at most one event
for each fringe cycle for a realistic n̄ of a typical star pair; (ii) Next
we determine the phase of each event in the cycle through inverse
transform sampling from Eq. (6); (iii) Finally, we calculate the
corresponding timestamp of each event based on their phase.
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is necessary to provide the initial midpoint position, δmid
and ϕmid, between the two sources for the MCMC
simulation to work. The last parameter is a constant offset
phase, ψ , which is assumed to be unknown and corresponds
to an unaccounted residual path length between the two
stations. The likelihood is calculated using Eq. (11). After
running the MCMC procedure, we plot the posterior
estimates using the CORNER package and find marginalized
errors of different parameters by calculating the square root
of the corresponding diagonal elements of the covariance
matrix.

IV. SELECTION OF OBSERVABLE STAR PAIRS

We investigated potential targets for a real-world astrom-
etry pathfinder for the proposed two-photon interferometer.
Our source catalog is the Yale Bright Star Catalog [35],
which lists over 9,000 stars with visual magnitude of 6.5 or
brighter together with various properties of each individual
star such as the right ascension, declination, galactic
latitude, galactic longitude, visual magnitude, rotational
velocity, radial velocity etc.
For a concrete example of a pathfinder experiment on the

continental U.S., we search for the following pairs of stars:
(i) Pair needs to be in the northern hemisphere due to

geographical reasons;
(ii) Separation of stars in the pair is less than 0.01 radians

(∼0.6 degrees). This ensures that both stars should
fit comfortably in field of view of a typical high-end
amateur grade telescope;

(iii) Pair separation of more than 1 arcsec that should
enable a relatively clean separation of light under
good atmospheric conditions.

Only the stars that are 12 to 17 hours behind the sun are
considered in order to reduce unwanted background from
the Sun. Since the relative angular separation between the
Sun and stars gradually changes over the year, we make a
rough estimation that the delay time of each star is
decreased by 2 hours for every month away from the
vernal equinox. Finally, the star pair that has the largest
average spectral flux density is selected to maximize the
expected coincidence photon rates.
Table I shows the star pairs, which are optimal for

observations for the corresponding month. It also shows
different properties of each pair including the right ascen-
sion, declination, and visual magnitude. The relative
separation of each star pair described in the tangent plane
coordinate system is also shown in Table I, where dN and
dE are the separation in the North-South and East-West
direction of the tangent plane which is defined by an unit
vector pointing to the midpoint between the two sources.
The flux density of each individual star is converted from
visual magnitude to flux density using Equation (12) where
Fx;0 is the reference flux of different band filters at zero
apparent magnitude.

F ¼ Fx;0 × 10m=−2.5 ð12Þ

Table I shows the corresponding spectral flux density
of each star assuming a visible band filter of 0.55 μm,
which has a corresponding Fvisible;0 ¼ 3640 Jy. The bold

TABLE I. This table shows the ideal star pair for real-world astrometry through two-photon interferometry depending on time of the
year. The HR No. column refers to the Harvard Revised Number (Bright Star Number) of each star. The corresponding right ascension,
declination, and visual magnitude of each star pair are listed. The relative separation between each pair is described using the tangent
plane system, where dN and dE are the North-South and East-West separation each pair in the tangent plane. Note that the upper value of
dE and dN corresponds to dE and the lower value corresponds to dN . Note that due to finite number of digits in the catalog, these are
accurate to about 0.2 arcsec. The spectral flux density of each star is calculated using Eq. (12) assuming a visual band filter with
FV;0 ¼ 3640 Jy. The bold and italic texts indicate the 15 arcsec and 1 arcsec star pair that we used for simulation. The last column shows
the typical V=σV ratio calculated from the MCMC simulation for a typical setup with fixed effective collecting area times number of
channels of 3.5 m2.

Optimal HR Right ascension Declination Flux density dE and dN Visual magnitude V=σV
Visibility (rad) (rad) (Jy) (arcsec)

Jan 4058 2.70516 0.34628 109.93 4.2 3.80 3.08
4057 2.70513 0.34630 328.93 −4.0 2.61

Feb-Mar 5055 3.50785 0.95856 95.74 7.8 3.95 2.59
5054 3.50778 0.95863 449.88 − 13.0 2.27

Apr 5506 3.86148 0.47253 302.76 0.0 2.70 0.92
5505 3.86148 0.47255 32.59 −3.0 5.12

May-July 7956 5.44185 0.59994 39.18 720.9 4.92 1.29
7949 5.43762 0.59289 377.66 1454.0 2.46

Aug-Oct 604 0.54066 0.73881 42.18 7.8 4.84 1.42
603 0.54062 0.73879 454.04 4.0 2.26

Nov-Dec 2891 1.98357 0.55655 587.63 0.0 1.98 7.16
2890 1.98357 0.55656 256.51 −1.0 2.88
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and italic texts indicate the 15 arcsec and 1 arcsec star pairs
which are the example star pairs, which we investigated
further in Section V B. The last column shows the typical
visibility to σV ratio calculated from the MCMC simula-
tion using the following setup: an East-West baseline of
200 m, A or effective collecting area of 3.5 m2 with 100%
efficiency, τ or time bin of correlation of 0.15 ns, Δν or
detector bandwidth of 1 GHz, λ or wavelength of obser-
vation of 0.55 μm, latitude of the observatory at 40.7 degree
North, and a total observation period of 20,000 s.

V. RESULTS

A. Comparison to Fisher matrix predictions

We start by cross-checking our results against Fisher
matrix predictions of the signal-to-noise errors presented in
our previous paper [8]. There we assumed that the baseline
is purely East-West, the observatory is located on the
equator and both sources have zero declination. The
resulting expression gives error as

σ½Δθ� ¼
ffiffiffiffiffiffiffi
6

π2κ

r
Δθ

VNCycle
ffiffiffiffiffiffiffiffiffi
2n̄T

p

κ½V� ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p

V2
; ð13Þ

where T is the observation time, NCycle is the number of
fringe cycles and the other quantities are as defined before.
The usual caveats associated with the Fisher matrix formal-
ism apply. In particular, it is known that the Fisher matrix
error estimates are only valid when the signal-to-noise is
sufficient to the extent that the posterior probabilities are
Gaussians and the quadratic expansion of likelihood around
the fiducial models correctly reflects the uncertainties.
Therefore, we expect the Fisher and full likelihood analyses
to agree at high signal-to-noise ratio with some additional
differences stemming from approximations such as the fixed
fringe rate for the former.Moreover, we also need to account
for an extra factor of 1=

ffiffiffi
2

p
compared to what we had

previously because nowwe are considering both� branches
of the data as described by Eq. (11).
We looked at the same setup that we mentioned in

Sec. IV, except A or effective collecting area of 2.8 m2 with
100% efficiency and assume the observatory is located on
the Equator, i.e. latitude of 0 deg. We picked the star pair
HR No. 5054 and 5055 from the bright star catalog
(indicated by the bold values in Table I) and manually
changed their declination to 0. Using these settings, we
tested the validity of error estimation of MCMC simulation
by manually increasing the coincidence pair rate of the two
sources by different factors and compared the errors in the
estimated uncertainties. Results are plotted in the Fig. 4. We
observed that our MCMC formalism reproduces the Fisher
matrix result to better than 5% for high signal-to-noise
ratio, which gives confidence in both the MCMC and

Fisher matrix calculations. As expected, the Fisher matrix
fails to encompass the full uncertainty at lower signal-to-
noise because it does not correctly account for long tails
associated with borderline detection.

B. Realistic cases from bright star catalog

In this section, we explore the minimum effective
collecting area of the telescope with 100% efficiency to
generate well-constrained triangle plots to characterize the
distribution and correlation of parameters using two real
star pair cases selected from the bright star catalog that are
separated by 1 arcsec and 15 arcsec. These two pairs are the
ideal star pairs for observation from February to March and
November to December, respectively, as shown in Table I.
In this simulation, the same parameter settings are used in
the previous section except now we vary the collecting area,
assuming the observatory is located at the New York
latitude of 40.7 deg North, and doing cases for the baseline
of 200 m in both East-West and North-South orientations.
We first construct a theoretical model of the same star pair
with East-West and North-South baseline. Wewould expect
a slower varying oscillation frequency for a North-South
baseline compared to an East-West baseline, which is
indeed the case as shown in Fig. 5.
After running the MCMC simulation, the minimum

collecting areas needed for obtaining sufficient amount of
data to generate well-constrained triangle correlation plots
are about 1.4 m2 for the star pair with 1 arcsec separation
and 3.9 m2 for the pair with 15 arcsec separation. These
results are shown in Fig. 6. Separation in the East-West
and North-South direction are redefined to be the offset
from the 50% quantile of the Gaussian, i.e. dE → ΔdE and

FIG. 4. Comparison between the error estimation from the
MCMC simulation to the error estimation using the Fisher’s
analysis from our previous work [8] for different pair count
multiplier. The vertical axis shows the ratio between the sepa-
ration error of the two sources in the East-West direction from
calculating the square root of the covariance matrix of the MCMC
simulation and using Equation (13). The horizontal axis shows
the coincidence pair rate multiplier used for boosting the sample
data size. As the coincidence pair multiplier increases, the ratio
gradually approaches 1 as expected.
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dN → ΔdN . As expected, as visibility approaches zero, the
contours for the two separation parameters, ΔdE and ΔdN
broaden, indicating that we are unable to constrain them in
that case.
For the 1 arcsec separation case in the top two panels in

Fig. 6 there are no clear correlations between different
parameters except for the offset phase and ΔdN . The
configuration with the East-West baseline shows correla-
tion while the North-South baseline shows anticorrelation.
This is expected as explained below. Since the 1 arcsec
pair has the same right ascension, i.e. dE ¼ 0, their ΔL
in a pure North-South and East-West baseline configu-
ration becomes ΔLns ¼ BNdNðsin θL sin δmid cosϕmid þ
cos θL cos δmidÞ and ΔLew ¼ −BEdN sinϕmid sin δmid,
respectively. If we were to remove the constant term
BNdN cos θL cos δmid for ΔLns, it has been tested that we
would get back a correlating relation between dN and the
constant offset phase, ψ .
For the 15 arcsec separation case in the bottom two

panels in Fig. 6, dE appears to be correlating with both
offset phase and dN for the North-South baseline case while
showing no correlation for the East-West baseline. These
correlations should go away once there is enough statistics,
and one easy way is to simply increase the effective
collecting area of the telescopes.
Table II summarizes the errors for different parameters

of different baseline configurations and effective collect-
ing area for the considered two star pairs. As the collecting
area of the telescope decreases the overall trend of error
increase of different parameters is observed as expected.
The offset phase does not seem to be well constrained
compared to other parameters except for the 15 arcsec star
pair with a North-South baseline configuration. σψ for

15 arcsec pair with North-South configuration seems to be
a lot smaller compared to other cases while σN becomes
really large.

VI. SUMMARY AND OUTLOOK

We have investigated and verified via direct simulations
observability of useful signals in the novel two-photon
interferometer proposed in [8] to use for high-precision
astrometry. Here we have expanded beyond the general
estimates presented in [8] to model the photon arrival data
from several real pairs of stars, which would be appropriate
targets for a demonstration experiment. Our results are
consistent with the previous estimates made using a Fisher
matrix calculation, and we have identified the effective size
of the telescope collecting aperture that will lead to a
significant detection in a single night.
We recognize that it is nontrivial to establish two

astronomy-grade light collectors each with effective collect-
ing area of 3.9 m2, made even harder since effective areawill
be smaller thangeometric area due tovarious losses, e.g. fiber
coupling, detector quantum efficiency, etc. However, we also
note that the calculation here assumes only a very narrow
optical band is being used, just Δν ∼ 1 GHz as in Sec. IV
above. Plenty more photons are available, and with spectro-
graphic separation onto an array of detectors, as suggested in
Fig. 1, we can effectively run many experiments in parallel
using the same collecting apertures. Using N instrumented
spectrographic channels would allow us to collectN times as
many pairs, or equivalently to reduce the collecting area by a
factor of 1=

ffiffiffiffi
N

p
. So, for example, instrumenting 100 spectral

channels of Δν ∼ 1 GHz each—still a tiny fraction of the
optical band in total—would yield the same precision as

FIG. 5. Right: theoretical fringe patterns for the 15 arcsec separation star pair with East-West and North-South baseline orientation.
Left: frequency of the signal changes over time. We observe that the oscillation frequency is higher for the East-West baseline compared
to the North-South baseline as expected.

ZHI CHEN et al. PHYS. REV. D 107, 023015 (2023)

023015-8



described above but with only 0.39 m2 of collecting area for
each telescope.
We have written down the exact Bayesian analysis frame-

work for the corresponding data analysis. This enables one to

calculate the posterior probability for any model with an
appropriate summation over the event timestamps. The
posterior probability can then be explored using any of
the standard techniques, which in our case we relied on the

FIG. 6. These triangle correlation plots are generated using the CORNER package [36]. Top left: 200 m North-South baseline with a
telescope effective collecting area of 1.4m2 and star pair of 1 arcsec separation. Top right: 200 m East-West baseline with a effective
collecting area of 1.4 m2 and star pair of 1 arcsec separation. Bottom left: 200 mNorth-South baseline with a telescope effective collecting
area of 3.9 m2 and star pair of 15 arcsec separation. Bottom right: 200 m East-West baseline with a telescope effective collecting area of
3.9 m2 and star pair of 15 arcsec separation. The 4 parameters used for the MCMC simulation are visibility, ΔdE, ΔdN , and a constant
offset phase, ψ . The vertical dashed lines represent 2.3%, 16%, 50%, 84%, and 99.4% quantiles of the Gaussian. ΔdE and ΔdN are
defined to be the offset from the 50% quantile of the Gaussian measured in miliarcseconds. The orange points indicate the true value of
each parameter. The contour plots characterizing the correlation between visibility and the two separation parameters have an overall
spread behavior as visibility approaches 0. This is expected since likelihood approaches constant as visibility goes to 0.
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standard MCMC approach. This should be sufficient for the
foreseeable future. The source code QA-SIM used for the
simulations can be found in the Github page [37].
As the number of observed coincidences increases, the

exact likelihood will have to be eventually replaced with
approximate methods that will likely involve a Fourier
transformation.We leave this exploration for the futurework.
It was not in the scope of this work to consider all

possible systematic effects that can limit the achievable
resolution as the primary goal was to determine the hard
limit coming from the photon statistics. Nevertheless in
regard to the obvious topic of atmospheric fluctuations, we
note that techniques such as adaptive optics will be
applicable here as well [38–40]. We leave these inves-
tigations to the future experimental work.

Overall we consider the proposed approach as something
that is technically feasible and could be experimentally
tested with existing technologies of single photon detection
in the near future [9].

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy QuantISED award and BNL LDRD Grant No.
19-30. Zhi Chen acknowledges support under the Science
Undergraduate Laboratory Internships (SULI) Program by
the U.S. Department of Energy. We also acknowledge other
PYTHON software such as MATPLOTLIB [41], NUMPY [42],
and SCIPY [43] for the extensive usage during the develop-
ment of this project.

[1] M. Shao and M. Colavita, Annu. Rev. Astron. Astrophys.
30, 457 (1992).

[2] A. Labeyrie, Annu. Rev. Astron. Astrophys. 16, 77 (1978).
[3] P. Lawson, Principles of Long Baseline Stellar Interferom-

etry (JPL, Pasadena, California, 2000).
[4] T. A. ten Brummelaar, H. A. McAlister, S. T. Ridgway,

J.W. G. Bagnuolo, N. H. Turner, L. Sturmann, J. Sturmann,
D. H. Berger, C. E. Ogden, R. Cadman et al., Astrophys. J.
628, 453 (2005).

[5] E. Pedretti, J. D. Monnier, T. ten Brummelaar, and N. D.
Thureau, New Astron. Rev. 53, 353 (2009).

[6] M. A.Martinod,D.Mourard,P.Bério,K. Perraut,A.Meilland,
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