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We continue examining statistical data assimilation, an inference methodology, to infer solutions to
neutrino flavor evolution, for the first time using real—rather than simulated—data. The model represents
neutrinos streaming from the Sun’s center and undergoing a Mikheyev-Smirnov-Wolfenstein resonance in
flavor space, due to the radially varying electron number density. The model neutrino energies are chosen to
correspond to experimental bins in the Sudbury Neutrino Observatory and Borexino experiments, which
measure electron-flavor survival probability at Earth. The procedure successfully finds consistency
between the observed fluxes and the model, if the Mikheyev-Smirnov-Wolfenstein resonance—that is,
flavor evolution due to solar electrons—is included in the dynamical equations representing the model.
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I. INTRODUCTION

Neutrinos are ubiquitous in astrophysical environments.
In stars like the Sun, they are a byproduct of the nuclear
reactions that provide the energy flux counteracting gravity.
Protoneutron stars formed following the core collapse in a
supernova cool by emitting copious neutrino pairs, and
similar neutrino emission takes place following neutron star
mergers. Observations of those neutrinos would provide
not only valuable information about the interior of the star
and collapse mechanism, but also the nature and properties
of neutrinos. In particular, neutrino “flavor,” a property that
dictates neutrino interaction with matter, significantly
affects the physics of these events [1–14].
A complete description of neutrino flavor evolution

and transport in astrophysical environments is technically
very involved. Powerful numerical integration codes exist
for obtaining solutions to the flavor evolution problem
in compact object environments [15–22]. Many of these
codes, however, require adopting rather rigid physical
assumptions regarding the symmetries of the problem,

and it has been shown in recent years that relaxing these
assumptions reveals physics that had been artificially
hidden (e.g., see Refs. [23,24] and references therein).
Further, because of the large density of neutrinos in these
regimes, neutrino-neutrino interactions introduce nonlinear
elements in the transport, rendering the problem computa-
tionally taxing for the existing large-scale codes.
Additionally, these nonlinear “collective oscillations” could
exhibit signatures of many-body quantum correlations
among neutrinos (e.g., [25–33]). Hence it is helpful to
explore the suitability of different computational tools to
treat neutrino flavor evolution and transport.
In previous papers [34–38], we applied an inference

technique—a fundamentally different framework com-
pared to forward integration—to examine nonlinear col-
lective oscillations in core-collapse supernovae (CCSN).
Inference is a means to optimize a model given measure-
ments, where measurements are assumed to arise from
model dynamics.
The specific technique used is statistical data assimila-

tion (SDA), which was invented for numerical weather
prediction [39–44] for the case of sparse data. It has since
gained considerable traction in neurobiology [45–51], and
within astrophysics has been applied to exoplanet modeling
[52] and solar cycle prediction [53,54].
To date, we have applied SDA to small-scale neutrino

flavor evolution models, using simulated data. Our first
work [36] established that SDA is capable—in principle—
of finding solutions to the flavor evolution problem, given
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Earth-based measurements together with assumptions
regarding flavor states at emission. Next, in Ref. [37]
we devised a litmus test for identifying correct solutions,
and Ref. [38] compared the efficacy of our SDA technique
to alternative (e.g., “neural differential equations”)
approaches. More recently, we challenged SDA to solve
problems that forward integration renders difficult to
access: (1) direction-changing scattering in the model
dynamics [35], and (2) unknown initial conditions of the
neutrino flavor field at emission from the CCSN core [34].
In this paper we seek, for the first time, to test the SDA

procedure using real neutrino data from experiments. Data
on neutrinos from CCSN are limited to one event: SN1987A
[55–57], wherein about 20 neutrinos were detected—not
a sufficiently large sample to robustly investigate flavor
evolution signatures. Hence we turn to an environment from
which neutrino data are copious: the Sun. Our purpose here
is to explore the efficacy of inference to describe the matter-
enhanced neutrino oscillations in the Sun. Furthermore, it is
worthwhile to investigate possible improvements that infer-
ence might offer for the analysis of solar neutrino data. In
particular, inference might offer an independent check on
new methods to remove cosmogenic-induced spallation in
Super-Kamiokande, a recent effort to improve the precision
of solar neutrino data [58].
To that end, we challenge the SDA procedure to find

a solution—in terms of neutrino flavor evolution with
radius, in a steady-state model—that is consistent with
three elements: the standard solar model, a model of
neutrino flavor evolution, and observed neutrino fluxes
at Earth. In addition, we explore the significantly more
complex problem of state prediction simultaneous with the
estimation of unknown model parameters.

II. INPUT

A. Neutrino flavor evolution

We consider two-flavor mixing of solar neutrinos, which
is a good approximation because of the small value of the
mixing angle θ13 [59]. Hence the angle θ12 describes the
effective mixing between the electron neutrinos, ψe, and a
linear combination of the muon and tau neutrinos, ψx.
Hereafter we set θ ¼ θ12, dropping the subscripts. We
assume that flavor evolution is driven entirely by coherent
forward-scattering. This arises from neutrino-matter inter-
actions, and leads to an in-medium effective neutrino mass
level crossing, referred to as the “Mikheyev-Smirnov-
Wolfenstein (MSW) resonance” [60–62]. The MSW res-
onance is associated with an enhanced e ↔ x flavor
conversion probability. The neutrinos are produced at the
core of the Sun as electron neutrinos, then they undergo
flavor oscillations while also forward-scattering off the
background electrons as they travel through the Sun. For
each neutrino, this propagation is described either by the
equation:

i
d
dr

�
ψe

ψx

�
¼ ω

2

 VðrÞ
ω − cos 2θ sin 2θ

sin 2θ − VðrÞ
ω þ cos 2θ

!�
ψe

ψx

�
;

ð1Þ

or by the equation [63,64]:

dP⃗
dr

¼ ðωB⃗þ VðrÞẑÞ × P⃗; ð2Þ

where ω ¼ δm2=ð2EÞ is the vacuum oscillation frequency
of a neutrino with energy E, δm2 being the mass-squared
difference in vacuum. The unit vector B⃗ ¼ sinð2θÞx̂ −
cosð2θÞẑ represents flavor mixing in vacuum, with mixing
angle θ. The function VðrÞ arises from neutrino interactions
with the background electrons. Assuming that flavor
evolution is driven entirely by coherent forward-scattering,
VðrÞ is given by the Wolfenstein correction to the neutrino
mass: VðrÞ ¼ ffiffiffi

2
p

GFNeðrÞ [62], where Ne is the electron
density, taken from the Standard Solar Model [65]. Finally,
the relation between the dynamical variables in Eqs. (1)
and (2) is: 0

B@
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Pz

1
CA ¼

0
B@

ψeψ
�
x þ ψ�

eψx

iðψeψ
�
x − ψ�

eψxÞ
jψej2 − jψxj2

1
CA: ð3Þ

In Eq. (2), the flavor state of the neutrino is characterized
by the “polarization vector” P⃗. Equation (3) shows that the
components of the polarization vector are real numbers. In
the inference method adopted in this work, the dynamical
variables and input parameters need to be real. For that
reason, in this paper we adopt Eq. (2) to describe neutrino
evolution. The density matrix ρ of the system can also be
written in terms of the polarization vector as:

ρ ¼ 1

2
ð1þ σ⃗ · P⃗Þ: ð4Þ

Here, the ẑ component of the neutrino polarization vector
denotes the net flavor content of electron flavor minus the
superposition of muon and tau flavors. Hence in the Sun,
Eq. (1) is solved with the initial conditions ψeð0Þ ¼ 1,
ψxð0Þ ¼ 0, or equivalently, Eq. (2) is solved with the initial
conditions Pz ¼ þ1, Px ¼ Py ¼ 0. In this configuration,
the density matrix as defined in Eq. (4) represents a pure
quantum state. In the forward-scattering regime, this purity
(i.e., ρ2 ¼ ρ) is preserved through the course of flavor
evolution, and one therefore has jP⃗j2 ¼ 1 throughout the
evolution.
We solve Eq. (2) inside the Sun, using the inference

procedure to be described in later sections. In particular, the
solution includes a prediction of P⃗ at the surface of the Sun.
As our model does not extend beyond the Sun, we need to
use the time evolution operator to relate P⃗ at the endpoint of
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our model (i.e., the solar surface) to the measured electron
flavor survival probability, Psurvival, at Earth’s surface.

1

Neutrino propagation from the solar surface (denoted by
“⊙ s”) to Earth (denoted by “⊕”) can be analytically
calculated to obtain the density matrix on Earth:

1

2
UðLÞð1þ σ⃗ · P⃗⊙sÞU†ðLÞ ¼ 1

2
ð1þ σ⃗ · P⃗⊕Þ; ð5Þ

where the operator U is:

U ¼
�
ψeðLÞ −ψ�

xðLÞ
ψxðLÞ ψ�

eðLÞ

�
: ð6Þ

In Eq. (6) the entries are calculated by solving Eq. (1) in
vacuum:

ψeðLÞ ¼ cos ωL − i cos 2θ sin ωL; ð7Þ

ψxðLÞ ¼ i sin 2θ sin ωL; ð8Þ

where L is the Earth-Sun distance. If one uses only the
“day” data (so that the measured neutrinos haven’t passed
through the earth), as we do, then P⃗⊕ represents the flavor
state of the neutrino at the detector. Hence for the z
component of P⃗⊕ on or near the surface of Earth, we have:

P⊕;z ¼ ð1 − 2 sin2 2θ sin2 ωLÞP⊙s;z

− ð2 cos 2θ sin 2θ sin2 ωLÞP⊙s;x

−
1

2
ðsin 2ωL sin 2θÞP⊙s;y: ð9Þ

Averaging over ωL (that is, over multiple oscillation cycles
in vacuum), we obtain:

P⊕;z ¼ ð1 − sin2 2θÞP⊙s;z − cos 2θ sin 2θP⊙s;x: ð10Þ
P⊕;z can be related to the measured Psurvival using:

P⊕;z ¼ 2Psurvival − 1; ð11Þ
and hence we have the following constraint on the “final”
(i.e., solar surface) values of our state variables:

ð1 − sin22θÞP⊙s;z − cos 2θ sin 2θP⊙s;x ¼ 2Psurvival − 1:

ð12Þ
Equation (12) yields a linear relation between Pz and Px at
the surface of the Sun.

B. Neutrino data

To test the inference procedure, we use 8B day-time
neutrino flux observed by the Sudbury Neutrino Observatory
(SNO) [66] and Borexino [67] experiments.
For the Borexino data, we use only the observed pp-chain

neutrinos, and not the carbon-nitrogen-oxygen (CNO) neu-
trinos. This is a reasonable choice for the Sun, as its core
temperature is relatively low, meaning that few CNO
neutrinos are produced. In addition, for simplicity we use
day data only. The Borexino survival probabilities are listed
for three discrete energies [67].
The SNO collaboration used an analytic fitting formula

for the survival probability Psurvival [66] as a function of
neutrino energy Eν. For daytime data only, the formula is:

Psurvival ðEνÞ ¼ c0 þ c1ðEν − 10 MeVÞ
þ c2ðEν − 10 MeVÞ2; ð13Þ

where the best-fit values of the coefficients c0;…; c2, along
with the uncertainties, are given in Table I. For the neutrino
oscillation parameters δm2 and θ, we use the following
values:

δm2 ¼ 7.530 × 10−17 MeV2 ð14Þ
θ ¼ 0.5838 radians: ð15Þ

III. INFERENCE METHODOLOGY

A. General formulation

Statistical data assimilation is an inference procedure
wherein measured quantities are assumed to arise from a
dynamical physical model. It is designed for cases wherein
only a subset of the model state variables can be

TABLE I. Model parameters taken to be known. The EB;i and
ESNO;i correspond to the Borexino and SNO beams, respectively.
The Psurvival;B;i are the measured survival probabilities for each
Borexino energy bin [67]. The ci values and uncertainties are
used in Eq. (13) to compute the survival probabilities for the SNO
beams.

Parameter
Value
[MeV] Parameter Value

EB;1 7.4 Psurvival;B;1 0.39� 0.09
EB;2 8.1 Psurvival;B;2 0.37� 0.08
EB;3 9.7 Psurvival;B;3 0.35� 0.09
ESNO;1 8.5 c0 0.3435þ0.0233

−0.0208

ESNO;2 9.0 c1 0.00795þ0.00838
−0.00817 MeV−1

ESNO;3 9.5 c2 −0.00206þ0.00336
−0.00336 MeV−2

ESNO;4 10.0
ESNO;5 10.5
ESNO;6 11.0
ESNO;7 11.5
ESNO;8 12.0

1We note one consideration that was not made in this paper,
but which might be important in future work. In calculating this
evolution over long distances during which no measurements are
made, it might be important to consider the phenomenon of
neutrino state decoherence due to spatial separation of mass
eigenstates; see the Appendix for more details.
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experimentally accessed. We write this model F in D
ordinary differential equations:

dxaðrÞ
dr

¼ FaðxðrÞ; pðrÞÞ; a ¼ 1; 2;…; D; ð16Þ

where r is the parametrization—for example, distance or
time. Components xa of vector x are the model state
variables. The p are any unknown parameters to be
estimated, and they may vary with r.
Measured quantities comprise a subset L of the D state

variables. We seek to estimate the evolution of all state
variables that is consistent with measurements, and to
predict model evolution at parametrized locations where
measurements do not exist.

B. Optimization formulation

We use a path-integral formulation of SDA, which can
be summarized in three equations. The path integral is an
integral representation of the master equation for the
stochastic process represented by Eq. (16). We seek the
probability of obtaining a path X in the model’s state space
given observations Y:

PðXjYÞ ¼ e−A0ðX;YÞ: ð17Þ
This expression states: the path X for which the proba-
bility—given Y—is greatest is the path that minimizes the
quantity A0, which we call our action. A formulation for
A0 will permit us to obtain the expectation value of any
function GðXÞ on a path X:

GðXÞ ¼ hGðXÞi ¼
R
dXGðXÞe−A0ðX;YÞR

dXe−A0ðX;YÞ : ð18Þ

Expectation values are the quantities of interest when the
problem is statistical in nature. For many estimation
problems, the quantity of interest is the path itself:
GðXÞ ¼ X. The action is written in two terms:

A0ðX;YÞ ¼ −
X

log½Pðxðnþ 1ÞjxðnÞÞ�
−
X

CMIðxðnÞ; yðnÞjYðn − 1ÞÞ: ð19Þ

The first term describes Markov-chain transition prob-
abilities governing the model dynamics. The second term is
the conditional mutual information (CMI) [68], which asks:
“How much information, in bits, is learned about event
xðnÞ upon observing event yðnÞ, conditioned on having
previously observed event(s) Yðn − 1Þ?”.2 Simplifications
are then made to write a computationally functional form of
A0, and model-specific equality constraints may be added.
See Ref. [69] for a derivation of Eq. (19).
The SDA problem is then cast as an optimization, where

the action is a cost function—a succinct and powerful
equivalency. The cost function of the optimizer is equiv-
alent to the action on paths in the state space that is
searched. Generally, the action surface is ½ðDþ pÞ×
ðN þ 1Þ�-dimensional, where N þ 1 is the number of
discretized model locations, taken to be independent
dimensions. One seeks the path X0 ¼ fxð0Þ;…; xðNÞ;
pð0Þ;…; pðNÞg in state space on which A0 attains a
minimum value. Minima are found by requiring that small
variations to the action vanish under small perturbations
[70], thereby enforcing the Euler-Lagrange equations of
motion upon any path. We extremize the cost function via
the variational method.
After many simplifications (see Appendix A of

Ref. [36]), the Markov-chain term [first term of
Eq. (19)] reduces to a “model error”, which describes
the divergence of the prediction from model dynamics. The
mutual information [second term of Eq. (19)] reduces to a
“measurement error”, describing the divergence of the
prediction from measurements. (For a pedagogical treat-
ment, see Ref. [69]). The action A0 used in this paper is
written as:

A0 ¼ RfAmodel þ RmAmeas

Amodel ¼
1

ND

XN−2

n∈foddg

XD
a¼1

��
xaðrnþ2Þ − xaðrnÞ −

δr
6
½FaðxðrnÞ; pðrnÞÞ þ 4Faðxðrnþ1Þ; pðrnþ1ÞÞ þ Faðxðrnþ2Þ; pðrnþ2ÞÞ�

�
2

þ
�
xaðrnþ1Þ −

1

2
ðxaðrnÞ þ xaðrnþ2ÞÞ −

δr
8
½FaðxðrnÞ; pðrnÞÞ − Faðxðrnþ2Þ; pðrnþ2ÞÞ�

�
2
�

Ameas ¼
1

Nmeas

X
rm∈fmeasg

Xd
l¼1

½ðylðrmÞÞ − hl;mðxðrmÞÞ2�: ð20Þ

The model error, Amodel, imposes adherence to the model
evolution of all D state variables xa. The outer sum on n
runs through all odd-numbered discretized locations. The
sum on a runs through all D state variables. The terms
within the first and second sets of curly brackets represent

2The measurement term can be considered a synchronization
term, which is often introduced artificially into control problems.
Here, however, the measurement term arises naturally through
considering the effects of the information those measurements
contain.
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the errors in the first and second derivatives, respectively, of
the state variables.
The measurement error, Ameas, imposes adherence to

measurements. The variables yl, for l ¼ 1;…; d, represent
the d quantities measured at locations rm ∈ fmeasg, where
Nmeas is the total number of locations. These are to be
compared against the quantities hl;mðxÞ, where hl;m are
transfer functions that relate the state variables in the model
to the quantities being measured, at each location. In our
optimization design, the measured quantities are the values
of Pz for each neutrino energy, at two locations: (i) the
center of the Sun, and (ii) the surface of Earth. At the Sun’s
center, the “measurement” of Pz can be compared directly
against the model Pz at the same location, rendering the
transfer functions trivial: h0ðP⃗Þ ¼ Pz for each neutrino. On
the other hand, since our model grid does not extend
beyond the solar surface to the Earth, the Pz measurement
at Earth is compared against an extrapolated Pz value
derived from the Polarization vector at the Sun’s surface, as
shown in Eq. (10). In other words, measuring Pz at Earth is
equivalent to measuring a linear combination of Pz and Px
at the surface of the Sun. Therefore, the transfer function at
the Sun’s surface becomes:

h⊙sðP⃗Þ ¼ ð1 − sin2 2θÞPz − cos 2θ sin 2θPx; ð21Þ

for each neutrino energy.3 The measurement term can then
be written as

Ameas ¼
1

Nmeas

XNν

k¼1

½ðPmeas
z;k ð0Þ− Pz;kð0ÞÞ2 þ ðPmeas

z;k ðR⊙ þ LÞ

− h⊙sðP⃗kðR⊙ÞÞÞ2�; ð22Þ

where k ¼ f1;…; Nνg are the neutrino energy bins, P⃗k

is the polarization vector for the kth energy bin in the
model equations of motion [Eq. (2)], with components
Px;k; Py;k; Pz;k, and Pmeas

z;k is the measurement of Pz at the
specified location, directly associated with the survival
probability at that location [Eq. (11)]. R⊙ and L are the
solar radius and the earth-sun distance, respectively.

C. Identifying a lowest minimum of the action

The action surface of a nonlinear model will be nonconvex.
To identify a lowest minimum, we perform an iterative
annealing in terms of the ratio of model and measurement
error, Rf and Rm, respectively

4 [71]. It works as follows.

We define Rm to be a constant (in this paper it is 1.0), and
Rf as: Rf ¼ Rf;0α

β, where Rf;0 ¼ 10−3, α ¼ 2.0, and β—
the annealing parameter—is initialized at zero. Relatively
free from model constraints, the action surface is convex.
Then we increase β recursively, each time recalculating the
action, toward the deterministic limit of Rf ≫ Rm. The aim
is to remain sufficiently near to the lowest minimum so as
not to become trapped in a local minimum as the model
dynamics resolve the surface.5

IV. THE TASK FOR OPTIMIZATION

Our model beams were assigned energies corresponding
to the experimentally detected neutrino energies. We placed
two constraints on each beam. One was an assumed
“measurement” of Pz at the center of the Sun: 1.0 for
each beam, or: pure νe flavor. The other measurement was
Psurvival, the electron flavor survival probability of neutrinos
measured at Earth’s surface, related to the Pz at earth
through Eq. (11).
The task for the procedure, depicted in Fig. 1, was to take

those two constraints, together with the potential VðrÞ from
the standard solar model [65] and the dynamics of flavor
evolution [Eq. (2)], to find a solution—in terms of the radial
evolution of the polarization vectors—that is consistent
with model and data. We expected this inference task to be
a challenge, specifically for estimating the polarization
vector at the solar surface. From Eq. (12), one can see that
a single measured value of survival probability at Earth
corresponds to a (Px and Pz) pair at the solar surface. In
principle, many possible pairs could satisfy that relation.
The SDA procedure is tasked with finding a pair that also
obeys model dynamics [Eq. (2)].

A. Details

The procedure is given full knowledge of model param-
eter values (except for the parameter estimation of Sec. V
B), all listed in Table I. The three energies EB; i correspond
to three discrete bins in the Borexino experiment [67]; SNO
employed an energy range, which we discretized into eight
values [66]. To assign a unique value of the matter potential
VðrÞ at each radial location, we used a piecewise linear
interpolation: the VðrÞ term adopted from the solar model
in Ref. [65] contains values at 1,219 discrete radial
locations, while our model contains 121,901.6

The optimization was performed by the open-source
Interior-point Optimizer (Ipopt) [72]. Ipopt employs a
Hermite-Simpson method of discretization and a constant
step size. We employed 121,901 steps and a step size of δr

3Note that in our previous papers [34–38], the transfer function
was always trivial, since we simply employed simulated data at
the far boundary of the model domain.

4More generally, Rm and Rf are inverse covariance matrices
for the measurement and model errors, respectively. In this paper
the measurements are taken to be mutually independent, render-
ing these matrices diagonal.

5The complete procedure—a variational approach to extrem-
ization and an annealing method to identify a lowest minimum of
the cost—is termed variational annealing.

6Our choice to increase the number of discrete locations by a
factor of 100 was motivated by our aim to resolve the oscillations;
namely, the step size had to be sufficiently small.
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of 2.85237. The discretization of state space, calculations
of the model Jacobean and Hessian matrices, and the
annealing procedure are performed via a PYTHON interface
[73] that generates C code to be read by Ipopt. Simulations
were run on a computing cluster equipped with 201 GB
of RAM and 24 GenuineIntel CPUs (64 bits), each with
12 cores.
To compare solutions to the model dynamics, we

generated a simulation via forward integration, with all
beams initialized at ½Px; Py; Pz� ¼ ½0; 0; 1� at the solar
core, and using the same discretized grid as the optimi-
zation. This integration was performed by PYTHON’s
ODEINT package, which uses an adaptive step. Our
complete procedure, including forward-integration codes,
codes to interface with Ipopt, instructions for designing
and running experiments on our supercomputing cluster,
and examples for new users, can be found in a publicly
available repository [74].
For all experiments to be described in Sec. V, four

independent paths were initialized randomly. That is, each
initialization consisted of as many random choices as there
are dimensions in the model.7 The user-defined search
range for state variables (Px, Py, and Pz) was: [−1.0∶1.0],

the full dynamical range for each. For the search range used
in parameter estimation, see Sec. V B.

V. RESULTS

Key findings are as follows:
(i) When the MSW transition within the Sun is included

in the model dynamics, the procedure finds a
solution consistent with both model dynamics and
measured survival probabilities Psurvival at Earth,
within the published experimental errors on
Psurvival, for both SNO and Borexino data. (Alter-
natively, when the MSW transition is ignored—or,
VðrÞ is set to zero—a solution compatible with both
model and measurements is not found).

(ii) A preliminary parameter estimation shows that the
measured survival probabilities contain information
about model mixing angle θ [Eq. (2)].

A. State prediction without parameter estimation

The left panel of Fig. 2 shows the logarithm of the action
as a function of annealing parameter β, over the course of
annealing, for the case in which the matter potential VðrÞ is
taken from the standard solar model (Sec. III), a scenario
wherein the electron number density effects a significant
MSW transition.
Beginning at β ¼ 0, the action increases as the weight

of model error is increased. Gradually, however, it levels
off. This “plateau,” around β ∼ 16 to 20, indicates that a
solution consistent with both model and measurements has
been found8 (for a detailed study of these action (β) plots,
see Ref. [37]). All four randomly initialized paths con-
verged to an identical solution.
Indeed, the predictions of state variable evolution well

match the true model evolution. The left panel of Fig. 3
shows the true (blue) versus predicted (red) state variable
evolution of Px (top), Py (middle), and Pz (bottom), for the
first of the three beams corresponding to the Borexino data;
the result is representative of all beams in both SNO and
Borexino models.
Figure 4 shows detail that cannot be discerned by eye on

Fig. 3. At top are three segments of the evolution of Pz: the
first thousand steps, beginning at the solar center (left),
middle thousand (middle), and final thousand ending at the
solar surface (right); each section is roughly one hundredth
of the full 121,901-step series. The blue solid dot at far left
denotes the location of the assumed initial conditions on Pz,
and the red dot at far right indicates the first location of
prediction, given the survival probability measured at Earth
(Earth is not depicted in the figure).

FIG. 1. Schematic of the inference task. The constraints
provided to the procedure are an assumed initial condition at
the solar center (blue circle) and a measured survival probability
at Earth (yellow circle). Meanwhile, the model consists of the
potential VðrÞ and flavor transformation dynamics [Eq. (2)]
through the Sun. The inference task is to consider both the
constraints and the model, to predict the flavor evolution within
the Sun (red region), while also accounting for the transformation
(grey wave) of the Earth-based measurement (yellow circle) to
the solar surface (red circle).

7As noted, generally the dimensionality of the action surface is
½ðDþ pÞ × ðN þ 1Þ�, where D, N þ 1, and p are the number of
state variables, discretized model locations, and parameters,
respectively. All optimization procedures described in this paper,
however, contained at most one unknown parameter, which was
assumed to have the same value at all (N þ 1) discretized
locations. Thus, the dimensionality of these procedures was:
D × ðN þ 1Þ þ p.

8The further increase in the action beyond β ∼ 21 is most likely
due to discretization error, as the optimization technique uses a
different method of discretization compared to the forward
integration.
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At bottom are the Fourier transforms of Pz correspond-
ing to each segment. The predicted oscillation frequency
throughout the Sun is perfect, to within the resolution
permitted by the density of sampled locations. These results
are insensitive to the addition of the published maximum
experimental errors on survival probability, for both SNO
and Borexino.
As a test that the procedure recognizes consistency

between measurement and model, we set the matter
potential VðrÞ to zero and repeated the optimization.
Setting VðrÞ to zero essentially tells the procedure that

the electron number density inside the Sun is not suffi-
ciently high to effect an appreciable MSW transition.
The right panel of Fig. 2 shows the resulting plot of

action-versus-β. In contrast to our original result, here the
action never attains the signature “plateau” indicative of a
successful optimization. Rather, it increases exponentially.
The corresponding predictions appear in the right panel of
Fig. 3: agreement with true (blue) model is poor. As with
the original experiments, all four randomly initialized paths
converged to this solution. Together, Figs. 2 and 3 and
convince us that the MSW effect within the Sun cannot be

FIG. 3. True (blue) and predicted (red) state variable evolution, given model dynamics [Eqs. (2) and (21)] and Earth-based survival
probability. Left: for matter potential VðrÞ taken from the standard solar model; right: with VðrÞ set to zero. From top: P1;x, P1;y, and
P1;z, for the first of three energy beams corresponding to the Borexino data. The units of distance are in percentage of solar radius R⊙.
Both left and right panels correspond to a value of annealing parameter β of 20. For the result at left, β ¼ 20 lies on the “plateau” of
Fig. 2, left panel—a solution consistent with both model and measurement. At right, a solution compatible with model dynamics is not
found. These results are representative of all beams across both Borexino and SNO data sets, and for cases in which we added to the
measurements the published maximum values of experimental error (not shown).

FIG. 2. Logarithmic plot of the action A0 as a function of annealing parameter β. Left: VðrÞ is taken from the standard solar model [65].
At β ¼ 0 the action begins to increase as model weight increases, then plateaus—at β ∼ 16–20—as a solution is found that is consistent
with both model and measurement (the increase in action beyond β ∼ 20 is due to discretization error at high model weight). Right: VðrÞ
is set to zero. Now the action increases exponentially, indicating a failure to reconcile model with measurement. (See Ref. [37] for a
detailed study of the action (β) plot).
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neglected if one seeks to account for the measured Earth-
based survival probabilities.
We conducted a further test that the SDA procedure

recognizes consistency between measurement and model.
As noted, one vital component of a successful prediction
was a (Px and Pz) pair at the solar surface that was
consistent with both the survival probability measured at
earth and the model dynamics [Eq. (2)], together with the
Earth-Sun transformation function of Eq. (21). With this in
mind, we replaced the true published measured survival
probabilities with “test” survival probabilities that are not
physically possible; specifically: values above 1.0 and
below 0.0. For these cases, the action (β) plot behaved
similarly to the right panel of Fig. 2: an exponential
increase (not shown). That is, the model was unable to find
a solution that satisfied both model and measurements—as
is the expected outcome.

B. State prediction with simultaneous
parameter estimation

Adding parameter estimation to the inference task
renders it significantly more challenging [75,76]. The root
of the difficulty is that parameters—unlike state variables—
do not obey a known dynamical law, so there is no
straightforward way to correlate state variable evolution
with parameter estimate error.9 With that in mind, we took

the preliminary step of setting the mixing angle θ of Eq. (2)
as an unknown parameter to be estimated. In these tests, the
true value of θ was 0.58, and the permitted search rangewas
0.001 to 1.571.
Our first parameter attempt failed (not shown), and to

ascertain whether computational expense might be the
cause, we temporarily removed the Earth-to-Sun trans-
formation of Eq. (21) from the model dynamics. To be
clear: our aim here was to offset the increased computa-
tional expense incurred with parameter estimation by
decreasing the complexity of the equations of motion,
to identify whether computational expense was the culprit
in the failed first attempt. Across four randomly initialized
paths, the resulting estimates of θ were, respectively:
[1.57, 0.98, 0.01, 0.59] radians. That is, one of the four
paths identified a solution near the true value of 0.58.
Figure 5 shows the corresponding state prediction for that
estimate.
Encouraged by this mild success, we restored the Earth-

Sun transformation [Eq. (21)]—and in addition, we amended
the requirement regarding a match to the Earth-based
measurement of survival probability. Specifically, instead
of using only the final values of Px and Pz at the solar
surface, we averaged Px and Pz over the last 1000 radial
locations in the model and compared those averages to the
measured survival probability, using the Sun-Earth trans-
formation described earlier. The motivation for this change
was that, without a fixed mixing angle, the rapid oscillations
in the predicted path could, in principle, be out of phase
with the model path. With this change, the results improved:

FIG. 4. Details of the predictions shown in Fig. 3. Top: from left, three 1000-point segments of the Pz evolution, beginning at the solar
center (far left)—where the blue dot denotes the assumed initial condition, and ending at the solar surface (far right)—where the red dot
denotes the location where Px and Pz must be consistent with the measurement at Earth (Earth is not depicted). Bottom: Fast Fourier
decomposition for the respective regions at top, showing that the oscillation frequency is well predicted throughout the Sun.

9To first order, that correlation will be proportional to the
model’s Jacobian with respect to the parameter in question.
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the estimates of θ across four independent paths were:
[0.79, 0.78, 0.56, 0.89] radians, respectively. Figure 6 shows
the corresponding state predictions for the closest estimate
of 0.56.

There is much honing to be done to yield reliable results
from parameter estimation. We need to ascertain why the
problem invites multiple solutions across independent
paths searched, and aim to increase the fraction of suc-
cessful paths. We note, however, that based on this
preliminary study, inference can indeed extract information
about the mixing angle in Eq. (2) from Earth-based
measurements.

VI. CONCLUSION

For the first time we have applied inference to astro-
physical neutrino data. The ability of the SDA procedure
to identify state predictions consistent with both model
and Earth-based measurements is encouraging, particu-
larly given the multiple unphysical solutions at the solar
surface that those measurements permit. Further, while the
parameter estimation needs honing, the results presented
in Sec. V B indicate that inference-based procedures do
possess the capability to recognize the dependence of
Earth-based flavor survival probability measurements on
the neutrino mixing angle θ. Finally, for the interested
reader, the Appendix addresses a topic noted briefly
earlier: the phenomenon of decoherence through neutrino
propagation.
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APPENDIX: COHERENT VERSUS INCOHERENT
DETECTION

In Sec. II A, we wrote a transformation matrix to carry
the polarization vector between the Earth and Sun. In doing
so, we omitted an accounting of the loss of coherence in the
neutrinos, due to the constituent mass eigenstates becoming
separated in space on their way to the detector. It might be
valuable in the future to investigate whether including this
decoherence in the model improves state and parameter
estimation. It must be noted that this loss of coherence is a
well-understood phenomenon that has been described in
the context of solar as well as supernova neutrinos (e.g.,
[77–79]). Here we provide a brief overview to the interested
reader of how this decoherence may affect the final state
that we measure at earth.
When a neutrino arrives at earth from a sufficiently

distant source, it is in general a coherent superposition of
more than one mass (i.e., propagation) eigenstate.

FIG. 5. State predictions akin to Fig. 3, now with mixing angle
θ recast as an unknown parameter to be estimated—where the
Earth-Sun transformation has been omitted in the interest of
easing computational expense. These predictions correspond to
an estimate of θ of 0.59 radians (true: 0.58), where the permitted
search range was [0.001,1.571]. The solution corresponds to a
value of β of 20.

FIG. 6. State predictions akin to Fig. 3, again with mixing angle
θ recast as an unknown parameter to be estimated, and including
the Earth-Sun transformation. Importantly, in this version of the
experiment, the measurements were taken to correspond not only
to the (Px and Pz) pair at the solar surface R⊙, but rather to the
average of those two values over the final 1,000 discretized model
locations in the Sun. See text for explanation. One out of four
paths converged to this solution, which corresponds to a value of
θ ¼ 0.56, taken at a value of β of 20.
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However, since the different propagation eigenstates have
different masses and therefore propagate at different
velocities, their wave packets eventually become spatially
separated—to the extent that any neutrino interaction in a
detector would only involve the participation of one of
these mass eigenstates at a time.
Since the individual mass eigenstates themselves do not

oscillate in time (only their coherent superpositions do), the
probability of detecting a particular mass eigenstate in a
certain flavor (e.g., P1e ¼ hνejν1i) is independent of time
or position, once the neutrino is propagating in vacuum
(i.e., if there are no matter effects). For the purposes of
detection, since only one mass eigenstate participates at a
time (assuming sufficient wave packet separation), one may
treat the neutrino flux arriving at the earth as an incoherent
mixture of mass eigenstates rather than as a coherent
superposition. Mathematically, this can be described as
follows.
Consider a single neutrino existing as a coherent super-

position of mass eigenstates. Its density matrix in the mass
basis may be written as follows:

ρν ¼
�
nν1 ρ12

ρ⋆12 nν2

�
; ðA1Þ

where nνi ¼ ha†νiaνii are expectation values of the number
operators for the mass eigenstates i ∈ f1; 2g and ρ12
depends on the relative phase between the mass eigen-
states. For a neutrino propagating in vacuum, the nνi
remain invariant in time, and only the off-diagonal entries
are time-dependent.
In contrast, for a neutrino that can be considered to have

essentially devolved into an incoherent mixture of mass
eigenstates, the density matrix is simply

ρν ¼
�
nν1 0

0 nν2

�
: ðA2Þ

In each case, one may ask the question of how much can be
learned from a measurement (i.e., a detection). First, let us
define the quantities nνe and nνx , which are the expectation
values of the flavor-basis number operators. These can be
calculated as follows:

nνe ¼ ha†νeaνei ¼ Trfρνa†νeaνeg
¼ nν1 cos

2 θ þ nν2 sin
2 θ þ 2ℜfρ12g sin θ cos θ;

nνx ¼ ha†νxaνxi ¼ Trfρνa†νxaνxg
¼ nν1 sin

2 θ þ nν2 cos
2 θ − 2ℜfρ12g sin θ cos θ:

ðA3Þ

Here, we have used the definitions from earlier in the
section, and the familiar unitary transformation between the
flavor and mass eigenbasis:

�
aνe
aνx

�
¼
�

cos θ sin θ

− sin θ cos θ

��
aν1
aν2

�
: ðA4Þ

Suppose, for instance, one detects enough neutrinos at a
certain energy so as to statistically obtain a sufficiently
accurate determination of nνe and nνx at a given location.
Then, in case of neutrinos that are still coherent super-
positions by the time of arrival at the detector, one cannot
uniquely determine nν1 and nν2 from nνe and nνx , unless one
also measures ρ12, which is physically impossible. Instead,
a possible workaround may be to measure nνe and nνx at
multiple locations, as was explored in Ref. [34] in the
context of supernova neutrino detection.
On the other hand, if the neutrinos that arrive at the

detector are an incoherent mixture, then ρ12 ¼ 0, and a
measurement of nνe and nνx at a single location is sufficient
to uniquely determine nν1 and nν2 .
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