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In agreement with the constantly increasing gravitational wave events, new aspects of the internal
structure of compact stars can be considered. A scenario in which a first-order transition takes place inside
these stars is of particular interest, as it can lead, under certain conditions, to a third gravitationally stable
branch (besides white dwarfs and neutron stars), the twin stars. The new branch yields stars with the same
mass as normal compact stars but quite different radii. We focus on hybrid stars undergoing a hadron-to-
quark phase transition near their core and how this new stable configuration arises. Emphasis is given on
the aspects of the phase transition and its parametrization in two different ways—namely, with the Maxwell
and Gibbs constructions. We systematically study the gravitational mass, the radius, and the tidal
deformability, and we compare them with the predictions of the recent observation by the LIGO/VIRGO
Collaboration, the GW170817 event, and the mass and radius limits, suggesting possible robust constraints.
Moreover, we extend the study to include rotation effects on the twin star configurations. The recent
discovery of the fast rotating supermassive pulsar PSR J0952-0607 triggered the efforts to constrain the
equation of state and, moreover, to examine possible predictions related to the phase transition in dense
nuclear matter. We pay special attention to relate the PSR J0952-0607 pulsar properties to the twin star
predictions, and mainly to explore the possibility that the existence of such a massive object would rule out
the existence of twin stars. Finally, we discuss the constraints on the radius and mass of the recently
observed compact object within the supernova remnant HESS J1731-347. The estimations imply that this
object is either the lightest known neutron star or a star with a more exotic equation of state.

DOI: 10.1103/PhysRevD.107.023012

I. INTRODUCTION

Compact stars yield the most prominent natural labo-
ratories for the study of exotic forms of matter [1–4].
Recently discovered pulsars alongside gravitational wave
detection, such as GW170817, have revealed new aspects
of the internal structure of these stars, mainly in terms of
their composition [5–7]. While the equation of state (EOS)
of nuclear matter is well established up to nuclear saturation
density, one encounters the challenge of describing matter
in fairly higher densities realized in the interior of these
stars. At these densities the type of matter is yet to be
determined, and, in turn, the ability to construct stellar
models that agree with the aforementioned observations is

still an open issue. Possible candidates are pure neutron
stars composed of hadrons, strange quark stars composed
of deconfined quarks, and hybrid stars composed of
hadronic outer shells and cores of deconfined quarks. In
this article the final case is claimed.
Stars of this branch are expected to have masses in the

same range as normal neutron stars, yet with fairly small
radii. The existence of such stars is a strong indication that a
hadron-quark phase transition (HQPT) is a physical reality,
a result of utmost importance, especially in the study of
dense matter physics [8–11]. A study of the HQPT is
presented here, where the conditions under which the twin
star configuration arises are examined. The compatibility of
the mass and radius constraints, as they are formed through
up-to-date observations, is also considered.
The idea of a third family of compact stars and, in

particular, the connection with the possibility of its being a
signature of a strong phase transition in the interior of the
star, was first introduced by Gerlach [12]. Later, Kämpfer
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worked also on this issue [13,14]. Glendenning and Kettner
introduced the term “twins” in their paper [15], while at the
same time Schertler et al. [16] worked out the idea in detail.
However, in all previous studies, the maximum mass was
approximately at the canonical binary pulsar mass 1.4M⊙.
The revival of the idea of twin stars was started a few years
later by Blaschke et al. [17,18]. Specifically, in the afore-
mentioned papers it is suggested that high-mass twin stars,
once detected by simultaneous mass and radius measure-
ments, could provide evidence for a strong first-order phase
transition in cold matter, which then would imply the
existence of at least one critical end point in the quantum
chromodynamics phase diagram. Moreover, in the same
work examples of EOSs are also presented, for the first time,
that would not only provide twin solutions but also fulfill the
constraint on the maximum mass from the existence of
pulsars as heavy as 2M⊙ [17,18]. This ideawas elaborated on
by Benic et al. [19] (see also Ref. [20]). A systematic
Bayesian analysis of the new twin star EOS with observa-
tional constraints was presented in Ref. [21]. Finally,
analyses of the robustness of twin solutions against changing
theMaxwell to amixed phase construction and the formation
of structures in the mixed phase due to the interplay of the
surface tension and Coulomb interaction effects were con-
sidered in Refs. [22,23], respectively. Some recent works
dedicated to the study of phase transitions in the interior of
the neutron stars and the possible existence of twin stars
include Refs. [24–66].
Pulsar PSR J0952-0607 was first discovered by Bassa

et al. [67]. It has a frequency of f ¼ 709 Hz, making it the
fastest known spinning pulsar in the disk of the Milky Way.
Very recently, Romani et al. [68] discovered that PSR
J0952-0607 has a mass of M ¼ 2.35� 0.17M⊙, which is
the largest well measured mass found to date. The above
discoveries triggered research into the constraints of the
EOS of dense nuclear matter and is likely to revise many of
the theoretical predictions concerning the basic properties
of neutron stars (for a recent study, see Ref. [69]). One of
them is the existence of twin stars, which is the main
subject of this study. In particular, the existence of a
supermassive neutron star may rule out twin stars (see
Ref. [28]). In this sense, observation of such supermassive
stars is decisive for checking the reliability of the corre-
sponding theoretical predictions, and therefore a system-
atically and careful analysis should be considered. On the
other hand, theoretical calculations for the maximum
possible mass of neutron stars should be combined with
recent observations concerning the radius and tidal
deformability of stars with a mass close to 1.4M⊙. In
general, a nuclear model can be judged by its flexibility in
being able to predict the maximum possible mass while
correctly estimating the observational radial and tidal
deformability values.
Moreover, one of the motivations for this work is to

examine in a more systematic way the applications of the

two main formulations of the phase transition, that is, the
Maxwell construction (MC) and the Gibbs construction
(GC). These formulations are quite different, as the former
imposes an energy jump between the two phases, while the
latter implements a smooth transition between the phases.
It is worth mentioning that although the MC has been
extensively applied in the literature, the GC has not
received the attention it deserves (for a recent relevant
study, see Ref. [11]). In any case, a comparison of their
predictions may offer useful physical insights.
Rotating neutron stars with exotic degrees of freedom in

their cores have already been studied in limited papers by
Banik et al. [60], Bhattacharyya et al. [43], Haensel et al.
[63], and Bozzola et al. [64]. In this study, in addition to the
aforementioned similar studies, the effects of rapid rotation
on the twin stars scenario are explored. The reason for this
kind of study is twofold: On the one hand, we intend to
examine to what extent high rotation can differentiate the
representation of the two stability branches of a static
neutron star. On the other hand, we want to consider the
possible cases where the existence of the twin starsmay have
arisen as a result of the high rotational frequency,where in the
corresponding static case such a scenario is not foreseen. To
our knowledge, this peculiar case has not been explored in
detail in the relevant literature, at least thus far. There is only
an interestingmention inRef. [60]. Nonetheless, future study
is in progress in order to further clarify the effects of rotation
on the twin star problem.
Finally, we employ the constraints on the mass and radius

of the recently observed compact objectwithin the supernova
remnant HESS J1731-347 [70]. The corresponding estima-
tions are M ¼ 0.77þ0.20

−0.17M⊙ and R ¼ 10.4þ0.86
−0.78 km, respec-

tively, while the observations were carried out with the help
of modeling of the x-ray spectrum and a robust distance
estimate from Gaia observations [70]. According to
Doroshenko et al.’s guess, the above estimates imply that
this object is either the lightest neutron star known or a star
with a more exotic equation of state. In any case, it is worth
considering to what extent this compact object is compatible
with the hybrid model, and thus with the twin star theory.
The paper is organized as follows. In Sec. II we present

the basic formalism of the hadron-to-quark phase transi-
tion, while in Sec. III we provide the tidal deformability.
Section IV is dedicated to the presentation and discussion
of the results of this study, while our concluding remarks
are given in Sec. V.

II. HADRONIC-TO-QUARK MATTER
PHASE TRANSITION

A. Hybrid EOS and first-order phase transition

The theoretical framework throughout this work is based
on the two prescriptions for matching the low to inter-
mediate density hadronic EOS to the one describing the
free quark matter, the Maxwell and Gibbs constructions
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(for an extensive and insightful analysis, see the recent
review in Ref. [8]). In particular, while both methods have
a phenomenological origin, they mimic, in a way, the
theoretical approach of the phase transition. It is important
to note that neither of these constructions take into account
finite-size effects in the theory, so there are no surface or
Coulomb term contributions present. In this sense, they
should be considered a useful mathematical tool rather than
an exact description of the phase transition from hadronic
to free quark matter. Furthermore, although the MC appears
to be more applicable, recent observations of gravitational
waves related to the binary neutron star merger GW170817
event, along with the flexibility of the GC, have made the
latter case a more compelling candidate [11]. Nevertheless,
both methods have been used in the literature, leading
under certain circumstances to the appearance of twin stars.
We note here that, as the quark phase has a strong

dependence on the speed of sound, for both configurations,
in order to achieve the observed neutron star masses. At the
selected transition densities, the speed of sound is set equal
to the speed of light, having as a result the maximally
stiff EOS.

1. Maxwell construction

The first case is the well-knownMC case, which exhibits
a sharp transition at the boundary and makes it difficult for
charged clusters of quarks to form in the hadronic matter.
This construction is the favored one, in the case where the
surface tension σs in the hadron-quark crossover is higher
than the critical value of ≈40 MeV fm−3 and less than the
maximum allowed one of ≈100 MeV fm−3, according to
QCD lattice gauge simulations, with its exact value highly
uncertain [71]. Of course, as expected, an abrupt phase
change of this kind yields a discontinuity in at least one
physical quantity, with the most obvious one, the energy
density, having the form [9–11]

EðPÞ ¼
�
EhadronðPÞ; P ≤ Ptr

EðPtrÞ þ ΔE þ c−2s ðP − PtrÞ; P > Ptr:
ð1Þ

In Eq. (1) EðPÞ denotes the energy density, P the pressure,
cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
∂P=∂E

p
the speed of sound in units of the speed of

light, and ΔE the magnitude of the energy density jump at
the transition point. During the quark phase the numerical
value we assign for cs is equal to cs ¼ 1, the maximum
allowed value that is consistent with causality. That way,
we also ensure the stiffest EOS case and the greatest
possible maximum mass in the resulting M-R diagram.
Moreover, Ptr expresses the pressure that corresponds to the
baryon density at the phase transition point, ntr. It should be
clear that the first line in Eq. (1) refers to the hadronic
phase, while the second one refers to the quark phase, seen
as the first-order Taylor expansion of the energy density
around the transition pressure plus the ΔE term. This is the

so-called constant speed of sound (CSS) parametrization
[9,11,72–74]. The described process requires not only the
pressure but also the rest of the intensive thermodynamic
quantities, meaning that the temperature T (set equal to 0)
and the baryonic chemical potential μB of both phases have
the same value at the phase transition. The same is not true
for the electric chemical potential μQ, as there is a jump at
the interface between the two phases [26]. Local charge
neutrality conditions for both regions must separately be
imposed in order to ensure a β-equilibrium state.

2. Gibbs construction

In the case of a nonsharp HQPT, meaning very low
values of the surface tension σs, a finite region to embody
the transition is implied. The mixed phase of this transition
is composed, as its name suggests, of intermittent domains
of pure hadronic and quark phases [11,26]. The Gibbs
phase transition rule regarding the equality of the pressure
of the two components (the hadron-intermediate and
intermediate-quark ones) is established here. Constraints
requiring global charge neutrality and baryon conservation
number are imposed throughout the process, meaning that
both the baryon and electric chemical potentials, μB and μQ,
are required to have the same value across the phase
boundaries. This is quite important, as now both phases
can be oppositely charged, as long as the mixed phase
remains neutrally charged. In this case it is only logical that
nuclear matter is positively charged, assuming an equal
number of protons and neutrons (minimizing nuclear asym-
metry energy), while, to compensate, quark matter, on the
other hand, has to be negatively charged. Contrary to theMC
case, where the pressure remains constant in the transition
interval, in theGCcase the pressure increaseswith increasing
baryon density, while also no discontinuities in the energy
density appear, giving rise to the profile [11]

EðPÞ ¼

8>><
>>:

EhadronðPÞ; P ≤ Ptr;

AmðP=KmÞ1=Γm þ γmP; Ptr ≤ P ≤ PCSS;

EðPCSSÞ þ c−2s ðP − PCSSÞ; P ≥ PCSS;

ð2Þ

where Am ¼ 1þ αm, γm ¼ ðΓm − 1Þ−1, and cs ¼ 1 (max-
imally stiff EOS). The energy density is denoted by EðPÞ, the
pressure by P, and the speed of sound by cs, while am, Km,
and the polytropic index Γm are constants, with the first two
evaluated by requiring the continuity of P and E at the
transition points. As already explained, an energy density
jump is not present here, as opposed to the MC, but the
increase in the quantity is assigned during the intermediate
part of the formula. The subscript “CSS” denotes the
corresponding quantity at the start of the quark phase.
That being said, it should be understood that discontinuities
in the derivatives of the pressure with regard to the energy
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density are still present here at the points where the mixed
phase begins and ends. This is clearly reflected in thevalue of
the speed of sound cs between the three phases.
The relation between the pressure and baryon density

for the intermediate section in Eq. (2) is given through the
well-known, simple polytropic formula PðnÞ ¼ KmnΓm .
While the values of am and Km depend on the transition
point, the polytropic index Γm in the GC is taken to be
constant throughout the work and is equal to 1.03. A
value so close to unity is justified by taking into account
the uncertainty related to how soft the EOS of the mixed
phase is and also differentiating it as much as possible
from the respective value of the MC, where, according to
the relevant discussion above, we have Γm ¼ 0 (see
also Ref. [11]).

B. Seidov criterion

In general, the phase transition from hadronic to quark
matter described in the previous section is not sufficient by
itself to predict the existence of a third family of compact
stars. To be more specific, this existence requires, in the
corresponding mass-radius diagram, the appearance of an
unstable region followed by a stable one (for an instructive
discussion, see Ref. [3]). The criterion for causing an
unstable region by a first-order phase transition in neutron
stars was first considered by Seidov [75]. His work was
based on the work of Lighthill [76], who performed a linear
perturbative expansion on the size of the quark matter core.
In particular, we consider an EOS and a phase transition

at the pressure Ptr which corresponds to the energy density
E1 ≡ Etr, with a simultaneous jump to the energy density
E2 ≡ EðPtrÞ þ ΔE. In general, a stable sequence where the
mass increases with the central pressure will become an
unstable one as the mass decreases with the central
pressure. This case takes place only if the following
inequality holds [3]:

3Ptr þ 3E1 − 2E2 < 0:

Thus, we finally find the minimum jump in the energy
density that is required for the appearance of an unstable
configuration and which is given by the relation

ΔEcr ¼
1

2
Etr þ

3

2
Ptr: ð3Þ

In order to have a third family of compact objects appear
in the M − R diagram, the aforementioned instability has
to be satisfied. The theory dictates that as long as the mass
M is an increasing function of the central pressure Pc, the
star will remain stable. As the central pressure increases,
it reaches a certain point where its value becomes equal
to the transition pressure Ptr, leading to the formation of
the quark matter core. Depending on whether or not the
Seidov criterion for the energy density jump is surpassed,

there are four possible outcomes, with only two of them
producing a new type of compact object [3,9]. It should
be noted here that the Seidov criterion is meaningful only
in the presence of a sharp discontinuity in the energy
density profile, which appears in the MC method as
opposed to the GC method.
In order to be able to compare the GC with the MC,

where an energy jump appears in the form of ΔEcr, we
define the corresponding energy increase in the GC as the
quantity

ΔEG ¼ 3

2

�
1

2
EhadronðPtrÞ þ

3

2
Ptr

�
; ð4Þ

with EhadronðPtrÞ and Ptr representing the respective
values at the transition from the hadron phase to the mixed
phase.
The two possible outcomes for producing a new type

of compact objects are now briefly described. Case 1:
If ΔE is taken to be much higher than the Seidov limit
(ΔE ≫ ΔEcr), then the instability appears immediately after
the formation of the quark matter core. In theM-R diagram,
the transition point takes the form of a cusp, meaning the
sign of dM=dR is flipped. This case does not result in
the formation of a stable hybrid star (see the case ntr ¼
0.5 fm−3 in Fig. 3). Case 2: The value of ΔE should be
higher that the value of Eq. (3) (ΔE > ΔEcr), but not high
enough to reach the case 1 scenario. This case describes the
appearance of a third family of compact objects. The cusp
is also present here during the transition point, leading to an
unstable disconnected area in the graph, which after a while
flips around again, signaling the appearance of a stable
hybrid star with a quark matter core.
In this work we also study two cases where the Seidov

criterion is violated (for more details, see Chap. 9 of Ref. [3]
and Fig. 3 in Ref. [9]). They both include the hybrid branch
connected to the nuclear star branch that may lead to the
appearance of a third family of compact objects. These two
cases are described below with their corresponding number-
ing as a continuation of the two previous cases. Case 3: The
energy density jump ΔE is not high enough to cause an
instability at the moment (ΔE < ΔEcr), meaning that the
quark matter is described by a curve on the map that is
connected to the hadronic matter branch. The curve con-
tinues up to a point, after which an unstable region appears,
leading again to a stable hybrid branch, as in the
case 2 scenario, albeit shorter in length (see Fig. 12 for
ntr ¼ 0.38 fm−3). Case 4: The hybrid star branch connected
to the nuclear branch is also present here with its length to be
inversely proportional to the ratio ofΔE=Etr. It is shown that
higher values of the above quantity lead to a decrease in the
size of the hybrid branch that spans the phase diagram.
Immediately after a maximum mass value is reached, a
sudden discontinuity appears that continues forthwithout the
appearance of a third family of compact objects [9].
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III. TIDAL DEFORMABILITY

A very important source for the gravitational wave
detectors is the gravitational waves from the late phase
of the inspiral of a binary neutron star system before the
merger [77–79]. This kind of source leads to the measure-
ment of various properties of neutron stars. In the inspiral
phase the tidal effects can be detected [78].
The k2 parameter, also known as the tidal Love number,

depends on the equationof state and describes the responseof
a neutron star to the tidal field Eij [78]. The exact relation is

Qij ¼ −
2

3
k2

R5

G
Eij ≡ −λEij; ð5Þ

where R is the neutron star radius and λ ¼ 2R5k2=3G is
the tidal deformability. The tidal Love number k2 is given
by [78,79]

k2 ¼
8β5

5
ð1 − 2βÞ2½2 − yR þ ðyR − 1Þ2β�

× ½2βð6 − 3yR þ 3βð5yR − 8ÞÞ
þ 4β3ð13 − 11yR þ βð3yR − 2Þ þ 2β2ð1þ yRÞÞ
þ 3ð1 − 2βÞ2½2 − yR þ 2βðyR − 1Þ� ln ð1 − 2βÞ�−1;

ð6Þ

where β ¼ GM=Rc2 is the compactness of a neutron star.
The parameter yR is determined by numerically solving the
following differential equation:

r
dyðrÞ
dr

þ y2ðrÞ þ yðrÞFðrÞ þ r2QðrÞ ¼ 0; ð7Þ

with the initial condition yð0Þ ¼ 2 [80]. FðrÞ and QðrÞ are
functionals of the energy density EðrÞ, pressure PðrÞ, and
mass MðrÞ defined as [77]

FðrÞ ¼
�
1 −

4πr2G
c4

ðEðrÞ − PðrÞÞ
��

1 −
2MðrÞG

rc2

�
−1

ð8Þ

and

r2QðrÞ ¼ 4πr2G
c4

�
5EðrÞþ 9PðrÞþ EðrÞþPðrÞ

∂PðrÞ=∂EðrÞ
�

×

�
1−

2MðrÞG
rc2

�
−1

− 6

�
1−

2MðrÞG
rc2

�
−1

−
4M2ðrÞG2

r2c4

�
1þ 4πr3PðrÞ

MðrÞc2
�

2
�
1−

2MðrÞG
rc2

�
−2
:

ð9Þ

Equation (7)must be solved numerically and self-consistently
with the Tolman-Oppenheimer-Volkoff (TOV) equations
under the following boundary conditions: yð0Þ ¼ 2, Pð0Þ ¼

Pc (where Pc denotes the central pressure), and Mð0Þ ¼ 0
[77,79]. From the numerical solution of TOV equations, the
mass M and radius R of the neutron star can be computed,
while the corresponding solution of the differential equa-
tion (7) provides the value of yR ¼ yðRÞ. The last parameter
along with the quantity β are the basic ingredients of the tidal
Love number k2.
The chirp mass Mc of a binary neutron star system is

a well measured quantity by the gravitational wave detec-
tors [7]. Its relation is given as

Mc ¼
ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ m1

q3=5

ð1þ qÞ1=5 ; ð10Þ

where m1 is the mass of the heavier component star andm2

is that of the lighter component star. Hence, the binary mass
ratio q ¼ m2=m1 lies within the range 0 < q ≤ 1.
Additionally, another quantity that is well measured is

the effective tidal deformability Λ̃ which is given by [7]

Λ̃ ¼ 16

13

ð12qþ 1ÞΛ1 þ ð12þ qÞq4Λ2

ð1þ qÞ5 ; ð11Þ

where Λi is the dimensionless tidal deformability [7],

Λi ¼
2

3
k2

�
Ric2

MiG

�
5

≡ 2

3
k2β−5i ; i ¼ 1; 2: ð12Þ

The effective tidal deformability Λ̃ is one of the main
quantities that can be well measured by the detection of the
corresponding gravitation waves.

IV. RESULTS

A. Mass vs radius diagram

In our study, as already mentioned, we have used
two constructions, (a) the MC and (b) the GC, and two
different EOSs, (a) the MDIþ APR1 EOS [81] and (b) the
GRDF-DD2 EOS [82]. Also, we have focused on the
following values: ntr¼½0.20;0.25;0.30;0.32;0.35;0.38;0.43;
0.50�fm−3. In Figs. 1–4 we show the M − R diagrams for
all cases. In particular, Figs. 1 and 2 indicate the MDIþ
APR1 EOS with the MC and the GC, respectively, while
Figs. 3 and 4 show theGRDF-DD2EOSwith theMCand the
GC, respectively. In each figure, panel (a) corresponds toΔE
(ΔEcr for the MC and ΔEG for the GC) and panel (b) cor-
responds to the cases ΔE ¼ ΔEcr þ ½100; 200� MeV fm−3

for the MC and ΔE ¼ ΔEG þ ½100; 200� MeV fm−3 for
the GC, respectively. A general remark is that the EOSs
that fulfill the ΔEcr (ΔEG) are stiffer than the cases
with ΔE ¼ ΔEcr þ ½100; 200� MeV fm−3 (ΔE ¼ ΔEG þ
½100; 200� MeV fm−3). Specifically, as we move to higher
values of ΔE, the EOSs become softer (smaller high masses
and smaller radii). The purple horizontal shaded regions
correspond to observational data from the pulsars, while the
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light purple contour shaded region indicates the observa-
tion of the GW170817 event [7]. The dashed part of the
curves indicates their unstable region. Another remark is
that between the two constructions, the MC and the GC,
the first provides branches of EOSs in a lower mass region

than the second. Therefore, the MC is more informative
in our case of study since the GW170817 event contains
low values for the component masses. Also, as one can
observe, as we move to higher values of ntr the EOSs
become softer.

FIG. 1. Mass vs radius diagram for the MDIþ APR1 EOS under the MC and for (a) ΔEcr and (b) ΔE ¼ ΔEcr þ 100 MeV fm−3 (blue
curves) and ΔE ¼ ΔEcr þ 200 MeV fm−3 (green curves). The black curve indicates the original EOS. The shaded regions from bottom
to top represent the HESS J1731-347 remnant [70], the GW170817 event [7], PSR J1614-2230 [83], PSR J0348þ 0432 [84], PSR
J0740þ 6620 [85], and PSR J0952-0607 [68] pulsar observations for the possible maximum mass.

FIG. 2. Mass vs radius diagram for the MDIþ APR1 EOS under the GC and for (a) ΔEG and (b) ΔE ¼ ΔEG þ 100 MeV fm−3 (blue
curves) and ΔE ¼ ΔEG þ 200 MeV fm−3 (green curves). The black curve indicates the original EOS. The shaded regions from bottom
to top represent the HESS J1731-347 remnant [70], the GW170817 event [7], PSR J1614-2230 [83], PSR J0348þ 0432 [84], PSR
J0740þ 6620 [85], and PSR J0952-0607 [68] pulsar observations for the possible maximum mass.
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Moreover, in Figs. 1–4, the constraints on the mass and
radius of the recently observed remnant HESS J1731-347
have also been included [70]. Obviously, the prediction
of the above constraints requires the use of a larger jump in
the energy density for both constructions. In particular, we

found that maybe this star is a hybrid star, belonging to
the second stable branch. It is also remarkable that these
predictions are compatible with the prediction of the
maximum observed masses. It is worth mentioning that
we do not claim that the remnant HESS J1731-347 is

FIG. 3. Mass vs radius diagram for the GRDF-DD2 EOS under the MC and for (a) ΔEcr and (b) ΔE ¼ ΔEcr þ 100 MeV fm−3 (blue
curves) and ΔE ¼ ΔEcr þ 200 MeV fm−3 (green curves). The black curve indicates the original EOS. The shaded regions from bottom
to top represent the HESS J1731-347 remnant [70], the GW170817 event [7], PSR J1614-2230 [83], PSR J0348þ 0432 [84], PSR
J0740þ 6620 [85], and PSR J0952-0607 [68] pulsar observations for the possible maximum mass.

FIG. 4. Mass vs radius diagram for the GRDF-DD2 EOS under the GC and for (a) ΔEG and (b) ΔE ¼ ΔEG þ 100 MeV fm−3 (blue
curves) and ΔE ¼ ΔEG þ 200 MeV fm−3 (green curves). The black curve indicates the original EOS. The shaded regions from bottom
to top represent the HESS J1731-347 remnant [70], the GW170817 event [7], PSR J1614-2230 [83], PSR J0348þ 0432 [84], PSR
J0740þ 6620 [85], and PSR J0952-0607 [68] pulsar observations for the possible maximum mass.
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definitely a hybrid star. However, according to this study,
this case is more favorable than the one with a neutron star.
Further similar observations are needed in order to clarify
this issue.

B. Tidal deformability

Figure 5 presents the tidal parameters k2 and λ of a single
neutron star as a function of its mass, for the MDI+APR1
EOS (MC) and for the cases with ΔE ¼ ΔEcr þ ½100;
200� MeV fm−3. The effect of the different ΔE and ntr can
be observed, as they lead to distinct subbranches. In
general, higher values of ΔE lead to softer EOSs across
the same bifurcation characterized by the value of the
transition density ntr.
In Figs. 6 and 7 we present the Λ1 − Λ2 space for each

EOS and configuration using the observational data of the
GW170817 event (the orange shaded region) [7]. To be
more specific, we considered the three following combi-
nations: hybrid-hybrid binary star system (HS-HS), hybrid-
neutron star system (HS-NS), and finally a neutron-neutron
one (NS-NS). We notice that we concentrated only on the
cases with ΔE ¼ ΔEcr þ ½100; 200� MeV fm−3 for the
MC and ΔE ¼ ΔEG þ ½100; 200� MeV fm−3 for the GC,
because these cases more easily provide a twin star branch
on the EOS. The blue curves correspond to ΔE ¼ ΔEcr þ
100 MeV fm−3 (ΔE ¼ ΔEG þ 100 MeV fm−3) for the MC
(the GC), while the green ones correspond toΔE ¼ ΔEcr þ
200 MeV fm−3 (ΔE ¼ ΔEG þ 200 MeV fm−3) for the MC
(the GC), respectively. In all diagrams, the dashed curves
correspond to the HS-HS case, the dash-dotted curves to
the HS-NS case, and the solid curves to the NS-NS case.

In more detail, for the MDIþ APR1 EOS and MC we
used the values of (a) ntr ¼ ½0.20; 0.25; 0.30; 0.32; 0.35;
0.38� fm−3 for the HS-HS case and (b) ntr ¼ ½0.43;
0.50� fm−3 for the HS-NS case, while for the MDIþ
APR1 EOS and the GC we used (a) ntr ¼ ½0.20; 0.25;
0.30; 0.32� fm−3 for theHS-HS case and (b)ntr¼½0.35;0.38;
0.43� fm−3 for the HS-NS case. Moving on to the GRDF-
DD2 EOS, we notice that for the MC we used
(a) ntr ¼ ½0.20; 0.25; 0.30; 0.32� fm−3 for the HS-HS case
and (b)ntr ¼ ½0.35; 0.38� fm−3 for theHS-NS case, while for
the GC we used (a) ntr ¼ ½0.20; 0.25� fm−3 for the HS-HS
case and (b) ntr ¼ ½0.30; 0.32� fm−3 for the HS-NS case. We
remark that even thoughwe kept the region of the component
masses identical to the GW170817 observation for the
majority of the cases for those hypothetical binary star
systems, in some cases we modified and restricted the mass
range for computational reasons.
In all cases, the HS-HS case leads to smaller values of Λ,

and therefore to a softer EOS, in accordance with the
observational data of GW170817. The HS-NS case for a
binary star system also lies inside the shaded region provided
from LIGO, but in intermediate values of Λ. The NS-NS is
the case where the two component stars correspond to the
original EOS that we used in each case (the solid black line in
the M-R diagrams). As one can observe, the MC provides
more cases of theHS-HS scenario than theGC for bothEOSs
that we used in our study. In addition, the MDI+APR1 EOS
for the NS-NS case lies inside the estimation of GW170817
regardless of the combination considered, contrary to the
GRDF-DD2 EOS, in which the NS-NS cases lie outside the
estimated region.

FIG. 5. Tidal parameters (a) k2 and (b) λ as a relation of the neutron star mass for the MDI+APR1 EOS under the MC and for
ΔE ¼ ΔEcr þ 100 MeV fm−3 (blue curves) and ΔE ¼ ΔEcr þ 200 MeV fm−3 (green curves). The black curve indicates the original
EOS. The dashed part of the curves indicates their unstable region. The shaded regions from left to right represent the HESS J1731-347
remnant [70], PSR J1614-2230 [83], PSR J0348þ 0432 [84], PSR J0740þ 6620 [85], and PSR J0952-0607 [68] pulsar observations
for the possible maximum mass.
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In Figs. 8 and 9 we show the Λ̃ − q relation by using the
upper limit on Λ̃ provided by the GW170817 event [7]. The
curves and colors are the similar to those in the Λ1 − Λ2

diagrams. As one can observe, the HS-HS case for both
EOSs and constructions lead to much lower values of Λ̃.
Hence, a possible lower limit on Λ̃ would be very useful to

restrict the lower values of Λ̃, leading to constraints at least
in the HS-HS case. Moreover, as we move to higher values
of ΔE, all the curves for both the HS-HS and HS-NS
scenarios are shifted to lower values of Λ̃, meaning that the
increment of ΔE has as a result a softer EOS. This behavior
was expected if we recall the effect of higher values of ΔE

FIG. 6. Λ1 − Λ2 relation for the MDI+APR1 EOS and (a) the MC, and (b) the GC. The blue (green) curves correspond to ΔE ¼
ΔEcr þ 100 MeV fm−3 (ΔE ¼ ΔEcr þ 200 MeV fm−3) for the MC, while for the GC the curves correspond to ΔE ¼ ΔEG þ
100 MeV fm−3 and ΔE ¼ ΔEG þ 200 MeV fm−3, respectively. The black curve indicates the original EOS. The shaded region shows
the acceptance values derived by the GW170817 event [7].

FIG. 7. Λ1 − Λ2 relation for the GRDF-DD2 EOS and (a) the MC and (b) the GC. The blue (green) curves correspond to ΔE ¼
ΔEcr þ 100 MeV fm−3 (ΔE ¼ ΔEcr þ 200 MeV fm−3) for the MC, while the curves for the GC correspond to ΔE ¼ ΔEG þ
100 MeV fm−3 and ΔE ¼ ΔEG þ 200 MeV fm−3, respectively. The black curve indicates the original EOS. The shaded region shows
the acceptance values derived by the GW170817 event [7].
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on the EOSs (see the M − R diagrams). Between the two
constructions and for both EOSs, the MC provides a higher
number of HS-HS cases than the GC. Also, across the same
EOS and ntr, the MC leads to lower values of Λ̃ than the GC
does. Therefore, for low-mass events such as GW170817,
the MC is more suitable.

The need for a lower limit on Λ̃ than we described before
led us to exploit the constrained value of the dimensionless
tidal deformability for a single 1.4M⊙ neutron star derived
by the study of the GW170817 event. In Fig. 10 we show
the relation between Λ1.4 and ΔE. We notice that we used
only those values of ntr that provide a separate branch from

FIG. 8. Λ̃ − q relation for the MDI+APR1 EOS and (a) the MC and (b) the GC. The blue (green) curves correspond to ΔE ¼
ΔEcr þ 100 MeV fm−3 (ΔE ¼ ΔEcr þ 200 MeV fm−3) for the MC, while the curves for the GC correspond to ΔE ¼ ΔEG þ
100 MeV fm−3 and ΔE ¼ ΔEG þ 200 MeV fm−3, respectively. The black curve indicates the original EOS. The shaded region shows
the acceptance values derived from the GW170817 event [7].

FIG. 9. Λ̃ − q relation for the GRDF-DD2 EOS and (a) the MC and (b) the GC. The blue (green) curves correspond to ΔE ¼
ΔEcr þ 100 MeV fm−3 (ΔE ¼ ΔEcr þ 200 MeV fm−3) for the MC, while the curves for the GC correspond to ΔE ¼ ΔEG þ
100 MeV fm−3 and ΔE ¼ ΔEG þ 200 MeV fm−3, respectively. The black curve indicates the original EOS. The shaded region shows
the acceptance values derived from the GW170817 event [7].
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the original EOS. As one can observe, as we move from the
ΔEcr (and ΔEG for the GC) to higher values of ΔE, the
variation between the marks decreases. In addition, all
the marks that correspond to the GC (diamonds) predict
higher values of Λ1.4 than for the MC for both EOSs. We
notice also that there is a violation of the accepted
region only for the ΔE ¼ ΔEcr þ 200 MeV fm−3 and
ΔE ¼ ΔEG þ 200 MeV fm−3. Moreover, in Fig. 10(b),
the squares indicate the ΔE ¼ ΔEcr − 5 MeV fm−3 case
under MC and for the GRDF-DD2 EOS. As one can
observe, as we move to lower values compared to ΔEcr,
the variation increases, which is in accordance with the
behavior that we described before.
Furthermore, in order to shed more light on which

specific cases should be excluded, we studied the relation
between Λ1.4 and ntr. In Fig. 11 we present the aforemen-
tioned relation. As a first remark, the MC provides in all
cases one more value of ntr than the GC. The GC shifts the
curves (dashed) to higher values than the relevant curves of
MC (solid). In addition, as we move to higher values ofΔE,
the curves are shifted to lower values of Λ1.4.
Figure 11(a) corresponds to the MDIþ APR1 EOS. The

curves that correspond to the ΔEcr and ΔE ¼ ΔEcr þ
100 MeV fm−3 lie inside the estimated region. The same
holds for ΔEG and ΔE ¼ ΔEG þ 100 MeV fm−3. On the
other hand, the solid green curve, which corresponds to the
MC with ΔE ¼ ΔEcr þ 200 MeV fm−3, is excluded. But if
we apply the GC, the curve is shifted upward (dashed green

curve), with only part lying outside of the estimated region.
Specifically, this part is between ntr ¼ 0.276 fm−3 and
ntr ¼ 0.353 fm−3. Hence, not only does the kind of con-
struction we choose have a significant role, but the exact
value of the transition density affects the final output.
Therefore, a further understanding and possible constraints
on the transition density ntr are necessary to shed more light
on the twin star hypothesis.
Figure 11(b) corresponds to the GRDF-DD2 EOS. The

curves that correspond to the ΔEcr and ΔE ¼ ΔEcr þ
100 MeV fm−3 lie inside the estimated region. Only the
green solid curve which corresponds to the MC with ΔE ¼
ΔEcr þ 200 MeV fm−3 lies outside up to ntr ¼ 0.316 fm−3,
meaning that above this value even this EOS could be
acceptable. All the curves that correspond to the GC lie
inside the estimated region. As we mentioned above, the
construction and the transition density have an important
effect on the behavior of the curves. We notice that the
purple line indicates the ΔE ¼ ΔEcr − 5 MeV fm−3 case
under the MC. As we have already noticed, as we move to
lower values of ΔE than for ΔEcr, the EOS becomes stiffer;
therefore, in this diagram the curve is shifted slightly to
higher values of Λ1.4.
In Fig. 12 we show theM-R diagram for the GRDF-DD2

EOS under the MC and for ΔE ¼ ΔEcr − 5 MeV fm−3,
which corresponds to a prediction under the Seidov limit.
It is interesting that this case predicts the existence of a
second stable branch and, consequently, the existence of a

FIG. 10. Λ1.4 − ΔE diagram for a single 1.4M⊙ neutron star for (a) the MDI+APR1 and (b) GRDF-DD2 EOS for both the MC (circles)
and the GC (diamonds). The squares correspond to the ΔE ¼ ΔEcr − 5 MeV fm−3 case under the MC and, for the GRDF-DD2 EOS,
the dark blue marks correspond to the ΔEcr (ΔEG) case, the light blue marks correspond to ΔE ¼ ΔEcr þ 100 MeV fm−3

(ΔE ¼ ΔEG þ 100 MeV fm−3), and the green ones correspond to ΔE ¼ ΔEcr þ 200 MeV fm−3 (ΔE ¼ ΔEG þ 200 MeV fm−3) for
the MC (the GC). The empty colored circle in each panel indicates the original EOS. The light purple shaded region corresponds to the
GW170817 event [6].
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twin star (and indeed within the predictions of the
GW170817 event [7]). However, this case cannot predict
the existence of the compact object of the remnant HESS
J1731-347 [70]. These results confirm those presented in
Figs. 1–4, that is, hybrid EOSs with a large energy density

gap are preferable for explaining the existence of the above
compact object.

C. Rotational frequency at 709 Hz
and the PSR J0952-0607 pulsar

The simultaneous observation of mass and frequency of
the PSR J0952-0607 pulsar [68] opens a new window for
studying the rotating configuration for neutron stars and the
possible existence of rotating twin stars. In Figs. 13 and 15
we present three cases of transition density, ntr ¼ ½0.2; 0.25;
0.3� fm−3, for both the nonrotation and the rotation in the
709Hz configuration, with theMC and theGC, respectively.
Furthermore, we extended the study to a region of the energy
jump, starting from theΔEcr for theMC andΔEG for the GC
and reaching values up to þ150 MeV fm−3. In particular,
while in Fig. 13(a) there are numerous cases that exist either
in the mass limit of the rotating neutron star or in the
nonrotating one, there are only three cases where both
configurations meet the mass limits simultaneously
[68,83–85]. Specifically, (a) ntr ¼ 0.25 fm−3 and ΔE¼
ΔEcrþ150MeVfm−3, (b) ntr ¼ 0.3 fm−3 and ΔE¼ΔEcrþ
60MeVfm−3, and (c) ntr ¼ 0.3 fm−3 and ΔE ¼ ΔEcrþ
90 MeV fm−3. In addition, the aforementioned cases
also fulfill the nonrotating radius limit [86], as shown in
Fig. 13(b), that is extracted from the GW170817 event [86]

FIG. 11. Λ1.4 − ntr diagram for a single 1.4M⊙ neutron star for
(a) the MDI+APR1 and (b) GRDF-DD2 EOS for both the MC
(solid lines) and the GC (dashed lines). The dark purple line
corresponds to the ΔE ¼ ΔEcr − 5 MeV fm−3 case under the MC
and, for the GRDF-DD2 EOS, the dark blue lines correspond to
the ΔEcr (ΔEG) case, the light blue lines correspond to ΔE ¼
ΔEcr þ 100 MeV fm−3 (ΔE ¼ ΔEG þ 100 MeV fm−3), and the
green ones correspond to ΔE ¼ ΔEcr þ 200 MeV fm−3 (ΔE ¼
ΔEG þ 200 MeV fm−3) for the MC (the GC). The light purple
shaded region corresponds to the GW170817 event [6].

FIG. 12. Mass vs radius for the GRDF-DD2 EOS under the MC
and for ΔE ¼ ΔEcr − 5 MeV fm−3. The dashed part of the curves
indicates their unstable region. The black curve indicates the
original EOS. The shaded regions from bottom to top represent
the HESS J1731-347 remnant [70], the GW170817 event [7],
PSR J1614-2230 [83], PSR J0348þ 0432 [84], PSR J0740þ
6620 [85], and PSR J0952-0607 [68] pulsar observations for the
possible maximum mass. Inset: the case with ntr ¼ 0.38 fm−3,
where the square represents the phase transition.
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(a) (b)

FIG. 14. (a) Gravitational mass as a function of the transition density for energy jumps in the range ½ΔEcr;ΔEcr þ 150� MeV fm−3 at
the maximum mass configuration. The shaded regions from bottom to top represent the PSR J1614-2230 [83], PSR J0348þ 0432 [84],
PSR J0740þ 6620 [85], and PSR J0952-0607 [68] pulsar observations for the possible maximum mass. (b) Equatorial radius as a
function of the transition density for energy jumps in the range ½ΔEcr;ΔEcr þ 150� MeV fm−3 in the 1.4M⊙ configuration. The shaded
region represents the constraints extracted through the GW170817 event [86]. Normal neutron stars are presented with diamonds and
crosses corresponding to the rotation in the 709 Hz configuration and the nonrotating one, respectively, while twin stars use the stars and
plus signs. Both panels correspond to the Maxwell construction method.

FIG. 13. (a) Gravitational mass as a function of the energy jump for transition densities in the range ½0.2; 0.3� fm−3 at the maximum
mass configuration. The shaded regions from bottom to top represent the PSR J1614-2230 [83], PSR J0348þ 0432 [84], PSR
J0740þ 6620 [85], and PSR J0952-0607 [68] pulsar observations for the possible maximum mass. (b) Equatorial radius as a function of
the energy jump for transition densities in the range ½0.2; 0.3� fm−3 at the 1.4M⊙ configuration. The shaded region represents the
constraints extracted through the GW170817 event [86]. Normal neutron stars are presented with the diamonds and crosses,
corresponding to the rotation in the 709 Hz configuration and the nonrotating one, respectively, while twin stars use the stars and plus
signs. Both panels correspond to the Maxwell construction method.
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(a) (b)

FIG. 15. (a) Gravitational mass as a function of the energy increase for transition densities in the range ½0.2; 0.3� fm−3 at the maximum
mass configuration. The shaded regions from bottom to top represent the PSR J1614-2230 [83], PSR J0348þ 0432 [84], PSR
J0740þ 6620 [85], and PSR J0952-0607 [68] pulsar observations for the possible maximum mass. (b) Equatorial radius as a function of
the energy increase for transition densities in the range ½0.2; 0.3� fm−3 at the 1.4M⊙ configuration. The shaded region represents the
constraints extracted through the GW170817 event [86]. Normal neutron stars are presented with the diamonds and crosses,
corresponding to the rotation in the 709 Hz configuration and the nonrotating one, respectively, while twin stars use the stars and plus
signs. Both panels correspond to the Gibbs construction method.

(a) (b)

FIG. 16. (a) Gravitational mass as a function of the transition density for energy increases in the range ½ΔEG;ΔEG þ 150� MeV fm−3 at
the maximum mass configuration. The shaded regions from bottom to top represent the PSR J1614-2230 [83], PSR J0348þ 0432 [84],
PSR J0740þ 6620 [85], and PSR J0952-0607 [68] pulsar observations for the possible maximum mass. (b) Equatorial radius as a
function of the transition density for energy increases in the range ½ΔEG;ΔEG þ 150� MeV fm−3 in the 1.4M⊙ configuration. The
shaded region represents the constraints extracted through GW170817 event [86]. Normal neutron stars are presented with diamonds
and crosses corresponding to the rotation in the 709 Hz configuration and the nonrotating one, respectively, while twin stars use the stars
and plus signs. Both panels correspond to the Gibbs construction method.
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for the 1.4M⊙ configuration. In the latter, we also present for
completeness and comparison the corresponding radius at
709Hz.However, in Fig. 13(a), there are numerous cases that
can solely describe the 709 Hz configuration. It has to be
noted that the aforementioned cases are eligible for the
description of the PSR J0952-0607 [68] pulsar since we do
not know the corresponding nonrotating limit for the mass.
On the contrary, in Fig. 15(a) there are only a few cases that
represent twin stars, which nearly all (with one exception)
meet the current limits of the gravitational mass only at the
nonrotating configuration. In addition, their radius is close to
the limits, or even fulfills them for the 1.4M⊙ configuration
imposed by the GW170817 event, which is indicated in
Fig. 15(b). The one exception can describe only the 709 Hz
radius at 1.4M⊙ configuration. We also present the corre-
sponding Figs. 14 and 16, where we highlight the transition
density over the energy jump.
TheGCconfiguration presented an effect where, while the

nonrotating configuration is not able to produce twin stars,
that is not the case at 709 Hz [60]. Specifically, Fig. 17

displays the representative cases: (a) ntr ¼ 0.25 fm−3 and
ΔE ¼ ΔEG þ 120 MeV fm−3 and (b) ntr ¼ 0.3 fm−3 and
ΔE ¼ ΔEG þ 60 MeV fm−3. The last case, ntr ¼ 0.25 fm−3

and ΔE ¼ ΔEG þ 90 MeV fm−3, is not presented so as to
preserve the clearness of the figure. Moreover, for clarity, we
indicate in the inner part of the figure the region of an EOS at
709 Hz, where the twin star branch appears. Also, we have
marked the twin star that corresponds to the first maximum
mass configuration along with the relevant radii. This effect
added the reported cases in the list where the rotation meets
the mass limit of the PSR J0952-0607 pulsar.
TheMC and GC configurations are both suitable methods

to describe twin stars, while the second one, using similar
parametrization, is more elaborate. The key differences
between them are that (a) the MC provides higher gravita-
tional masses than the GC and (b) the MC rises fairly more
twin stars than the GC. A possible explanation for both of
them may lie in the existence of the sharp transition and the
energy jump applicable on the MC, whereas in the GC both
of them are extinct. However, the GC can provide twin stars
in the rotating configuration without their appearance in the
nonrotating scenario. This peculiar effect may have its origin
at the smooth phase transition that theGCuses, alongside the
transition density, the rotational frequency, and the hadronic
EOS. Nevertheless, a thorough study of the latter effect
should be done and will be the subject of a forthcoming
paper. An analysis of Figs. 13–17 enriches the scenario of the
twin star existence, as they can describe the observed neutron
star masses at both nonrotating and rotating configurations.
For the numerical integration of the equilibrium equations at
the rotating configuration, we used the publicly available
numerical code NROTSTAR from the C++ LORENE/NROTSTAR
library [87].

V. CONCLUDING REMARKS

The existence of two stable branches in a neutron star
configuration, which led to the concept of twin stars, may
reveal the scenario of phase transition in the interior of
dense nuclear matter. Therefore, it is extremely important to
study the above hypothesis from both theoretical and
observant points of view. In this work a systematic study
concerning the twin star hypothesis has been carried out,
and the main conclusions can be summarized as follows.
(1) There could be hybrid or twin star branches that can

describe the current observations of binary neutron
star systems, such as the GW170817 event. Not only
does the transition density play an important role in
the possible existence of a twin star branch, but the
ΔE also affects this scenario. Specifically, as we
move to higher values of the ΔE, it is easier for the
twin star branch to exist, even for the lowest values
of ntr that we used in our study.

(2) Across the same EOS, the kind of construction that
we use affects the behavior of the curves. In general,
the MC offers more hybrid and twin star branches in

FIG. 17. Gravitational mass as a function of the equatorial
radius for two representative cases of the GC: (a) ntr ¼ 0.25 fm−3

and ΔE ¼ ΔEG þ 120 MeV fm−3 and (b) ntr ¼ 0.3 fm−3 and
ΔE ¼ ΔEG þ 60 MeV fm−3. The circles represent the maximum
mass configuration, while the diamonds correspond to the twin
stars, assuming a mass equal to the first maximum mass
configuration. Inset: twin star branch for the case in which ntr ¼
0.3 fm−3 and ΔE ¼ ΔEG þ 60 MeV fm−3. The dash-dotted lines
represent the nonrotating configuration, while the solid lines
correspond to the 709 Hz configuration. As a guide for the eye,
the unstable region is marked with dashed lines. The shaded
regions from bottom to top represent the PSR J1614-2230 [83],
PSR J0348þ 0432 [84], PSR J0740þ 6620 [85], and PSR
J0952-0607 [68] pulsar observations for the possible maximum
mass.
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lower neutron star masses than the GC. Moreover,
the MC leads to a softer EOS behavior. Therefore,
binary neutron star systems that contain lower
component masses (in other words, a lower chirp
mass) are better suited to the MC. Also, the GC
shifts the curves to higher values ofΛ, as one can see
in the Λ1.4 − ntr diagram. This fact has as a conse-
quence that some cases which were to be excluded
by using the MC could lie (by using the GC) as a
whole or partly inside the estimated area.

(3) In our study we took the observational value of Λ̃,
using as a reference the GW170817 event. This
upper limit was not helpful to further constrain the
cases that we studied. On the contrary, because of the
fact that the HS-HS binary system scenario has a
very soft behavior on the EOS, a possible lower limit
on Λ̃ could be very helpful to shed more light on the
problem, from another point of view. Moreover, a
further constraint on the radius (e.g., the radius of a
1.4M⊙ configuration) could be informative when
constraints on the very soft cases are imposed.

(4) The observation of the PSR J0952-0607 pulsar, where
both the mass and the frequency are evident, does not
exclude the existence of twin stars. In fact, both the
MCand theGCprovide numerous configurations that
can describe solely the rotating configuration, solely
the nonrotating configuration, or both of them simul-
taneously. The latter, since we do not have the
corresponding nonrotating mass of the PSR J0952-
0607 pulsar, provides us with strong evidence that
both static and rotating twin stars can exist.

(5) The rotational frequency in some cases of the GC
can introduce twin stars from normal stars. In
particular, as the rotating twin star loses its rotational
frequency, the neutron star moves to higher energies
and stable configurations, where the EOS is more
stiff and renders the phenomenon of twin stars
extinct. However, an analysis using fixed baryon
mass sequences would provide more information on
the effect. Nevertheless, we speculate that this effect
due to the stiffening of the EOS comes as a
consequence to the GC, where a smooth phase
transition is employed, in contrast to the MC, where
an energy jump appears.

(6) The recent observation of a compact object with the
lowest observable mass M ¼ 0.77þ0.20

−0.17M⊙ within
the supernova remnant HESS J1731-347 opens a
new window to impose constraints on the EOS of
dense nuclear matter. In this study, our predictions
reinforce the estimation of Doroshenko et al. [70]
that the observed compact object is a hybrid star with
an exotic core rather than the lightest neutron star
ever known. This result strengthens the hypothesis
of hybrid stars and therefore of the existence of
twin stars.

The above conclusions can be summarized as follows:
Further systematic theoretical research is required to clarify
the role of the method that describes the phase transition in
dense nuclear matter, as well as its particular characteristics
(density transition, energy, etc.). In addition, more relevant
observations from binary neutron star mergers (and more)
are necessary to be able to check the plausibility of the
theoretical predictions. In this case we will possibly be able
to confirm, with sufficient confidence, the existence of twin
stars and, even more importantly, to confirm—not only
qualitatively but also quantitatively—the phenomenon of
phase transition in dense nuclear matter.
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