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Dilatons [ϕðxÞ] are a class of bosonic scalar particles associated with scaling symmetry and its
compensation (under the violations of the same). They are capable of interacting gravitationally with other
massive bodies. As they have coupling to two photons (γ), they are (also) capable of decaying to the two
photons. However, the decay time is long and that makes them a good candidate for darkmatter. Furthermore
due to two photon coupling, they can produce optical signatures in a magnetic field. In a vacuum or plain
matter they couple to one of the transversely polarized states of the photon. But in magnetized matter, they
couple to both the transversely polarized state of photons (due to the emergence of a parity violating part of
the photon self-energy contribution from magnetized matter). Being spin zero scalar, they could mix with
spin zero longitudinal part of photons but they do not. A part of this work is directed towards understanding
this issue of mixing the scalar with various polarization states of photons in a medium (magnetized or
unmagnetized) due to the constraints from different discrete symmetries, e.g., charge conjugation (C),
parity (P) and time reversal (T) associated with the interaction. Based on these symmetry aided arguments,
the structure of the mixing matrix is found to be 3 × 3, as in the case of neutrino flavor mixing matrix. Thus
there exists nonzero finite probabilities of oscillation between different polarization states of photon to
dilaton. Our analytical and numerical analysis show no existence of periodic oscillation length either in
temporal or spatial direction for the most general values of the parameters in the theory. Possible
astrophysical consequences of these results can be detected through the discussed observations.
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I. INTRODUCTION

The issue of unification of four fundamental forces of
nature by the introduction of an additional scalar (field)
ðϕðxÞÞ is probably one issue that may hold a key to the
solution of the dark energy/matter puzzle. These postulated
fields are found to make their appearance in two kinds of
theories, one is in quantum theories of unification and other
is in higher dimensional theories of cosmology/gravity. In
theories beyond the standard model (of particle physics),
these additional scalar fields often appear in theories of
unification [1–15], like in five-dimensional Kaluza-Klien
theory, in super-string theory, and also in theories of
extended super gravity [1] etc. In higher dimensional
theories, like the string theory, the scalar fields—termed
moduli (fields) [2–12]—are necessary to produce a four-
dimensional effective theory from the original higher
dimensional theory by compactifing the extra dimensions.
On the other hand, scalar fields (both interacting and
massive) had also been postulated independently in
models of cosmology to shed light on the aspects of
dark matter. Those whose presence remains imprinted
in the cosmological observations of cosmic microwave

background radiations are called “chameleon” [16–28].
Also, the compelling observational aspects of dark matter
physics has motivated the particle-astrophysics community
to construct a particle physics models with similar fields
[29–34] and verify their suitability in explaining the
experimental data. A detailed description of the possible
candidates of dark matter can be found in [34]. Other
possible applications can be found in [7–35]. It is not so
often that the solution of an unresolved issue in one area of
physics holds the key to another unresolved issue in other
area of the same. The issues of unification of four forces of
nature and the missing mass and energy (dark matter and
dark energy) problem of cosmology might turn out to
represent such an event of rarity. The notable feature that
this field ϕðxÞ exhibits in these theories lie in the structure
of their interaction with photons. This is given by an
interaction Lagrangian of the form 1

MϕFμνFμν, where M is
the energy scale of the physics. In this place we may write
gϕγγ ¼ 1

M, where gϕγγ is the dimension full coupling
constant. This interaction term has most of the desirable
properties of an ideal Lagrangian except one. Although it is
local, it remains invariant under Lorentz, gauge, and CPT
symmetry transformations; however, it is nonrenormaliz-
able and compromised for having an interaction term of
mass dimension five. Incidentally, similar interaction
terms are also possible for a loop induced Higgs photon
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interaction, given by g0HFμνFμν, where g0 is the effective
coupling constant, obtained after integrating out the heavy
degrees of freedom (d.o.f.), H is the Higgs field, and the
rest of the pieces have their usual meaning. Many of these
fields can have a coupling (very weak though, since m

M ≪ 1)
to standard model particles, thereby, they may be detected
indirectly through collider or astrophysical observations.
Some of their possible signatures are (i) the existence of a
fifth force distinguishable from gravity, (ii) the violation of
a Lorentz invariance [36], and (iii) the spectropolarimetric
signals discussed in the phenomenal papers like [37–40]
among many others of similar quality. A comprehensive list
of other possible signatures can be found in [41–49]. A
notable and important issue related to this kind of inter-
action that is capable of distinguishing similar looking
scalar fields from each other (owing their origin to various
symmetries) is related to the magnitude of their mass (m).
The same is not fixed by any symmetry argument. However
the lower limit to the same (m) is fixed by the torsion-
balance fifth force experiment, which is estimated to be
greater than 10−2 eV [50–54]. And the upper limit on the
same (i.e.,m) can go up to a few TeV [55] depending on the
type of model (moduli) one is interested in. In cosmology
for example, a limit to the massm and energy scaleM is set
from the estimate of their lifetime to two photon decay,
given by τϕ ¼ 16πM2

m3 [56–59], so that the produced photons
do not interfere with the big bang nucleosynthesis con-
straints [60]. Although lately there are proposals of a new
kind of dark matter termed as “fuzzy” dark matter [61]
available in the literature, for which torsion balance bounds
are not applicable. The bounds on their masses are obtained
from the Sachs-Wolfe effect [62,63]. The laboratory based
experimental search for these particles were initially
suggested in [39,40] and some of the variants of the same
were in [64–68]. Many of these lab based experiments have
provided some bounds on the axion coupling constant with
other fundamental particles like electron, photon, etc.
These two experiments [67,68] happen to be one of those.
However the launch of the satellite missions—EUVE [69],
ROSAT [70], BeppoSAX [71], XMM-Newton [72],
Chandra [71,73,74], and Suzaku [75]—sensitive to soft
x-ray emissions around 5–10 KeV from the galaxy clusters
have opened up another possibility of their astrophysical
confirmation. Interestingly enough, ever since their launch,
evidence of 0.5–1.0 MeV lines [76], 3.5 KeV lines [77],
and 511 keV lines [78–80]) have been reported in the
literature. Some of these signals are believed to be due to
dark matter. Though many of the laboratory and astro-
physical electromagnetic (EM) signals are complementary
to each other however, for few of the astrophysical ones are
better than the laboratory ones. The presence of strong
coherent magnetic field over a large length scale, an
ambient plasma and abundance of highly energetic photons
make it convenient to look for EM signals from astro-
physical sources to test many types of interactions. For the

same reason, the EM signatures from astrophysical sources
for the 1

MϕFμνFμν interaction are arguably better than the
ones from the laboratory. Although a large volume of
literature [10,37,38,81–83] is already available on many
aspects of the relevant issues.
One of the notable aspects of these studies had been the

incorporation of magnetized vacuum effects by considering
the Euler-Heisenberg Lagrangian. This incorporation lifts
the degeneracy between the two transversely polarized
photons and makes only one of the polarized states of
photon mix with Axion like particles (ALP)-like particles
leaving the other one free. This turns the vacuum dichroic
and birefringent that in principle can be detected if ALPs
exist in nature.
However, in this work we would like to point out another

aspect that has rarely been considered important in such
investigations: that is, the background dependence of the
dynamics of scalar or pseudoscalar photon interaction.
Photons propagating in a magnetized vacuum with a

ϕFμνFμν interaction have two transverse polarization states.
One of them ðjγ⊥ iÞ is orthogonal to B and the other one
ðjγkiÞ lies on the k − B plane. Following the reasoning of
[38] (performed originally for axion photon system), the
two polarization states of the photon, for this case too,
would transform differently under parity P and charge
conjugation C symmetry transformations. Since, under CP
transformation, the scalar and the CP even polarization
state of photon would remain even, only these two would
couple during propagation; the CP odd polarized state of
the photon would propagate freely.
When medium induced corrections are considered, the

contribution from the in-medium polarization tensorΠμνðkÞ
need to be taken into account. The same, in absence of any
parity violating interaction or ambient external magnetic
field B, would be CP symmetric. Hence even in an
unmagnetized medium, the propagating modes of the scalar
(ϕ) photon (γ), system with five-dimensional scalar photon
interaction, would remain same as in magnetized vacuum.1

This picture, however, changes with the introduction of a
new parity violating interaction term to the effective
Lagrangian (Leff ) that originates from the magnetized
medium induced corrections to the photon self energy
tensor (PSET), Πμνðk; T; μ; eBÞ (sometimes called the
Faraday term) in the system. This tensor (PSET) in a
magnetized medium has a part that is even in eB and a part
that is odd in the same. It is the part that is odd in eB that is
also odd in μ (chemical potential) and is parity violating.
This part was originally evaluated in [84].
An effective Lagrangian of the form Aμð−kÞ ×

Πμνðk; T; μ; eBÞAνðkÞ constructed with the same would
change the mixing dynamics. The leading order magnetic

1However, that consideration of the ambient plasma effects
brings changes in the size of the contribution to the oscillation
probability Pγjj→ϕ.
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field effects in a magnetized plasma for m2 > eB can be
obtained by retaining the OðeBÞ piece from Aμð−kÞ×
Πμνðk; T; μ; eBÞAνðkÞ, in the interaction Lagrangian ðLeffÞ.
We perform the same in this study. This formalism was
developed earlier in [38,81,85] to study the axion-photon
interaction dynamics. We have extended this formalism to
the case of scalar photon interaction dynamics by incor-
porating the correction mentioned above. This causes
further mixing between the two transverse polarization
states of the photon; therefore, the scalar and the two
transversely polarized states of the photon mix with each
other. As a result, the jγ⊥ i part of a photon beam, unlike a
vacuum, would evolve with propagation due to the pres-
ence of PSET, and longitudinal d.o.f. would propagate
freely. The effect of the same on polarimetric signatures of
scalar photon mixing case has been discussed in [86].
Though a similar approach for polarimetric studies had
been considered in [85] for an axion photon system also,
but the conversion probabilities of parallel or perpen-
dicular polarized photons to pseudoscalar axions remained
unexplored.
We complement the same in this work by calculating

these conversion probabilities for dilaton-photon system.
With the introduction of PSET, the probability of con-
version of perpendicularly polarized photon to dilaton and
vice versa turns out to be finite. Till so far this aspect
remained unreported in the literature. We explore the same
here and its consequences.
We demonstrate here in this note that the inclusion of

PSET causes the γ − ϕmixing matrix to be 3 × 3 instead of
2 × 2, usually encountered for a similar process taking
place in magnetized vacuum, or unmagnetized plasma.2

Now, as a result of scalar photon mixing, the two transverse
degrees of freedom of photon, the k and the ⊥ can now
oscillate into and out of scalar (dilaton) mode in addition to
the oscillations among themselves, i.e., k ↔ ⊥ . Under
favorable circumstances signals of the same may be within
the future detector sensitivity.
The organization of the document is as follows: in the

next section, we have elaborated on the form of the action
and propagators in flat and curved space-time. We have
provided the logic behind sticking to the description in flat
space-time because of pathological problems encountered
in curved space-time results. Followed by that the tensorial
structure of the polarization tensor for photons in an
unmagnetized medium is discussed. This is followed by
the description of the fermion propagator in coordinate
space. The parity violating part of the photon polarization

tensor is discussed and its tensorial structure is dis-
cussed next.
Section III contains a discussion of the effective

Lagrangian. This is followed by a brief discussion on
the discrete symmetry transformation properties of the
gauge potentials and the terms of the equations of motion
of the γϕ system obtained from the effective Lagrangian
under consideration. In Sec. IV, we establish the unitary
transformation matrix that diagonalizes the mixing matrix.
In Sec. V, using the same unitary matrix obtained in Sec. IV,
we diagonalize the equations of motion and identify its
similarity with the Klein-Gordon equation in the diagonal
form. We take this equation and, following the procedure of
[38], we estimates the conversion probabilities of various
modes into each other. In Sec. VI we discuss the physics of
appropriate astrophysical environments where the mixing
of the photons with the scalar can take place. We identify
some possible signatures of this mixing from the EM
signals coming out of these astrophysical environments.
The implications of this modified system is discussed in
Sec. VII. In Sec. VIII we provide possible implications of
our work for some of the DM signatures existing in the
literatures followed by Appendices where some technical
details are elaborated.

II. THE POLARIZATOIN TENSOR

Considering the form of coordinate space dilaton-
photon interaction term presented in [56] the effective
action for scalar photon interaction including medium
corrections [84–99] in configuration space can be
expressed as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνðxÞFμνðxÞ

−
gϕγγ
4

ϕðxÞFμνðxÞFμνðxÞ

−
1

2

Z
d4x0AμðxÞΠμνðx; x0ÞAνðx0Þ

þ 1

2
∂μϕðxÞ∂μϕðxÞ −

1

2
m2

ϕϕ
2ðxÞ

�
: ð2:1Þ

In Eq. (2.1) g is the determinant of the space-time metric
that assumes the value −1 in Minkowski space. The same
(factor

ffiffiffiffiffiffi−gp
) is multiplied by d4x to maintain a Lorentz

invariance of the measure. In the same [i.e., Eq. (2.1)]
Πμνðx; x0Þ stands for the in-medium polarization tensor in
configuration space. The polarization tensor can be
expressed, following [90], as

Πμνðx; x0Þ ¼ e2tr
Z ffiffiffiffiffiffi

−g
p

d4y0ðγμSFðx; y0ÞγνSFðy0; xÞÞ

× δ4ðx0 − y0Þ; ð2:2Þ

2The situation is also different from axion photon system when
PSET is considered, where there is mixing between all four
degrees of freedom (three degrees of freedom of a photon in
medium and a single degree of freedom of axion). Thus one has to
deal with a 4 × 4 mixing matrix to study the evolution of the
axion-photon system.
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where the trace is defined over Dirac matrices. The in-
medium propagator in coordinate space is defined, in terms
of a vacuum propagator SvFðx0; x00Þ ¼ hx0j 1

=∂−mþiϵ
jx00i, as

SFðx0; x00Þ ¼ SvFðx0; x00Þ − fðp:uÞ½SvFðx0; x00Þ − Sv�F ðx0; x00Þ�;
ð2:3Þ

where fðp:uÞ happens to be the Fermi-distribution func-
tion in a frame moving with four velocity uμ. The curved
space-time Fermion propagator SFc can also be represented
as [100]

ði=D −mÞSFcðx; x0Þ ¼
iffiffiffiffiffiffi−gp δðx; x0Þ: ð2:4Þ

The reason behind using this alternative representation is
the inability of expressing the asymptotic vacuum states
uniquely curved space-time. Here D stands for the covar-
iant derivative in curved space-time. It can further be
written in terms of the scalar green function�
D2þ iσμνFμν −

R
4
þm2

�
Gðx;x0Þ ¼ −iffiffiffiffiffiffi−gp δðx;x0Þ: ð2:5Þ

Finally, the Fermion propagator in curved space-time in a
magnetic field is as follows from Eq. (2.5):

SFcðx; x0Þ ¼ ði=DþmÞGðx; x0Þ; ð2:6Þ

where R happens to be the Ricci scalar. One can express the
above expressions in momentum space by taking the
Fourier transform using two point transforms [101,102]:

fðxÞ ¼
Z

dkμ0

ð2πÞd g
ð−1=2Þðx0Þ expð−ikμ0σμ0 ðx; x0ÞÞf̃ðk; x0Þ:

ð2:7Þ

A strong gravitational background is known to introduce
some pathological problem in the external electromagnetic
field. For example the photon velocity estimated for the
Euler-Heisenberg Lagrangian system predicts a superlumi-
nal velocity of photon [103]. Therefore the search for
particles like dilatonlike particles should be restricted to
space where space-time curvature is negligible or flat.
Usually the space-time curvature at a distance r from a
body of mass M is given by the Kretschmann scalar [104],

R ¼ 48M2

r6
: ð2:8Þ

For a body with mass close to solar mass or less, the
curvature is negligible for most of the regions close to its
surface. Moreover our region of interest happens to be
close to the light cylinder of the star, hence we have not

considered the curvature of the space-time for our
estimates.
Coming back to flat space-time picture, Πμνðk; μ; T; eBÞ

has a contribution coming from (a) a magnetized vacuum,
(b) an unmagnetized medium, and (c) a magnetized
medium. The contribution from (c) can further be divided
in two pieces: those having an algebraic structure that can
be written as a polynomial, the first (c1) that is even eB
even μ and the second (c2) that is a polynomial odd in eB
and odd in μ. The even eB odd μ and odd eB even μ parts
make vanishing contribution to Πμν. In a parameter region
where eB ≪ m2 and momentum k ≪ m contributions from
(a) and (c1) are suppressed compared to (c2) [105,106].
Though the contribution from (a) and (c1) have their

special significance in the mixing dynamics for charge
symmetric medium (μ ¼ 0), the inclusion of (c2) makes a
paradigm shift in structure of mixing. So to initiate a
discussion on effective Lagrangian we start with a dis-
cussion on the structure of polarization tensor in an
unmagnetized media in momentum space in the following
subsection.

A. Polarization tensor: Structure

The linear response to EM excitations of a medium at
finite density, temperature, and an external field can studied
by evaluating the in-medium photon polarization tensor
ΠμνðkÞ by the techniques of quantum statistical field theory
[87–90]. This tensor is supposed to have few essential
properties [87], e.g., it possesses a symmetry, i.e.,

ΠμνðkÞ ¼ Πνμð−kÞ; ð2:9Þ

called Bose symmetry. It should obey the Ward identity,

kμΠμνðkÞ ¼ 0; ð2:10Þ

ensuring gauge invariance (also called charge conservation
law). The requirement of unitarity demands that the polari-
zation tensor should have the property ΠμνðkÞ ¼ Π�

νμðkÞ.
This, when combined with Bose symmetry [Eq. (2.9)],
yields

ΠμνðkÞ ¼ Π�
μνð−kÞ: ð2:11Þ

Therefore, in four dimensions, the tensorΠμνðkÞ now needs
to be constructed from the available four-vectors and
tensors with the system; namely the medium center-of-
mass velocity four-vector uμ, the photon four-momentum
vector kμ ¼ ðω; k⃗Þ, the metric tensor gμν, Levi-Civita tensor
ϵμνρλ, and the Lorentz scalar form factors such that
Eqs. (2.9)–(2.10) are satisfied.
The tensorial structure of the in-medium photon self

energy tensor in absence of any external field is given by
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where

ΠμνðkÞ ¼ ΠTRμν þ ΠLQμν8>>>>><
>>>>>:

Rμν ¼ g̃μν −Qμν

g̃μν ¼ ðgμν − kμkν
k2 Þ

Qμν ¼ ũμũν
ũ2

ũμ ¼ g̃μνuν

: ð2:12Þ

The dispersive part of ΠμνðkÞ satisfies (2.11) in a charge
ðCÞ symmetric (μf̄ ¼ μf) or asymmetric (μf̄ ≠ μf) medium
automatically. This in turn dictates the functional form of
the form factors ΠL and ΠT on the scalars made out of k2

(k.u.) etc. The scalar form factor ΠLðkÞ, corresponding to
the longitudinal degree of freedom, is given by [91]

ΠLðkÞ ¼ −
k2

jk⃗j2
ΠμνðkÞuμuν;

where uμuνΠμνðkÞ ¼ ω2
p

�jk⃗j2
ω2

þ 3
jk⃗j4
ω4

T
m

�
: ð2:13Þ

Similarly the transverse form factor ΠT is given by the
expressions

ΠTðkÞ ¼ RμνΠμνðkÞ and RμνΠμνðkÞ ¼ ω2
p

�
1þ jk⃗j2

ω2

T
m

�
:

ð2:14Þ

In the expressions above ωp denotes the plasma frequency.
In the classical limit, to leading order in T

m, it is given by

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παne
m

�
1 −

5T
2m

�s
; ð2:15Þ

where ne is the number density of electrons. A detailed
structure of photon polarization tensor ΠμνðkÞ in vacuum,
in medium, and in magnetized medium has been discussed
in [92]. For more insight into it, one can consult to this
reference.
Recalling the transformation properties of the background

EM field F̄μν, and the four-vectors uμ and kμ under C
conjugation andP reversal operations [84], it is easy to figure
out that under parity transformation the two orthogonal
polarization eigenstates of a photon, described in the notation

of [93] by [ð ˜̄FμνfμνðkÞÞ≜j⊥ i] and [ðF̄μνfμνðkÞÞ≜jki], are at
odds with each other.
Now in the light of Eq. (2.13) ΠμνðkÞ is C and P even,

when the respective transformations are considered indi-
vidually or together, i.e.,

P−1ΠμνðkÞP ¼ ΠμνðkÞ; ð2:16Þ

C−1ΠμνðkÞC ¼ ΠμνðkÞ; ð2:17Þ

ðCPÞ−1ΠμνðkÞðCPÞ ¼ ΠμνðkÞ: ð2:18Þ

Hence, recalling the issue of coupling of degrees of
freedom in a unmagnetized material medium that was
initiated in the introduction, it is easy to realize that in an
unmagnetized medium the parity violating state (i.e., j⊥ i)
would propagate freely but not the parity preserving
state (jki). This one would couple to ϕðkÞ because of
Eq. (2.16).3 Thereby, in a material medium, the dynamics
of the system remains as the same as it was in a magnetized
vacuum. The kinematics, however, changes. In a plain
material medium, the magnitude of the oscillation proba-
bility undergoes modification vis-á-vis the same in a
magnetized vacuum.
In the presence of an external EM field, the photon

polarization tensor in a magnetized media can be expressed
in terms of the rank two basis tensors constructed out of the
field strength tensor F̄μν, the Levi-Civita tensor ϵμνλσ along
with the other four-vectors and tensors mentioned before
and the form factors those are Lorentz scalars constructed
using these four-vectors and tensors. We deliberate on this
in the next subsection.

B. Photon polarization tensor in a magnetized
medium: All orders in (eB)

Photon polarization tensor in a magnetized media in
configuration space would follow from Eq. (2.2), where
one needs to use the corresponding expressions for in-
medium Fermion propagators in an external magnetic field
(2.3). The expression for the same is provided below. The
Fermionic propagator in magnetized vacuum is [95]

iSvFðx0;x00Þ

¼−
iΦðx0;x00Þ
ð4πÞ2

Z
∞

0

ds
eB

sinðeBsÞ

×exp

�
−is

�
−
eσμνFμν

2
þm2− iϵ

��

×exp

�
−
i
4
ððx0−x00ÞαðeFcothðeFsÞÞαβðx0−x00ÞβÞ

�

×

�
γλ

2
ðeFcothðeFsÞþeFÞλρðx0−x00ÞρþmI

�
: ð2:19Þ

In Eq. (2.19), above the phase factor, Φðx0; x00Þ is
given by

Φðx0; x00Þ ¼ exp

�
ie
Z

x0

x00
dxμ

�
Aμ þ

1

2
Fμνðx0 − x00Þν

��
;

ð2:20Þ

3The CP invariant background medium cannot compensate for
the parity odd property of j⊥ i so that it can couple to ϕðkÞ.
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The symbol F in Eq. (2.20) stands for the field strength
tensor Fμν (suitably contracted when they appear in
combination with functions of the same or Dirac gamma
matrices), and quantity I in Eq. (2.19) stands for a 4 × 4
unit matrix. Finally the in-medium propagator in a mag-
netized medium can be obtained by using the propagator
(2.19) for SvFðx0; x00Þ in Eq. (2.3).

C. Contribution to photon self-energy from a
magnetized medium: All odd orders in (eB)

In a magnetized medium, magnetic field ðeBÞ dependent
extra contributions appear in the expression for the
photon polarization tensor. They are of two types:
One of them is even the other one is odd in powers of
the field strength eB. The one odd in eB turns out to be
also odd in μ (the chemical potential), so that this term
remains even under the operation of charge conjugation C.
When apart, this term satisfies the conditions given by
Eqs. (2.9)–(2.11). This odd eB odd μ contribution to the
polarization tensor violates parity. The exact expression of
the same is given by

Πp
μνðk; μ; T; eBÞ

¼ 4ie2εμναkβk
β

Z
d4p
ð2πÞ4 η−ðpÞ

Z
∞

−∞
dseΦðp;sÞ

×
Z

∞

0

ds0eΦðp0;s0Þ
�
pα̃k tan eBsþ p0α̃k tan eBs0

−
tan eBs tan eBs0

tan eBðsþ s0Þ ðpþ p0Þα̃k
�
: ð2:21Þ

Here e is the coupling constant for the U(1) gauge theory,
η−ðpÞ ¼ ηFðpÞ − ηFð−pÞ [with ηFðpÞ being the statistical
factor involving Fermions and their antiparticles [84]], and
B, as mentioned before, is the background magnetic field.
The functions Φðp; sÞ and Φðp0; sÞ are the contributions
from Schwinger propagator [96], having loop momentum p
and external momentum k, Fermion massm and parametric
integrating variable s and s0. The symbol p0 on the right-
hand side stands for (pþ k), and the loop momentum four-
vector pα̃k, appearing in (2.21), happens to be components
of momentum p, which take only the values 0 and 3 (called
the k components) but with a difference. When αk and α̃k
appear together in any term and are summed up, then, for αk
equal to zero, α̃k would take the value of 3 and for αk equal
to 3, α̃k would take the value 0. In the same equation, the
symbol εμναkβ is the completely antisymmetric Levi-Civita
tensor that takes the values 1 and −1, for even and odd
permutations of the indices and vanishes when any two
indices are the same:

Φðp; sÞ≡ is

�
p2
k −

tanðeBsÞ
eBs

p2⊥ −m2

�
− ϵjsj; ð2:22Þ

Φðp0; s0Þ≡ is0
�
p02

k −
tanðeBs0Þ
eBs0

p02⊥ −m2

�
− ϵjs0j: ð2:23Þ

This expression is exact to all odd orders in eB; however,
performing the integrals and arriving at compact form from
this expression is very difficult.4

1. In-medium contribution to photon
self energy to O (eB)

The integral in Eq. (2.21) describing parity violating
PSET is a little difficult to evaluate exactly using
analytical techniques. But a perturbative evaluation, to
leading order in eB, is possible [84]. The perturbative
expression can be expressed in terms of a scalar form
factor Πpðk; μ; T; eBÞ and a projection operator Pμν, so
Πp

μνðk; μ; T; eBÞ to order (eB) can be expressed in the
following form [84,85]:

Πp
μνðkÞ ¼ ΠpðkÞ

�
iϵμναkβ

kβ

jKju
α̃

�
¼ ΠpðkÞPμν; ð2:24Þ

where

Pμν ¼ iϵμναβk
kα

jKj u
β̃k : ð2:25Þ

The tensor Pμν given by (2.25) is Hermitian but it is
odd under parity transformation. The superscripts with k
means that they can take only values between 0 and 3.
Furthermore, in our notation,

jKj ¼
�X3

i¼1

k2i

�1=2

: ð2:26Þ

The limit k → 0 in Eq. (2.24) should be taken in such a
way that

lim
jkj→0

�
ki

jkj
�

→ 1: ð2:27Þ

The scalar form factor ΠpðkÞ appearing in Eq. (2.24) is
given by

ΠpðkÞ ¼ ωωBω
2
p

ω2 − ω2
B
; where ωB ¼ eB

m
ð2:28Þ

is the gyration frequency.

4One can perform the integration with the following substi-
tution: Express the four-vector Pμ as pμ ¼ αð1Þuμ þ αð2Þn2 ·
ðk:FÞμ þ αð3Þn3 · Bμ þ αð4Þn3 · qμ, when qμ ¼ ϵμνλρFλρuν and
nis are normalization constants, so as to make the basis vectors
orthonormal.

CHAUBEY, JAISWAL, and GANGULY PHYS. REV. D 107, 023008 (2023)

023008-6



III. EFFECTIVE LAGRANGIAN WITH
MAGNETIZED MEDIUM EFFECTS

To summarize the observations of the last section, we
note that the effects of a medium to the propagation of
excitations of interest can be considered by evaluating the
polarization tensor ΠμνðkÞ, following the methods of finite
temperature quantum field theory [85]. This takes into
account the correction arising out of temperature and
density effects due to the interactions amongst the particles
fields that constitute the media.
The action in momentum space, as the quantum correc-

tions due to ambient medium and an external magnetic field
to OðeBÞ are taken into account, can be obtained upon
taking the Fourier transform of Eq. (2.1). The same turns
out to be

S ¼
Z

d4k

�
1

2
Aνð−kÞð−k2g̃μν þ Πμνðk; μ; TÞ

þ Πp
μνðk; μ; T; eBÞÞAμðkÞ þ igϕγγϕð−kÞF̄μνkμAνðkÞ

þ 1

2
ϕð−kÞ½k2 −m2�ϕðkÞ

�
: ð3:1Þ

Here Πμνðk; μ; TÞ is an in-medium polarization tensor
and Πp

μνðk; μ; T; eBÞ is the correction due to magnetized
medium effects PSET as explained before. For the sake of
compactness we would be denoting Πμνðk; μ; TÞ as ΠμνðkÞ
and Πp

μνðk; μ; T; eBÞ as Πp
μνðkÞ in subsequent sections. We

can find the equations of motion in momentum space by
standard variational principle. The equation of motion for
photons is

½−k2g̃αν þ ΠανðkÞ þ Πp
ανðkÞ�AνðkÞ ¼ −igϕγγF̄μαkμϕðkÞ:

ð3:2Þ

It can be simplified further in Lorentz gauge to

k2AαðkÞ − ΠανðkÞAνðkÞ þ Πp
ανðkÞAνðkÞ ¼ igϕγγF̄μαkμϕðkÞ;

ð3:3Þ

and other equation of motion for ϕðkÞ is given by

ðk2 −m2ÞϕðkÞ ¼ igϕγγF̄μαkμAαðkÞ: ð3:4Þ

A. Expanding the gauge potential AμðkÞ
in orthogonal basis vectors

In order to capture the dynamics of the available degrees
of freedom in a medium, in this subsection, we need to
expand the four-vector potential AμðkÞ in terms of the
available four-vectors at our disposal. The available four-
vectors as was noted in Sec. II A are kμ, the four-momentum
of the particles and uμ ≡ ð1; 0Þ the center-of-mass four

velocity of the medium and ϵμνλρ. Using these two and the
constant external field strength tensor F̄μν (where the only
nonzero component being F̄12 ≠ 0), two other vectors bð1Þμ

and bð2Þμ can be constructed. They are given by

bð1Þν ¼ kμF̄μν ð3:5Þ

and

bð2Þν ¼ kμ
˜̄Fμν; ð3:6Þ

where ˜̄Fμν ¼ 1
2
ϵμναβF̄αβ. The four-vector defining the longi-

tudinal degree of freedom is usually given by

ũν ¼
�
gμν −

kμkν

k2

�
uμ: ð3:7Þ

Furthermore, the vector that is orthogonal to the vectors
given in Eqs. (3.5) and (3.7) is

Iν ¼
�
bð2Þν −

ðũμbð2Þμ Þ
ũ2

ũν
�
: ð3:8Þ

It should be noted that since the vectors given by
Eqs. (3.5)–(3.7) are spacelike, they have to be normalized
without compromising the Hermitian character of the gauge
fields. The explicit form of the normalization constants are
given by

N1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−bð1Þμ bð1Þμ
q ¼ 1

K⊥B
; ð3:9Þ

N2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
−IμIμ

p ¼ K
ωK⊥B

; and lastly ð3:10Þ

NL ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ũμũμ

p ¼
ffiffiffiffiffiffiffiffiffi
kμkμ

p
jk⃗j

: ð3:11Þ

With these definitions, the gauge potential AμðkÞ can be
expressed in terms of these basis vectors and associated
form factors as [93,107]

AνðkÞ ¼ N1AkðkÞbð1Þν þ N2A⊥ ðkÞIν þ NLALðkÞũν

þ AgfðkÞ
kν

k2
: ð3:12Þ

In order to get rid of the redundant degree of freedom of
the gauge field, we choose AgfðkÞ ¼ 0. The form factors
AkðkÞ, A⊥ ðkÞ, and ALðkÞ in Eq. (3.12) are Lorentz scalars
made out of linear or nonlinear combinations of the tensor
and the four-vectors discussed above, i.e., ω ¼ k:u.,

jk⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
, kα

˜̄Fαβuβ, kαF̄αβF̄βσkσ etc. It is important
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to note that the magnetic field Bμ ¼ 1
2
ϵμνλρuνF̄λρ is actually

orthogonal to bð1Þν , that is to say Bν · bð1Þν ¼ 0, implying that

the direction of the polarization vector bð1Þν is orthogonal to
the external magnetic field. Similar consideration would
show that the direction of the polarization vector Iν is along
the external magnetic field. However, to maintain consis-
tency with our previous work [93], we have denoted the
associated form factors for the corresponding polarization
directions as AkðkÞ, A⊥ ðkÞ.
In order to gain an insight of the equations of motions, it

is instructive to know the transformation properties of the
vectors, tensors, and the form factors used for Eq. (3.12),
under C, P, and T transformations. We briefly discuss
them next.

B. Properties of the basis vectors under C, P,
and T transformations

The nonzero components of the four vectors under deli-

beration are bð1Þμ ¼ ð0; bð1Þ1 ; bð1Þ2 ; 0Þ, bð2Þμ ¼ ðbð2Þ0 ; 0; 0; bð2Þ3 Þ,
and Iμ ¼ ðI0; IiÞ when i ¼ 1; 2; 3. In order to find out the
transformation properties of the same, we need to first
identify the C, P, and T transformations of the four-vectors
kμ, uμ and the tensor F̄μν. For the sake of brevity we do not
show the momentum dependence of the form factors here.
The transformation properties of time (k0) and space

components (ki, for i ¼ 1; 2; 3) of wave propagation
vector kμ ¼ ðk0; kiÞ under C, P, and T transformations
are given by

Ck0C−1 ¼ k0; CkiC−1 ¼ þki; ð3:13Þ

Pk0P−1 ¼ k0; PkiP−1 ¼ −ki; ð3:14Þ

Tk0T−1 ¼ k0; TkiT−1 ¼ −ki: ð3:15Þ

The center-of-mass four velocity of the medium, defined
as uμ ¼ dxμ

dτ (when dτ is the differential proper time
interval), has the following transformation properties
under time reversal, parity, and charge conjugation trans-
formation:

Cu0C−1 ¼ −u0; CuiC−1 ¼ −ui; ð3:16Þ

Pu0P−1 ¼ þu0; PuiP−1 ¼ −ui; ð3:17Þ

Tu0T−1 ¼ −u0; TuiT−1 ¼ þui: ð3:18Þ

The first property (3.16) follows from the observation
that the statistical part of the thermal propagator in real time
thermal quantum field theory should remain invariant under
the operation of charge conjugation, as explained in [84].
The same (uμ) in the rest frame of the medium is given by

uμ ¼ ð1; 0; 0; 0Þ; for the remaining part of this paper we
shall assume this to be true.
The background field strength tensor F̄ij, transforms in

the following way under CPT separately as

CF̄0iC−1 ¼ −F̄0i; CF̄ijC−1 ¼ −F̄ij; ð3:19Þ

PF̄0iP−1 ¼ −F̄0i; PF̄ijP−1 ¼ þF̄ij; ð3:20Þ

TF̄0iT−1 ¼ −F̄0i; TF̄ijT−1 ¼ −F̄ij: ð3:21Þ

With this information we can look into the C, P and T
transformation properties of the basis vectors. To begin

with, we start with vector bð1Þμ . It has only two nonzero
components, and their transformation properties are

Cbð1Þ0C−1 ¼ −bð1Þ0; Cbð1ÞiC−1 ¼ −bð1Þi; ð3:22Þ

Pbð1Þ0P−1 ¼ þbð1Þ0; Pbð1ÞiP−1 ¼ −bð1Þi; ð3:23Þ

Tbð1Þ0T−1 ¼ þbð1Þ0; Tbð1ÞiT−1 ¼ þbð1Þi: ð3:24Þ

Similarly, one can write the transformation properties of

bð2Þμ that has one timelike and one spacelike nonzero

component. The timelike component of bð2Þμ under C, P,
and T operations transform as

Cbð2Þ0C−1 ¼ −bð2Þ0; Cbð2ÞiC−1 ¼ −bð2Þi; ð3:25Þ

Pbð2Þ0P−1 ¼ þbð2Þ0; Pbð2ÞiP−1 ¼ −bð2Þi; ð3:26Þ

Tbð2Þ0T−1 ¼ −bð2Þ0; Tbð2ÞiT−1 ¼ −bð2Þi: ð3:27Þ

Now using above equations, it is easy to establish that

Pðũ · bð2ÞÞP−1 ¼ ðũ · bð2ÞÞ: ð3:28Þ

Recalling, the four-vector Iν to be given by

Iν ¼
�
bð2Þν −

ðũμbð2Þμ Þ
ũ2

ũν
�
; ð3:29Þ

the timelike and spacelike components of the same are
found to be given by

I0 ¼
�
bð2Þ0 −

ðũμbð2Þμ Þ
ũ2

ũ0
�

and

Ii ¼
�
bð2Þi −

ðũμbð2Þμ Þ
ũ2

ũi
�

ðfor i ¼ 1; 2; 3Þ: ð3:30Þ

Using the C, P, and T transformation properties of the
individual components of Iμ, I0, and Ii would transform
under the same as
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CI0C−1 ¼ −I0; CIiC−1 ¼ −Ii; ð3:31Þ

PI0P−1 ¼ þI0; PIiP−1 ¼ −Ii; ð3:32Þ

TI0T−1 ¼ −I0; TIiT−1 ¼ þIi: ð3:33Þ

Since the timelike components of the gauge field under
time reversal transformation, remains the same, i.e.,

TA0T−1 ¼ A0; ð3:34Þ

therefore when the time reversal transformation is imposed
on A0, following the definition of A0 one should get

T−1A0T−1 ¼ TðN1I0Ak þ NLũ0ALÞT−1

¼ ðN1I0Ak þ NLũ0ALÞ; ð3:35Þ

that is, the right-hand side remains invariant. Now under
time reversal transformation I0 and ũ0, picks up a −ve sign.
So to maintain overall neutrality, Ak and AL must change
sign under T transformation. Hence,

ðTAkT−1Þ ¼ −Ak and ðTALT−1Þ ¼ −AL: ð3:36Þ

We recall that the spacelike component of Aμ can be
expressed as

Ai ¼ N1b
ð1Þ
i Ak þ N2IiA⊥ þ NLũiAL: ð3:37Þ

The same, that is Ai, under T transformation pickup a −ve
sign, i.e.,

ðTAiT−1Þ ¼ −Ai: ð3:38Þ

It then follows that the right-hand side of Eq. (3.37)

should respect the transformation Eq. (3.38). Since bð1Þi , Ii,
and ũi remain invariant under time reversal symmetry
transformation, therefore Ak, A⊥ , and AL should change
sign under time reversal transformation symmetry. The
transformation rules of the form factors can now be
summarized as

CAkC−1¼þAk; CA⊥C−1 ¼þA⊥ ; CALC−1¼þAL;

ð3:39Þ

PAkP−1 ¼þAk; PA⊥P−1 ¼þA⊥ ; PALP−1 ¼þAL;

ð3:40Þ
TAkT−1 ¼−Ak; TA⊥T−1 ¼−A⊥ ; TALT−1 ¼−AL:

ð3:41Þ
So the C, P, and T transformations properties of the

vectors, tensors and the form factors can further be put in
tabular form (see Table [I]).
It can be shown that each term appearing in the equations

of motion of this article when subjected to these trans-
formations, transforms identically. We will demonstrate the
same later.

C. Dynamics of the degrees of freedom

In this section,wediscuss the dynamics of the independent
degrees of freedom of the system. Recalling the fact that in a
medium photon acquire an extra degree of freedom in
addition to the two transverse degrees of freedom, therefore
for the photon scalar interacting system, there should be four
degrees of freedom. Moreover, out of the three degrees of
freedom of the photon, the longitudinal degree of freedom
has spin zero, and the other twowould be having spin one and
minus one, respectively. Therefore though naively one may
expect that, the longitudinal mode of photon would couple
with the scalar degree of freedom, because they both have
same spin assignments; however, we would demonstrate in
this subsection, by analyzing the equations of motion, that
this naive expectation does not hold good.
NowwebeginwithEq. (3.3), and substitute the expression

for the gauge potential from Eq. (3.12) in the same. The
resulting equation [considering the Faraday contribution to
be Πp

μνðkÞ ¼ −ΠpðkÞPμν, when the projection operator is

defined as Pμν ¼ iϵμνβδk
kβ
jkj u

δ̃k]5 turns out to be

ðk2 − ΠTðkÞÞ½AkðkÞN1b
ð1Þ
α þ A⊥ ðkÞN2Iα þ ALðkÞNLũα�

þ ΠTðkÞALðkÞNLũα − ΠLðkÞALðkÞNLũα

− iΠpðkÞϵανβδ
kβ

jkj u
δ̃k ½AkðkÞN1bð1Þν þ A⊥ ðkÞN2Iν

þ ALðkÞNLũν� ¼ igϕγγb
ð1Þ
α ϕðkÞ; ð3:42Þ

TABLE I. Transformation properties for the vectors, tensors, and the EM form factors used to construct all the vectors, tensors, and
form factors used in this work to expand AνðkÞ, under C, P, and T.

kμ uμ ũμ bð1Þμ bð2Þμ Iμ Ak A⊥ AL i ϵμνρσ F̄μν

C þkμ −uμ −ũμ −bð1Þμ −bð2Þμ −Iμ þAk þA⊥ þAL þi þϵμνρσ −F̄μν

P þkμ þuμ þũμ þbð1Þμ þbð2Þμ þIμ þAk þA⊥ þAL þi −ϵμνρσ þF̄μν

T þkμ −uμ −ũμ −bð1Þμ −bð2Þμ −Iμ −Ak −A⊥ −AL −i −ϵμνρσ −F̄μν

5Where δ̃k can takes the value 0 or 3. When δk ¼ 0 then δ̃k ¼ 3
and vice versa.
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Next as we multiply Eq. (3.42) by the normalized basis
vectors, we get the equations of motion for different
components of the form factors. For example, if we multiply
Eq. (3.42) by bð1Þα, then we find the following equation:

ðk2 − ΠTðkÞÞAkðkÞN1b
ð1Þ
α bð1Þα

− iΠpðkÞN2

�
ϵανβδk

kβ

jkj u
δ̃kbð1ÞαIν

�
A⊥ ðkÞ

¼ igϕγγb
ð1Þ
α bð1ÞαϕðkÞ: ð3:43Þ

Using the expression of the normalization constants, the
same becomes

ðk2 − ΠTðkÞÞAkðkÞ þ iΠpðkÞN1N2

×

�
ϵανβδk

kβ

jkj u
δ̃kbð1ÞαIν

�
A⊥ ðkÞ ¼

igϕγγϕðkÞ
N1

: ð3:44Þ

Similarly, multiplying Eq. (3.42) by Iν and ũα, respectively,
we get the following two equations:

ðk2 − ΠTðkÞÞA⊥ ðkÞ − iΠpðkÞN1N2

×

�
ϵανβδk

kβ

jkju
δ̃kbð1ÞαIν

�
AkðkÞ ¼ 0; ð3:45Þ

ðk2 − ΠLðkÞÞALðkÞ ¼ 0; ð3:46Þ

those describe the dynamics of the three degrees of freedom
of the photon. Last, the equation ofmotion for the scalar field
turns out to be

ðk2 −m2ÞϕðkÞ ¼ −
igϕγγAkðkÞ

N1

: ð3:47Þ

Equations (3.44)–(3.47) describe the dynamics of the γϕ
interaction in a magnetized medium. The correctness of the
above equations of motion can be established by performing
PT transformation on these equations.
To demonstrate it, let us choose Eq. (3.45) and operate

ðPTÞ from left and ðPTÞ−1 from right sides of the equation.
Following the transformation rules of table [1], under PT,
the first term of the equation will pick up a negative sign
due to presence of A⊥ ðkÞ, which is odd under the same. In
the second term, the factors i; uδ̃k ; bð1Þα; Iν, and AkðkÞ are
PT odd and rest are PT even as shown below:

ðPTÞAkðPTÞ−1 ¼ −Ak; ðPTÞA⊥ ðPTÞ−1 ¼ −A⊥ ;
ðPTÞiðPTÞ−1 ¼ −i; ðPTÞkβðPTÞ−1 ¼ þkβ;

ðPTÞuδ̃k ðPTÞ−1 ¼ −uδ̃k ; ðPTÞbð1ÞμðPTÞ−1 ¼ −bð1Þμ;

ðPTÞIνðPTÞ−1 ¼ −Iν; ðPTÞϵμνδβðPTÞ−1 ¼ þϵμνδβ:

ð3:48Þ

The transformation properties of form factor ΠpðkÞ
under C, P and T can be figured out from the following
expression:

ΠpðkÞ ¼ ðk:u:ÞðeBk=meÞ
ω2 − ðeBk=meÞ2

�
ne
me

�
: ð3:49Þ

It can be seen from Eq. (3.49) that ΠpðkÞ is invariant
under the PT transformation, i.e.,

ðPTÞΠpðkÞðPTÞ−1 ¼ ΠpðkÞ; ð3:50Þ

so collectively, the second term of Eq. (3.45) will also pick
up a negative sign. Therefore this equation remains
invariant under PT transformation. The same can be
established for other equations also using similar logic.
The PT symmetric part of PSET, when included in the

effective Lagrangian, can in principle compensate for the P
violation of jA⊥ i, when both appear as a product, as they
do in the equations of motion. Thus resulting product of the
two becomes P even, making mixing between ϕðkÞ and
j⊥ i possible.
Now looking at the problem of mixing, we note that the

initial mixing between ϕðkÞ and jki, due to ϕFF coupling,
remains intact, but the introduction of the PSET term
causes further mixing between the two orthogonal trans-
verse states, i.e., jki and j⊥ i. Lastly the combination of the
product of PSET term and j⊥ i, as noted in the last
paragraph, causes mixing between j⊥ > and ϕðkÞ. Thus
the system reduces to a system of three mutually coupled
degrees of freedom, which evolves following their respec-
tive equations of motion.
It may not be quite out of place, to mention here that,

instead of ϕðkÞFμνFμν, if the aðkÞF̃μνFμν interaction is
considered in a magnetized vacuum or an unmagnetized
medium, then the role of scalar ϕðkÞ gets interchanged with
that of the pseudoscalar [97]; consequently, the role of jki
would get interchanged with j⊥ i so that the symmetry
remains intact. So the prediction from one can be obtained
from the prediction of the other.
This simple interrelation between the two, as noted

already, however gets modified as one includes the effect
of PSET to axion photon or scalar photon systems.
Introducing, F ¼ ΠpðkÞN1N2½ϵανβδ kβ

jkj u
δ̃kbð1ÞαIν� and

G ¼ gϕγγAkðkÞ
N1

for the sake of brevity, the coupled set of
equations (of motion) can be presented in matrix form as

CHAUBEY, JAISWAL, and GANGULY PHYS. REV. D 107, 023008 (2023)

023008-10



2
6664
ðk2 − ΠTðkÞÞ iF 0 −iG

−iF ðk2 − ΠTðkÞÞ 0 0

0 0 ðk2 − ΠLðkÞÞ 0

iG 0 0 ðk2 −m2
ϕÞ

3
7775
2
6664

AkðkÞ
A⊥ ðkÞ
ALðkÞ
ϕðkÞ

3
7775 ¼ 0: ð3:51Þ

The longitudinal degree of freedom of photon [ALðkÞ] as
can be seen, has decoupled from the rest of the degrees of
freedom.

D. Background dependent mixing pattern

In this section we try to understand the background’s
influence on the mixing dynamics of the transverse and
longitudinal degrees of freedom of photon with scalar or
pseudoscalar as the interaction term in the Lagrangian
changes from gϕγγϕFF for scalar-photon system to
gaγγaF̃F for pseudoscalar-photon system. As was noted
in the introduction, that dynamics of the degrees of freedom
of photon in terms of the form factors AkðkÞ and A⊥ ðkÞ in a
magnetized vacuum with gϕγγϕFF interaction can be
anticipated from the evolution of these two form factors
in pseudoscalar photon system (aγγ), with the identification
of the role of AkðkÞ with A⊥ ðkÞ and A⊥ with Ak when the
interaction Lagrangian is gaγγaF̃F.
So one can conclude that these systems seem to have a

symmetry that remains invariant under the exchange of the
scalar field with pseudoscalar and parallel polarized state
Ak with the perpendicular polarized state A⊥ of the photon.
Even in material medium, this symmetry behavior remains
the same.
In presence of a magnetized medium, however, contri-

butions from the PSET Πμνðk; μ; T; eBÞ, which is odd in
powers of eB, lifts this apparent degeneracy. Like the
discrete symmetries of nature, like charge C, T, and P,
transformations play a major role in removing this apparent
degeneracy. We would like to come back to this issue in
future publications.
Since the longitudinal degree of freedom ALðkÞ (with

dimension-five scalar-photon interaction) in a magnetized
medium is decoupled from the rest of the degrees of freedom,
we will not be considering it any further. Therefore, the
resulting matrix Eq. (3.51) can be cast in the following form:

2
64k2I −

0
B@

ΠTðkÞ iF −iG
−iF ΠTðkÞ 0

iG 0 m2
ϕ

1
CA
3
75
2
64

AkðkÞ
A⊥ ðkÞ
ϕðkÞ

3
75 ¼ 0:

ð3:52Þ

Here I is 3 × 3 identity matrix. For the sake of compactness,
wewould further like to denote the matrix, inside bracket, on
the left-hand side in Eq. (3.52) as

0
B@

ΠTðkÞ iF −iG
−iF ΠTðkÞ 0

iG 0 m2
ϕ

1
CA ¼ M; ð3:53Þ

and would like to discuss about the elements of the matrixM
for the physical situation under consideration in next
few lines.
In the long wavelength limit, one can take ΠT ¼ ω2

p,
where ωp is the plasma frequency. With this identification,

the other two parameters F andG are given by F ¼ ω2
peB cos θ̄
ωme

andG ¼ −gϕγγB sin θ̄ω. The angle θ̄ here corresponds to the

angle between the photon propagation vector k⃗ and the
magnetic field B. Lastly the parameter me is the electron
mass. Now identifying B cos θ̄ ¼ Bk and B sin θ̄ ¼ B⊥ , the
equation of motion can further be written as2
6664 k2I −

0
BBB@

ω2
p i

ω2
peBk

ðωmeÞ −igϕγγB⊥ω

−i ω
2
peBk

ðωmeÞ ω2
p 0

igϕγγB⊥ω 0 m2
ϕ

1
CCCA

3
7775

×

2
64

AkðkÞ
A⊥ ðkÞ
ϕðkÞ

3
75 ¼ 0: ð3:54Þ

Although, in this work, we will assume angle θ̄, to be
π=4, however depending on spatial geometry of the
emission region this angle can vary between zero to 2π.
When θ̄ ¼ nπ, for any integer n, the dilatons decouples

from the system and the resulting equation describe
electrodynamics of magnetized medium. This can be used
to study the propagation of EM wave in magnetosphere of
pulsars, as was done in [98]. In the other limit, when
θ̄ ¼ π=2, the situation reduces to that of the γ − ϕ inter-
action in an unmagnetized medium.
To obtain the solutions of Eq. (3.54), first we need to

have the knowledge of the eigenvalues of the matrix on the
left-hand side of Eq. (3.54) inside the square bracket. Once
that is done, one can find the corresponding eigenvectors
and from there obtain the unitary matrix, which can reduce
the matrix M, to diagonal form.
The eigenvalues of matrix M can be obtained from the

following cubic equation, which follows from the charac-
teristic equation

c1E3
i þ c2E2

i þ c3Ei þ c4 ¼ 0: ð3:55Þ
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The variables c2, c3, and c4 appearing in (3.55) are further
related to the elements of the mixing matrixM, through the
following relations:

c1 ¼ 1; c2 ¼ −ð2ω2
p þm2

ϕÞ; ð3:56Þ

c3 ¼ ω4
p þ 2ω2

pm2
ϕ −

�
eBk
me

ω2
p

ω

�
2

− ðgϕγγB⊥ωÞ2; ð3:57Þ

c4 ¼ −ω4
pm2

ϕ þ
�
eBk
me

ω2
p

ω

�
2

m2
ϕ þ ω2

pðgϕγγB⊥ωÞ2: ð3:58Þ

More details about the roots and their properties are
provided in the Appendices. Here we just state the result.
The roots are

E1 ¼ 2R cosðα − π=3Þ − c2
3
; ð3:59Þ

E2 ¼ 2R cosðαþ π=3Þ − c2
3
; ð3:60Þ

E3 ¼ −2R cosðαÞ − c2
3
: ð3:61Þ

Where the variables α ¼ 1
3
cos−1ðQR3Þ and R¼ffiffiffiffiffiffiffiffiffiffiffið−PÞp

sgnðQÞ, when P¼ð3c3−c22Þ
9

and Q¼ðc23
27
−c2c3

6
þc4

2
Þ.

This completes our knowledge of the roots.

IV. THE UNITARY DIAGONALIZING
MATRIX U

Before we go on to discuss the oscillation between γ
and ϕ, we need to evaluate the phase space evolu-
tion of the individual fields. To achieve that, we need to
have the solutions for each one of them. In order to
obtain the same, the mixing matrix M (3.53) has to be
transformed to its diagonal form MD, by unitary matrices
U, i.e., U†MU ¼ MD, having eigenvalues E1, E2, and E3

as the diagonal elements. The construction of the
unitary matrix U had been outlined in the Appendices.
Therefore we provide the final result here. Introducing the

quantities ui ¼ ðω2
p −EiÞðm2

ϕ−EiÞ, vi ¼ i
eBk
me

ω2
p

ω ðm2
ϕ −EiÞ

and wi ¼ igϕγγB⊥ωðω2
p −EiÞ related to the eigenvectors

of matrix M, the unitary matrix U can be written as

U ¼

0
BBB@

u1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1
þv2

1
þw2

1

p u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
2
þv2

2
þw2

2

p u3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
3
þv2

3
þw2

3

p
v1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
1
þv2

1
þw2

1

p v2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
2
þv2

2
þw2

2

p v3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
3
þv2

3
þw2

3

p
w1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
1
þv2

1
þw2

1

p w2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
2
þv2

2
þw2

2

p w3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
3
þv2

3
þw2

3

p

1
CCCA: ð4:1Þ

Introducing, N ðiÞ
vn ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2iþv2iþw2
i

p as the normalization

constant for the ith eigenvector, we can further express
Eq. (4.1) in the following form:

U ¼

0
BBB@

ðω2
p − E1Þðm2

ϕ −E1ÞN ð1Þ
vn ðω2

p −E2Þðm2
ϕ −E2ÞN ð2Þ

vn ðω2
p −E3Þðm2

ϕ −E3ÞN ð3Þ
vn

i
eBk
me

ω2
p

ω ðm2
ϕ −E1ÞN ð1Þ

vn i
eBk
me

ω2
p

ω ðm2
ϕ −E2ÞN ð2Þ

vn i
eBk
me

ω2
p

ω ðm2
ϕ −E3ÞN ð3Þ

vn

igϕγγB⊥ωðω2
p − E1ÞN ð1Þ

vn igϕγγB⊥ωðω2
p −E2ÞN ð2Þ

vn igϕγγB⊥ωðω2
p −E3ÞN ð3Þ

vn

1
CCCA: ð4:2Þ

The explicit expression for the N ðiÞ
vn is given by

N ðiÞ
vn ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðω2
p −EiÞ2ðm2

ϕ − EiÞ2 þ ðeBk
me

ω2
p

ω Þ
2ðm2

ϕ − EiÞ2 þ ðgϕγγB⊥ωÞ2ðω2
p −EiÞ2

q ; ð4:3Þ

where Ei stands for the corresponding eigenvalue. The
Hermitian conjugate matrix U† would follow from (4.2).
The unitarity relations, U†U ¼ 1, have been verified
numerically as well as analytically, UU† ¼ 1. Analytical
verification of UU† ¼ 1 is cumbersome, so we have taken
recourse to numerical verification, and checked that they
are satisfied.
There are few relations those are satisfied by the

elements of U, and use of them makes it convenient to
express the probability amplitudes in compact notation. In
order to derive them we first, rewrite Eq. (4.2) with
respective identifications of the elements, as follows:

U ¼

0
B@

û1 û2 û3
v̂1 v̂2 v̂3
ŵ1 ŵ2 ŵ3

1
CA: ð4:4Þ

The condition U†U ¼ 1 now implies, for i, j ¼ 1; 2; 3,

ûiû�j þ v̂iv̂�j þ ŵiŵ�
j ¼

�
1; i ¼ j

0; i ≠ j
: ð4:5Þ

A similar exercise for UU† ¼ 1, further establishes the
following relations amongst the elements of U. The off-
diagonal terms of UU† will give
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X3
i¼1

ûiv̂�i ¼
X3
i¼1

û�i v̂i ¼
X3
i¼1

jûijjv̂ij ¼ 0; ð4:6Þ

X3
i¼1

v̂iŵ�
i ¼

X3
i¼1

v̂�i ŵi ¼
X3
i¼1

jv̂ijjŵij ¼ 0; ð4:7Þ

X3
i¼1

ŵiû�i ¼
X3
i¼1

ŵ�
i ûi ¼

X3
i¼1

jŵijjûij ¼ 0; ð4:8Þ

and the diagonal entries of the same will yield

X3
i¼1

jûijjûij ¼
X3
i¼1

jv̂ijjv̂ij ¼
X3
i¼1

jŵijjŵij ¼ 1: ð4:9Þ

The variables û�i , v̂�i , and ŵ�
i , appearing in above

expressions, represent the conjugates of the corresponding
elements of U.

V. CONVERSION PROBABILITY

The conversion probability, of a photon of a particular
polarization state to the same of a different polarization
state or scalars can be estimated from the evolution
(quantum evolution) equation of the corresponding polar-
ized states of the photon and the scalars. One can perform
the same by promoting the momentum variables to corre-
sponding operators and components of the vector potential
AνðkÞ and ϕðkÞ to the corresponding quantum states,
following [38,108]. In order to follow the evolution of
individual quantum states, one needs to decouple them
from each other by the following way. One can multiply
Eq. (3.54) by U† from the left6 to reduce it to the following
form:

½ k2I − U†MU �

2
64

jA0
kðkÞi

jA0⊥ ðkÞi
jϕ0ðkÞi

3
75 ¼ 0; ð5:1Þ

when U†MU is a diagonal matrix. In the diagonal repre-
sentation, the propagating states are the diagonal states and
they allow principle of superposition. The matrixU is given
in Eq. (4.2), and U† is the Hermitian conjugate of the same.
Here we have denoted7

2
64

jA0
kðkÞi

jA0⊥ ðkÞi
jϕ0ðkÞi

3
75 ¼ U†

2
64

jAkðkÞi
jA⊥ ðkÞi
jϕðkÞi

3
75: ð5:2Þ

The primed states corresponds to the propagating states
and unprimed ones are the physical states; they are related
to each other by the unitary transformation by U introduced
earlier. For a beam of photon, propagating in the z
direction, following the principles stated already, one can
promote the momentum k3 to the corresponding operator in
z space and write (using natural units ℏ ¼ c ¼ 1)
k2 ≈ 2ωðω − i∂zÞ. With these manipulations, the resulting
equations get transformed from Klien-Gordon to the form
used by [38]. Recalling that U†MU ¼ MD, where MD is
the diagonal matrix, Eq. (5.2) can further be cast in the form

2
64 ðω − i∂zÞI −

2
64

E1

2ω 0 0

0 E2

2ω 0

0 0 E3

2ω

3
75
3
75
2
64

jA0kðzÞi
jA0 ⊥ ðzÞi
jϕ0ðzÞi

3
75 ¼ 0: ð5:3Þ

The matrix evolution Eq. (5.3) is now easy to solve.
Introducing the variables, Ωk ¼ ðω− E1

2ωÞ, Ω⊥ ¼ ðω − E2

2ωÞ,
and Ωϕ ¼ ðω − E3

2ωÞ, we can now directly write down
the solutions for the states vector ½jAðzÞi� [where
AðzÞ≡Aðω; k⊥ ; zÞ] in the following form:

2
64
jAkðzÞi
jA⊥ðzÞi
jϕðzÞi

3
75¼U

2
64
e−iΩkz 0 0

0 e−iΩ⊥ z 0

0 0 e−iΩϕz

3
75U†

2
64
jAkð0Þi
jA⊥ð0Þi
jϕð0Þi

3
75:

ð5:4Þ

The elements of column vector ½jAð0Þi� in (5.4) and
½jALð0Þi� are normalized such that hAkð0ÞjAkð0Þi ¼
hA⊥ ð0ÞjA⊥ ð0Þi ¼ hϕð0Þjϕð0Þi ¼ hALð0ÞjALð0Þi ¼ 1.
With the help of Eq. (5.4), one can write down the
solutions. And they are as follows:

jAkðω; zÞi
¼ ðe−iΩkzû1û�1 þ e−iΩ⊥ zû2û�2 þ e−iΩϕzû3û�3ÞjAkðω; 0Þi
þ ðe−iΩkzû1v̂�1 þ e−iΩ⊥ zû2v̂�2 þ e−iΩϕzû3v̂�3ÞjA⊥ ðω; 0Þi
þ ðe−iΩkzû1ŵ�

1 þ e−iΩ⊥ zû2ŵ�
2 þ e−iΩϕzû3ŵ�

3Þjϕðω; 0Þi;
ð5:5Þ

the perpendicular jA⊥ ðω; zÞi component is given by

6Since U−1 ¼ U†.
7The set of unprimed and primed column vectors, at places,

may be defined collectively as ½AðkÞ� ¼ ðAkðkÞ; A⊥ ðkÞ;ϕðkÞÞT
and ½AðkÞ0� ¼ ðA0

kðkÞ; A0⊥ ðkÞ;ϕðkÞÞT, here the superscript T
stands for transpose.
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jA⊥ ðω; zÞi
¼ ðe−iΩkzv̂1û�1 þ e−iΩ⊥ zv̂2û�2 þ e−iΩϕzv̂3û�3ÞjAkðω; 0Þi
þ ðe−iΩkzv̂1v̂�1 þ e−iΩ⊥ zv̂2v̂�2 þ e−iΩϕzv̂3v̂�3ÞjA⊥ ðω; 0Þi
þ ðe−iΩkzv̂1ŵ�

1 þ e−iΩ⊥ zv̂2ŵ�
2 þ e−iΩϕzv̂3ŵ�

3Þjϕðω; 0Þi;
ð5:6Þ

and lastly the evolution of the state jϕðω; zÞi is given by

jϕðω; zÞi
¼ ðe−iΩkzŵ1û�1 þ e−iΩ⊥ zŵ2û�2 þ e−iΩϕzŵ3û�3ÞjAkðω; 0Þi
þ ðe−iΩkzŵ1v̂�1 þ e−iΩ⊥ zŵ2v̂�2 þ e−iΩϕzŵ3v̂�3ÞjA⊥ ðω; 0Þi
þ ðe−iΩkzŵ1ŵ�

1 þ e−iΩ⊥ zŵ2ŵ�
2 þ e−iΩϕzŵ3ŵ�

3Þjϕðω; 0Þi:
ð5:7Þ

The ways to arrive at these results can be found in [86].
We would like to end this subsection with the following
observation, that the states defined by jAkðω; 0Þi, jA⊥ ðω; 0Þi
and jϕðω; 0Þi are pure states. The corresponding states
denoted by jAkðω; zÞi, jA⊥ ðω; zÞi, and jϕðω; zÞi are the
mixed states those evolve from the pure ones through
propagation in phase space through mixing. Even if any
one of them is absent at the beginning, it can be generated
later through mixing much like the neutrinos.

A. Oscillation probability Pγk→ϕ

The amplitude for the transition of a photon of energy ω
in state jAkðω; 0Þi to jϕðω; zÞi after traversing a distance z
is given by hAkðω; 0Þjϕðω; zÞi. The probability of the same,
Pγk→ϕðω; zÞ, can be estimated from the evolution equa-
tions obtained above by using the formula Pγk→ϕðω; zÞ ¼
jhAkðω; 0Þjϕðω; zÞij2. The same turns out to be

Pγk→ϕ ¼ jðe−iΩkzû1ŵ�
1 þ e−iΩ⊥ zû2ŵ�

2 þ e−iΩϕzû3ŵ�
3Þj2:

ð5:8Þ
After performing some lengthy algebra, one can observe
that the resulting expression for Eq. (5.8) contains a sum
of three quadratic pieces, i.e., ½ðjû1jjŵ1jÞ2 þ ðjû2jjŵ2jÞ2 þ
ðjû3jjŵ3jÞ2�, plus three other pieces involving the distance
parameter z. Upon converting these quadratic pieces into a
square of their sum and rearranging the resultant expres-
sion, Eq. (5.8) reduces to the following form:

Pγk→ϕ ¼ ½û1jjŵ1jþ jû2jjŵ2jþ jû3jjŵ3j�2
− 2jû1jjŵ1jjû2jjŵ2j½1− cosððΩ⊥ −ΩkÞzÞ�
− 2jû1jjŵ1jjû3jjŵ3j½1− cosððΩk −ΩϕÞzÞ�
− 2jû3jjŵ3jjû2jjŵ2j½1− cosððΩϕ −Ω⊥ ÞzÞ�: ð5:9Þ

At this stage, it is convenient to consider defining,
A ¼ jû1jjŵ1j, B ¼ jû2jjŵ2j, and C ¼ jû3jjŵ3j. The con-
straint, jû1jjŵ1j þ jû2jjŵ2j þ jû3jjŵ3j ¼ 0, that follows
from Eq. (4.8) can now be recasted as

Aþ Bþ C ¼ 0: ð5:10Þ
Now we can make use of Eq. (5.10) in (5.9), to verify that
the perfect square term vanishes owing to the constraint
equation (5.10); and the remaining z dependent pieces can
be manipulated further to provide

Pγk→ϕ ¼ 4AðAþ CÞsin2
�ðΩ⊥ −ΩkÞz

2

�

þ 4BðBþ AÞsin2
�ðΩϕ −Ω⊥ Þz

2

�

þ 4CðCþ BÞsin2
�ðΩk −ΩϕÞz

2

�
: ð5:11Þ

For the sake of completeness, we provide the expres-
sions for the new variables, A, B, and C, introduced
earlier, in terms of the parameters of the matrix M. And
they are

A ¼ N ð1Þ
vn N

ð1Þ
vn ðgϕγγB⊥ωÞðω2

p −E1Þðω2
p −E1Þðm2

ϕ −E1Þ;
ð5:12Þ

B ¼ N ð2Þ
vn N

ð2Þ
vn ðgϕγγB⊥ωÞðω2

p − E2Þðω2
p −E2Þðm2

ϕ − E2Þ;
ð5:13Þ

C ¼ N ð3Þ
vn N

ð3Þ
vn ðgϕγγB⊥ωÞðω2

p −E3Þðω2
p −E3Þðm2

ϕ −E3Þ:
ð5:14Þ

The fact that Eqs. (5.12)–(5.14)) follow Eq. (5.10) to a good
accuracy has been verified numerically.

B. Oscillation probability Pγ⊥→ϕ

The oscillation probability for the A⊥ component of a
photon to scalar ϕ can be derived similarly. Therefore,
instead of going through the same set of arguments,
we would provide the final result. Before we go to the
final expression, like before, we introduce the new set
of variables, L, M, and N; defined as L ¼ jv̂1jjŵ1j,
M ¼ jv̂2jjŵ2j, and N ¼ jv̂3jjŵ3j. Their actual form, in terms
of the elements of the mixing matrix, will be provided
shortly. The expression for Pγ⊥→ϕ is

Pγ⊥→ϕ ¼ 4LðLþ NÞ sin2
�ðΩ⊥ −ΩkÞz

2

�
ð5:15Þ

þ 4MðMþ LÞ sin2
�ðΩϕ − Ω⊥ Þz

2

�
ð5:16Þ
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þ4NðNþMÞ sin2
�ðΩk − ΩϕÞz

2

�
: ð5:17Þ

The values of the parameters L,M, andN are in terms of the
parameters of the theory are given by

L ¼ N ð1Þ
vn N

ð1Þ
vn ðgϕγγB⊥ωÞ

�
eBk
me

ω2
p

ω

�
ðω2

p − E1Þðm2
ϕ − E1Þ;

ð5:18Þ

M ¼ N ð2Þ
vnN

ð2Þ
vn ðgϕγγB⊥ωÞ

�
eBk
me

ω2
p

ω

�
ðω2

p − E2Þðm2
ϕ − E2Þ;

ð5:19Þ

M ¼ N ð3Þ
vn N

ð3Þ
vn ðgϕγγB⊥ωÞ

�
eBk
me

ω2
p

ω

�
ðω2

p − E3Þðm2
ϕ − E3Þ:

ð5:20Þ

As before, following Eq. (4.7), Eqs. (5.18)–(5.20) too have
to satisfy the constraint LþMþ N ¼ 0. We have tested the
same numerically to a good accuracy during the corre-
sponding probability evaluation.

C. Oscillation probability Pγk→γ⊥
Lastly, we provide the conversion probability for parallel

component of photon to perpendicular component of
photon here, i.e., Pγk→γ⊥ . We introduce here, as before,
the quantities to be defined later below: P ¼ jû1jjv̂1j,
Q ¼ jû2jjv̂2j, and R ¼ jû3jjv̂3j. The corresponding prob-
ability for conversion, Pγk→γ⊥ , turns out to be

Pγk→γ⊥ ¼ 4PðPþ RÞ sin2
�ðΩ⊥ − ΩkÞz

2

�
ð5:21Þ

þ4QðQþ PÞ sin2
�ðΩϕ −Ω⊥ Þz

2

�
ð5:22Þ

þ4RðRþQÞ sin2
�ðΩk − ΩϕÞz

2

�
; ð5:23Þ

where

P ¼ N ð1Þ
vn N

ð1Þ
vn

�
eBk
me

ω2
p

ω

�
ðω2

p −E1Þðm2
ϕ −E1Þ2; ð5:24Þ

Q ¼ N ð2Þ
vn N

ð2Þ
vn

�
eBk
me

ω2
p

ω

�
ðω2

p − E2Þðm2
ϕ − E2Þ2; ð5:25Þ

R ¼ N ð3Þ
vn N

ð3Þ
vn

�
eBk
me

ω2
p

ω

�
ðω2

p −E3Þðm2
ϕ −E3Þ2: ð5:26Þ

Like before we have verified that the condition,
PþQþ R ¼ 0, is maintained to a good accuracy all
along during the course of the computation.
There is one important observation that follows from the

probabilities derived above: that is, the probability Pγk→γ⊥
is the only probability out of the three discussed above that
survives in the limit gϕγγ → 0 and mϕ → 0. This can be
related to the “rotation measure,” which is usually encoun-
tered in studies of optical activity relating the angle of
rotation of the plane of polarization of a beam of plane
polarized light, after traveling some distance L. The
rotation measure in this case can be defined by π=λ̄ when
λ̄ is the minimum distance that a plane polarized light beam
needs to travel to have Pγk→γ⊥ ðω; λ̄Þ ¼ 1. The nonlinear

dependence of λ̄ on the parameters of the theory indicates
that it is difficult to separate the contributions to Pγk→γ⊥
into parts originating from (i) the magnetized plasma and
(ii) the one originating from magnetic field induced
dilatonic interactions. Thus it should be considered as a
total of the two contributions mentioned above.
Last, the other important aspect of this analysis is that

the other probabilities, i.e., Pγk→ϕ and Pϕ→γk , Pγ⊥→ϕ, and
Pϕ→γ⊥ along with Pγk→γ⊥ and Pγ⊥→γk , turn out to be same
as they should be even otherwise.

D. Conversion probability Pγk→ϕ
in an unmagnetized medium

In this subsection we provide the photon scalar con-
version rate without magnetized medium effects to compare
its size with the same due to magnetized medium induced
effects. The mixing matrix for the same is similar to that of
chameleon-photon mixing in an unmagnetized media:
2 × 2. The probability for the photon scalar transition
obtained in [28] turns out to be same as that of [38].
This probability of transition without any approximation is
given by

Pγk→ϕ ¼ 4B⊥ 2ω2

ðMm2
efÞ2 þ 4B⊥ 2ω2

× sin2

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMm2

efÞ2 þ 4B⊥ 2ω2
q

4ωM
z

1
CA: ð5:27Þ

In Eq. (5.27) m2
ef ¼ m2

ϕ − ω2
p −

B⊥ 2

M2 and mϕ is mass of
scalar field, as stated before. In this case only one degree of
freedom of photon (i.e., Ak) mix with the scalar, and the
other degrees of freedom (A⊥ , AL) propagate freely. It has
two special features: One is that, in the limit when the angle
between B and k → zero or π, the probability in (5.27)
vanishes, indicating a decoupling of fields. The second one
is in a noninteracting limit, i.e., gϕγγ → 0 or M → ∞,
Pγk→ϕ → 0 for ωp ≠ mϕ. But in the same limit if ωp ¼ mϕ,
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then the oscillation length diverges. It is straightforward to
verify the same. In the magnetized plasma case, however
the Pγk→⊥ and Pγ⊥→k remains finite even if the angle
between B and k → zero or π. These checks are useful to
prove the consistency of the results.

VI. ASTROPHYSICAL APPLICATIONS

The presence of a very strong magnetic field and an
ambient plasma in the environment of astrophysical com-
pact objects like white dwarves or neutron stars, gamma ray
bursters etc. provides an opportunity to look for astro-
physical signatures of the kind of particles we have been
studying in this article. In this work, we have focussed on
the EM signals from the compact objects that may bear
possible signatures of dimension-five ϕFμνFμν interaction.
In this context we have tried to estimate the ratio of

parallel component of the electric flux with the
perpendicular component. The estimate of this ratio in
dipole magnetic field of an aligned rotor model is known.
We have found the same ratio in presence of the scalar field.
So with the difference between the two when compared
with observations, one might be able to draw some
conclusions about the existence of the field ϕ.
Following this point of view, we have taken the plasma

frequency ωp to be of the order 10−2 eV. We have further
considered the photon path length to be z ¼ 1.2 km [109].
For these numbers of ωp and z, we have estimated various
oscillation probabilities in KeVenergy range (20–100) KeV

as shown in Figs. 1 and 2. The details that led to the choice
of these parameters have been provided in Appendix D.

A. Electric field

In this subsection we provide the expression for the
electric field in a frame of reference where the basis vectors
are orthogonal to the propagation direction kμ. We begin by
noting that in the momentum space kμ the electric field in
four-component notation can be written as

Eμ ¼ ωÃμ − kμðÃ:uÞ: ð6:1Þ

It should be noted that, in Eq. (6.1), the vector potential Ãμ

refers to the gauge fields for dynamical photon (in absence
of scalar-photon mixing). Expressing the vector potential
using Eq. (3.12) in the basis where A:k ¼ 0, the electric
field Eμ is

Eμ ¼ ω½ÃkðkÞb̂ð1Þμ þ Ã⊥ ðkÞÎμ þ ÃLðkÞ ˆ̃uμ� − kμðÃ:uÞ:
ð6:2Þ

The components of the electric fields vector can be written
in terms of the form factors of the vector potentials by
contracting it with the corresponding polarization vectors as

Ek ¼ b̂ð1Þμ Eμ ¼ ωÃkðkÞ; ð6:3Þ

E⊥ ¼ ÎμEμ ¼ ωÃ⊥ ðkÞ; ð6:4Þ

FIG. 1. Plot of conversion probability of a parallel polarized photon into a scalar dilaton in magnetic field B ¼ 1012 Gauss (in the left
panel) and the same in magnetic field B ¼ 1011 Gauss (in the right panel). The solid line is for conversion probability in presence of
magnetized media and the dashed curve is the same in absence of self energy correction Πp

μν from magnetized medium effects. The
abscissa [energy of photon (ω) in GeV] is in units of 10−5 and the ordinates are plotted in the units of 10−4. Here, the parameters used are
the mass of dilaton (scalar) particle ϕ: ðmϕÞ ¼ 1.0 × 10−12 GeV, coupling constant ðgϕγγÞ ¼ 1.0 × 10−11 GeV, photon path length
ðzÞ ¼ 1.2 km, and plasma frequency ðωpÞ ¼ 1.96 × 10−2 eV.
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EL ¼ ˆ̃uμEμ ¼ ÃLðkÞ; ð6:5Þ

kμb̂ð1Þμ ¼ kμÎμ ¼ kμ ˆ̃uμ ¼ 0: ð6:6Þ

The magnetic field also can bewritten in terms of these three
components. Therefore the total energy stored in the form of
EM fields Etot ¼ 1

μ0
ðE2 þ B2Þ.

B. Intensities of polarization modes

For highly Lorentz boosted electrons, the opening angle
for the curvature photons follow the relation, Γ ≃ 1

θe
, when

θe is the opening angle. Therefore in this approximation,
the amplitudes of the two orthogonal modes of curvature
photon in terms of modified Bessel functions K1=3ðξÞ and
K2=3ðξÞ would be given by [110]

jÃkj ≃
ffiffiffi
6

p
Γ

ωc
K1=3ðξÞ; ð6:7Þ

jÃ⊥ j ≃
2

ffiffiffi
3

p
Γ

ωc
K2=3ðξÞ: ð6:8Þ

The argument (ξ) of the modified Bessel functions is
defined as

ξ ¼ ωRc

3c

�
1

Γ2
þ θ2e

�
3=2

: ð6:9Þ

Using Eq. (D5) and the approximation considered above
(i.e., Γ ≃ 1

θe
), the same in terms of ωc (in the units of

ℏ ¼ c ¼ 1) turns out be ξ ¼ ω
0.7ωc

. The modified Bessel
functions when ω ≪ ωc, i.e., for small arguments are
given by

K2=3

�
ω

ωc

�
≃ 2−1=3ΓE

�
2

3

�
ξ−2=3;

K1=3

�
ω

ωc

�
≃ 2−2=3ΓE

�
1

3

�
ξ−1=3 ð6:10Þ

(here ΓE is the Euler gamma function); one can express the
square of the ratio of the amplitude of the two polarization
components as

���� Ãk
Ã⊥

����2 ≃ 2−5=3
�ðΓEð1=3ÞÞ
ðΓEð2=3ÞÞ

�
2

ξ2=3: ð6:11Þ

Since the emitted energy peaks at ωc, one considers
ω ≃ 0.7ωc, the ratio of the two amplitudes for this energy

comes out as 2−5=3½ðΓEð1=3ÞÞ
ðΓEð2=3ÞÞ�

2. It should be noted that this

ratio is independent of the path traversed by the radiation.
Ideally, for the kind of situation under consideration, this is
what one would expect for the ratio of the intensities of the
two polarization states. However in the presence of the
ϕFμνFμν interaction, the same will be modified. The square
of the modified amplitudes ratio turns out to be

���� Ak
A⊥

����2 ≃ 2−5=3
�ðΓEð1=3ÞÞ
ðΓEð2=3ÞÞ

�
2

ξ2=3 ×

�
1 − Pγk→ϕðω; zÞ
1 − Pγ⊥→ϕðω; zÞ

�
:

ð6:12Þ

FIG. 2. Plot of conversion probability of perpendicularly polarized photon into scalar in magnetic field B ¼ 1012 Gauss (in the left
panel) and the same in magnetic field B ¼ 1011 Gauss (in the right panel). The abscissa [energy of photon (ω) in units of 10−5 GeV] and
the ordinate are plotted in units of 10−5. Here, the parameters used are mass of dilaton (scalar) particle ϕ ðmϕÞ ¼ 1.0 × 10−12 GeV,
coupling constant ðgϕγγÞ ¼ 1.0 × 10−11 GeV, photon path length ðzÞ ¼ 1.2 km, and plasma frequency ðωpÞ ¼ 1.96 × 10−2 eV.
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The last term inside the square bracket in Eq. (6.12) is the
modification factor, where we have taken into account the
modifications to the intensities in the k (⊥ ) direction due to
oscillation of the k (⊥ ) mode into ϕ after traveling a
distance z. It is to be noted that the denominator of the
modification factor in Eq. (6.12) would remain unified
unless the effect of the photon self-energy correction in a
magnetized media to order eB, is considered. In this work
we have retained this piece consistently in our formalism to
find its contribution to the ratio of the two polarization
states. And in absence of scalar-photon interaction, the ratio
would be the same for pure curvature radiation. In presence
of this interaction (dimension-five-scalar photon), the same
would be given by Eq. (6.12). The contribution of this
deviation in intensities can be observed when we take the
difference of the two, i.e.,

ΔF ¼
���� Ãk
Ã⊥

����2 −
���� Ak
A⊥

����2: ð6:13Þ

The same has been estimated numerically in the right panel
of Fig. 3.
In absence of PSET in magnetized media, the result

would be same as that of mixing with 2 × 2 mixing matrix.

VII. RESULT AND DISCUSSION

In this work we have explored the behavior of the
magnetized matter on the probabilities Pγk;⊥→ϕ for a
electrodynamic system and estimated their magnitudes
numerically. To perform that we need to compare the effects

of magnetized matter effects with unmagnetized matter
effects in different magnetic field environments. We have
numerically estimated various probabilities for the astro-
physical parameters given by the plasma frequency
of the stellar environment (ωp) = 1.96 × 10−2 eV, scalar
photon coupling constant (gϕγγ) = 1.0 × 10−11 GeV−1, and
the photon path length considered here is z ∼ 1.2 km. The
results are plotted in Figs. 1 and 2. There are three major
outcomes of our analysis. First, Pγk→ϕ for magnetized
media, turns out to be different fromPγk→ϕ for unmagnetized
media, they admit frequency dependent modification over
each other’s contributions when the polarized photon has
propagated over the same distance. Qualitatively, Pγk→ϕ

conversion probability was found to be the only nonzero
probability when the correction ofΠp

μνðkÞ is absent. Second,
the numerical strength of the probabilities of conversion
Pγk→ϕ (or Pγ⊥→ϕ) increases with the increase in strength of
themagnetic field. Since an analytical estimate of the same is
difficult, we have estimated the same numerically and have
shown both of them in the same panel (Figs. 1 and 2). One
interesting feature of Pγk→ϕ is that it shows excess enhance-
ment over Pγk→ϕ estimated in an unmagnetized medium at
various energies. The third interesting feature is that the
intensity of the other orthogonally polarized mode of the
photon (denoted as A⊥ ) no longer remains the same when
the effect of magnetized-self-energy correction to photon is
considered for studying (photon scalar) oscillation. In
the absence of magnetized-self-energy correction, the inten-
sity of an A⊥ mode remains constant, provided that no
other absorption or enhancementmechanism is in operation.

FIG. 3. Left panel: intensity of parallel and perpendicular polarized photons with scalar photon interaction in magnetized media vs
energy (ω). The dot curve represents jAkj2 and the dashed curve represents jA⊥ j2. Right panel: difference between ratios of intensity
of parallel and perpendicular polarized photons (in absence and in presence of scalar photon interaction) ΔF. Parameters chosen
are Γ (Lorentz boost factor) ¼ 1.0 × 106, ωc ∼ 5 × 10−5 GeV, B ∼ 1012 Gauss. The abscissa (energy of photon (ω) in GeV) is in
units of 10−5.
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That is to say, the millicharge pair production processes in a
magnetic field (γ þ γ → eþm þ e−m) that modifies the A⊥
spectra is considered absent.
The x-ray sources for compact stars can be classified into

three categories: one is due to the bombardment of pair
produced flux on the polar cap region of the compact star,
the second one is due to the conduction heat coming out of
the surface of a star having the surface temperature
T ≤ 106K. And the last one is due to the curvature radiation
from the star.
The beams of EM radiations from first two sources follow

the blackbody radiation pattern and are unpolarized.However
due to the presence of the magnetic field, the isotropic beams
of radiation get resolved into two components, one of them
becomes polarized parallel and the other one becomes
polarized perpendicular to the magnetic field. Total intensity
of each of the components becomes equal to the other.
On the other hand the amplitudes of the two polarized

components of the curvature radiation that we have dis-
cussed in this paper, denoted by Ãk and Ã⊥ , are different.
As a result, the spectra for their respective polarization
would look different from the usual blackbody spectrum.
The ratios of Ãk and Ã⊥ would be given by Eqs. (6.7) and

(6.8). That yields
Ãk
Ã⊥

∼ ð ω
0.7ωc

Þ1=3 for ωc ≫ ω.

Once the scalar photon interaction is taken into account,
and the same ratios are estimated this pattern changes. If we
take the difference between the square of these ratioswithout

and with scalar photon modification, i.e., j Ãk
Ã⊥

j2 − j Ak
A⊥ j

2,

then the resulting plot looks entirely different. The inten-
sities of both the polarization states (i.e., Ak and A⊥ ) under
the circumstances mentioned above plotted separately can
be found in the left panel of Fig. 3. And the differences in
their ratios of intensities (without and with scalar photon
interaction) can be found in the right panel of Fig. 3. Such an
oscillating curve may bear the possible smoking gun
signature of dilaton-photon interaction from a compact star.

VIII. OUTLOOK

Existence of DM was postulated to explain some
astrophysical observations, such as (i) galaxy rotation
curve, (ii) observation of x rays from bullet cluster,
(iii) weak microlensing effect, (iv) structure formation
etc. The candidate particles proposed to explain the same
also predict few additional signatures stemming from ALP
photon interaction [38], like supernova dimming, modifi-
cation to distance duality relation, ALPs from supernova,
ALP photon conversion in magnetized domain etc.
[108,111–119], that happens to be some of them. So there
has been a surge for the search of ALP signals from the
magnetized environments of the compact stars [120–132]
for their identifications. Therefore to complement this
surge in the interest we have explored ALP signal from
magnetized media in this work. In the course of this

investigation we find that the formalism employed in this
analysis interpolates between two extreme ends: one being
the effective quantum statistical field theory of electrody-
namics in a magnetized environment when the angle
between B and k is zero or π; and the other being the
interacting theory of ALP with quantum statistical field
theory of electrodynamics at finite density when the angle
between B and k is π=2, which follows from Eq. (3.54).
These are the checks that can be employed to establish the
consistency of our formalism for magnetized media.
It has been found that, in addition to Pγk→ϕ there are two

more additional probabilities of conversion i.e., Pγ⊥→ϕ and
Pγk→γ⊥ possible in a magnetized media according to the
number of possible in-medium polarization states of
photon. Our analysis showed the existence of normal
modes corresponding to the three orthogonal directions
of propagation of photon.
Furthermore, we have noted in the body of the text that

Pγk→ϕ in a magnetized medium can be much larger than the
contribution of the same in an unmagnetizedmedium in some
energy range for suitable values of other parameters. Since the
produced ALPs would leave the production region (of the
star) fast because of itsweak interactionwith themedium, this
will lead to anomalous cooling of the star. The indication of
presence of ALP in the stellar environment comes from the

estimate ofΔF (i.e., j Ãk
Ã⊥

j2 − j Ak
A⊥ j

2) that becomes zero in the

absence of an ALP, and it becomes nonzero when ALP
interaction is present. These are the novel signatures that a
magnetized compact star environment can offer for the
verification of ALP.
To conclude, we have shown in this work that the effect

of magnetized medium brings nontrivial modifications to
the ALP induced signals from compact objects. Though the
physics of these objects are complex, however it may be
possible to get a tell-tale signature of ALP-like objects from
the EM signals of the compact stars. Some of these studies
would be considered in separate publications.
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APPENDIX A: TECHNICAL DETAILS OF
CONSTRUCTING THE UNITARY MATRIX

In order to describe the dynamics of scalar-photon inter-
action in magnetized media in terms of different d.o.f. of
mixing, the Hermitian mixing matrixMH obtained from the
equations of motion of scalar photon interaction, given by

MH ¼

2
64
ΠTðkÞ iF iG

−iF ΠTðkÞ 0

−iG 0 m2
ϕ

3
75; ðA1Þ
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needs to be diagonalized. Therefore, to do the same, wewrite
MH as

MH ¼

2
64

a ib ic

−ib d 0

−ic 0 e

3
75; ðA2Þ

when a ¼ ΠTðkÞ, b ¼ F, c ¼ G, and e ¼ m2
ϕ. It can be

shown that an unitary matrix Q and its Hermitian conjugate
Q† defined as

Q ¼

2
64
1 0 0

0 i 0

0 0 i

3
75; Q† ¼

2
64
1 0 0

0 −i 0

0 0 −i

3
75 ðA3Þ

can transform MH to real symmetric matrix MRS by
QMHQ† ¼ MRS, where MRS is given by

MRS ¼

2
64
a b c

b d 0

c 0 e

3
75: ðA4Þ

Now, if for a real symmetricmatrixMRS, there exists a unitary
matrix Ũ such that Ũ†MRSŨ ¼ MD, whereMD is a diagon-
alized matrix having the eigenvalues of matrix MRS as
diagonal elements. Now, using this fact, we can subsequently
find out the unitarymatrixU that would diagonalizeMH. The
argument goes as follows. Since

Ũ†MRSŨ ¼ MD; ðA5Þ

then, using QMHQ† ¼ MRS in Eq. (A5), we get

Ũ†QMHQ†Ũ ¼ MD; ðA6Þ

U†MHU ¼ MD; ðA7Þ

where we have defined Q†Ũ ¼ U and ðQ†ŨÞ† ¼ U†. The
eigenvalues of the unitary related matrices MH and MRS
remain same. ToobtainMD,we need theunitarymatrixU that
follows from the unitary matrix Ũ, constructed from the
eigenvectors of MRS.

APPENDIX B: EIGENVECTORS OF MRS

1. The characteristics equation

In this section we denote the eigenvalues of MRS as
Ei; i ¼ 1; 2; 3, then the characteristic equation for the same
can be written as

jMRS −EiIj ¼ 0: ðB1Þ

Where I is a 3 × 3 identity matrix. Hence,

������
a − Ei b c

b d − Ei 0

c 0 e −Ei

������ ¼ 0: ðB2Þ

The characteristics equation that follows from the deter-
minant is

ða − EiÞðd − EiÞðe −EiÞ − b2ðe −EiÞ − c2ðd − EiÞ ¼ 0;

ðB3Þ

which yields, upon simplification,

E3
i c3 þ E2

i c2 þ Eic1 þ c0 ¼ 0: ðB4Þ

Where the coefficients c0is are defined as

c3 ¼ 1; ðB5Þ

c2 ¼ −ðaþ dþ eÞ; ðB6Þ

c1 ¼ðaeþ deþ ad − b2 − c2Þ; ðB7Þ

c0 ¼ðb2eþ c2d − aedÞ: ðB8Þ

The nature of the roots of the cubic equation (B4) must
satisfy the following properties:

E1 þ E2 þ E3 ¼ −c2;

E1E2 þ E2E3 þ E3E1 ¼ c1;

E1E2E3 ¼ −c0: ðB9Þ

The root of Eq. (B4) depends on the discriminant,
D ¼ Q2 þ P3, where variables P and Q are related to
the elements of Eq. (B4) through the relations

P ¼ ð3c1 − c22Þ
9

and Q ¼
�
c23

27
−
c2c1
6

þ c0
2

�
: ðB10Þ

Furthermore, for Hermitian matrices, roots are real, and we
should have Q2 þ P3 ≤ 0. Finally, following [133,134],
the roots turns out to be

E1 ¼ R cos αþ ffiffiffi
3

p
R sin α − c2=3;

E2 ¼ R cos α −
ffiffiffi
3

p
R sin α − c2=3;

E3 ¼ −2R cos α − c2=3;

with

� α ¼ 1
3
cos−1ðQR3Þ

R ¼ ffiffiffiffiffiffiffiffiffiffiffið−PÞp
sgnðQÞ

: ðB11Þ

For having real roots, one should have P < 0 and j Q
R3 j ≤ 1.

Although for analytic evaluation of the roots, this condition
may not pose any problem, however during numerical
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evaluation of the same, maintaining this ratio may become
difficult if the magnitudes of elements of the matrix M are
close to the precision available for the machine in use.
One can scale the matrix M by a suitable numerical

factor to avoid this difficulty.

2. Eigenfunction and unitary matrix

The normalized eigenvector Ṽi of the real symmetric
matrix MRS can be represented as

Ṽi ¼ Ni

2
64
ũi
ṽi
w̃i

3
75; ðB12Þ

where Ni is the normalization constant. Therefore, using
the eigenvalue equation, i.e., ðMRS −EiIÞṼi ¼ 0. Hence,2

64
a b c

b d 0

c 0 e

3
75
2
64
ũi
ṽi
w̃i

3
75 ¼ Ei

2
64
ũi
ṽi
w̃i

3
75: ðB13Þ

We get

ða −EiÞũi þ bṽi þ cw̃i ¼ 0; ðB14Þ

bũi þ ðd −EiÞṽi ¼ 0; ðB15Þ

cũi þ ðe −EiÞw̃i ¼ 0: ðB16Þ

Using the method discussed in [135], we can obtain
analytical expressions of the elements of the eigenvector
Ṽi. They are

Ṽi ¼ Ni

2
64
ũi
ṽi
w̃i

3
75 ¼ Ni

2
64
ðd − EiÞðe −EiÞ

−bðe −EiÞ
−cðd −EiÞ

3
75: ðB17Þ

Here, Ni ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððd−EiÞðe−EiÞÞ2þðbðe−EiÞÞ2þðcðd−EiÞÞ2

p , is a nor-

malization constant. We can now construct the unitary
matrix Ũ, using (B17), as

Ũ ¼

2
64
N1ũ1 N2ũ2 N3ũ3
N1ṽ1 N2ṽ2 N3ṽ3
N1w̃1 N2w̃2 N3w̃3

3
75: ðB18Þ

3. Orthonormality check of Ṽ

One can easily check that the vectors are normalized, i.e.,
Ṽi:Ṽj ¼ 1 when i; j ¼ 1; 2; 3 and i ¼ j. Furthermore, the
verification of the orthogonal properties of vectors are
provided below:

Ṽ1:Ṽ2 ¼ N1N2ðũ1ũ2 þ ṽ1ṽ2 þ w̃1w̃2Þ;
¼ N1N2ððd − E1Þðe −E1Þðd −E2Þðe − E2Þ
þ b2ðe −E1Þðe −E2Þ þ c2ðd −E1Þðd −E2ÞÞ:

ðB19Þ
Now

ðe −E1Þðe −E2Þ ¼ e2 − eðE1 þE2Þ þE1E2: ðB20Þ
Wewill convert the above equation having two functions

E1 and E2 into a single function E3 by using the properties
of roots of cubic equation. In order to do that, we will try
the following substitutions:

E1 þE2 ¼ ½E1 þ E2 þ E3� −E3; ðB21Þ

E1E2 ¼½E1E2 þ E2E3 þE3E1� −E3ðE2 þE1Þ: ðB22Þ

Following the identities of Eq. (B9) and make substitu-
tions in Eq. (B19), we obtain

Ṽ1:Ṽ2 ¼ N1N2ða −E3Þ½ða − E3Þðd − E3Þðe −E3Þ
− b2ðe − E3Þ − c2ðd −E3Þ�: ðB23Þ

The terms inside the square brackets on the rhs of Eq. (B23)
happens to be zero due to Eq. (B3), which follows from the
characteristic equation. Hence,

Ṽ1:Ṽ2 ¼ 0: ðB24Þ
Following the same procedure one can verify

that Ṽ1:Ṽ2 ¼ Ṽ2:Ṽ3 ¼ Ṽ3:Ṽ1 ¼ 0.

4. Analytical check of Ũ†MRSŨ=MD

We have obtained the unitary matrix Ũ, which is
supposed to diagonalize the matrix MRS. To check this
claim analytically, we first start the unitary transformation
of MRS by Ũ, given as follows:

Ũ†MRSŨ ¼ MD; ðB25Þ
which implies
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2
64
N1ũ1 N1ṽ1 N1w̃1

N2ũ2 N2ṽ2 N2w̃2

N3ũ3 N3ṽ3 N3w̃3

3
75
2
64
a b c

b d 0

c 0 e

3
75
2
64
N1ũ1 N2ũ2 N3ũ3
N1ṽ1 N2ṽ2 N3ṽ3
N1w̃1 N2w̃2 N3w̃3

3
75 ¼ MD; ðB26Þ

2
64
N1ðũ1aþ ṽ1bþ w̃1cÞ N1ðũ1bþ ṽ1dÞ N1ðũ1cþ w̃1eÞ
N2ðũ2aþ ṽ2bþ w̃2cÞ N2ðũ2bþ ṽ2dÞ N2ðũ2cþ w̃2eÞ
N3ðũ3aþ ṽ3bþ w̃3cÞ N3ðũ3bþ ṽ3dÞ N3ðũ3cþ w̃3eÞ

3
75 ðB27Þ

×

2
64
N1ũ1 N2ũ2 N3ũ3
N1ṽ1 N2ṽ2 N3ṽ3
N1w̃1 N2w̃2 N3w̃3

3
75 ¼ MD: ðB28Þ

Using Eqs. (B14)–(B16) in (B28), we get

2
64
N1ũ1E1 N1ṽ1E1 N1w̃1E1

N2ũ2E2 N2ṽ2E2 N2w̃2E2

N3ũ3E3 N3ṽ3E3 N3w̃3E3

3
75
2
64
N1ũ1 N2ũ2 N3ũ3
N1ṽ1 N2ṽ2 N3ṽ3
N1w̃1 N2w̃2 N3w̃3

3
75 ¼

2
64
Ṽ1:Ṽ1E1 Ṽ1:Ṽ2E1 Ṽ1:Ṽ3E1

Ṽ2:Ṽ1E2 Ṽ2:Ṽ2E2 Ṽ2:Ṽ3E2

Ṽ3:Ṽ1E3 Ṽ3:Ṽ2E3 Ṽ3:Ṽ3E3

3
75 ¼ MD: ðB29Þ

Now, if we use the orthonormality of the eigenvectors,
we get

MD ¼

2
64
E1 0 0

0 E2 0

0 0 E3

3
75: ðB30Þ

APPENDIX C: DATA AVAILABILITY

The data used for plotting Figs. 1 and 2 in this article will
be shared on request to the corresponding author.

APPENDIX D: STELLAR ENVIRONMENT AND
RADIATION PROCESS

In this appendix, we outline the essentials of emission
mechanism of compact objects common to most of the
models developed for that purpose. There are variousmodels
those have been successful to some extent to describe the
emission mechanism from compact objects, like neutron
stars or white dwarfs. Some of the most used ones are polar-
cap [136], slotgap [137], outergap [138] models etc.
We will consider here a simple picture of the energetic-

emission physics from a typical compact object. The
specific details can be found in [139,140] and the refer-
ences provided therein. The basic picture according to these
models is that the electric field Ejj is produced due to the
rotating dipolar magnetic field B of the compact object and
is directed parallel to the ambient dipolar field. Due to the
action of electric field (Ek), charged particles (eþ or e−) are
pulled out of the surface of the compact star. Their number
density is nGJ (where nGJ ¼ ΩB

2πce) [141]. The radiation is

emitted from the charged particles, those are accelerated by
the electric field Ejj.
For a typical pulsar of period 0.5 sec. and magnetic field

B ∼ 1012 Gauss, the Goldreich-Juliean number density nGJ
turns out to be 3.6 × 1011=cm3. These charged particles on
their way along the curved magnetic field radiate EM
radiation that is called curvature radiation. The total energy
released in the process is given by

_Erot ¼
2

3

Ω4R6B2
s

e3
: ðD1Þ

In the expression (D1) R̄ is the radius, Bs is the surface
magnetic field, and Ω is the rotational frequency of the
compact star. The total observed energy or total luminosity
coming from these objects have been observed to lie between
1025–1035 erg= sec. That emitted energy can be as high as
107 MeV for a pulsar having magnetic field B ∼ 1012 Gauss
and rotational periodP ¼ 1 sec [142]. The radiated photons
of this energy may create a secondary plasma of eþ and e−

pairs through the process, γ þ γ → eþ þ e−. These secon-
dary particles alter the number density of charge particles in
the pulsar magnetosphere.
The energy of the emitted photons due to curvature

radiations of the charge particles in the magnetosphere of
the compact object can be expressed in terms of the
instantaneous Lorentz factor (Γ) of the radiating charged
particles. It is given by ω ¼ 3

2
Γ3

Rc
, when Rc is the radius of

curvature of the dipolar magnetic field lines.
Evolution of Γ, taking radiation reaction into account

and energy gain due to the electric field is described
by [139]
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m
dΓ
dx

¼ eEjj −
2e2Γ4

3R2
c
: ðD2Þ

When the distance from the center of the star is given by
r ¼ xþ R̄ (R̄ is the radius of the compact object and x is
the distance from the surface of the star). This equation can
be derived from the Lorentz-Abhram-Diraction equation
discussed in [110]. When the energy-gain becomes equal to
energy loss in Eq. (D2), a quasisteady state is reached,
which gives the estimate of Γ in terms of electric field.
This is given by

Γ ¼
�
3EjjR2

c

2e

�1
4

: ðD3Þ

The electric field, Ejj at a position r, (r > R̄) from the
center of the compact object is given by [142,143] in the
space charge limited flow in pulsar emission model:

Ejj ∼
1

8
ffiffiffi
3

p ðΩR̄Þ52B
ffiffiffiffiffiffi
2R̄
r

r
: ðD4Þ

In Eq. (D4), B is the surface magnetic field of the compact
object. Since Ejj is position dependent, it introduces
position dependence to Γ, and thereby to the emitted
radiation, ω. Once the emission region for the radiation
of energy ω is determined, the distance it would travel in
the magnetosphere of the object can be estimated from the
knowledge of RLC (when RLC ¼ 1=Ω is a light cylinder
radius).
Though in principle one can solve Eq. (D2), to find out

position dependence of the Lorentz factor, but solving it
analytically is difficult. However it is possible to solve
Eq. (D2) numerically. A numerical solution is provided in
Fig. 4. The upward turning point (P) corresponds to the
quasistatic limit in Eq. (D2). Similar behavior for the
primary particles has also been reported in [144].
Since the peak emitted energy ωc, of the curvature

photon is given by

ωc ¼
3

2

Γ3

Rc
: ðD5Þ

Equations (D3)–(D5) can be used to estimate the
emission point of photons of a particular energy.8 The
relation between the angular speed Ω, the point of
emission r

RLC
, radius R̄, magnetic field B, and energy of

the emitted photon ω can be expressed in dimensionless
quantities as

Ω ¼ 1

R̄

"ðK̄ eB
m2

e
Þ3

ðmeR̄Þ2
ffiffiffiffiffiffiffiffi
r

RLC

r �
ω

me

�
4
#1

7

: ðD6Þ

In Eq. (D6), we have used a numerical parameter K̄,
defined as K̄ ¼ 4πα 160ffiffi

6
p ð2

3
Þ4=3. One can estimate the path

length z ¼ ðRLC − rÞ for photons produced at point r with
energy ω from Eq. (D6) for various values of neutron star
parameters like the radius, the magnetic field, and the
rotational time period. The estimation of the density of the
plasma is provided below.
The net number density of plasma produced in the

magnetosphere can be estimated by dividing the luminosity
of star by their estimated energy [139]. The combined effect
of pair produced plasma and the plasma ejected from the
surface of star can create a final plasma density, more than
nGJ. Following this point of view, we have taken the plasma
frequency ωp to be of the order 10−2 eV. We have further
considered the photon path length to be z ¼ 1.2 km [109].
For these numbers of ωp and z, we have estimated various
oscillation probabilities in KeVenergy range (20–100) KeV
as shown in Figs. 1 and 2.
The basic motivation for this choice of parameters was to

find out the imprints of ϕFμνFμν interaction on the non-
thermal spectropolarimetric signals from the star magneto-
sphere is realized in nature. In the presence of such an
interaction, some of these energetic photons may eventually
oscillate into scalars and go out of the magnetosphere of the
compact object and get detected by oscillating back into
the photon. Although the same could be pointed out with
the results available in the literature [10] and the references
therein; however, in this work, we have considered the
effect of magnetized medium to the oscillation probability.

FIG. 4. Evolution of Γ (Lorentz factor) of primary charge
particle in the pulsar atmosphere with radiation reaction. The
lowest point (P) in the curve represents the situation when energy
gain by the charge particle is equal to energy loss due to radiation
reaction, i.e., when (D2) equals zero.

8Here we have considered Rc ¼
ffiffiffiffiffiffiffiffiffi
r=Ω

p
, which is a good

approximation for dipole magnetic fields, close to the light
cylinder.
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Our numerical estimates show that the emitted photon
energy is ω ≫ ωp; therefore there is no self-absorption in
the medium.
However the main process of obstruction, to the propa-

gation of primary photons, comes in the form of absorption.
There are few processes those contribute to this phenome-
non. They are (i) γ þ B → eþe−, (ii) γ þ γ → eþe−,
(iii) scattering with ambient electrons in the medium,
(iv) synchrotron self absorption etc.
For subthreshold photon energies (i.e., ω < 2me) (as is

the kinematics considered here), process (i) is forbidden.
In order to have the second process viable, for photons
with ∼100 KeV energy, the minimum energy required for
the second photon ωth ≥ m2

eω, which is also above a pair
production threshold. It is unlikely that at r > 0.99RLC
the primary electrons will generate photons with energy
ω ¼ 10me or more. Therefore the second process also
seems unlikely.

For stellar objects of mass Ms, temperature T, the scale

height (defined as h ¼ kBTR̄2

mpGMs
) is the quantity that deter-

mines the density of the atmosphere of the stellar object.
Although the proton mass mp is used in estimating the
same, however if one invokes local charge neutrality the
scale hight of electrons would also be similar. For a
compact object with about one solar mass and temperature
around 105 Kelvin the ambient atmosphere close to the
light cylinder would be extremely thin to contribute to
degradation of photon energy through Compton scattering.
Last, the synchrotron self-absorption coefficient follows

a power law behavior αω ∝ 1
ωs, where the index s > 2.

Hence the same may also be neglected for consideration
towards absorption. Therefore for the kind of physical
situation we have considered so far, the main mechanism
towards photon depletion would essentially be due to
conversion to scalars.
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