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We derive the approximate “analytic-kludge” waveforms for the inspiral of a charged stellar-mass
compact object (CO) into a charged massive Kerr-Newman black hole. The modifications of the inspiral
orbit due to the charges in this system can be attributed to three sources: the electric force between the CO
and the massive black holes (MBH), the energy flow of the dipole electromagnetic radiation, and the
deformation of the metric caused by the charge of the MBH. All these are encoded explicitly in the
fundamental frequencies of the orbits, which are calculated analytically in the weak-field regime. By
calculating the mismatch between the waveforms for charged and neutral extreme-mass-ratio inspirals
systems with respect to space-borne detectors TianQin and LISA, we show that tiny charges in the system
can produce distinct imprints on the waveforms. Finally, we perform parameter estimation for the charges
using the Fisher information matrix method and find that the precision can reach the level of 10−5 in
suitable scenarios. We also study the effects of charges on the parameter estimation of charge, where the
effects from the charge of the MBH can be well explained by its effects on the cutoff of the inspiral.
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I. INTRODUCTION

Black hole (BH) no-hair theorems [1,2] imply that the
astrophysical BHs in electrovacuum are described by the
Kerr-Newman (KN) metric [3], which can be uniquely
characterized by the mass, spin, and electric charge. It is
widely believed that the astrophysical BHs have negligible
electric charge, due to the neutralization by surrounding
plasmas, quantum discharge effects, or electron-positron
pair production [4,5]. However, unequivocally observatio-
nal evidence for the neutrality of both stellar-mass and
massive BHs are still lacking. Besides, some novel mech-
anisms have been proposed such that BHs could retain a
large amount of charge. For example, relying on the well-
known Wald mechanism [6] by which a spinning BH

immersed in an external magnetic field acquires a stable net
charge, it was shown in [7] that a strongly magnetized
neutron star in such a binary system will give rise to a large
enough charge in the BH to allow for potentially observable
effects. Additionally, the charge parameter in the KNmetric
can be regarded as the other types of charge, including
magnetic charge (via duality transformation) [8,9], a vector
charge in the scalar-tensor-vector gravity (also known as
“MOG”) [10,11], or a hidden electromagnetic charge in the
minicharged dark matter model [12]. In all these cases, the
BHs can be charged. Thus, the validation of tiny or null
charge in black hole is essential for us to understand various
problems in gravity and astrophysics, ranging from the
third hair on black hole to the formation mechanism of real
astrophysical BHs.
In contrast to the electromagnetic observations [13,14],

gravitational wave (GW) observations offer a more robust
way to place constraints on the charges, in the sense that the
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assumptions for the models used in the former usually
contain more uncertainties. If BHs are indeed charged and
described by the KN metric, the gravitational wave sig-
natures from binary BHs will be modified. Recently,
several works [15–21] have emerged to analyze the
charges of the stellar mass BHs observed by LIGO and
Virgo [22,23]. For example, by performing numerical
relativity simulations of the coalescence of the charged
binary BHs, the authors in Refs. [16,17] showed that
GW150914 is compatible with having a charge-to-mass
ratio smaller than 0.3. With the accurate quasinormal mode
spectrum obtained from solving numerically the coupled
perturbation equations of the KN BHs [24], Ref. [21]
analyzed the ringdown signal of GW150914 and found that
the charge-to-mass ratio is smaller than 0.33, by restricting
the mass and spin to values compatible with the analysis of
the full signal. For the future space-based GW detectors,
Ref. [25] analyzed the capability of constraining the STVG
parameter α with the ringdown of MBHBs, and the
corresponding constraint for the charge-to-mass ratio is
about 10−2.
Instead of the binary BHs with comparable mass, in this

work, we focus on the charge effect on the GW signals
generated from the inspirals of stellar-mass compact objects
(COs) into massive black holes (MBH) in galactic nuclei,
i.e., the extreme-mass-ratio inspirals (EMRI) [26,27], and
study the detectability of the charges of both the CO and
BHs for future space-based GW detectors, such as TianQin
(TQ) [28] and LISA [29]. EMRI is one of the most
important sources for future space-based GW detectors,
as the waveform contains a wealth of information about the
spacetime geometry of BHs and the parameters of the
system can be measured very accurately [30–33]. The data
analysis requires the construction of accurate waveforms to
enable accurate extraction of EMRI parameters from a
signal.
Since the waveforms are slow-footed to calculate in the

relativistic region for EMRIs, it is full of the substantial
challenges to model EMRI dynamics precisely and con-
strain source parameters [34]. Most parameter estimations
on EMRI sources adopt the “kludge”waveforms [35–37] to
generate fast waveforms. In the realm of modeling EMRI,
the kludge is in a way the approximative and built-up model
that adopts several sets of post-Newtonian (PN) formulas to
produce waveforms efficiently. The kludge waveforms can
reflect the main feature of accurate EMRI waveforms,
including some relativistic effects, such as orbital eccen-
tricity and relativistic precession. Recently, the full rela-
tivistic EMRI waveforms have been developed in [38,39],
which combine the speed of EMRI “kludge” models
and the accuracy of the first order gravitational self-force
models.
In the past decades, EMRI waveforms have been worked

out in the alternative theories of gravity [40–47] to test their
feasibility in the strong field region. Recently, Ref. [48]

calculated the EMRI waveform for a charged object
inspiraling around a Schwarzschild BH in a circular orbit
using the Teukolsky method. In this work, we would like to
extend the analytic kludge (AK) method to the charged case
by considering the inspiral of a charged CO into a charged
MBH. From the point of view of testing the Kerr hypoth-
esis, the KN BH can be treated as a representative model
deviating from the Kerr BH, and its metric is analytically
known and well behaved in the full range of the deviation
parameter. In the AK model, the CO is moving on a
Keplerian ellipse with the orbital parameters (semilatus
rectum and eccentricity) slowly evolving under the influ-
ence of radiation reaction, and the relativistic precession of
the orbital plane and the perihelion are included. All the
evolution equations are obtained under the PN approx-
imations. Then the waveform is generated with the well-
known Peter-Mathews formula [49,50] in the quadrupole
approximation. We will show that the introduce of charges
into the EMRI will modify the precession via the funda-
mental frequencies of the orbits of the charged CO.
Moreover, the effects of the charges on the radiation
reaction are twofold: the direct modification to the loss
of the energy and angular momentum due to gravitational
radiation and the occurrence of electromagnetic radiation.
Physically, the modifications due to the presence of the
charges in this system can be attributed to the electric force
between the CO and the MBH, the dipole electromagnetic
radiation, and the deformation of the metric caused by the
charge of the KN BH. The complete evolution equations of
various orbital parameters are then obtained by combining
the corrections due to the charges in the system appearing at
the leading order of the PN expansion and the higher
order terms from the original AK model. Furthermore, to
quantify the effects of the charges on the waveforms, we
will compute the mismatch between waveforms from the
neutral EMRI system and the charged one. Finally, we will
perform parameter estimation of the charges for the CO and
MBH with space-borne GW detectors TQ and LISA.
The paper is organized as follows. In Sec. II, we present

the calculation of the waveforms by following the approach
of [35]. In Sec. III, we describe the formalisms of signal
analysis for extracting values of the system parameters
from the waveforms. In Sec. IV, we present the result of the
constraints using the EMRI observation of LISA and TQ,
then place the parameter estimation about charges of the
CO and the MBH. Finally, we give a brief summary in
Sec. V. Throughout this paper, we use the geometric units,
where c ¼ G ¼ 1.

II. EMRI WAVEFORMS

A. Equations of motion

The KN BH is a stationary, axisymmetrical, and asymp-
totically flat solution of the Einstein-Maxwell equation. In
Boyer-Lindquist coordinates, theKNmetric can bewritten as
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ds2 ¼ Σ
Δ
dr2 þ Σdθ2 þ sin2 θ

Σ
½ðr2 þ ã2Þdϕ − ãdt�2 ð1Þ

−
Δ
Σ
½ã sin2 θdϕ − dt�2; ð2Þ

where

Σðr; θÞ ¼ r2 þ ã2 cos2 θ; ð3Þ

ΔðrÞ ¼ r2 − 2Mrþ ã2 þ Q̃2; ð4Þ

and M and Q̃ are the mass and electric charge of the BH,
and ã is specific angular momentum. The electromagnetic
potential is given by

A ¼ Q̃r
Σ

ðdt − ã sin2 θdϕÞ: ð5Þ

The first-order equations of motion for a timelike charged
particle with massm and electric charge q̃ are given by [51]

Σ
dt
dτ

¼ r2 þM2a2

Δ
P − aðaE sin2 θ − LzÞM2; ð6Þ

Σ
dr
dτ

¼ �
ffiffiffiffi
R

p
; ð7Þ

Σ
dθ
dτ

¼ �M
ffiffiffiffi
Θ

p
; ð8Þ

Σ
dϕ
dτ

¼ aM
Δ

P − aMEþ MLz

sin2 θ
; ð9Þ

where

R ¼ P2 − Δ½r2 þM2ðLz − aEÞ2 þM2C�;

Θ ¼ C −
�
ð1 − E2Þa2 þ L2

z

sin2θ

�
cos2θ; ð10Þ

with

P ¼ Eðr2 þM2a2Þ −M2aLz −MqQr: ð11Þ

In the equations of motion, there are three constants of
motion. Ẽ and L̃z are the conserved total energy and
component of angular momentum parallel to symmetry
axis, respectively, and C̃ is the Carter constant [52]. Note
that in above expressions, we have used dimensionless
quantities defined by

E ¼ Ẽ
m
; a ¼ ã

M
; q ¼ q̃

m
; Lz ¼

L̃z

mM
;

C ¼ C̃
m2M2

; Q ¼ Q̃
M

: ð12Þ

One can see that the distinction between the above
equations and the geodesic equations for a neutral particle
moving in Kerr spacetime only reflects in the functions Δ
and P.

B. Fundamental frequencies

In the AK model, if the spin of the CO is neglected, an
EMRI event is completely specified by 14 degrees of
freedom. To obtain the inspiral orbits of the charged CO in
the KN background, we append two charge parameter Q
and q to the original AK model parameter space, such that

λi ≡ ½λ1;…; λ16�
¼ ½m;M; a; q;Q; eLSO; γ̃0;Φ; cos θS;ϕS; cos λI; α0;

cos θK;ϕK;D; t0�; ð13Þ

where the definition and meaning of each parameter can be
found in [35].
The trajectories of charged CO are roughly treated as

quasi-Keplerian ellipses, which are characterized by the
eccentricity e, and the radial orbital frequency ν. The
instantaneous phase of the CO in the orbit is specified
by the mean anomaly Φ. The orientation of the orbit is
described by three angles: λI , the inclination angle of the
orbital plane with respect to the BH’s spin direction Ŝ, γ̃,
the angle from pericenter to L̂ × Ŝ, and α describing the
direction of L̂ around Ŝ, where Ŝ is a unit vector of BH’s
spin, and L̂ is a unit vector of the orbital angular
momentum. The rate of change _Φ, the orbital plane
precession (also known as Lense-Thirring precession)
frequency _α, and the angular rate _αþ _̃γ of periapsis
precession are closely related to the fundamental frequen-
cies of the CO’s orbit by

_Φ ¼ 2πν ¼ Ωr; ð14Þ

_̃γ ¼ Ωθ −Ωr; ð15Þ

_α ¼ Ωϕ −Ωθ; ð16Þ

where Ωr, Ωθ, and Ωϕ denote the fundamental frequencies
of radial, polar, and azimuthal motion, respectively. The
closed form of these fundamental frequencies for Kerr BH
orbits was first obtained by Schmidt [53] by employing the
elegant action-angle variable formalism of the Hamilton-
Jacobi theory. Later on, combining Schmidt’s description
and using the Mino time [54], Drasco and Hughes [55]
derived the fundamental frequencies and showed the
construction of the frequency domain representation of
arbitrary functions of orbits. In this work, we would like to
follow the steps in [55] and also [43,56] to derive the
analytical expressions of these three fundamental frequen-
cies in the weak-field regime.
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First of all, in terms of the dimensionless time variable,
i.e., the so-called Mino’s time [54],

d
dλ

¼ Σ
M

d
dτ

; ð17Þ

the equations of motion for the charged CO now become

dr
dλ

¼ � ffiffiffiffi
R

p

M
; ð18Þ

dθ
dλ

¼ �
ffiffiffiffi
Θ

p
; ð19Þ

dt
dλ

¼ Tr þ Tθ; ð20Þ

dϕ
dλ

¼ Φr þΦθ; ð21Þ

where

Tr ¼
r2 þM2a2

MΔ
P; Tθ ¼ −aðaEsin2θ − LzÞM ð22Þ

Φr ¼
a
Δ
P − aE; Φθ ¼

Lz

sin2 θ
: ð23Þ

One can see that the r and θ motions are now apparently
decoupled. Next, we parametrize the orbit in terms of the
(dimensionless) semilatus rectum p, the eccentricity e and a
phase angle ψ via

r ¼ Mp
1þ e cosψ

; ð24Þ

where ψ varies from 0 to 2π as r goes through a complete
cycle. The two turning points of the radial motion,

ra ¼
Mp
1þ e

; rp ¼ Mp
1 − e

; ð25Þ

are apoapsis and periapsis of the elliptic orbits, respectively.
Moreover, the third orbital parameter is the turning point of
the polar motion, θtp, which is also called the inclination
angle, since this is equivalent to λI [43,57]. It is useful to
express the constants of motion as functions of these three
orbital parameters. This is implemented by solving the
three equations,

RðraÞ ¼ RðrpÞ ¼ Θðcos θtpÞ ¼ 0: ð26Þ

The asymptotic form of these constants of motion in the
weak-field regime are given by

E ¼ 1þ 1

2p
ðe2 − 1Þð1 − qQÞ þOðp−2Þ; ð27Þ

Lz ¼
ffiffiffiffi
p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − qQ

p
sin θtp þOðp−1=2Þ; ð28Þ

C ¼ pð1 − qQÞ cos2 θtp þOðp0Þ: ð29Þ

Note that the terms at higher order in the 1=p expansion are
not explicitly shown here, but they are important in the
following calculations.
For bound orbits, rðλÞ and θðλÞ become periodic

functions. Then from Eq. (18), the fundamental period
for the radial motion with respect to λ is given by

Λr ¼
Z

Λr

0

dλ ¼ 2

Z
rp

ra

Mdrffiffiffiffi
R

p ¼
Z

2π

0

dψffiffiffiffiffiffi
Vψ

p ; ð30Þ

where we have transformed the variable of the integral from
r to ψ , as the integral is easier to perform with the latter.
The potential Vψ can be obtained through R and (24).
Similarly, for the polar motion, the fundamental period is

given by

Λθ ¼ 4

Z
π=2

θtp

dθffiffiffiffi
Θ

p ¼
Z

2π

0

dχffiffiffiffiffiffi
Vχ

p ; ð31Þ

where we have introduced the variable χ via
cos2 θ ¼ cos2 θtp cos2 χ, such that as χ varies from 0 to
2π, θ oscillates through its full range of motion, from θtp to
π − θtp, and back [55]. Thus, the angular frequencies of the
radial and the polar motion with respect to λ then become

ωr ¼
2π

Λr
; ωθ ¼

2π

Λθ
: ð32Þ

For the azimuthal motion, the Eq. (21) is the sum of a
function of r and a function of θ, which allows us to define
the frequencies of the coordinate ϕ with respect to λ as

ωϕ ¼
�
dϕ
dλ

�
λ

¼ hΦriλ þ hΦθiλ; ð33Þ

where

hΦriλ ¼
1

Λr

Z
Φrdλ ¼

1

Λr

Z
2π

0

Φrffiffiffiffiffiffi
Vψ

p dψ ; ð34Þ

and

hΦθiλ ¼
1

Λθ

Z
2π

0

Φθffiffiffiffiffiffi
Vχ

p dχ: ð35Þ

Analogously, for the motion in t, the Eq. (20) is also the
sum of a function of r and a function of θ, so we can define
the frequencies of the coordinate t with respect to λ as
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ωt ¼
1

Λr

Z
2π

0

Trffiffiffiffiffiffi
Vψ

p dψ þ 1

Λθ

Z
2π

0

Tθffiffiffiffiffiffi
Vχ

p dχ: ð36Þ

Up to now, the above fundamental frequencies were written
with respect to the Mino time λ, the frequencies with
respect to the distant observer time, i.e., the coordinate time
t, are obtained by [53,55]

Ωr ¼
ωr

ωt
; Ωθ ¼

ωθ

ωt
; Ωϕ ¼ ωϕ

ωt
: ð37Þ

Explicitly, the asymptotic form of these fundamental
frequencies in the weak-field regime are given by

Ωr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − qQ

p
M

�
1 − e2

p

�
3=2

þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − qQ

p ðqQ − 4Þ
4M

�
1 − e2

p

�
5=2

þOðp−3Þ; ð38Þ

Ωθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − qQ

p
M

�
1 − e2

p

�
3=2

þ að1 − qQÞðe2 − 1Þ3 sin θtp
Mp3

þ 1

M
Qðq2Q − 3qþ 2QÞ − 3e2ðq2Q2 − 5qQþ 4ÞÞ

4ð1 − e2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − qQ

p

×

�
1 − e2

p

�
5=2

þOðp−7=2Þ; ð39Þ

Ωϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− qQ

p
M

�
1− e2

p

�
3=2

þ að2− qQÞð1− e2Þ3=2 þ að1− qQÞðe2 − 1Þ3 sin θtp
Mp3

þ−Qð−3qþ 2Qþ q2QÞ þ 3e2ð4− 5qQþ q2Q2Þ
4Mð1− e2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− qQ
p

×

�
1− e2

p

�
5=2

þOðp−7=2Þ: ð40Þ

Therefore, we obtain the perihelion precession frequency
and the orbital plane precession frequency at the leading
order of the 1=p expansion,

_̃γ ¼ 1

M
6 − 6Qq −Q2 þ q2Q2

2ð1 − e2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − qQ

p
�
1 − e2

p

�
5=2

; ð41Þ

_α ¼ að2 − qQÞð1 − e2Þ3=2
Mp3

: ð42Þ

Comparing with the uncharged equations, the modification
due to the charges in the system can be summarized as the
electric force between the CO and the KN BH in the form
qQ and the deformation of the metric from the charge of
the KN BH in the form Q2. As we will see in the next

subsection, the other contribution of the charges to the
waveforms stems from the dipole electromagnetic radiation
in the form ðQ − qÞ2.

C. Fluxes

Besides the fundamental frequencies, the other piece of
the AK waveform is the change rates of the eccentricity e
and the radial orbital frequency ν with respect to the
coordinate time, which are related to the energy flux and
the angular momentum flux due to the gravitational
radiation and electromagnetic radiation.
For the gravitational radiation, the standard quadrupole

formulas of the energy flux and the angular momentum flux
were already derived by Peters and Mathews [49,50],

�
dE
dt

�
¼ 1

5μ

�
d3Qij

dt3
d3Qij

dt3
−
1

3

d3Qi
i

dt3
d3Qj

j

dt3

�
; ð43Þ

and
�
dLi

dt

�
¼ 2

5μM
ϵijk

�
d2Qjm

dt2
d3Qkm

dt3

�
; ð44Þ

where μ is the reduced mass μ ¼ mM=ðmþMÞ ≃m, E
and Li are the dimensionless energy and angular momen-
tum appeared in the equations of motion of the charged CO.
Qij is the familiar quadrupole moment tensor of mass (also
called the inertia tensor),

Qij ¼ μxixj; ð45Þ
where xi is the relative position vector between the charged
CO and the charged central BH, and in the weak-field
regime, one has xi ¼ ðr cosϕ sin θ; r sinϕ sin θ; r cosϕÞ. In
addition, the angle brackets mean the average over one
cyclic motion in r, which via (24), can be turned into the
integral for ψ,�

dE
dt

�
¼ 1

T

Z
2π

0

dE
dt

dψ
_ψ
; T ¼

Z
2π

0

dψ
_ψ
: ð46Þ

In the following, without ambiguity, we will just use dE=dt
and dLz=dt to denote the averaged ones. Then from above
formulas and the equations of motion of the CO, we obtain
the energy flux and angular momentum flux loss of the
charged particle due to the gravitational radiation,

dE
dt

¼ −
32η

5Mp5
ð1 − qQÞ3ð1 − e2Þ3=2

�
1þ 73

24
e2 þ 37

96
e4
�
;

ð47Þ

dLz

dt
¼−

32ηsinθtp
5Mp7=2 ð1−qQÞ5=2ð1−e2Þ3=2

�
1þ7

8
e2
�
; ð48Þ

where the assumption that we have made is same to [35] in
which θtp is constant at leading order in the 1=p expansion.
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To simplify the expressions, we have introduced the
symmetric mass ratio,

η≡ mM
ðmþMÞ2 ≃

m
M

: ð49Þ

In terms of the relation between p and the radial orbital
frequency at leading order,

p ¼ ð1 − e2Þð1 − qQÞ1=3
ð2πMνÞ2=3 ; ð50Þ

the above two equations can be written as

dE
dt

¼ −
32η

5M
ð2πMνÞ10=3ð1 − qQÞ4=3ð1 − e2Þ−7=2

×

�
1þ 73

24
e2 þ 37

96
e4
�
; ð51Þ

dLz

dt
¼ −

32η sin θtp
5M

ð2πMνÞ7=3ð1 − qQÞ4=3ð1 − e2Þ−2

×

�
1þ 7

8
e2
�
: ð52Þ

On the other hand, from the asymptotic form of the energy
and angular momentum in the weak-field regime (27) and
(28), we can obtain their change rates with respect to distant
observer time,

dE
dt

¼ −
ð2πMÞ2=3ð1 − qQÞ2=3

3ν1=3
dν
dt

; ð53Þ

dLz

dt
¼ −

ð1 − qQÞ2=3 sin θtp
3ð2πMνÞ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ν

×
�
3eν

de
dt

þ ð1 − e2Þ dν
dt

�
: ð54Þ

We should also take the orbit decay due to the electro-
magnetic radiation into account. The formulas of the
energy and angular emission rates for the dipole electro-
magnetic radiation [58] are given by [59] and also [60–63],

m
dEEM

dt
¼ 2

3
μ2ðQ − qÞ2

�
d2xi

dt2
d2xi
dt2

�
; ð55Þ

and

mM
dLEM

z

dt
¼ 2

3
μ2ðQ − qÞ2ϵ|kl

�
dxk
dt

d2xl
dt2

�
; ð56Þ

where as before the angle brackets denote the average over
one period in r motion, and | ¼ z. It should be noted that
the above mentioned EEM and LEM

z are set to be dimen-
sionless, their relation with the original ones are the same as
(12). Then for a charged particle orbiting a KN BH, the

energy flux, and angular momentum flux loss due to the
electromagnetic radiation at the leading order in 1=p
expansion are given by

dEEM

dt
¼ −

ð2þ e2Þη2
3ð1 − e2Þ5=2 ð2πmMνÞ8=3ðQ − qÞ2

× ð1 − qQÞ2=3; ð57Þ

dLEM
z

dt
¼ −

2m sin θtp
3M3ð1 − e2Þ ð2πMνÞ5=3ðQ − qÞ2

× ð1 − qQÞ2=3: ð58Þ

Combining the Eqs. (51)–(58), we have the evolution
equations of orbital eccentricity e and ν due to the
gravitational and electromagnetic radiation,

dν
dt

¼ 96

10π

η

M2
ð2πMνÞ11=3ð1 − qQÞ2=3ð1 − e2Þ−7=2

×

�
1þ 73

24
e2 þ 37

96
e4
�

þ ηð2þ e2ÞðQ − qÞ2ð2πMνÞ3ð1 − e2Þ−5=2
2πM2

; ð59Þ

de
dt

¼ −
eη
15M

ð2πMνÞ8=3ð1 − qQÞ2=3

× ð1 − e2Þ−5=2ð304þ 121e2Þ
−
eη
M

ðQ − qÞ2ð2πMνÞ2ð1 − e2Þ−3=2: ð60Þ

From the right-hand sides of these equations, we find that
the contribution from the dipole electromagnetic radiation
is lower than that from the gravitational radiation by a
factor of ð2πMνÞ2=3, which for a Keplerian orbit corre-
sponds to v2, where v is the orbital velocity of the CO. This
means that the correction due to the dipole electromagnetic
radiation appears at −1 PN order in the waveforms and
becomes prominent at the early stage of the inspiral of the
CO where v is small. This is verified by numerical relativity
simulations of the coalescence of the charged binary BHs
with comparable masses [16], where it was found that the
greatest difference between charged and uncharged BHs
arises in the earlier inspiral. In this case, despite the fact that
the AK model is not accurate enough to produce EMRI
template waveforms in the strong field region, the behavior
of the electric charges may well be captured by this model.
In terms of the radial frequency ν, the other two Eqs. (41)

and (42) are expressed as

dγ̃
dt

¼ ð6 − 6Qq −Q2 þ q2Q2Þ
ð1 − qQÞ4=3ð1 − e2Þ πνð2πMνÞ2=3; ð61Þ

dα
dt

¼ 4að2 − qQÞπ2Mν2

ð1 − e2Þ3=2ð1 − qQÞ : ð62Þ
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From these four evolution equations, we can see that the
equations keep invariant under the operation q → −q and
Q → −Q, which means we cannot simultaneously deter-
mine the sign of q and Q. Hereafter, without loss of
generality, we will always assume that the charge of the
MBH is positive and let the sign of the charge of the
orbiting particle to be free. For gravitational waveform
generated by two charged compact objects moving on a
Keplerian orbit in a plane, the charges appear only in the
form ðQ − qÞ2 and qQ, which hinders the unique deter-
mination of the two charges. However, the relativistic
effects considered in the AK waveform breaks the degen-
eracy between these two terms. As a consequence, once the
sign of Q is provided, we can not only identify the value of
Q but also uniquely discern both the magnitude and the
sign of q. Even the dipole electromagnetic radiation
disappears when Q ¼ q, this conclusion still works.
Up to now, we have obtained the leading order evolution

equations for the relevant orbital parameters when both the
CO and central BH are charged. In analogy with the
construction of EMRI waveforms in alternative theories
of gravity, e.g., [33], we combine these leading order
corrected equations with those higher-order PN equations
in the original AK model. Then the complete orbital
evolution equations are given by [64]

_Φ ¼ 2πν;

_ν ¼ 48

5π

η

M2
X11=3Y−9=2

	
ð1− qQÞ2=3Y

�
1þ 73

24
e2 þ 37

96
e4
�

þ X2=3

�
1273

336
−
2561

336
e2 −

3885

128
e4 −

13147

5376
e6
�

− Xa cos λY−1=2
�
73

12
þ 1211

24
e2 þ 3143

96
e4 þ 65

64
e6
�


þ ηðQ− qÞ2
2πM2

X3ð2þ e2ÞY−5=2;

_e ¼ −
eη
15M

Y−7=2X8=3

�
ðð1− qQÞ2=3 þ 12X2=3Þ

× ð304þ 121e2ÞY

−
1

56
X2=3ð133640þ 108984e2 þ 25211e4Þ

�

þ e
η

M
a cos λX11=3Y−4

�
1364

5
þ 5032

15
e2 þ 263

10
e4
�

− e
η

M
ðQ− qÞ2X2Y−3=2;

_̃γ ¼ πνX2=3Y−1
�
ð6− 6qQ−Q2 þ q2Q2Þð1− qQÞ−4=3

þ 3

2
X2=3Y−1ð26− 15e2Þ

�
− 12πνa cos λXY−3=2;

_α ¼ 4aMðπνÞ2Y−3=2ð2− qQÞ=ð1− qQÞ; ð63Þ

where dot denotes the derivative with respect to time and to
avoid redundant expression, we have defined Y ¼ 1 − e2,
X ¼ 2πMν. The equation for _ν and _e are given accurately
through 3.5 PN order, the equations for _̃γ and _α are accurate
through 2 PN order.
We would like to give a brief review of how do

above evolving orbital parameters enter the AK EMRI
waveforms. The general GW strain field at the detector is
written as

hijðtÞ ¼ AþðtÞHþ
ijðtÞ þ A×ðtÞH×

ijðtÞ; ð64Þ

where Hþ
ij and H×

ij are the two polarization basis tensors
constructed with the unit vector pointing from the detector
to the source n̂ and the unit vector along the CO’s orbital
angular momentum L̂,

Hþ
ijðtÞ ¼ p̂ip̂j − q̂iq̂j; H×

ijðtÞ ¼ p̂iq̂j þ q̂ip̂j; ð65Þ

with

p̂ ¼ n̂ × L̂

jn̂ × L̂j ; q̂ ¼ p̂ × n̂; ð66Þ

and Aþ and A× are the amplitudes of the two polarizations.
The amplitudes of the two polarizations can be further
written in terms of the Peters-Mathews harmonic decom-
position as

Aþ ≡X
n

Aþ
n

¼
X
n

− ½1þ ðL̂ · n̂Þ2�½an cos 2γ − bn sin 2γ�

þ cn½1 − ðL̂ · n̂Þ2�; ð67Þ

A× ≡X
n

A×
n

¼
X
n

2ðL̂ · n̂Þ½bn cos 2γ þ an sin 2γ�; ð68Þ

where ðan; bn; cnÞ come from decomposition of the second
time derivative of the inertia tensor Qij into n—harmonics
of the radial orbital frequency ν and are functions of ν and e
[49]. Moreover, γ is an azimuthal angle measuring the
direction of pericenter with respect to the orthogonal
projection of n̂ onto the orbital plane, which further
depends on γ̃ and α.
Since the equilateral triangle detectors such as TQ can be

used to construct two independent Michelson interferom-
eters, the signal responded by such two interferometers can
be written as

hI;II ¼
ffiffiffi
3

p

2
ðFþ

I;IIh
þ þ F×

I;IIh
×Þ; ð69Þ
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where the antenna pattern function Fþ;×
I;II of the detector

depend on the orbits of satellites [65]. For TQ, the detailed
information of the respond function for EMRI signal can be
found in [32].
At the final stage of EMRI, when the CO passed the

boundary of stable orbits, it will plunge into the MBH
directly in a short time. So we need to introduce a cutoff
frequency to the waveform. When the CO is moving in the
equatorial plane of the central BH, the cutoff is usually
taken to be the last stable orbit (LSO). Here, for simplicity,
we take the innermost stable circular orbit (ISCO) as
the cutoff in our waveform. The radius of the ISCO
results from the equations RðrÞ ¼ R0ðrÞ ¼ R00ðrÞ ¼ 0.
Although these equations can be solved analytically with
Mathematica, the expression of the solution is very lengthy
so we shall not show it here. Instead, the effects of the MBH
charge Q and CO charge q on the ISCO radius can be
demonstrated clearly in a graphical manner. Note that in
this work, we only consider the prograde orbits of the CO,
since most of the detected events have prograde orbits [32].
As shown in Fig. 1, rISCO changes gradually with the

MBH charge Q (left panel) and CO charge q (right panel).
This indicates that the CO gets a chance to orbit more
circles in the vicinity of the KN BH, and the charged EMRI
system radiates higher frequency GW signal than the
neutral system. The effect of the CO charge on rISCO is

more complicated. In this case, rISCO no longer depends on
q monotonically. Nevertheless, the turning point at which
the monotonicity of q changes increase with Q.

III. METHOD OF GW ANALYSIS

In this section, we present some recipes for the assessing
of the impacts the charge parameters q and Q on the EMRI
waveforms and the constraint on them with LISA and
TianQin observations of EMRIs.
To assess the effects the charges of the MBH and CO on

the EMRI waveforms, it is convenient to define the overlap
O between two sets of waveforms haðtÞ and hbðtÞ,

OðhajhbÞ ¼
hhajhbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhajhaihhbjhbi

p ; ð70Þ

where the inner product hhajhbi is defined by

hhajhbi ¼ 2

Z
∞

0

df
h�aðfÞhbðfÞ þ haðfÞh�bðfÞ

SnðfÞ
: ð71Þ

Here, haðfÞ is the Fourier transform of the time domain
waveform haðtÞ, � denotes complex conjugate and SnðfÞ is
noise power spectral density of space-borne GW detectors,
such as LISA [29] and TianQin (TQ) [28]. Hence, we get
the mismatch M for two different waveforms,

M≡ 1 −OðhajhbÞ: ð72Þ

Obviously, if the two waveforms are identical, the overlap
between them equates to unity and so their mismatch is
zero. For a signal with signal-to-noise ratio (SNR) ρ, the
mismatch of two different waveforms has to be larger than
D=2ρ2 for a detector to distinguish them [66,67], where
D ¼ 9 denotes the number of the intrinsic parameters of the
EMRI system. The intrinsic parameters describe the system
without reference to the location or orientation of the
observer [68]. For example, the SNR threshold for EMRI
that can be detected is usually chosen to be 20 [30]. Then
the mismatch of two waveforms larger than 0.01125 can be
resolved for a EMRI event, which has just reached the
threshold of detection.

A. Fisher informational matrix

To quantify the capability of space-borne GW detectors
to constrain the MBH and CO charges, we use the fisher
informational matrix (FIM) method [69] to obtain the
lowest-order expansion of the posteriors (valid in the high
SNR limit), which can be more accurately estimated
through a full Bayesian parameter estimation analysis.
The FIM is defined by

Γab ¼
�
∂h
∂λa

���� ∂h
∂λb

�
; ð73Þ

FIG. 1. The influence on the radius of ISCO by the charge of
CO and MBH, and the spin of MBH. Above: The rISCO as a
function of q for differentQ. Below: The rISCO as a function ofQ
for different a.
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where λa, a ¼ 1; 2;…, are the parameters appearing in the
waveform (13) and the inner product ðjÞ is defined by
Eq. (71). When the SNR of the GW signal is large, the
variance-covariance matrix can be obtained as the inverse
of the FIM,

Σab ≡ hΔλaΔλbi ¼ ðΓ−1Þab: ð74Þ

From the variance-covariance matrix, the uncertainty σa of
the ath parameter λa can be obtained as

δλa ¼ Σ1=2
aa : ð75Þ

Note that the applicability of the FIM method requires the
linear signal approximation to be valid [69], so strictly
speaking, we should verify this point. By following the
procedure in [69] and for LISA, we calculate the cumu-
lative distribution function for mismatch ratio r, which
characterizes the difference between the actual value of
likelihoods and the linear signal approximation. The
criterion is when j log rj < 0.1 over 90% of the 1σ surface
for a given SNR, we can say the FIM method is valid. In
Fig. 2, we show the cumulative distribution function (CDF)
for logarithm of r at SNR ρ ¼ 20, with Q ¼ q ¼ 0,
Q ¼ 0.1; q ¼ −0.4 and Q ¼ 0.2; q ¼ −0.1. We can see
that for most of the random points at the 1σ surface, the
derived value of likelihood using FIM slightly deviations
from the exact likelihood, which means the parameter
estimation for charged EMRI system with FIM method is
basically valid.

IV. RESULTS

A. Waveforms and mismatch

By solving above orbital evolution equations (63)
numerically, we can plot the charged AK waveforms in
the time domain. In Fig. 3, we show the comparison of the
charged AK waveforms with the neutral ones in various
cases. Since we focus on the charge parameters in the
waveform, we let the other parameters in (13) to be fixed as
follows: t0¼1years, D¼1Gpc, m ¼ 10M⊙,M ¼ 106M⊙,
e ¼ 0.1, λ ¼ π=3, γ̃0 ¼ 5π=6, α0 ¼ 4π=5, θS ¼ π=5,
ϕS ¼ π=4, θK ¼ 2π=3, ϕK ¼ 3π=4, Φ0 ¼ π=3, and
ν0 ¼ 1 mHz. Note that for comparison, when plotting
the waveforms, we set the initial radial orbital frequency
of the charged and neutral cases to be the same, so here t0
denotes the duration time of the waveforms.
From Fig. 3, we can see that the AK waveforms are

significantly affected by the charges of the system. In this
case, the initial radial orbital frequencies of two EMRI
systems are set to be the same as each other, so thewaveforms
at t ¼ 0 should also be identical, and the effects of charges on
waveform will grow with the increasing time. Particularly,
when both members of the EMRI are charged, the dephasing
occurs very quickly in the first 30000 seconds at the
beginning as showed by the panel on the left of the bottom.
If only the CO is charged, and the MBH is neutral, although
thewaveform is almost the same for the case that both objects
are neutral, by a long accumulation of time, the dephasing is
still visible from the top panel on the right. For the case that
only the MBH is charged, and the CO is neutral, the
dephasing is not very significant even after 1 year as showed
by the right panel in themiddle, but themismatch also exceed
the threshold as plotted in Fig. 4. In fact, if the MBH carries
the same amount of charges as the CO, the dephasing of the
former would be more prominent, as we will see below.
To assess the effect of charge on EMRI waveform

quantitatively, we calculate the mismatch for neutral wave-
form and the charged waveform. As shown in Fig. 4, the
mismatch is plotted as the function of observation time for
TQ, where the initial radial orbital frequencies for the two
waveforms are set as 1 mHz and the SNR of the signal is set
to be 20. According to Fig. 4, the mismatch can exceed the
threshold value Mmin ¼ 0.01125 even though the charges
of EMRI system are small to 10−3. From the upper two
panels of Fig. 4 where only one member carries charge, one
can see that TQ can distinguish the modified waveform
with charge Q; q ≈ 10−3 in three months. When both the
members of the EMRI carry charge Q ¼ 10−3; q ¼ 3 ×
10−3 as shown in the bottom panel, the effects of charges on
AK waveform would be recognized within two months.
However, if both of the two objects carries the charges less
than the level of 10−4, the mismatch will not exceed the
threshold, and thus, we cannot distinguish whether the CO
and the MBH have charges or not. Furthermore, we can see
that the MBH charge Q yields slightly different influence

FIG. 2. Cumulative distribution function of logarithm of
mismatch ratio logðrÞ for different charges, assuming the SNR
ρ ¼ 20, is plotted. The horizontal and vertical dashed line
represents 90% point of CDF of j logðrÞj and j logðrÞj ¼ 0.1,
respectively. The FIM is valid when the curve surpassed
these dashed lines. The other parameters take values as those
in Sec. IVA.
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on the AK waveforms than that of the CO charge q, it is
because that the effects of MBH charge and CO charge on
the waveform are not equal, the former can also affect the
waveform through its deformation on the metric.

To assess the effects of charges on the waveform more
clearly, we plot the mismatch as a function of both Q and q
for LISA and TQ respectively in Fig. 5. As it is shown,
the black dotted line represents the contour of mismatch

FIG. 3. Comparison among plus polarization hþ ofAKwaveforms from charged EMRI in the case of spin a ¼ 0.5 for several examples,
where the initial frequency is set as ν0 ¼ 1 mHz. Top panels: the CO is charged with q ¼ 0.03 and the central BH is neutral withQ ¼ 0.
Middle panels: the central BH is charged withQ ¼ 0.01 and the CO is neutral with q ¼ 0. Bottom panels: both the MBH and the CO are
chargedwithQ ¼ 0.01 and chargedCOwith q ¼ 0.03. The other parameters are set as Sec. IVA.The length of thewaveform is 1 year, and
the left panels represent the waveform for the first 30000 seconds, while the right panels for the last 30000 seconds.
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equal to the threshold M ¼ 0.01125, it indicates that the
space-borne GW detectors can distinguish whether the
objects in an EMRI is charged if the system is located
beyond this curve. The behavior of mismatch contour plots
for LISA and TQ is almost the same, the threshold values
for charges are about Q ≈ 10−3 and q ≈ 10−3, respectively,
and the value for LISA is lower than TQ, since it will have
better performance in lower frequency band.
To study whether the presence of charges will cause

some bias on the parameter estimation even if the mismatch

does not exceed the threshold, we calculate the mismatch
between the waveforms from a charged EMRI and from a
neutral EMRI keeping all the parameters the same as the
previous one except the mass of the MBH. The deviation of
M is noted as δM, we keep this parameter M changing

FIG. 5. The contour plot of the mismatch M as a function of
log10 Q and log10 q with respect to LISA (top panel) and TQ
(bottom panel), respectively. The black dashed line denotes to the
threshold value for SNR ¼ 20, where the source parameters are
set asM ¼ 106M⊙, a ¼ 0.4, and the other parameters keep same
with the previous configurations in Fig. 3.

FIG. 4. The mismatch M as a function of observation time for
TianQin is plotted, the dashed lines represent the threshold for
SNR ¼ 20. The source parameters are set as M ¼ 106M⊙,
a ¼ 0.5, the charge Q of MBH is 0 in the top panel and the
charge of CO is 0 in the middle panel, the other parameters keep
same with the previous configurations in Fig. 3.

FIG. 6. The mismatchM as a function of mass variation δM of
MBH for TianQin. The source parameters are set as
M ¼ ð106 þ δMÞM⊙, a ¼ 0.5, and q ¼ 0 the other parameters
keep same with the previous configurations in Fig. 3.
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TABLE I. ΔQ for different massM and spin a of the MBH is listed. The plain and bold values correspond to the observation of LISA
and TQ, respectively. Two charge parameters q and Q both are set as zero. The other parameters keep same with the previous
configurations in Fig. 3.

MBH mass log10ðM=M⊙Þ
a 5.0 5.5 6.0 6.5 7.0

0.01 4.5 × 10−3 7.8 × 10−3 2.1 × 10−1 � � � � � �
4.7 × 10−3 9.1 × 10−2 3.2 × 10−1 � � � � � �

0.15 3.2 × 10−3 6.8 × 10−3 4.8 × 10−2 � � � � � �
4.2 × 10−3 2.4 × 10−2 1.2 × 10−1 � � � � � �

0.25 2.5 × 10−3 4.6 × 10−3 4.7 × 10−2 2.4 × 10−1 � � �
3.9 × 10−3 7.8 × 10−3 8.8 × 10−2 7.7 × 10−1 � � �

0.35 2.3 × 10−3 4.3 × 10−3 2.9 × 10−2 1.7 × 10−1 � � �
3.8 × 10−3 6.2 × 10−3 7.2 × 10−2 3.4 × 10−1 � � �

0.45 2.2 × 10−3 3.1 × 10−3 1.9 × 10−2 6.8 × 10−2 � � �
3.6 × 10−3 4.3 × 10−3 6.1 × 10−2 2.1 × 10−1 � � �

0.55 2.1 × 10−3 2.6 × 10−3 1.4 × 10−2 5.3 × 10−2 � � �
3.4 × 10−3 2.8 × 10−3 2.5 × 10−2 1.4 × 10−1 � � �

0.65 1.8 × 10−3 2.3 × 10−3 9.5 × 10−3 4.3 × 10−2 9.4 × 10−1

3.2 × 10−3 2.5 × 10−3 1.8 × 10−2 9.2 × 10−2 8.6 × 10−1

0.75 1.5 × 10−3 2.3 × 10−3 5.8 × 10−3 4.3 × 10−1 3.7 × 10−1

1.7 × 10−3 2.4 × 10−2 6.1 × 10−3 3.4 × 10−2 4.5 × 10−2

0.85 9.7 × 10−4 1.6 × 10−3 1.5 × 10−3 1.4 × 10−2 1.1 × 10−1

1.6 × 10−3 1.8 × 10−3 3.7 × 10−3 7.7 × 10−3 3.3 × 10−2

0.95 1.6 × 10−4 8.8 × 10−4 1.3 × 10−3 6.5 × 10−3 5.1 × 10−2

3.5 × 10−4 1.3 × 10−3 2.7 × 10−3 2.3 × 10−3 2.1 × 10−2

TABLE II. Δq for different massM and spin a of the MBH is listed. The plain and bold values correspond to the observation of LISA
and TQ, respectively. Two charge parameters q and Q both are set as zero. The other parameters keep same with the previous
configurations in Fig. 3.

MBH mass log10ðM=M⊙Þ
a 5.0 5.5 6.0 6.5 7.0

0.01 1.3 × 10−3 1.4 × 10−3 4.6 × 10−2 8.3 × 10−1 � � �
1.9 × 10−3 7.1 × 10−2 1.7 × 10−1 8.8 × 10−1 � � �

0.15 1.1 × 10−3 1.3 × 10−3 9.4 × 10−3 5.1 × 10−1 � � �
8.2 × 10−3 1.7 × 10−2 1.1 × 10−1 7.5 × 10−1 � � �

0.25 7.4 × 10−4 8.4 × 10−4 9.2 × 10−3 3.7 × 10−1 � � �
6.2 × 10−3 5.6 × 10−3 6.4 × 10−2 4.7 × 10−1 � � �

0.35 5.6 × 10−4 7.9 × 10−4 5.8 × 10−3 2.5 × 10−1 � � �
5.6 × 10−3 4.9 × 10−3 5.2 × 10−2 3.4 × 10−1 � � �

0.45 5.1 × 10−4 6.5 × 10−4 3.6 × 10−3 1.7 × 10−1 � � �
3.5 × 10−3 4.8 × 10−3 4.6 × 10−2 2.5 × 10−1 � � �

0.55 4.7 × 10−4 6.3 × 10−4 2.6 × 10−3 1.2 × 10−1 � � �
2.6 × 10−3 1.1 × 10−3 2.5 × 10−2 1.4 × 10−1 � � �

0.65 3.5 × 10−4 5.8 × 10−4 1.8 × 10−3 6.2 × 10−2 7.9 × 10−1

1.9 × 10−3 6.2 × 10−4 1.7 × 10−2 6.8 × 10−2 5.4 × 10−1

0.75 1.6 × 10−4 4.2 × 10−4 1.1 × 10−3 2.8 × 10−2 5.1 × 10−1

2.4 × 10−4 4.4 × 10−4 1.2 × 10−2 1.8 × 10−2 2.2 × 10−1

0.85 1.1 × 10−4 3.5 × 10−4 4.7 × 10−4 1.1 × 10−2 9.3 × 10−2

1.9 × 10−4 4.1 × 10−4 4.8 × 10−3 1.5 × 10−2 6.4 × 10−2

0.95 5.6 × 10−5 2.8 × 10−4 4.5 × 10−4 8.5 × 10−3 8.3 × 10−2

1.1 × 10−4 3.2 × 10−4 2.3 × 10−3 8.7 × 10−2 6.5 × 10−2
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because MBHmass will dominate the orbital frequency and
its evolution for an EMRI system, and the existence of
charges will also influence the evolution of the frequency.
In Fig. 6, we plot the mismatch as a function of δM for TQ,
one can see that for given charges the threshold of the
mismatch is satisfied only when jδMj is much smaller
than M⊙, and it has already exceed the accuracy for the
measurement ofM which is about∼10−6 relative toM [32].
Thus, we can conclude that the presence of charges will not
affect the parameter estimation precision of the mass of the
central BH, if we cannot distinguish whether it is charged
or not.

B. Constraint on charges

In this subsection, we perform the parameter estimation
for the chargesQ and q using the FIM method. Note that in
this subsection to characterize the effects of the charges on
the parameter estimation, the cutoff of the inspiral is chosen
to be the ISCO, such that the charged and uncharged
waveforms have different cutoff frequencies. It should be
noted that charges indeed influence on the radius of ISCO
and parameter estimation is subjected with the cutoff
frequency [33]; thus, it is necessary to assess quantitatively
the effects of charges on parameter estimation. We also

choose the luminosity to be 1 Gpc and do not normalize the
SNR, since it will significantly influence the parameter
estimation accuracy.
First of all, by taking the central values of the charges to

be zero, we can study the effects of the massM and the spin
parameter a on the constraints for the charges. The
constraints for Q and q measured by LISA and TQ, are
showed in Tables I and II, respectively. One can see that in
the chosen range for M and a, constraints achievable for Q
and q are in the range of 10−1–10−5. Overall, The capability
for TQ and LISA are almost on the same level, while LISA
is a little bit better, since the generated GWs are in the lower
frequency band. The constraints will be better for an EMRI
system with lighter mass and higher spin.
We then study the effects of the charges on the parameter

estimation precision. From Fig. 7, we can find that the
relative errors for both Q and q decrease with the MBH
charge Q. This can be explained by the fact that the ISCO
radius rISCO of the charged CO decreases with the charge of
the KN BH, as shown in bottom pane of Fig. 1. Smaller
rISCO means the CO will orbiting more cycles around the
KN MBH, then such EMRI event will have higher SNR.
Similar phenomenon has been found for the strong effect
on the parameter estimation from the choices of the
waveform cutoff [30,33]. Besides, we can see that the

FIG. 7. PE accuracy for charge parameter, log10ðΔQÞ (the left panels) and log10ðΔqÞ (the right panels), as a function of MBH chargeQ
for LISA (the top panels) and TQ (the bottom panels), respectively. The charge of CO is set as q ¼ 0. The other parameters keep same
with the previous configurations in Fig. 3.
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larger the MBH spin the higher the estimation precision the
charges of the waveforms can have. The effects of the CO
charge q on the relative errors for both Q and q are more
complicated. As shown in Fig. 8, we can see that the
parameter estimation overall increase when jqj is large,
which could be explained by the enhancement of the
electric force between the CO and the MBH in this case.
However, the unsmooth behavior of logðΔqÞ at 0 < q <
0.2 is unclear.

V. CONCLUSION

In this paper, we derived the charged version of the AK
waveform by considering the spiral of a charged stellar-
mass compact object into a charged massive black hole.
The latter is described by the Kerr-Newman metric. From
the equations of motion of the charged CO in the KN
spacetime, we computed the three fundamental frequencies
in the weak-field regime, from which the equations
describing the evolution of the perihelion precession and
the orbital plane precession were obtained. Moreover, the
evolution equations of the radial orbital frequency and
the eccentricity were derived from the energy flux and the
angular momentum flux due to the gravitational radiation
and electromagnetic radiation. Combine these leading order
corrected equations with those higher-order PN equations
in the original AK model, the complete orbital evolution
equations were obtained.
We found that the correction of charge on AK waveform

is evidently different from the original AK waveform, as
long as the EMRI system carry a tiny amount of charges.
This is supported quantitatively by calculating the mis-
match of the two different AK waveforms with respect to
TianQin and LISA. We then performed the parameter
estimation precision for the charges Q and q and found
that space borne detectors can measure them with accuracy
to the level of 10−5 under suitable scenarios. This is almost
the level of the upper limit caused by different neutralized
mechanisms [70], and far beyond the level if some charged

mechanisms exist. Moreover, we studied the effects of Q
and q on the parameter estimation precision of themselves.
We found that the effects on the parameter estimation
precision from Q are almost dominated by the changing of
ISCO, and for the parameter estimation precision from q,
the behavior at large q may due to the enhancement of the
electric force between the CO and the MBH.
The AK model employed in this work is known to be

insufficiently accurate in the strong-field regime. Instead,
the numerical kludge (NK) model [36] is more accurate but
with a slightly expensive computational cost. Therefore, it
would be interesting to consider the charged version of the
NK model, where the trajectory of CO is obtained by
solving the equations of motion strictly and the GW
waveform is still calculated with the quadrupole-octupole
formula. The last piece of the NK model is using semi-
analytic fits to strong-field radiation emission to describe
inspiral, which seems not easy for the charged EMRI
system. This is because the strong-field radiation emission
is governed by the Teuskolsky equations and the counter-
part in the charged case is a set of coupled partial differ-
ential equations, which is much more harder to handle.
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FIG. 8. PE accuracy for charge parameter, log10ðΔqÞ (the left panel) and log10ðΔQÞ (the right panel), as a function of CO charge q for
LISA (the red circle) and TQ (the black cross), respectively. The charge and spin of MBH is set as Q ¼ 0.1 and a ¼ 0.6, respectively.
The other parameters keep same with the previous configurations in Fig. 3.
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