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We revisit the mechanism of vortex unpinning caused by the neutron-vortex scattering [B. Layek and
P. R. Yadav, Mon. Not. R. Astron. Soc. 499, 455 (2020)] in the inner crust of a pulsar. The strain energy
released by the crustquake is assumed to be absorbed in some part of the inner crust and causes pair-
breaking quasineutron excitations from the existing free neutron superfluid in the bulk of the inner crust.
The scattering of these quasineutrons with the vortex core normal neutrons unpins a large number of
vortices from the thermally affected regions and results in pulsar glitches. We consider the geometry of a
cylindrical shell of the affected pinning region to study the implications of the vortex unpinning in the
context of pulsar glitches. We find that a pulsar can release about ∼1011–1013 vortices by this mechanism.
These numbers are equivalent to the glitch size of orders ∼10−11–10−9 for Vela-like pulsars with the
characteristic age τ ≃ 104 years. We also suggest a possibility of a vortex avalanche triggered by the
movement of the unpinned vortices. A rough estimate of the glitch size caused by an avalanche shows an
encouraging result.
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I. INTRODUCTION

After the discovery of a pulsar glitch in the Vela pulsar in
1969 [1], a large number of glitches have been observed [2]
and reported to date [3]. The size of glitches lies in the range
∼ð10−5 − 10−12Þ, with an interglitch time of a few years. A
sudden change of moment of inertia (MI) of a pulsar caused
by a crustquake was initially proposed [4] to be responsible
for such events. However, it is now realized [5] that though
the crustquake model can account for small size Crab-like
glitches ΔΩ=Ω ≤ 10−8, the model is not compatible with
Vela-like glitches (ΔΩ=Ω ≃ 10−6). Presently, the models
associated with pinning and unpinning of superfluid vor-
tices [6,7] are considered to be the most popular models for
glitches. Although the crustquake model [4] is not com-
patible with large size glitches, the crustquake event is
believed to be a regular phenomenon of a rotating neutron
star. Hence, there were suggestions to relate crustquake as a
source of other astronomical events, viz., the giant magnetic
flare in magnetars [8,9], observed gamma-ray burst [10], the
emission of gravitational waves [11,12] from isolated
pulsars, etc. From the glitch perspective, there were attempts
to unify the crustquake model with the model of superfluid
vortices [13,14]. For example, the authors of Refs. [13,14]
proposed that the crustquake might act as a trigger mecha-
nism for vortex avalanches, which is responsible for the

release of a large number of vortices (∼1018) from the inner
crust of the star and hence can produce large size glitches.
Similarly in Ref. [15], it was suggested that the motion of
vortices attached to the broken crustal plate caused by the
crustquake might be responsible for the glitches. There was
also a study [16] of glitches through thermal creep theory,
where the pulsar glitch was suggested to be driven by
sudden energy deposition in the inner crust. The crustquake
has been assumed to be one such resource for energy
deposition. The deposited energy propagates as thermal
waves throughout some parts of the inner crust and raises
the temperature locally. This affects the coupling between
the neutron superfluid and the rigid outer crust, causing the
star to spin up.
The above discussion suggests that besides explaining

small size glitches or attempting to understand a few
astronomical events, the crustquake is also believed to have
a role in the superfluid vortex model. In view of this, some
of us [17] earlier proposed a mechanism of vortex unpinning
initiated by a crustquake. The purpose of the unification of
the crustquake with the superfluid vortex model is to explain
large size glitches without changing the interglitch time.
Note that in the crustquake model, a large glitch requires a
longer interglitch time, contrary to the observation. Thus,
the model alone is not sufficient for explaining large size
glitches. On the other hand, though the superfluid model is
compatible with the larger glitches, it requires a dynamical
mechanism to unpin the vortices from the inner crust of the
star. The occurrence of a crustquake followed by vortex
unpinning may resolve the above important issue associated
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with the size and frequency of glitches from an individual
pulsar. With this aim, we will further explore the unpinning
mechanism as proposed in Ref. [17] by supplementing a few
more qualitative arguments in favor of the unpinning
process. In Ref. [17], the study was initiated by taking a
simple cubical geometry of the affected pinning site to test
mainly the new vortex unpinning mechanism. Here we will
extend our analysis by considering a cylindrical geometry of
the affected pinning region. Such geometry is taken, partly
encouraged by the studies of thermal glitches through creep
theory in Ref. [16], where authors assumed an energy
deposition in a cylindrical shell in the inner crust region.
However, the shell was taken in an arbitrary location in that
study. As the location of the pinning site (i.e., the place
where the thermal energy is presumably absorbed) was
unknown, we will study the effect by taking the shell at
different locations in the inner crust. In this case, depending
on the affected region’s location, vortex unpinning through
avalanche is further possible. In contrast, the possibility of
vortex avalanches was ineffective in the earlier study in
Ref. [17]. As vortex avalanches may be responsible for
large-size glitches, it is worth exploring the such possibility
in the new proposed picture of vortex unpinning. Here, we
should mention that the energy absorption by neutron star
matter is an important issue, and the absorption should
depend on the properties of the matter in the inner crust, as
noted by the authors in Ref. [18]. However, the author in
that work assumed a simplistic polytropic equation of the
state of the matter. So, working in this direction is essential
to settle the question of energy absorption by taking a more
realistic equation of state. However, such a study needs
particular attention, and we would like to explore it in our
future work.
We assume that the strain energy released by a crustquake

is absorbed in the inner crust of the pulsars. This breaks a
significant fraction of the neutron Cooper pairs from
the existing free neutron superfluid in the inner crust.
The creation of free electrons and holes by breaking
up the Cooper pairs have been often mentioned in the
literature [19,20] in the context of electrical superconduc-
tivity. The free electrons resulting from the pair breaking are
referred to as quasiparticles. The breaking (and formation)
of Cooper pairs from the neutron superfluid has also been
extensively discussed in the context of the cooling mecha-
nism of neutron stars through neutrino emission [20–22].
The existence of the superfluid gap sets the minimum
energy requirement for breaking up Cooper pairs. For the
case of neutron superfluid, the quasiparticles are the
neutrons, and the corresponding gap parameter for the bulk
neutron superfluid matter will be denoted by Δf.
Here we should mention that the above picture of

quasiparticle excitations created through the breaking of
Cooper pairs is different from the excitations (i.e., phonon,
roton, kelvon, etc., depending on the nature of the super-
fluidity) as suggested through Landau’s phenomenological

two-component superfluid model [23]. Here we will take
the picture of quasineutron excitations produced from pair
breaking of neutron superfluid. These quasineutrons scat-
ter with the vortex core normal neutrons and share their
energy with the pinned vortices. (Here, the quasineutrons
should be treated like normal neutrons. See the comments
made in [19]). This causes unpinning of a large number of
pinned vortices (∼1013) from the affected region in the
inner crust and results in the glitch event. In the previous
work [17], the volume of the pinned region, the number of
vortices, and eventually the glitch size was estimated for a
fixed value of Fermi momentum (kf). In this work, all the
above quantities have been evaluated by varying the Fermi
momentum of the bulk superfluid neutrons, which can be
achieved by taking the shell at a different location. We will
see an important implication if the affected shell is taken
into the deeper region of the inner crust. In that case, the
vortex unpinning from that region may trigger a vortex
avalanche and results in Vela-like large-size glitches. We
will explore this feasibility by taking a picture of proximity
knock-on as described in the literature [24,25].
The paper is organized in the following manner. After the

initial setup of the formulations in Sec. II, we will describe
the geometry of the affected pinned vortex region in Sec. III.
There, we will develop the mathematical tools for estimat-
ing various quantities, namely, thickness (δs) of the shell,
number of unpinned vortices (Nv), and size of pulsar
glitches ΔΩ=Ω etc. The mechanism of vortex unpinning
by neutron-vortex scattering will be presented in Sec. IV.
We will present our results in Sec. V. The feasibility of the
vortex avalanche through the process of proximity knock-on
will be discussed in Sec. VI. Wewill comment and conclude
our work in Sec. VII.

II. PULSAR GLITCHES THROUGH VORTEX
UNPINNING: THE BASIC FORMULATION

First, we will mention the neutron star model, based
on which we will implement the vortex unpinning mecha-
nism [17] for studying pulsar glitches. Since the possibility
of the existence of neutron stars was hypothesized in
1934 [26,27], there have been attempts to understand
various properties of the neutron star. For a given mass
of a neutron star, the internal structure (such as the inner
crust thickness, its moment of inertia, etc.) and the bulk
properties (such as the radius, total moment of inertia, etc.)
depend on the equation of state (EOS) of the nuclear
matter [28–31]. However, extracting the precise values of
neutron star parameters is still challenging, mainly because
of nonadequate knowledge of EOS for the highly dense
matter prevailing inside the star. For our purpose, we will
take a broad picture of the neutron star’s internal structure
that has emerged after several studies and is taken in the
studies of various pulsar phenomena. A neutron star of mass
about 1.4M⊙ and radius of order (10–12) km consists of
the inner crust of thickness (1–2) km sandwiched between
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(0.3–0.5) km thick rigid outer crust and the core of radius
∼9 km [29–31]. The baryon density in the inner crust
for such a stellar mass neutron star lies in the range
ð1011–1014Þ g-cm−3. The matter at such high baryon density
exists in the form of neutron superfluid [6,32], even though
the internal temperature can be in the sub-MeV scale [16].
The denser inner core consists of quantum liquid forming
neutron and proton superfluid. There is a conjecture for the
existence of an even more exotic form of matter inside the
core of a more massive and compact neutron star [33]. For
such a case, the values of various parameters are expected to
deviate from those mentioned above. As our focus will be
mainly on Vela-like pulsars, wewill assume the neutron stars
of mass ∼1.4M⊙ with radius ∼11 km [29] and study the
pulsar glitches implementing the vortex unpinning picture
of [17] in the standard superfluid vortex model [6]. So, we
will also fix the other neutron star parameters, most
importantly, the thickness of the inner crust, based on the
above neutron star model only. For more precise calculations
and consistency checks, one should extract the information
about the neutron star parameters by choosing the EOS
correctly. We will discuss the issue of parameter-dependent
sensitivity of our results in an appropriate place (Sec. V).
For a rotating neutron star, the rigid part of the star’s crust

(i.e., outer crust) and the inner core are assumed to corotate
with a moment of inertia Ic. The neutron superfluid
component of a moment of inertia If in the inner crust
acts as an angular momentum reservoir in the form of
pinned vortices. The time t ¼ 0 is set when the superfluid
vortices are pinned in the inner crust region. After a
crustquake, a fraction of these vortices get unpinned [17]
at t ¼ tp and results in pulsar glitches. We will see that the
unpinning occurs from a localized region of the inner crust,
and we call it local unpinning to distinguish the unpinning
occurring through the avalanche process (Sec. VI). The
geometry of the affected region and the unpinning mecha-
nism will be discussed in Secs. III and IV, respectively. The
time tp is the interglitch time and assumed (such assumption
will be justified later) to be of the same order as the
frequency of the successive crustquakes. We denote Ωp as
the angular velocity of the superfluid component in the inner
crust, which remains fixed during t ¼ 0 to t ¼ tp. ΩcðtÞ is
the angular velocity of the corotating crust-core system with
Ωcð0Þ ¼ Ωp. The development of differential angular
velocity δΩ ¼ Ωp − ΩcðtÞ between the inner crust super-
fluid and the rest of the star follows the time evolution of the
star. The differential angular velocity at t ¼ tp can be
expressed as

Ωp −ΩcðtpÞ
ΩcðtpÞ

≡
�
δΩ
Ω

�
tp

¼ tp
2τ

; ð1Þ

where τ ¼ −ðΩ=2 _ΩÞ is the characteristic age of the
pulsar and we assume, tp ≪ τ. For the ease of notation,

from now onward, we denote ðδΩ=ΩÞtp as δΩ=Ω. Applying
the standard superfluid vortex model [6,7] (see also the
review [34] for various models of glitches), the glitch size
can be written as

ΔΩ
Ω

¼
�
If
Ic

��
δΩ
Ω

��
Nv

Nvt

�
¼

�
If
Ic

��
tp
2τ

��
Nv

Nvt

�
: ð2Þ

Here If=Ic is the MI ratio of the bulk neutron superfluid in
the inner crust to the rest of the star. The quantities Nv and
Nvt are the number of pinned vortices in the affected region
and the total number of pinned vortices in the equatorial
plane in the inner crust [Eqs. (7) and (8)], respectively. The
ratio Nv=Nvt takes care of the fact that only a fraction of the
pinned vortices is affected by the local unpinning.

III. MATHEMATICAL TOOLS FOR ESTIMATING
VARIOUS QUANTITIES RELATED TO GLITCH

As proposed in Ref. [17], the thermally excited neutrons
are responsible for unpinning the superfluid vortices. In
turn, the number of unpinned vortices depends on the
release of energy in a crustquake event. Here we will briefly
describe the crustquake model [4], mainly focusing on the
model’s essential features relevant to our study (for more
details, see the Ref. [5]). The oldest theoretical model for
pulsar glitches, namely, the crustquake model, assumes
the existence of a solid deformed crust of a pulsar. The
oblateness parameter ϵ can characterize the deformation as
ϵ ¼ Izz−Ixx

I0
. Where Izz, Ixx and I0 are the moment of inertia

about the z-axis (rotation axis), x-axis, and the spherical
star, respectively [5]. At an early stage of formation, with a
very high rotational frequency, the crust solidified with an
initial larger value of oblateness. As the star slows down
due to electromagnetic radiation loss, the oblateness ϵðtÞ
keeps decreasing, causing crustal strain development in the
star’s outer crust. Once the critical strain is reached, the
crustquake occurs to achieve a new equilibrium. This
results in sudden change (decrease) of oblateness Δϵ.
Henceforth, we will take Δϵ to be positive. The decrease
in oblateness causes the star’s moment of inertia (MI) to
decrease, increasing its rotational frequency (following
angular momentum conservation). The glitch size (ΔΩΩ ) of
a pulsar is directly related to Δϵ through ΔΩ

Ω ¼ − ΔI
I0
¼ Δϵ.

Immediately after the proposal, it was realized [5] that the
interglitch time or the waiting time of two successive
glitches is also determined by the change of oblateness
and is proportional to Δϵ. As noted in Ref. [5], 10−8 size
Crab-like glitches requires an average one-year waiting
time [35]. Thus the glitch size being proportional to Δϵ, a
larger glitch needs a longer waiting time, contrary to the
observations. For example, for two successive glitch events,
Vela pulsar (of glitch size ≃10−6) requires about 100 years.
This is the most critical problem the crustquake model has
encountered since its inception. As mentioned before,
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unifying the crustquake with the superfluid vortex model
may explain large-size glitches with compatible interglitch
time. Now, for determining the energy release in a single
crustquake event, we will take Δϵ ¼ 10−8. This value is
consistent with a typical one-year observed waiting time
between successive glitch events. As the crustquake occurs,
it releases strain energy of magnitude ΔE ¼ BΔϵ. Here the
constant B (∼1048 erg) is related to the modulus of rigidity
of the crust. As mentioned earlier in Sec. II, the released
energy by the crustquake is assumed to be thermally
absorbed in a local region in the inner crust of the star.
This results in breaking up neutron-neutron Cooper pairs
from the bulk neutron superfluid and creates free quasineu-
trons (excited neutron) in the inner crust. The sharing of
energy through the scattering of these excited neutrons with
the vortex core normal neutrons causes the unpinning of
vortices (Sec. IV) and results the glitch event. For the
estimate of the number of unpinned vorticesNv, the affected
pinning region is taken to be of a cylindrical shell of height
hs and thickness δs. Such geometry was also taken in
Ref. [16] in their study of pulsar glitches through thermal
creep theory. However, barring the geometry, our formu-
lation of generation of pulsar glitches is completely different
compared to the approach taken in Ref. [16]. The reason for
choosing the affected region around the equatorial plane is
motivated by the crustquake picture of [5]. Also, in the
studies of the crustal strain [36], the authors have found the
strain to be maximum at the equatorial plane, which makes
it the most likely place for the quake site.
As we will see, the thickness (δs) of the cylindrical shell

that determines the number of pinned vortices therein
crucially depends on the Fermi momentum kf of the bulk
superfluid neutrons, which in turn depends on the baryon
density of the specific region. We will follow the work of
Pastore et al. [37], where the authors have studied the
properties of the neutron superfluid in the inner crust of
the star (see also the seminal work of Negele and
Vautherin [28]). In that work, the Fermi momentum
was computed for the baryon density region ranging from
ρ ≃ 1012 gmcm−3 to ρ ≃ 1014 gmcm−3. As mentioned by
the authors, the spherical Wigner-Seitz approximation,
which was used to calculate the various quantities, can
reproduce well ground-state properties of the outermost
regions of the inner crust. However, as the methodology
breaks down beyond ρ ≃ 1014 gmcm−3; we will restrict our
study up to the baryon density ρ ¼ 1014 gmcm−3. The
corresponding Fermi momentum is given as kf ¼ 1.2 fm−1

(Table 1 of Ref. [37]). As the Fermi momentum depends on
the local mass density, or equivalently on the depth of the
crust, the value of δs should also depend on the location of
the shell. As the precise location of the thermally affected
region is unknown to us, we will vary the distance of
the shell Rs (as measured from the center of the star)
from 10.3 km to 9.9 km for the estimating of various
quantities associated with the glitches. The above values of

Rs are in accordance with the Fermi momentum in the
range ð0.2–1.2Þ fm−1 and local mass density in the range
ð1012–1014Þ gmcm−3 (Fig. 1 of [16] and Table 1 of [37]).
Here we should mention that the authors [37] have
calculated a finite discrete set of Fermi momentum at
various values of the mass density in the inner crust of
the star. However, we have assumed a continuous distri-
bution of kf within a particular range as mentioned above.
We hope that the interpolation of kf in between two
successive data will not make any significant changes to
our results. Note that it is due to the uncertainty on the
location of the shell, the various quantities are calculated at
various Fermi momentum. However, it serves a useful
purpose of testing the sensitivity of the results due to the
uncertainty in the affected region. As mentioned earlier, it
also allows exploring the feasibility of avalanches through
the picture of proximity knock-on (Sec. VI) triggered by the
unpinned vortices.
We will now calculate the thickness of the shell δs, the

number of the unpinned vortices Nv, and the glitch size
ΔΩ=Ω at various values of the Fermi momentum. The
volume Vs of the affected cylindrical region can be
estimated by energy balance [17,38]

BΔϵ ¼ NeΔf ¼ Δ2
f

Ef
nfVs; ð3Þ

i.e.,

Vs ¼
BΔϵEf

nfΔ2
f

; ð4Þ

where nf, Δf and Ef denote the number density of the bulk
superfluid neutrons, the energy gap parameter, and the
Fermi energy, respectively. Ne is the number of excited
neutrons produced from the Cooper pair break up. For a
cylindrical geometry, the volume Vs within which the
energy is deposited can be written as Vs ¼ 2πRshsδs.
The number of pinned vortices in the enclosed area
Asð¼ 2πRsδsÞ in the equatorial plane can be estimated
from the vortex areal density nv ¼ 4mnΩ=h ≃ 107 m−2

ðΩ=s−1Þ. The height of the cylinder is determined by
defining the affected pinning region such that all the vortex
lines enclosed in an equatorial area As will contribute to the
vortex unpinning. For this, the cylinder is cut at an
approximate height hs, where the vortex lines terminate
on the boundary of the inner crust with the outer crust.
Here we should mention that because of the sphericity of
the inner crust, the affected region is not expected to be in
the form of a perfect right circular cylinder. However,
considering the number of affected vortices to be enor-
mous, we assume the geometry to be a right circular
cylinder for simplicity. Thus the height of the cylinder is
given by (see Fig. 1 for illustration),
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hs ¼ ½ðRs þ δsÞ2 − ðRs þ δs=2Þ2�1=2 ≃ ðRsδsÞ1=2: ð5Þ

Here we have taken the approximation δs ≪ Rs. Using the
above equation, the volume Vs can now be expressed in
terms of the thickness of the shell as

Vs ¼ 2πðRsδsÞ3=2 ¼
BΔϵEf

nfΔ2
f

: ð6Þ

Using the above equation, we can now determine the shell
thickness δs by choosing the Fermi momentum kf in the
range 0.2 fm−1–1.2 fm−1. Note that neutron density nf,
Fermi energy Ef, and the gap parameter Δf all are
functions of kf. In the above, we assumed the Fermi
momentum to be uniform within a shell. However, the
vortex lines emanating from the equatorial plane pass
through various baryon density regions; hence, kf should
vary along the height of the cylinder. Including this factor
in the calculation requires a detailed density profile of the
inner crust region, which depends on EOS for a given
neutron star mass. We expect some uncertainty in our
estimate of δs and the other associated quantities by
assuming a fixed kf (and nf, Δf, Ef, etc.). Within this
limitation, the number of pinned vortices enclosed in As
can be estimated as

Nv ¼ Asnv ¼
Vsnv
hs

¼ BΔϵEfnv
nfΔ2

fðRsδsÞ1=2
: ð7Þ

We have used Eq. (6) for the last equality in the above
equation. The vortex lines cannot terminate in the inner
crust superfluid region for topological reasons. These can
form either a close loop or should end on the boundary of

the inner crust. Thus, the number of vortex lines within the
affected region is the same as that of vortices enclosed in As
(ignoring the loop). Once we fix the thickness of the
cylindrical shell from Eq. (6) (by choosing the appropriate
values of the parameters), we can estimate the number of
unpinned vortices using Eq. (7). Wewill use Eqs. (1) and (2)
for the estimate of size of the glitches. The total number of
vortices Nvt in the whole inner crust is obtained as

Nvt ≃ ð2πRΔRÞnv; ð8Þ

where, Rð≃10 kmÞ is the average distance of the inner crust
from the center of the star and ΔRð≃1 kmÞ is the thickness
of the inner crust. In the above, we assumed a uniform
vortex density nv throughout the crust while estimating the
number of vortices. As the vortex density, nv is proportional
to the rotational frequency Ω; in principle, one can relax
such an assumption. One can take instead a local vortex
density nvðrÞ, which depends on the distance (r) from the
rotation axis. This is equivalent to assuming the radial
distance-dependent rotational frequency of the various
superfluid region. In fact, the thermal creep theory [39]
considers such radial distance dependence vortex density

nvðrÞ ¼ 2ΩðrÞ
κ þ r ∂ΩðrÞ

∂r (see Refs. [16,39] for the detailed
formulation of creep theory). Here κ ¼ h=2mn is the
quantum vorticity with mn being the mass of a neutron.
As in creep theory, the dynamics and the steady state
behavior of the superfluid-crust couple system are realized
through the motion of vortices. In such a scenario, if the
coupling is assumed to happen locally, taking the radial
dependence of angular frequency and hence the vortex
density is essential. However, for explaining large size
glitches (∼10−6) within the standard superfluid vortex
model [7], a very large fraction of the pinned vortices must
be released simultaneously. In that case, assuming a
common angular frequency throughout a significant region
of the superfluid components in the inner crust is natural.
The glitch size is now obtained from Eq. (2) as

ΔΩ
Ω

¼
�
If
Ic

��
tp
2τ

��
Rs

R

��
δs
ΔR

�
: ð9Þ

We will use the above equation to present the results in
Sec. V. Now, we will revisit the vortex unpinning mecha-
nism, supplementing a few more physical arguments in
favor of our earlier proposal [17].

IV. VORTEX UNPINNING THROUGH
NEUTRON-VORTEX SCATTERING

The strain energy released in a crustquake event is taken
as ΔE ¼ BΔϵ ≃ 1040 erg. We assume this energy is par-
tially absorbed in the cylindrical shell and thermally excites
the neutrons from the bulk neutron superfluid by breaking
some fraction of Cooper pairs. The excited quasineutrons,

FIG. 1. The cylindrical shell of thickness δs and height hs
represents the affected pinning site (blue colored region) in the
inner crust. The vortex lines (red color) terminating on the outer-
inner crust boundary defines the (average) height of the cylinder.
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in turn, unpin the vortices from the shell through neutron-
vortex scattering. In the volume Vs, the absorbed energy

can excite about Ne (∼ Δf

Ef
nfVs) number of neutrons from

the bulk neutron superfluid. Each of these excited neutrons,
on average, has an energy Ef. We will see that this energy is
more than the pinning energy Ep (per site) in the cylindrical
shell, irrespective of the shell’s location. We also note that,
if Np (∼ Vs

d3v
) denotes the number of pinned vortices in the

shell, then the number of excited neutrons per pinned
vortex (i.e., Ne=NP) is of order ∼ðdvkfÞ3 ∼ 1030. Here dv
(∼1010 fm) is the intervortex distance and the Fermi
momentum kf is of order fm−1. Thus, each pinned vortex,
on average, is surrounded by approximately 1030 excited
neutrons. So these neutrons are expected to scatter with the
vortex core normal neutrons to unpin the vortex. In the
picture of unpinning through scattering, the pinning energy
Ep should be treated as the binding energy of the vortex-
nucleus system arising due to the vortex-nucleus interac-
tion. The sharing of energy by the excited neutrons with the
vortex core neutrons increases the latter’s energy. Here the
energy of the excited neutron acts as activation energy
helping to overcome the pinning barrier. The neutron-
vortex scattering can be represented as [17].

excited neutron ð∼EfÞ þ pinned vortex ð−EPÞ
→ de-excited neutron ðEf − EpÞ þ free vortex:

In above, the energy of various objects are denoted in
bracket. The negative sign in front of Epð> 0Þ conven-
tionally signifies the binding energy of a pinned vortex.
We now compare the average energy of the excited

neutron, i.e., Fermi energy with the pinning energy. The
pinning energy per site depends on the local mass density,
or equivalently, on the Fermi momentum of the neutron
superfluid and it is given by [39,40]

Ep ¼ 3

8
γ
Δ2

f

Ef
nfV; ð10Þ

where V ¼ 4
3
πξ3 is the overlap volume between the vortex

and the nucleus. The size of a vortex core ξ (≃10 fm) is of
the same order as the nuclear radius. The numerical value of
γ is of order unity [39,41]. The value of Ep, which can be
determined from Eq. (10), should now be compared with
the average energy (i.e., the Fermi energy) of each excited
neutron. As per the results (see Fig. 2), the energy required
to overcome the pinning barrier is satisfied comfortably
throughout the region of interest.
Macroscopically, the possibility of vortex unpinning

through neutron-neutron scattering can also be realized
from the following arguments. While proposing the super-
fluid vortex model for glitches, it was [6] mentioned that
the magnitude of the frictional force arises due to the

scattering of electrons with the vortex core neutrons (e-n
scattering) is too small compared to the pinning force to
unpin the vortices. However, as we see below, in compari-
son, the frictional force that arises due to neutron-neutron
scattering can be pretty large. To understand this, let us
write the expression of the frictional force (per unit volume)
caused by n-n scattering as (following Ref. [6])

Fnn ≃
ρnRδΩ
τnn

≃
�
Δf

Ef
ρf

��
RδΩ
τnn

�
; ð11Þ

where ρnð≃ Δf

Ef
ρfÞ and ρf are the mass density of excited

neutrons and superfluid neutrons, respectively. The time-
scale τnn is set by the scattering events of the excited
neutrons with the normal vortex neutron (neutron-neutron
scattering). Note that for the frictional force due to electron-
neutron scattering, ρn and τnn will be replaced by electron
mass density ρe and the relevant timescale τen, respectively.
The numerical value of τnn is expected [17] to be quite small
of order 10−5 s compared to e-n scattering timescale τen.
Note, τen is the typical spin-up decay time of order few
months [6,43]. The small value of τnn arises solely due to
larger strength of neutron-neutron magnetic moment inter-
action relative to the strength of e-n interaction [17,43].
Now for comparison with the frictional force caused by e-n
scattering, we take the free electron mass density [6] in the
inner crust ρe ≃ 107 g-cm−3 and τen ≃ 107 s. Similarly, for
n-n scattering the mass density of excited neutron can be
approximately taken as ρn ≃ 1012 g-cm−3. For an order of
magnitude estimate, Fermi momentum kf, for example,
is taken as 0.8 fm−1 and the values of other parameters are
fixed accordingly. Thus there is about 1017 order of
magnitude enhancement of the frictional force due to n-n
scattering in comparison to e-n scattering. The frictional
force for n-n scattering turns out to be quite large because
of larger values of ð1=τnnÞ ≃ 1012ð1=τenÞ and ρn ≃ 105ρe.
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FIG. 2. Excitation energy Ef (red dashed) and pinning energy
per site Ep (black solid) as a function of Fermi momentum. Inset
shows the same plot with smaller energy range for demonstration
of Ep more clearly. Blue dotted line shows the gap parameter
ΔfðkfÞ (The expression of ΔfðkfÞ is taken from [42]).
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This makes the n-n scattering more effective for vortex
unpinning.
Note that after successful unpinning, the vortices move

radially outward. These unpinned vortices encounter a
large number of vortices during their motion and should
trigger an avalanche through the so-called “proximity
knock-on” process [24,25]. Thus, the vortex avalanche
can be a viable process to produce large size glitches in this
picture of local unpinning. We will explore the feasibility of
an avalanche later in Sec. VI.

V. RESULTS: NUMERICAL VALUES OF
UNPINNED VORTICES AND THE GLITCH SIZE

A. Unpinned vortices

The volume of the pinned region depends on the avail-
ability of energy for deposition and a few other parameters
such as kf (or, nf), Ef and Δf. The value of the neutron
superfluid Fermi momentum kf depends on the local mass
density ρ, which increases with the depth of the inner
crust [16,37], and lies in the range ∼ð1011–1014Þ gm-cm−3.
Thus, the neutron density nf ¼ k3f=3π

2 also varies accord-
ingly. We will use the results of [37], where the Fermi
momenta have been calculated at various values of the local
mass density. For superfluid gap parameter ΔfðkfÞ, we used
the analysis of [42], where the authors have numerically
fitted their data to find the analytical expression of the gap
parameter as a function of kf (Fig. 2). Thus, knowing the
variation of Nv with kf, supplemented with the information
about the variation of kf with ρ, and the variation of ρ with
the depth of the inner crust, allow us to calculate the number
of unpinned vortices at different location of the cylindri-
cal shell.
We have taken the values of kf from 0.2 fm−1 to

1.2 fm−1 with the corresponding mass density ρ in the
range ∼ð1012–1014Þ gm-cm−3. Accordingly, the distance
Rs of the shell from the star’s center is taken from 10.3 km
to 9.9 km. The results are shown in Figs. 3 and 4. The plots
show that as kf increases from 0.2 fm−1 to 1.2 fm−1, the

thickness δs of the shell, and hence the number of
unpinned vortices Nv decreases almost monotonically.
The values of δs and Nv lie in the range (87–1) cm and
ð1013–1012Þ, respectively. Since kf maps the depth of the
crust, the variation of δs and Nv are due to the location
of the shell in our cylindrical geometry. For illustration,
kf ¼ 0.2 corresponds to relatively outer layer of the inner
crust (Rs ≃ 10.3 km) with mass density ρ ≃ 1012 gm-cm−3.
Therefore, the energy deposition around this region leads
to the release of about 1013 vortices due to the scattering by
the excited neutrons. Similarly, if the shell is located
around the region with kf ¼ 1.2 (Rs ≃ 9.9 km), the num-
ber of released vortices will be reduced to 1012. Although
the number is reduced with the depth of the crust, this has
an important implication in the context of vortex ava-
lanche. We explore this possibility in Sec. VI.

B. Glitches

The glitch size can be determined using Eq. (9). The
interglitch time tp is set by the frequency of occurrence of
crustquake events and is proportional to the change of
oblateness Δϵ. We choose Δϵ ¼ 10−8 to be consistent with
the observed typical interglitch time tp ≃ 1 year. It is now
evident from the Eq. (9) that the glitch size of an individual
pulsar of characteristic age τ depends on various neutron
star parameters, such as R, Rs, and ΔR, etc. The values of
these parameters are taken by following the model of
neutron star structure as mentioned in Sec. II. The glitch
size also depends on the ratio of the moment of inertia of the
superfluid component in the inner crust to the rest of the star
If=Ic. This ratio depends on a specific glitch model. For
example, the author in Ref. [7] suggested that a normal
liquid layer can exist between the inner crust neutron
superfluid and the core superfluid, resulting in a larger
MI ratio. Without such a transition layer, the ratio can be of
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order ∼10−2 [7]. There was also an attempt to fix this ratio
through statistical analysis of glitches of Vela, Crab, and a
few other pulsars (see Ref. [30]). Using the observed values
of glitch parameters, the authors constrained the ratio as
Ires=Ic ≥ 1.4% for Vela. Here Ires is the MI contribution by
the angular momentum reservoir components. In our case,
the whole inner crust superfluid is assumed to be an angular
momentum reservoir, i.e., Ires ≡ If. It is then reasonable to
take If=Ic ≃ 10−2 for the estimate of glitch size for Vela. For
consistency, note that by setting δs ¼ ΔR and R ∼ Rs, the
above value of MI ratio results in maximum glitch size of
order 10−6 for Vela pulsar (τ ≃ 104 years). This is expected
as the above glitch size corresponds to the release of all
vortices. As noted in Ref. [30], the analysis of Crab pulsar
reveals a tiny MI ratio If=Ic ≃ 10−5. It was suggested that
losing angular momentum between glitches through vortex
creep may be responsible for the lower value of the MI ratio.
However, one should note that putting If=Ic ≃ 10−5; δs ¼
ΔR (For the case when all the vortices are released.),
Rs ≃ R, and τ ≃ 103 years in Eq. (9), the smaller value of
the MI ratio of Crab does not contradict the observed glitch
size ∼10−8 of this pulsar. Thus, the above discussion
suggests that the values of If=Ic, as mentioned above,
are compatible with Vela and Crab pulsars. Now, the glitch
size through local unpinning, where only a fraction of total
vortices are released, depends on the value of δs and ΔR. In
terms of these quantities, we get the glitch size of the Vela
pulsar (with τ ≃ 104 years) from Eq. (9) as

�
ΔΩ
Ω

�
≃ 10−6

�
δs
ΔR

�
: ð12Þ

Thus, for kf in the range ð0.2–1.2Þ fm−1, the glitch size for
the Vela pulsar lies in the range ð10−9–10−11Þ as shown in
Table I and in Fig. 5. The above results follow from the local
unpinning, without the effects of an avalanche. In the next
section, we will discuss the implication of local unpinning
on vortex avalanche.
Before concluding this section, we should comment on

our results’ sensitivity to the neutron star model. In this
study, we have taken a generic model for the internal
structure of a neutron star and fixed the values of various

neutron star parameters accordingly. The parameter-
dependent sensitivity of our results can be understood from
Eq. (9). As mentioned earlier, the MI ratio If=Ic depends
on the specific glitch model. Assuming the standard super-
fluid vortex picture (i.e., the inner crust superfluid compo-
nent is the angular momentum reservoir responsible for
the glitch event), the above ratio can be fixed following the
statistical analysis of glitch events [30]. Once If=Ic is
specified, the glitch size should depend only on δs and ΔR.
Now δsðkfÞ is a function of Fermi momentum kf, which
depends on the local baryon density in the inner crust
region. The density-dependent Fermi momentum is now
taken from Ref. [37]. As the methodology breaks down
beyond ρ ≃ 1014 gmcm−3, we restricted our study up to the
baryon density 1014 gmcm−3 and the corresponding Fermi
momentum kf ¼ 1.2 fm−1. Note these calculations rely on
the methodology used to study the properties of matter’s
superfluid at a high baryon density regime. Though the
purpose of such a study is to understand the properties of the
inner crust of a neutron star, the author [37] did not assume
any specific model for neutron star structure. We adopt their
data of density-dependent Fermi momentum for our pur-
pose. For the inner crust density profile, we have followed
the work of Ref. [16], where such a profile is provided for a
neutron star of mass 1.4M⊙ (see Ref. [16] and the references
therein for details). The value of δs is quite sensitive to
the Fermi momentum and varies by about two orders of
magnitudes, as kf changes from 0.2 fm−1 to 1.2 fm−1 (see
Table I). So finally, relying on the works of Refs. [16,37],
the model-dependent uncertainty in our results may arise
only due to the value of the inner crust thickness ΔR. For a
given neutron star mass, the value of ΔR and the other
neutron star parameters depend on the equation of state of
the neutron star matter. For an of mass≃1.4M⊙, the value of
ΔR lies in the range (1–2) km [16,29–31]. Accordingly, we
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the local unpinning from the cylindrical shell of thickness δs
versus the Fermi momentum kf. For clarity, inset shows only the
lower part of ΔΩ=Ω.

TABLE I. Fermi momentum (kf), distance of the cylindrical
shell from the center (Rs), thickness of the shell (δs), the number
of unpinned vortices (Nv), and the order of magnitude of the
glitch size (ΔΩ=Ω) for the Vela pulsar through local unpinning by
excited neutrons.

kf (fm−1) Rs (in km) δs (in meter) Nv ðΔΩΩ Þ
0.2 10.3 0.87 3.9 × 1013 ∼10−9
0.8 10.2 0.01 4.3 × 1011 ∼10−11
1.2 9.9 0.05 2.0 × 1012 ∼10−9
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have taken ΔR ¼ 1 km while estimating the number of
pinned vortices in the inner crust and the glitch size.
Following the above discussion, we can safely say that
our results are trustworthy for the pulsars of mass ≃1.4M⊙,
i.e., the EOS-dependent sensitivity should not affect the
order of magnitude estimate of glitch size.

VI. THE VORTEX AVALANCHE THROUGH
PROXIMITY KNOCK-ON

Instantaneous release of a large number of vortices
(∼1018) is necessary for explaining large size glitches
(ΔΩ=Ω ∼ 10−6) of the pulsars. This seems to be feasible
through the mechanism of vortex avalanche as suggested
in the literature [13,15,24]. For this to happen, a trigger
mechanism is required to initiate the process like in any
other natural avalanche event. In our model of local
unpinning, the movement of the unpinned vortices may
trigger an avalanche through the proximity knock-on
process [25]. We will see below that the usefulness of
such events from the context of explaining large size
glitches depends on the position of the shell. The scope of
knock-on is reduced if the shell is located very close to the
outer part of the inner crust (Recall the statement in Sec. I
regarding the energy deposition in the inner crust). For a
qualitative understanding of the process, we follow the
basic picture of proximity knock-on as described in
Ref. [25]. In the proximity picture, when an unpinned
vortex comes closer to a pinned vortex from an intervortex
distance dv to a distance ηdv (η < 1), it effectively reduces
the pinning barrier. Here, the difference in angular fre-
quency δΩ ¼ ðtp=2τÞΩ [Eq. (1)] between the superfluid
and the crust is modeled as a pinning barrier, which is
expressed as

γ ¼
�
1 −

δΩ
δΩcr

�
¼ 1 −

�
tp
2τ

��
Ω

δΩcr

�
: ð13Þ

The critical value of δΩ at which the magnus force
balances the pinning force is denoted by δΩcr, and is
given by [39]

δΩcr ¼
Ep

ρκRbξ
; ð14Þ

where, κ ¼ h=2mn is the quantum vorticity with mn being
the mass of a neutron. The coherence length of the bulk
superfluid is denoted by ξð≃10 fmÞ. The nucleus-nucleus
distance is denoted by bð≃100 fmÞ, and R (≃10 km) is the
(average) distance of the inner crust from the center of the
star. For a given value of pinning energy Ep, the numerical
value of δΩcr can be determined using Eq. (14). The
unpinning rate for a single vortex from a region charac-
terized by the pinning energy Ep is given by [25]

λ0 ¼ Γ0e−βEpγ: ð15Þ

The factor Γ0 ¼ 1022 s−1 is calculated by assuming the
decay process to be of quantum origin (see Ref. [25] and the
references therein). The quantity βð¼ 1=kTÞ characterizes
the star’s temperature. As an unpinned vortex gets closer to
a pinned vortex, the pinning barrier is reduced by

Δγ ¼
�

κ

2πdvRδΩcr

��
1 − η

η

�
; ð16Þ

and the unpinning rate is increased to

λ ¼ λ0eβEpΔγ: ð17Þ

Note, Eq. (15) suggests that the unpinning rate from a
specific region of the inner crust having a fixed value of Ep

is completely determined by the ratio of δΩ to δΩcr. As the
star slows down, δΩ gets close to δΩcr. As a result, the γ
factor, which is interpreted as a pinning barrier, is decreased,
causing the unpinning rate to increase with time. However,
one should note that with a typical few years interglitch time
tp, γ is approximately fixed. Also, as λ varies with Ep, it is
quite impossible that all the pinned vortices spread across
the inner crust of the star get unpinned simultaneously. The
vortex avalanche, therefore, seems to be a quite natural
mechanism for unpinning of so many vortices. In our case,
there are already a large number of unpinned vortices
(∼1014–1012) moving radially outward. These can act as
triggers to “knock-on” the pinned vortices in the inner crust
of the star.
Now, Eq. (17) provides the vortex unpinning rate

triggered by a single vortex. In our case, this will be
modified due to the presence of a large number of triggers
caused by local unpinning. For a qualitative understanding
of the process, let us exploit the azimuthal symmetry of the
vortex motion and focus only in one radial direction. We can
estimate the effective number of triggers at the onset of
the knock-on process across the shell of thickness δs with
vortex density nv as Ni

tr ≃ δs
ffiffiffiffiffi
nv

p
. As δs lies in the range

∼ð87–1Þ cm (depending on the location of the shell), Ni
tr

should lie in the range ∼ð103–102Þ ffiffiffiffi
Ω

p
. Here, Ω should be

taken in units of s−1. The value of Ni
tr, which is the effective

numbers of triggers in one dimension sets the lower limit of
triggers initiating the knock-on process. Eventually, these
vortices may unpin the other vortices, which in turn should
participate in the process. This increase the triggers Ntr
cumulatively. The above picture should eventually lead to a
few orders of magnitude enhancement of unpinning rate of a
single vortex. The effects of these multiple triggers can be
incorporated by modifying Eq. (17) as

λtr ¼ Ntrλ ¼ Γ0Ntre−βEpγeβEpΔγ: ð18Þ
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An average time τtr for a single unpinning event can be
taken as τtr ≃ dv=vr. Where, vr ≃ RsδΩ ≃ ðtp=2τÞΩRs [see
Eq. (1)] is the radial velocity of a vortex, and dv ∼ 1=

ffiffiffiffiffi
nv

p
is

the intervortex distance. For the Vela pulsar with
tp ∼ 1 year, τtr is about 10−7 s. For conservative estimate,
let us set Ntr ¼ Ni

tr. In this case, the unpinning probability
for a single vortex can be written as

λtrτtr ¼
�

2τ

tpΩRs
ffiffiffiffiffi
nv

p
�
NtrΓ0e−βEpγeβEpΔγ: ð19Þ

In the picture of proximity knock-on, unpinning occurs
provided the condition λtrτtr ≃ 1 is satisfied [25]. In
Table II, we have listed a few values of the Fermi
momentum kf around which the above condition is fulfilled
in the presence of multiple triggers. For example, in the
region around kf ¼ 1.14 fm−1, λτtr ≃ 10−3 and λtrτtr ≃ 1.
Thus, there is about three order of magnitude enhancement
in the unpinning probability for a single vortex in the
presence of triggers. Similar effects are also observed
around kf ≃ 0.52 fm−1. The multiple triggers could there-
fore significantly enhance the chances of unpinning from a
few specific regions. However, it should be mentioned that
there are also a few regions, where λtrτtr is still too low to
meet the condition for unpinning.
We have described above a qualitative picture of the

knock-on process. To properly understand the implications
of avalanche, one has to resort to dynamical simulation.
Also, one should note that the unpinning rate being depend
on the exponential function of various parameters [Eq. (17)
and/or Eq. (18)], the results are quite sensitive to the values
of those parameters. These factors should be taken into
account in the proper analysis of vortex avalanche.
We can make a rough estimate for the expected glitch

size, if we assume that the knock-on causes unpinning from
a region of total thickness δa. Here δa is the sum of the
thickness of various regions where the unpinning condition
is satisfied. This also includes the region, which were
already affected by the local unpinning. So, the glitch size
for the Vela pulsar will be modified as

�
ΔΩ
Ω

�
≃ 10−6

�
δa
ΔR

�
: ð20Þ

The maximum value of δa is expected to occur, if
the cylindrical shell is located around Rs ¼ 9.9 km

(kf ¼ 1.2 fm−1). In this case, there are about 102
ffiffiffiffi
Ω

p
triggers

available (along a particular direction) for the process. These
vortices while moving, unpin the vortices from the region
whenever the quantity λtrτtr is approximately closed to unity.
If all the vortices beyond Rs ¼ 9.9 km get unpinned, the
value of δa will be approximately equal to 400 meter (from
Rs ¼ 9.9 km to 10.3 km). For this case, the glitch size will be
of order 10−6 for a Vela-like pulsars (with τ ∼ 104 years).
However, analyzing the unpinning probability at various
regions (a few regions have too low probability), only a
fraction fa ¼ ðδa=400 mÞ of the region beyond Rs ¼
9.9 km seems to be affected by the trigger mechanism.
For proper estimate of fa, a proper numerical algorithm is
required to implement the above process (see Ref. [25] for
one such algorithm). It will be then interesting to see if the
local unpinned vortices trigger an avalanche to produce a
large size glitches without affecting the typical one year
interglitch time. Note, in a crustquake model, the larger size
glitches need a larger interglitch time [5] contrary to the
observations.

VII. COMMENT AND CONCLUSION

We have observed that the crustquake followed by vortex
unpinning from a cylindrical shell may produce glitches of
size 10−9–10−11 for relatively old pulsars with character-
istic age τ ∼ 104 years. There is also scope for the gen-
eration of larger size glitches through avalanche triggered
by the unpinned vortices as observed by the Vela pulsar.
Although not regular, the Crab pulsar also exhibited a large
size glitch (ΔΩ=Ω ∼ 0.52 × 10−6) as reported in 2017 [44].
It is impossible [44] to explain such a large glitch from a
younger pulsar through the standard crustquake model. A
partial avalanche (i.e., affecting only a few fractions of total
vortices in the inner crust) triggered by the locally unpinned
vortices can account for such occasional glitch activity of a
young pulsar.
Besides the occurrence through vortex unpinning, the

crustquake itself also produces glitches due to a sudden
change of the pulsar’s shape. The nonobservation of
successive glitches within a short span can be explained
if the time interval between these two events turns out to be
small compared to the current observational limit of indi-
vidual glitches [45]. Now we estimate the time difference
between these two glitch events. For that, we assume the
energy deposition to the inner crust is almost instantaneous
(See Ref. [16] for the time evolution of the temperature
profile in the inner crust after energy absorption.) and ignore
the timescale associated with the vortex unpinning (n-n
scattering timescale τnn ≃ 10−5 s only). Thus the time
interval between two glitch events is determined by the
time tv taken by the vortex to reach the outer crust. This can
be obtained from the radial velocity vr of the unpinned
vortices. For vr ≃ RðδΩÞ ¼ ðtp=2τÞΩR ≃ 104 cm-s−1, the
time tv ≃ vr=ΔR turns out to be ∼0.1 s for the Vela pulsar.

TABLE II. A Few values of the Fermi momentum kf at which
the unpinning probability for a single vortex is enhanced due to
multiple triggers.

kf (fm−1) λτtr λtrτtr

0.52 ∼10−3 ∼1.0
1.14 ∼10−3 ∼1.0
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The above time difference is associated with the glitches
occurring through crustquake followed by the glitch
produced through local unpinning. For the case of ava-
lanche, a single unpinning event takes an average time
τtr ≃ dv=vr ∼ 10−7 s and the whole process is expected to
be completed within ∼10−6 s (see [17] and the reference
therein). Thus we see that the time interval between the
glitches produced by the crustquake and the vortex
unpinning is of order tenth of a second, i.e., they seem
to overlap. The short time interval also justifies our earlier
assumption (in Sec. II) that the waiting time between two
successive crustquake events almost overlaps with the time
duration t ¼ 0 to t ¼ tp, i.e., the time during which
vortices remain pinned to the sites.
Thus, unifying crustquakes with the superfluid-vortex

model can consistently produce regular glitches with a
typical frequency of once every few years (set by the time
interval of successive crustquake events). In case of an
avalanche, unifying the models can produce large size Vela
or Vela-like glitches without affecting the waiting time of
crustquakes. Recall that the crustquake model alone is not
compatible with such glitches. For Crab-like younger
pulsars, partial avalanche may be responsible for the
occasional larger size glitch activity [44].
From the observational perspective, as we mentioned

earlier, with the current resolution [45], it is impossible to
resolve the subsecond time interval between the glitches
produced by the crustquake followed by a glitch through
unpinning. For the case of vortex avalanche, though, it is
the larger size glitch that is expected to dominate the glitch
feature. Hence the source of the larger glitch (i.e., vortex
unpinning) will be easily identifiable. However, if the
avalanche mechanism is ineffective (for example, if the
energy is deposited at the outer part of the inner crust), it
will be an observational challenge to resolve two succes-
sive, almost identical size glitches. This is a common
feature of all the proposed models, where both the
crustquake and vortex model are involved in the generation
of glitches (see, for example, the Refs. [15,16,46]). For
such cases, the improved glitch observation time of

individual pulsars can help identify the precise source of
the glitches.
To conclude, we studied the vortex unpinning mecha-

nism by scattering excited neutrons with the vortex core
neutrons in the inner crust of the pulsars. The strain energy
released by the crustquake is assumed to be absorbed in
some part of the inner crust around the equatorial plane of
the star and causes excitation of the free superfluid neutrons
surrounding the vortices. The excited neutrons unpin a
large number of vortices from that region and result in
pulsar glitches. We considered a cylindrical shell around
the equatorial plane and studied the effects of the thermally
excited neutrons in unpinning the superfluid vortices from
the affected site. As the affected pinned region’s precise
location is unknown, we took the shell at various depths
(equivalently, at different local mass density regions) of the
inner crust. This was achieved by varying the Fermi
momentum kf of the superfluid neutrons from 0.2 fm−1

to 1.2 fm−1. We then determined the shell thickness δs,
which has been observed to lie in the range (85–1) cm. The
corresponding values of unpinned vortices caused by the
neutron-vortex scattering were found to lie in the range
ð1013–1011Þ, which are equivalent to glitch size in the range
ð10−9–10−11Þ for the Vela pulsars.
We suggested the possibility of a vortex avalanche

triggered by the vortices, which were already unpinned
from the cylindrical shell. In the picture of proximity
knock-on, the presence of multiple triggers can enhance
the unpinning probability and hence the glitch size. A
rough estimate of glitch sizes has been presented. The result
is quite encouraging from the perspective of producing a
large size glitch without affecting the waiting time of
successive crustquakes. The various timescales associated
with our model are compatible with the observed features
of glitches.
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