
Architectural optimization and feature learning
for high-dimensional time series datasets

Robert E. Colgan ,1,2 Jingkai Yan,2,3 Zsuzsa Márka ,4 Imre Bartos,5 Szabolcs Márka,6 and John N. Wright2,3
1Department of Computer Science, Columbia University in the City of New York,

500 West 120th Street, New York, New York 10027, USA
2Data Science Institute, Columbia University in the City of New York,

550 West 120th Street, New York, New York 10027, USA
3Department of Electrical Engineering, Columbia University in the City of New York,

500 West 120th Street, New York, New York 10027, USA
4Columbia Astrophysics Laboratory, Columbia University in the City of New York,

538 West 120th Street, New York, New York 10027, USA
5Department of Physics, University of Florida, P.O. Box 118440, Gainesville, Florida 32611-8440, USA

6Department of Physics, Columbia University in the City of New York,
538 West 120th Street, New York, New York 10027, USA

(Received 5 July 2022; accepted 3 January 2023; published 25 January 2023)

As our ability to sense increases, we are experiencing a transition from data-poor problems, in which the
central issue is a lack of relevant data, to data-rich problems, in which the central issue is to identify a few
relevant features in a sea of observations. Motivated by applications in gravitational-wave astrophysics, we
study a problem in which the goal is to predict the presence of transient noise artifacts in a gravitational-
wave detector from a rich collection of measurements from the detector and its environment. We argue that
feature learning—in which relevant features are optimized from data—is critical to achieving high
accuracy. We introduce models that reduce the error rate by over 60% compared to the previous state of the
art, which used fixed, hand-crafted features. Feature learning is useful not only because it can improve
performance on prediction tasks; the results provide valuable information about patterns associated with
phenomena of interest that would otherwise be impossible to discover. In our motivating application,
features found to be associated with transient noise provide diagnostic information about its origin and
suggest mitigation strategies. Learning in such a high-dimensional setting is challenging. Through
experiments with a variety of architectures, we identify two key factors in high-performing models:
sparsity, for selecting relevant variables within the high-dimensional observations, and depth, which
confers flexibility for handling complex interactions and robustness with respect to temporal variations. We
illustrate their significance through a systematic series of experiments on real gravitational-wave detector
data. Our results provide experimental corroboration of common assumptions in the machine-learning
community and have direct applicability to improving our ability to sense gravitational waves, as well
as to a wide variety of problem settings with similarly high-dimensional, noisy, or partly irrelevant
data.

DOI: 10.1103/PhysRevD.107.022009

I. INTRODUCTION

We consider the problem of detecting the presence or
absence of some phenomenon of interest from a large
collection of time series, a subset of which are predictive
but whose precise mathematical relationship to the phe-
nomenon of interest is a priori unknown. Variants of this
fundamental problem arise in areas such as finance,
neuroscience and brain computer interfaces, structural
health monitoring, machine diagnostics, and anomaly
detection, just to name a few. All of these areas present
the analyst with time series, which may be noisy and only a
few of which may be relevant to the prediction task at hand.

Our applied motivation comes from gravitational-wave
astrophysics, which uses gravitational phenomena to study
the properties of the Universe and its occupants. This
scientific quest is driven by extraordinarily sensitive detec-
tors, such as KAGRA, Virgo, and Laser Interferometer
Gravitational-wave Observatory (LIGO) [1–12], which can
detect spatial effects as small as (10−19 m=

ffiffiffiffiffiffi
Hz

p
). A major

confounding factor is the frequent presence in the main
gravitational-wave data stream of brief, loud noise artifacts
commonly known within LIGO as “glitches”—nonastro-
physical nuisances caused by factors as varied as seismic
and ionospheric activity, nearby road and train traffic,

PHYSICAL REVIEW D 107, 022009 (2023)

2470-0010=2023=107(2)=022009(16) 022009-1 © 2023 American Physical Society

https://orcid.org/0000-0002-2008-2512
https://orcid.org/0000-0003-1306-5260
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.022009&domain=pdf&date_stamp=2023-01-25
https://doi.org/10.1103/PhysRevD.107.022009
https://doi.org/10.1103/PhysRevD.107.022009
https://doi.org/10.1103/PhysRevD.107.022009
https://doi.org/10.1103/PhysRevD.107.022009


optical effects within a detector, etc. These glitches, which
can appear as frequently as every few seconds, significantly
hinder the detectors’ sensitivity to the astrophysical phe-
nomena they are intended to measure, because they can
drown out real astrophysical events or even mimic them,
potentially causing false-positive detections. It is therefore
important to distinguish them from true astrophysical
signals and ensure data contaminated by glitches are not
used for gravitational-wave detection.
Glitches are thought to be attributable to a wide variety of

internal and terrestrial sources; identifying, investigating,
and mitigating the various types of glitches that appear and
their causes has been a major focus of LIGO’s engineering
efforts for decades [13–39]. The rich body of work that has
resulted encompasses a wide variety of distinct but related
objectives, problem formulations, and methodologies. One
approach is to develop methods that seek to automatically
identify glitches based on features of the gravitational-wave
data stream so that the surrounding time period can be
flagged for possible rejection or further analysis (e.g.,
Omicron [40]); some of these methods also incorporate
other data sources and attempt to identify components or
subsystems of the detector that may be related to the
physical origin of glitches (e.g., iDQ [22], hVeto [33], and
UPV [35]). Other works have focused on characterizing
and classifying glitches by common morphology to better
understand types of similar, recurring glitches (e.g.,
GravitySpy [26], PCAT [41,42], WDF-ML [41,42], and
LCSS [36]). Still other approaches model the noise
(quasistationary or transients) through various means
(e.g., using Wiener filters [43] or other approaches such
as Nonsens [44], DeepClean [45], Bayeswave [46], and
gwsubtract [47]) so that it can be subtracted to recover the
underlying signal, which is not possible in all situations but
carries the obvious benefit that, if successful, the data can
be retained and possibly still used to support a detection.
These methods represent only a handful of the multitude of
creative approaches developed in this subfield in recent
years, an increasing number of which have relied on
machine-learning techniques [23].
We focus in this work on the problem of detecting

glitches based on nonastrophysical information. Currently,
many glitch types are identified via methods that directly
analyze the gravitational-wave data stream along with one
or more of the hundreds of thousands of auxiliary data
channels LIGO’s detectors record for purposes such as
seismic motion monitoring. Still, many glitches and glitch
types are of unknown origin, and, if history is a predictor,
many new glitch types will emerge in the future. One
avenue to ensure we do not misidentify a true gravitational
event as a glitch is to make use of solely terrestrial
information about the detector: Glitches which can be
predicted based on the nonastrophysically sensitive aux-
iliary data of the detector alone (without using actual
detector output) are unlikely to be astrophysical in origin.

Reference [48] introduced a first demonstration of this
concept, leveraging the more than 200 000 auxiliary data
channels recorded by a LIGO detector to predict glitches
with high accuracy. This method is based on classical
machine-learning tools: One first extracts hand-crafted
features from each of the potentially informative subset
(about 40 000) of auxiliary channels around the time in
question and then applies sparse logistic regression to
perform prediction based on a small subset of these
features.
Can we learn better features for glitch detection in

gravitational-wave astrophysics? More generally, under
what circumstances is it possible to reliably learn from
an overwhelmingly large number of noisy and mostly
irrelevant data streams? Modern machine-learning archi-
tectures, such as deep neural networks, learn adaptive
features from raw data as well as how to combine those
features hierarchically. Compared to classical, manually
defined features, such learned features are better able to
capture richer properties of raw data relevant to the
task, especially in scenarios with complex and/or high-
dimensional data such as natural images and audio.
Moreover, the hierarchical, nonlinear nature of deep neural
networks makes them far more powerful than classical
linear models, enabling them to learn complex ways of
aggregating and synthesizing information from the output
of their learned feature detectors [49–52].
In this work, we systematically explore the properties of

several machine-learning architectures and evaluate the
extent to which they are beneficial for learning a successful
classifier in the problem setting described above. In Sec. III,
we compare the fixed-feature, logistic regression–based
model of Ref. [48] (which we refer to as FF) to an
equivalent linear model with features learned from raw
data (which we refer to as LF) and find significant
improvement. In Sec. IV, we confirm previous findings
that regularization-induced sparsity is essential to learning
effective classifiers in this setting and extend it to other
more complex models. In Sec. V, we move from flat, linear
classifiers to deeper, nonlinear ones and evaluate the effect
of depth on performance. In Sec. VI, we discuss our results
and synthesize the observations gleaned from this explora-
tion. We believe the insights gained will be valuable beyond
the problem setting of gravitational-wave astrophysics.

II. PROBLEMFORMULATIONAND PRIORWORK

We consider the problem of binary classification of a
time of interest t from multiple time series. Given P time
series x1;…; xP, where each xp is a sequence of time-
ordered, real-valued scalar samples

xp ¼ ðxp;1;…; xp;TÞ ∈ RT

sampled at some frequency fp, we would like to make a
prediction yt ∈ f−1; 1g, where the labels −1 and 1 indicate

ROBERT E. COLGAN et al. PHYS. REV. D 107, 022009 (2023)

022009-2



the presence or absence, respectively, of some phenomenon
of interest at time t. We assume that the P time series (or a
subset of them) encode enough information near time t to
make such a prediction but make no further assumptions
about the structure or content of the time series.

A. Motivating application: Glitch prediction
in gravitational-wave astrophysics

The above problem formulation is motivated by concerns
in gravitational-wave astrophysics, which uses incredibly
sensitive interferometric detectors to measure small dis-
tortions in spacetime created by astrophysical events such
as merging black holes. In addition to the main gravita-
tional-wave measurement data, the two detectors of the
LIGO project continuously record hundreds of thousands
of time series describing a wide array of aspects of the
detector’s internal and external state and environment.
These are used for monitoring its many components and
subsystems to diagnose errors, identify sources of noise,
and so on. In our problem formulation, the time series
x1;…; xP represent these auxiliary measurements.
One particularly troublesome ongoing phenomenon in

this type of data, as discussed in Sec. I, is the presence of
noise transients, also known as glitches, in the detectors’
output. They can obscure or even mimic gravitational
waves, so it is important to be able to identify them and
distinguish them from true astrophysical signals. Previous
work [48] has demonstrated the potential of doing so using
only information contained in the hundreds of thousands of
nonastrophysically sensitive auxiliary data channels. That
work achieved a useful level of accuracy in reproducing the
output of a commonly used method for glitch detection
without access to the actual gravitational-wave data that
method analyzes to perform its detections. In this work, we
adopt a similar problem formulation and improve on the
results outlined in Ref. [48], which were obtained
by employing a variant of a classical and well-used
machine-learning algorithm known as logistic regression,
by testing a series of increasingly flexible and powerful
machine-learning architectures based on convolutional
neural networks.

1. Ground-truth labels

In our general problem formulation, the target labels yt ∈
f1;−1g represent the presence and absence of glitches in
the gravitational-wave data stream, and the goal is to
accurately predict these labels. Following Ref. [48], the
labels we use for training and evaluation are computed by
Omicron [40], an existing excess power–based transient
search that directly analyzes the main gravitational-wave
data stream to identify glitches. Also following Ref. [48],
we choose negative examples (“glitch-free points”) by
randomly sampling points in time that are sufficiently
distant from any time identified by Omicron as containing
a glitch.

2. Input data

Following Ref. [48], in this paper, we consider data from
LIGO’s auxiliary channels during LIGO’s engineering run
14 (ER14) in March 2019.We follow the same procedure to
reduce the approximately 250 000 auxiliary channels in a
detector to approximately 40 000 by excluding channels
that are constant or vary only in a predictable fashion (e.g.,
counting time cycles). Of these, approximately 35 000 have
a sample rate of 16 Hz, with the rest having various higher
sample rates up to 65 536 Hz; for efficiency, we restrict our
analyses in this work to channels with a sample rate of
16 Hz and leave higher-frequency channels to future work.
(We note that higher-frequency channels generally have
downsampled equivalents already present; also, excluding
high-frequency channels does not represent an inherent
limitation of any of the models presented. Including the
additional information that could be present in higher-
frequency channels would likely only improve a given
model’s performance, so it is notable that the results
achieved here without using those channels represent an
improvement over previous work that did use those
channels.) We further exclude any channels known or
suspected to be coupled to the gravitational-wave data
stream following the same procedure as Ref. [48].
For efficiency, we draw training data from a shorter

subset of the ER14 training period used in Ref. [48] (GPS
time 1 235 890 000 to 1 235 900 000, i.e., the final 10 000 s
of the 30 000-s period of Ref. [48]), because Ref. [48]
demonstrated that 10 000 s is a sufficient amount of time
from which to draw training data. As in Ref. [48], we draw
validation data from the following 10 000 s (GPS time
1 235 900 000 to 1 235 910 000) and test data from the
following 10 000 s (GPS time 1 235 910 000 to 1 235
920 000).
We normalize each channel by computing the mean and

standard deviation of the raw channel data over the entire
training data period; then we subtract the training mean and
divide by the standard deviation for all data in the training,
validation, and test periods.
Following Ref. [48], our positive samples are drawn

from points in time identified by Omicron [40] as a glitch
peak; our negative samples are drawn randomly from
periods where no glitch was identified by Omicron within
2 s. We select the same number of negative samples as there
are positive samples in each dataset.

B. Prior work: Glitch prediction
with fixed features and shallow models

The possibility of making such predictions was recently
demonstrated in the initial work of Ref. [48]. The FF
method of Ref. [48] is based on classical statistical tools: It
extracts certain hand-crafted features from the auxiliary
channels xp and then predicts the label ŷt by linearly
combining these features and passing them through a
sigmoid function to return a probability estimate:

ARCHITECTURAL OPTIMIZATION AND FEATURE LEARNING … PHYS. REV. D 107, 022009 (2023)

022009-3



ŷt ¼ σ

�X
kp

ωkp½ f k⋆xp�t þ b

�
: ð1Þ

Here, ⋆ denotes discrete correlation, and σð·Þ denotes the
logistic function: σðxÞ ¼ ð1þ expð−xÞÞ−1. The filters f k
are fixed; in Ref. [48], these correspond to certain intui-
tively chosen patterns of behavior that might be predictive,
such as spikes and level changes. The weights ωkp of this
linear combination are learned from training data via
gradient descent on an objective function that measures
the error between the known ground-truth labels yt and the
current model’s predictions ŷt.
This method achieves 80–85% accuracy in glitch detec-

tion on unseen validation and test data. These results
demonstrated that glitches can indeed be predicted with
moderate accuracy using only auxiliary data and, hence,
that many glitches can be identified as terrestrial in origin
and safely discarded, increasing confidence in remaining
detection candidates. While these results were inspiring, the
FF method is arguably very far from leveraging all of the
structure in these complex datasets and, hence, very far
from optimal in its ability to predict glitches based on
auxiliary channels. Limitations of this approach include
the following.

(i) Hand-crafted vs learned features.—The FF method
is based on hand-crafted features designed from
intuition-based predictions of a few patterns of
behavior that might be predictive; it cannot leverage
the ability of modern machine-learning techniques
to learn more expressive, highly tuned features from
raw data [49,52] (Sec. III).

(ii) Depth.—Increased depth has consistently been
found to improve performance and trainability, even
over shallower models with equivalent statistical
capacity [51,52] (Sec. V).

(iii) Linear vs nonlinear models.—The ability of modern
models to deal with nonlinear structure in data is
crucial; deeper hierarchical models without non-
linear activation functions can be reduced to an
equivalent flat model [52] (Sec. V).

In this paper, we systematically investigate these issues,
developing a sequence of models which fundamentally
improve over the flat, fixed-feature model discussed above.
We also adopt aspects of that method that prove to be
essential to both approaches—most notably regularization-
induced sparsity (Sec. IV)—and describe how we adapt
them to our proposed methods.

III. FROM FIXED TO LEARNED FEATURES

The principal weakness of the FF method [Eq. (1)], as
discussed in Ref. [48] and Sec. II B, is that the feature
extraction procedure must be defined manually, and opti-
mizing it individually for tens of thousands of time series is
not practical. A major factor in the explosive success

of modern machine-learning methods in the past decade
has been their ability to flexibly learn features from
raw data rather than rely on inflexible hand-designed
features [49,50,52]. It is natural, then, to consider whether
replacing the fixed features of the above model with learned
features would improve its performance.

A. Flat model with learned features

To that end, we first consider a nearly equivalent model
which differs from FF only in the computation of features
from the raw data xp. We replace the fixed, manually
defined feature extraction procedure with a convolutional
model (defined explicitly in Appendix A 1) that learns a
filter w0

1p [p ∈ ð1…PÞ] for each of the P time series. For
comparison, we preserve for now all other aspects of the FF
model, including its linearity and (lack of) depth.
In the general notation of Appendix A 1 [Eq. (A1)], our

learned feature model takes the form

α1 ¼ σ

�XP
p¼1

w0
1p⋆xp þ b

�
; ð2Þ

where, as in Eq. (1), σ is a logistic function. The estimated
probability that xt belongs to the class “glitch” is ŷt ¼ α1

t .
The filters w0

1p are jointly optimized during the training
process. Below, we refer to this model as LF. As in the FF
model, we also apply a sparsifying regularization term to
the filters to encourage kw0

1pk2 ¼ 0 for most p (see
Sec. IV). The major increase in generality in moving from
FF to LF comes from the fact that the w0

1p can be arbitrary
vectors—in contrast, FF restricts these filters to be linear
combinations

P
k ωkpf k of the fixed filters f k.

1

B. Performance comparison

We now compare the performance of the FF model with
an LF model as described above, setting the input data
length to 2.5 s to match the amount of time considered by
the FF model for each sample. (In Sec. III C, we show that
longer input lengths enable significantly better perfor-
mance, further underscoring the advantages and flexibility
of learned features.) For efficiency, we consider only

1The features described by Ref. [48] include several based on
standard deviation, a nonlinear function that cannot be imple-
mented as linear convolution. Strictly speaking, therefore, it is not
correct to say that the LF model is an exact generalization of an
FF model that employs standard deviation or other nonlinear
functions. However, the flexibility afforded by learning the
feature extractors—even only linear ones—from raw data would
almost certainly outweigh any loss of flexibility from restricting
ourselves to linear features. This assumption is consistent with
our results with the single-layer LF model. Such nonlinear
functions could be learned by the deeper models discussed
in Sec. V.

ROBERT E. COLGAN et al. PHYS. REV. D 107, 022009 (2023)

022009-4



auxiliary channels that are sampled at 16 Hz for both
models.
To train the LF and FF models, we follow the procedures

described in Appendix B and in Ref. [48], respectively,
with a few minor modifications to facilitate as direct a
comparison as reasonably possible (see Appendix B for
details). Following Ref. [48], we train and evaluate both
models on data from ER14. We draw training data from
only the final 10 000 s of the 30 000 s training data period,
because that work found that 10 000 s was a sufficient
amount of data for good performance.2 We do not sub-
sample glitches during this period, using instead all 8596
glitches and an equal number of glitch-free points (chosen
using the procedure described in Ref. [48]) as training data.
As discussed in Appendix B, for the validation results
reported, we sample a subset of 500 glitches and an equal

number of glitch-free points from the validation period; for
the test results, we use all glitches present in the test period
and an equal number of glitch-free points.
As in Ref. [48], for both types of model we perform a

grid search over the regularization hyperparameters (using
the same grid for both), training models with many
parameter settings and evaluating their performance on
the validation dataset; we choose the setting that gives the
best performance on the validation dataset.
We find that the FF model of Ref. [48] achieves an

accuracy of 85.9% [with a true-positive rate (TPR), true-
negative rate (TNR), and loss of 87.6%, 84.1%, and 0.3392,
respectively]3 on the validation dataset, compared to an
accuracy of 87.3% (TPR 86.1%, TNR 88.6%, and loss

FIG. 1. A few of the features learned by an LF model with 6-s filters. The x axes correspond to filter length in seconds; the y axes show
the unitless magnitude of the filter over time, which is relevant for comparison across filters. Intuitively, a higher overall magnitude
indicates the associated channel is more important to the model’s decisions—when correlated with a higher-magnitude filter, an input
data segment will contribute more heavily to the sum and resulting probability estimate than the same segment correlated with a lower-
magnitude filter. The lower-right panel shows a filter with magnitude 0, like the vast majority of the learned filters in the model
(see Sec. IV).

2It is possible that compared to the FF model the models
presented here would see greater benefit from a longer training
data period because of increased flexibility provided by learned
features and other aspects; on the other hand, since the learned
features are more closely tuned to the training data, they might be
less robust to longer-term changes in the state of the detector, e.g.,
changes in the shape of glitch-predictive features over time. We
leave investigation of the optimal length of time from which to
draw training data to future work.

3The slightly improved performance of the FF model com-
pared to the same model in Ref. [48] is most likely due to the
combination of modifications to the training procedure described
above and the shorter training data period, as Ref. [48] reported
an overall slight decrease in performance as the length of the
training period increased beyond 10 000 s. Also, although we
would expect that at least some of the higher-frequency channels
contain useful information for the classifier—perhaps even more
so, proportionally, than the 16 Hz channels—it is possible that
decreasing the data dimensionality improved the model’s ability
to identify relevant data by enough to outweigh the benefit of the
higher-frequency channels.

ARCHITECTURAL OPTIMIZATION AND FEATURE LEARNING … PHYS. REV. D 107, 022009 (2023)

022009-5



0.3004) for the LF model, an overall 9.9% reduction in
relative error rate. On the test dataset, it achieves an
accuracy of 85.8% (TPR 91.2% and TNR 80.5%), com-
pared to an accuracy of 88.6% (TPR 86.7% and TNR
90.4%) for the LF model, an overall 19.7% reduction in
relative error rate.

C. Input segment length

So far, for the sake of comparison with the FF model, we
have limited the input data segment length for the LF model
to the 2.5 s surrounding each sample time, matching the
amount of data used to compute the hand-defined features
of the FF model. As noted in Ref. [48], those features—
including the length of input data they consider—were
chosen largely arbitrarily, and we would like to see whether
longer (or shorter) input segments might further improve
the performance of learned features.
To that end, we consider input segment length as an

additional hyperparameter over which to search while
maintaining the same (flat) model structure. Although it
would be possible to implement FF models that accept
other segment lengths—and the FF model may well also
have benefited from considering longer data segments—it
is more straightforward to do so with the LF model: We
simply adjust a single hyperparameter and let the model
decide how best to make use of the additional data.
Our results indicate that a segment length of 4–6 s is

ideal for this model and data (see Fig. 2), providing
significant improvement over the shorter segments consid-
ered previously. Too short, and the model may miss
relevant behavior that does not coincide precisely with
the appearance of the glitch; too long, and the model may
become too difficult to optimize because of the presence of

too much extraneous data. We emphasize that the input
length can be determined through optimization via training
on a dataset, which is a useful feature of the method. It is
conceivable that for different time frames and datasets this
timescale would vary, indicating the data could be domi-
nated by glitch types of much shorter or longer timescales.
Figure 1 illustrates some of the features learned in this

model. They can reflect behavior such as local maxima (top
left and top center); level changes (center left); oscillatory
behavior (bottom center); and more complicated effects
specific to each channel that are useful for distinguishing
between glitchy and glitch-free times. Their shapes re-
present clues to physical or environmental effects that result
in glitches and could help diagnose their origins, high-
lighting an important added benefit of the LF approach.
By accuracy on our validation dataset, the best-performing

LF model over every hyperparameter setting tested achieves
an accuracy of 90.9% (TPR 85.8%, TNR 95.6%, and loss
0.2423). This represents a 35.5% reduction in error rate over
the FF model discussed above (and a 25.5% reduction over
the LF model with input length limited to 2.5 s). The lowest
validation loss achieved was 0.2376, but this model had
slightly worse accuracy at 90.4% (TPR 91.3% and TNR
89.5%). In Sec. V, we present experimental results with
deeper models that further improve performance.

IV. THE ROLE OF SPARSITY

A crucial factor in the success of the FF model was the
incorporation of a sparsifying regularization term in the
optimization objective function—i.e., a term that encour-
ages many of the weights ωkp to be set to 0 during training,
leaving only the most relevant features to be considered.
Not only did this improve the model’s efficiency and
interpretability, it also significantly improved its perfor-
mance compared to a standard, nonsparsifying regularizer
on the overall L2 norm of ω. The effectiveness of sparse
regularization has been observed in a variety of problem
settings, leading to widespread adoption of regularizers
such as the L1 norm or LASSO [53] and the elastic net [54].
It is particularly relevant in this problem, because the vast
majority of the P time series contain no useful information
for the task.
In developing the LF model, we similarly found sparsity

to be an essential property. Following Ref. [48], we employ
the elastic net as a regularizer on the magnitudes of the
learned filters in the LF model to encourage kw0

1pk ¼ 0 for
most p. The elastic net is a linear combination of L2 and L1
regularization, with tunable weight on each component:

RðηÞ ¼ λ

2

X
p

η2p þ α
X
p

jηpj; ð3Þ

where the hyperparameters λ and α control the strengths of
the L2 and L1 components, respectively. In our case, we
want the regularization to apply to each channel’s learned

FIG. 2. Loss on validation dataset (lower is better) vs feature or
input segment length, showing for a given length the best-
performing model over all hyperparameters tested [i.e., initial
learning rate as well as elastic net α and λ—see Eq. (3)
and Fig. 3].

ROBERT E. COLGAN et al. PHYS. REV. D 107, 022009 (2023)

022009-6



filter w0
1p and act on the filter as a whole, rather than

on every sample of all filters independently, so we take
ηp ¼ kw0

1pk2 in the above equation. We implement the L1
regularization update following the technique of Ref. [55].
Following the training procedure described in

Appendix B with an LF model with no sparsifying
regularization and despite trying a much larger grid of
hyperparameter settings, no model at any setting tested was
able to achieve more than 64.4% validation accuracy. In
contrast, as discussed in Sec. III, sparse models were able to
achieve an accuracy of more than 90% while learning

nonzero features for only a small fraction of the 33 939
channels considered (i.e., all but a few channels are ignored
by the model when making predictions). See Fig. 3 for an
illustration of validation accuracy as a function of the
sparsity hyperparameters α and λ of Eq. (3) and Fig. 4 for
an illustration of how validation accuracy correlates with
the resulting sparsity of the model.
We also observed that, even when we do not explicitly

induce sparsity, under certain circumstances training will
spontaneously converge to a model that is sparse in one or
more respects. We describe these findings in Appendix C.

V. DEEPER MODELS

In the previous sections,we argued that (i) feature learning
and (ii) sparse channel selection are essential ingredients in
the design of high-performing glitch predictors. We illus-
trated these ingredients in the simplest possible setting of
shallow (single-layer) architectures. However, experience in
application areas such as vision, audio, and natural language
processing suggests that feature learning becomes evenmore
powerful in deeper architectures, which learn hierarchical
features. Deeper models have the following potential advan-
tages in glitch prediction.

(i) Higher order interactions between channels are
better captured by deep models. A canonical exam-
ple is the exclusive or relationship, which cannot be
represented by a single-layer model. In our setting,
this would correspond to the situation in which there
are two auxiliary channels which are jointly pre-
dictive of a certain type of glitch in the sense that
exactly one channel is active (but not both). Deep
models are capable of capturing this and other
higher-order interactions across channels.4

(ii) Robust feature extraction from individual channels
is facilitated by deeper models, in which low-level
features are repeatedly combined to produce a
hierarchy of increasingly abstract, higher-level fea-
tures. This robustness is amplified by including
pooling operations at various levels, which increases
robustness to temporal shifts, variations in signal
shape, etc.5

FIG. 3. Loss on validation dataset (lower is better; values
greater than 1 are clipped) as a function of α (x axis) and
λ (y axis) of Eq. (3) for the best-performing initial learning rate.

FIG. 4. Accuracy on validation dataset as a function of the
fraction of nonzero channels in the model, for all hyperpara-
meters tested (including filter length). The best-performing
models achieved an accuracy of around 90% with as few as
0.02–1% of their approximately 35 000 filters nonzero, corre-
sponding to all but around ten to a few hundred channels
considered irrelevant.

4Determining precisely what, if any, higher-order interactions
are present across the LIGO auxiliary channels demands a
combination of device modeling and exploratory data analysis.
The deeper models proposed in this paper provide one tool for
empirically probing the relationship between auxiliary channels
and their utility in classifying various glitch types and diagnosing
their origins. We will report on this direction in future work.

5Of course, one can also perform pooling in shallow models.
Later in this section, we introduce deep models with pooling
(VGG6, VGG13, and VGG13-BN), which achieve state-of-the-
art performance on our datasets of interest. The excellent
performance of these models should arguably be attributed not
just to depth but to the combination of depth, nonlinearity,
and pooling.

ARCHITECTURAL OPTIMIZATION AND FEATURE LEARNING … PHYS. REV. D 107, 022009 (2023)

022009-7



(iii) Increased statistical capacity.—Deeper models can
accommodate more complicated statistical relation-
ships between the auxiliary channels and the
gravitational-wave strain.

In the remainder of this section, we illustrate the power
of depth by introducing a sequence of increasingly deeper
models, culminating in nonlinear deep models that signifi-
cantly outperform the previous state of the art for glitch
prediction on the datasets considered here. These results
corroborate the utility of depth in feature learning, with the
caveat that many of the specific architectures considered
here vary in other ways (e.g., presence vs absence of
nonlinearities and temporal pooling).

A. Models with one hidden layer

1Hid and 1HidReLU both contain a convolutional layer
mapping P one-dimensional time-series inputs of length T
to a single hidden layer with P1 scalar-valued feature maps.
This is followed by a single fully connected layer that
linearly combines the hidden-layer outputs into a single
scalar output and adds a scalar bias; the result is then passed
through a sigmoid nonlinearity. 1HidReLU contains a
rectifying nonlinearity before the fully connected layer,
whereas 1Hid does not. We set P1 to 100 and did not
comprehensively study or optimize it, but in limited pre-
liminary experiments we observed little impact from halving
or doubling it. (In fact, as discussed inAppendixC 2, inmany
cases the training spontaneously converges to a model with
only one or a few active feature maps, but these models can
perform as well as or better than models with more active
feature maps.)

B. Models with many hidden layers

We also experimented with three deeper models inspired
by the VGG16 network [51], with reduced depth for
computational efficiency. In both models, all convolutional
kernels have length three and all max-pooling layers have a
kernel size and stride of two. We fix the length of the input
segments to 80 samples (5 s) for VGG6 and 200 samples

(12.5 s) for VGG13. VGG6 consists of a total of five
convolutional layers followed by one fully connected layer,
with max pooling after the second and fifth convolutional
layers. VGG13 consists of a total of 11 convolutional
layers, four max-pooling layers, and two fully connected
layers. It is identical in structure to VGG6 through the
second max-pooling layer, which is followed by two
groups of three convolutional layers and a max-pooling
layer and then by two fully connected layers. VGG13-BN
is identical to VGG13 except for the insertion of a batch
normalization layer [56] before every nonlinearity.

C. Experimental results with deeper models

We test these deeper models on the same ER14 dataset
used in the previous sections. Table I and Fig. 5 report the
validation accuracy and loss achieved by each model and
compares these to the shallow models (FF and LF)
introduced in previous sections. Validation performance

FIG. 5. Scatter plot of Table I showing best validation loss vs
test accuracy for each model. For validation loss on the x axis,
lower is better, so the models in the upper left have the best
overall performance. Model complexity generally increases from
the lower right to the upper left.

TABLE I. Architectural features and performance over the models discussed. Column six shows the best (lowest)
loss on the validation dataset over every hyperparameter setting tested for a given model, along with that model’s
accuracy on the validation dataset. Column seven shows the best accuracy on the validation dataset, along with
the loss. To compute accuracy on the test dataset in column eight, we used the model that achieved the best
validation loss.

Model Feature learning? Depth Nonlinear? Pooling? Best val loss (acc) Best val acc (loss) Test acc

FF ⨯ 1 ⨯ ⨯ 0.3392 (85.9%) 86.0% (0.3567) 85.8%
LF ✓ 1 ⨯ ⨯ 0.2376 (90.4%) 90.9% (0.2423) 89.6%
1Hid ✓ 2 ⨯ ⨯ 0.2385 (90.5%) 91.2% (0.2486) 89.3%
1HidReLU ✓ 2 ✓ ⨯ 0.2330 (91.0%) 91.0% (0.2330) 91.0%
VGG6 ✓ 6 ✓ ✓ 0.2010 (91.9%) 93.0% (0.2050) 94.0%
VGG13 ✓ 13 ✓ ✓ 0.1956 (93.4%) 93.4% (0.1956) 93.6%
VGG13-BN ✓ 13 ✓ ✓ 0.1732 (93.1%) 93.6% (0.1822) 94.7%

ROBERT E. COLGAN et al. PHYS. REV. D 107, 022009 (2023)

022009-8



increases nearly monotonically with depth; the best-
performing model is VGG13-BN, which achieves a vali-
dation accuracy of 93.1% and loss of 0.1732 and a test
accuracy of 94.7% and loss of 0.1578. Figure 6 shows a
receiver operating characteristic (ROC) curve of VGG13-
BN’s performance on the test dataset. It is worth noting that
the improved performance in VGG6 and VGG13 may be
attributable not only to their depth but to architectural
details such as the use of short convolution filters and
pooling. Nevertheless, Table I is consistent with the widely
reported finding that deeper networks produce better
statistical performance in signal classification tasks.

VI. CONCLUSION

In this paper, we have demonstrated the potential of
feature learning for glitch prediction in gravitational-wave
astrophysics and, more generally, for learning from high-
dimensional time series. We have argued that feature
learning and architectural choices including sparsity, depth,
and nonlinearity are essential to achieving the best possible
performance in this setting. Our architectural explorations
culminate in state-of-the-art performance on the ER14
dataset, with a best validation accuracy of 93.6% and test
accuracy of 94.7%—an overall approximately 63% reduc-
tion in the test error rate compared to the shallow, fixed-
feature model.
In general, deeper models require more resources: more

training data and more computational resources at both
training and test time. Obtaining these best possible re-
source-performance trade-offs is an important direction for
future work; in Ref. [57], we study complexity-performance
trade-offs in information extraction from a single time series.
One especially important trade-off in learning from

high-dimensional time series is the trade-off between sample
complexity (how much training data) and test-time perfor-
mance. In practice, system characteristics can change over
time, and it is important to be able to rapidly adapt to these
changes, using limited training data. Online learning of deep
models, using a combination of large offline datasets
and limited streaming data, is an important direction for
future work.
Feature learning and deep models introduce new oppor-

tunities for using machine learning not just as a tool for
prediction but as a tool for generating insights into the data-
generating process. The models we have described all
employ automatic feature learning, which not only
improves performance on the classification task compared
to fixed features, but also can provide valuable diagnostic
information—for example, by identifying environmental
factors or specific subsystems of a gravitational-wave
detector associated with transient noise glitches. Insight
gained during these investigations enables automated
adaptability to slowly changing, time-dependent data as
emerging features can be discovered and learned.
Sparse channel selection, as discussed in Sec. IV, leads to

models that identify a few especially relevant channels for
prediction, which—like feature learning—is also beneficial
to both performance and interpretability. Compared to flat,
linear, sparse models such as FF, the deep, nonlinear
models proposed here squeeze more relevant information
out of the small number of selected channels, as witnessed
by their substantially improved prediction performance.
Mining these more accurate models for insights into the
data-generation process is another important direction for
future work.

ACKNOWLEDGMENTS

We acknowledge computing resources from Columbia
University’s Shared Research Computing Facility project,
which is supported by NIH Research Facility Improvement
Grant No. 1G20RR030893-01, and associated funds from
the New York State Empire State Development, Division of
Science Technology and Innovation (NYSTAR) Contract
No. C090171. This material is based upon work and data
supported by NSF’s LIGO Laboratory which is a major
facility fully funded by the National Science Foundation.
This research has also made use of data obtained from the
Gravitational Wave Open Science Center, a service of
LIGO Laboratory, the LIGO Scientific Collaboration, and
the Virgo Collaboration. LIGO is funded by the U.S.
National Science Foundation (NSF). Virgo is funded by
the French Centre National de Recherche Scientifique
(CNRS), the Italian Istituto Nazionale della Fisica
Nucleare (INFN), and the Dutch Nikhef, with contributions
by Polish and Hungarian institutes. The authors are grateful
for the LIGO Scientific Collaboration review of the paper,
and this paper is assigned a LIGO DCC number (LIGO-
P2200008), with special thanks to Gayathri V. The authors

FIG. 6. ROC curve of VGG13-BN on the ER14 test dataset.

ARCHITECTURAL OPTIMIZATION AND FEATURE LEARNING … PHYS. REV. D 107, 022009 (2023)

022009-9



acknowledge the LIGO Collaboration for the production of
data used in this study and the LIGO Laboratory for
enabling Omicron trigger generation on its computing
resources (National Science Foundation Grants
No. PHY-0757058 and No. PHY-0823459). The authors
are grateful to the authors and maintainers of the Omicron
and Omega pipelines, the LIGO Commissioning and
Detector Characterization Teams, and LSC domain expert
Colleagues whose fundamental work on the LIGO detec-
tors enabled the data used in this paper. The authors thank
colleagues of the LIGO Scientific Collaboration and the
Virgo Collaboration for their help and useful comments.
The authors thank the University of Florida and Columbia
University in the City of New York for their generous
support. The authors are grateful for the generous support
of the National Science Foundation under Grant No. CCF-
1740391. I. B. acknowledges the support of the Alfred P.
Sloan Foundation and NSF Grants No. PHY-1911796 and
No. PHY-2110060.

APPENDIX A: MODELS

1. Convolutional model and notation

Our models are structured as convolutional neural net-
works. A convolutional neural network is comprised of a
sequence of L layers, which generate features α1;…;αL.
Each αl consists of Pl feature maps (time series)
αl
1 ;…;αl

Pl ∈ RTl
. For notational consistency, we let α0

denote the input featuresα0
p ¼ xp, withP0 ¼ P andT0 ¼ T.

For a given input x, features are generated sequentially
by applying an affine map followed by (possible) non-
linearity and pooling operations:

αlþ1
i ¼ Plσl

�XPl

j¼1

wl
ij⋆αl

j þ bli

�
: ðA1Þ

Here, the ⋆ operation denotes discrete correlation6; the
wl
ij ∈ Rdl (i ¼ 1…Plþ1, j ¼ 1…Pl) are a collection of

filters; and the bli ∈ R are scalar biases.
Because the affine map in Eq. (A1) is built out of

correlation operations, it is shift equivariant: If Sk denotes a
temporal shift by k samples,

�XPl

j¼1

wl
ij⋆Sk½αl

j � þ bli

�
¼ Sk

�XPl

j¼1

wl
ij⋆αl

j þ bli

�
:

This is a highly desirable property for analyzing time series.
It ensures that our feature extraction respects the temporal

structure of the αl
j , and the resulting mapping requires far

fewer parameters and far less computation compared to a
generic affine map of the same dimension.
In Eq. (A1), σl denotes a scalar activation function,

which is extended to vector inputs by applying it element-
wise. In our nonlinear models, we often use the ReLU
activation σlðuÞ ¼ ReLUðuÞ ¼ maxfu; 0g. The notation
of Eq. (A1) also accommodates “linear layers” with no
nonlinear activation, simply by setting σlðuÞ ¼ u. If
σlðuÞ ¼ u for all l, the network output is a linear function
of the input x. However, nonlinear models are often
preferable due to their greater expressive power: In our
experiments, nonlinear models typically outperform their
linear counterparts, especially when the number of layers L
is large.
Finally, the operation Pl performs temporal pooling by

taking maxima over contiguous subsets of entries. This
operation is observed to improve robustness to temporal
shifts and distortions by aggregating feature responses over
time, and it is included in several of the deeper networks
that we introduce in Sec. V. The general notation of
Eq. (A1) is flexible enough to accommodate architectures
that do not pool simply by taking maxima over subsets
consisting of single indices.
The fixed-feature model FF [Eq. (1)] can be seen as an

instance of the general model [Eq. (A1)], with L ¼ 1

layers, with inputs α0
p ¼ xp, a single output ŷ ¼ αL, and

filters w0
1p ¼ P

k ωkpf k. That is to say, the logistic predictor
is a one-layer neural network, which uses a linear combi-
nation of the fixed, hand-designed features f k.
The general model of Eq. (A1) allows for significantly

more flexible architectures, in which (i) features can be
combined hierarchically and (ii) features can be learned
from data. In these more flexible architectures, learning is
performed in a similar manner to as described above for the
FF model—i.e., gradient descent on a measure of the error
between the ground-truth labels and the predictions made
by the current state of the model predictions; the only major
difference is in the greater number of parameters (see
Appendix B for a detailed description of our training
procedures).

2. Model details

In all of the following models, we impose sparsity in the
form of elastic net regularization (as discussed in Sec. IV)
only at the lowest layer, on the connections between the P
input channels and the P1 first-layer feature maps. That is,
for a given channel–feature map pair ðp; iÞ, the norm of the
corresponding learned filter kw0

ipk2 corresponds to one
element of the vector η on which the elastic net regulari-
zation RðηÞ is computed [Eq. (3)]. We implement the L1
component of the elastic net by explicitly computing αkηk1
and adding to the loss and the L2 component via standard

6Correlation is equivalent to a true convolution up to a flipping
of the filters wl

ij. In implementation, the correlation operation
may be subsampled (strided) for efficient computation
and storage.

ROBERT E. COLGAN et al. PHYS. REV. D 107, 022009 (2023)

022009-10



weight decay, which is applied to every parameter of the
model at the same magnitude.

a. Models with one hidden layer

As described in Sec. V, 1Hid and 1HidReLU both
contain a convolutional layer mapping P one-dimensional
time-series inputs of length T to a single hidden layer with
P1 scalar-valued feature maps, followed by a single fully
connected layer that linearly combines the hidden layer
outputs into a single scalar-valued output, which is passed
through a sigmoid nonlinearity to produce a probability
estimate. The convolutional layer’s filters are each the same
length T as the input and, therefore, produce a single scalar
value for each pair of an input and a feature map. As is
standard in one-dimensional convolutional neural network
architectures, for a given feature map i ∈ ð1…P1Þ, the
values obtained from convolving each input p ∈ ð1…PÞ
with the learned filter w0

ip ∈ RT corresponding to that
input–feature map pair are summed and a bias term bi
corresponding to that feature map is added. The learned
weights for the single convolutional layer, therefore, consist
of a three-way tensor W ∈ RP1×P×T, and the biases consist
of a vector b ∈ RP1

.

b. Models with many hidden layers

VGG13, VGG6, and VGG13-BN are inspired by the
VGG16 models of Ref. [51] (specifically, configuration D
of Table 1), with reduced depth for computational effi-
ciency. In both models, all convolutional kernels have
length three and all max-pooling layers have a kernel size
and stride of two. Each convolutional layer includes a bias
for each of its output feature maps, and we employ a
rectifying nonlinearity after each convolutional layer. We
do not employ padding, so each convolutional layer outputs
a segment two samples shorter than the input, and each
max-pooling layer halves its input’s length.
VGG6 consists of a total of five convolutional layers

followed by one fully connected layer, with max pooling
after the second and fifth convolutional layers. The first two
convolutional layers output 128 feature maps, while the
following three output 256. After the final max-pooling
layer, the segment length has been reduced to 16. With the
256 output feature maps of length 16 as input, the fully
connected layer linearly combines 4096 inputs into a single
scalar-valued output, which is passed through a sigmoid
nonlinearity to produce a probability estimate.
VGG13 consists of a total of 11 convolutional layers,

four max-pooling layers, and two fully connected layers. It
is identical in structure to VGG6 through the second max-
pooling layer. This is followed by two sets of three
convolutional layers with 512 feature maps followed by
a max-pooling layer. After the final max-pooling layer, the
segment length has been reduced to seven. With the 512

output feature maps of length seven as input, the first fully
connected layer has 3584 inputs and 4096 outputs; the
second fully connected layer linearly combines its 4096
inputs into a single scalar-valued output, which is passed
through a sigmoid nonlinearity to produce a probability
estimate.

APPENDIX B: TRAINING AND EVALUATION
PROTOCOLS

We follow the following training procedure for all
models discussed here unless otherwise specified. As
discussed in Sec. II A 2, we draw training, validation,
and test data from three separate but nearby time periods.
Each model is initialized with the standard Kaiming
uniform [58] method with the same random seed.
Thereafter, we randomly (again using the same random
seed for all models) sample 64 data points from the
training period for each training batch and perform sto-
chastic gradient descent with the Adam optimizer [59].
The models and training process are implemented in
PYTHON with PyTorch [60].
To evaluate the model during training for learning rate

decay and early stopping, we also choose a subset of points
from the validation period (the number varies across model
types depending on memory constraints, but we use the
same points for a given model type). We evaluate the model
on this validation batch every 50 training iterations. At each
validation, if the loss is lower than previously seen, we
retain the model state. When the validation loss fails to
decrease for four consecutive validations, we reduce the
learning rate by a factor of 4; when the validation loss fails
to decrease for ten consecutive validations, training ends
and we return the model state that performed best on the
validation batch.
We also choose a second, larger (1000-sample) valida-

tion batch to evaluate and compare models with different
parameter settings. Once training is complete, we evaluate
each model on this larger batch and choose the best-
performing one. The validation accuracies and losses we
report are computed for this model on this batch.
Finally, we calculate test accuracy by running only the

best-performing model of a given type (chosen based on the
second validation batch, as described above) on a dataset
consisting of every glitch from the test period and an equal
number of appropriately chosen glitch-free points from the
test period.
When directly comparing the FF and LF models, we test

several initial learning rates and employ learning rate decay
and early stopping based on the loss on a held-out
validation subset of the training data rather than running
with a fixed learning rate schedule and number of epochs;
learning rate decreases by a factor of 5 after each epoch of
no improvement on a validation set until reaching a
minimum threshold, at which point training terminates.

ARCHITECTURAL OPTIMIZATION AND FEATURE LEARNING … PHYS. REV. D 107, 022009 (2023)

022009-11



We also normalize all data based on the mean and standard
deviation of the raw time series over the entire training
period rather than normalizing after computing features for
the subset of training samples chosen (as was done in
Ref. [48]). For LF, we also test the same initial learning
rates and validate during training with a validation batch as
described above every epoch (defined as the model seeing
approximately as many samples as present in the training
dataset, although not necessarily all of them due to the
random sampling procedure used to create the training
batches) rather than every 50 training batches. Learning
rate decreases by a factor of 5 after each epoch of no
improvement until reaching the same minimum threshold
as for FF, at which time training terminates.
To determine the best input segment length for LF, as

discussed in Sec. III C, we consider it as an additional
hyperparameter over which to search while maintaining the
same (flat) model structure. Our results indicate that a
segment length of 4–6 s is ideal for this model and data
(see Fig. 2).

APPENDIX C: IMPLICIT SPARSIFYING
REGULARIZATION

In Sec. IV, we argued that sparsifying regularization
plays a critical role in successful approaches to prediction
from large sets of time series: By regularizing the bottom
layer weights, we can force the model to select only the
most relevant channels, improving both statistical effi-
ciency and interpretability. We suggested elastic net regu-
larization as a practical and effective means of obtaining
sparsity. Interestingly, even if we do not explicitly apply
sparsifying regularization to the network weights, it is still
possible to induce sparsity indirectly, through various
architectural choices. In this appendix, we briefly describe
two different forms of implicit sparsifying regularization
that emerge in certain experiments described in the main
body of the paper.

1. Implicit regularization for channel selection

Our first form of implicit regularization can be motivated
through the following experiment, which seems to contra-
dict the claims of Sec. IV. We build a shallow model, in
which each input channel is convolved with a channel-
specific filter, and then the outputs are linearly combined to
produce a final prediction. We apply weight decay (L2
regularization) to all of the weights of the model and train in
the same manner described in the body of the paper, with an
input segment length of 6 s. This approach achieves a
validation accuracy of 89.4%—essentially the same as LF.
(In contrast, as discussed in Sec. IV, with neither the extra
linear layer nor explicit sparse regularization, the best
accuracy achieved is 64.4%.) The resulting model is also

quite sparse, with all but a few hundred channels having a
magnitude of zero or negligibly close to zero.7

There are two surprises here: First, this setup does not
involve any explicit sparsifying regularization—just weight
decay. Second, the extra linear layer has no effect on the
expressiveness of this model class—because the extra linear
layer simply applies a (scalar) linear transform to the output
of the first layer, the class of input-output relationships that
can be implemented by this two-layer model is exactly the
same as that which can be represented by LF.
These surprises are actually linked: One can prove that,

under L2 regularization, the effect of the extra linear layer is
to induce a sparsifying regularization on the first layer
filters. This is essentially a consequence of the basic
relationship

min
xy¼w

1

2
x2 þ 1

2
y2 ¼ jwj: ðC1Þ

In words, this says that “overparametrizing the scalar w by
writing it as a product of two quantities x and y that are L2
regularized is equivalent to L1 regularization on w.”
This phenomenon extends quite broadly. Let

f∶ Rd → R. Consider the problem of minimizing fðwÞ
with respect to w:

min
w∈Rd

fðwÞ: ðC2Þ

We are interested in what happens if we introduce an
additional scalar variable of optimization β, replace w with
βw, and introduce L2 regularization on both w and β:

min
w∈Rd;β

fðβwÞ þ γ

2
β2 þ γ

2
kwk22: ðC3Þ

We argue that this extended problem is equivalent to a
regularized problem in w only:

min
w∈Rd

fðwÞ þ rðwÞ; ðC4Þ

where r is a regularizer. To that end, consider the following
problem:

min
βw¼v

1

2
β2 þ 1

2
kwk22: ðC5Þ

7We use “magnitude” here to refer to the product of the L2
norm of its learned filter and the corresponding linear weight
scalar. Because of the lack of an explicit approach to handle the
nondifferentiability of the implicit sparsifying regularization,
most of these magnitudes do not become exactly 0, but the vast
majority are smaller than 10−9.

ROBERT E. COLGAN et al. PHYS. REV. D 107, 022009 (2023)

022009-12



It is possible to solve this problem in closed form. w is
feasible if and only if w ¼ sv for some s. In this situation,
the only feasible β is β ¼ kvk2=kwk2. Plugging in, we find
an equivalent problem:

min
s

1

2s2
þ kvk22s2

2
: ðC6Þ

Setting the derivative equal to zero, we obtain s⋆ ¼ 1

kvk1=2
2

.

Plugging back in, we obtain

min
βw¼v

1

2
β2 þ 1

2
kwk22 ¼ kvk2: ðC7Þ

Applying this observation, our extended problem
[Eq. (C3)] is equivalent to

min
w∈Rd

fðwÞ þ γkwk2: ðC8Þ

Note that here the L2 norm ofw is not squared. This is a form
of vector sparse regularization which encourages w ¼ 0.
These observations can be extended to a multifilter setting in
which there are K vector-valued variables of optimization
w1;…;wK . In this setting, adding one extra variable βi for
each wi induces a sum-of-norms regularization:

min
w1;…;wK;β1;…;βK

fðβ1w1;β2w2;…;βKwKÞþ
XK
i¼1

γ

2
β2i þ

γ

2
kwik22

≡ min
w1;…;wK

fðw1;…;wKÞþ γ
XK
i¼1

kwik2: ðC9Þ

Again, this is a vector sparsity regularizer, which encourages
just a few of the wi to be nonzero. It is also possible to
work out equivalent problems when other regularizers are
placed on the auxiliary variables βi. This kind of implicit
regularization, in which adding redundant optimization
variables dramatically changes the effect of the regularizer,
has been demonstrated in a number of previous works (see,
e.g., [61,62]).

2. Sparsifying feature maps with long steps

A different type of sparsification is observed in deeper
models with a ReLU nonlinearity: Training with a larger
learning rate produces more models in which many of the
second-layer feature maps are identically zero on the entire
training dataset, without negatively impacting performance.
In Table II, we report both the number of nonzero feature
maps and the validation accuracy for 1HidReLU for various
initial step sizes s. When s is large, the number of nonzero
feature maps can be as small as one. When s is smaller, the
fraction of nonzero feature maps approaches 50%.
Interestingly, performance varies only moderately across

this range of s, even though the nature of the learned model
varies significantly.
This phenomenon can be attributed to the ReLU non-

linearity σðuÞ ¼ maxfu; 0g; its output is identically zero
when u is negative. The composition of the ReLU with an
affine function produces a feature αðxÞ¼maxfw�xþb;0g
which is identically zero on the half-spaceHoff ¼ fxjw�xþ
b ≤ 0g. If, across the training dataset, all inputs to this

TABLE II. In ReLU models, large steps sparsify by producing
dead neurons. We trained 1HidReLU at several initial learning
rates, using the same set of other hyperparameter settings, and
evaluated what percentage of these settings performed “accept-
ably well,” i.e., achieved a loss better than an appropriately
chosen threshold (second column). The third column lists the
average percentage of nonzero hidden feature map at each
learning rate among those well-performing models. The fourth
column lists the lowest loss achieved at that learning rate over all
other hyperparameters. Interestingly, as initial step size increases,
the models become increasingly sparse at the feature map level
without sacrificing performance.

Initial step
size s

Successful parameter
settings (%)

Average nonzero
feature maps (%)

Best
loss

0.001 8.9 26.0 0.2881
0.002 14.4 12.2 0.2605
0.02 23.6 9.3 0.2512
0.2 21.0 2.1 0.2330

TABLE III. The same table as above for VGG13. We observe
the same behavior as for 1HidReLU in the percentage of nonzero
feature maps decreasing as the initial learning rate increases.
However, although the best loss remains relatively consistent, the
percentage of successful parameter settings decreases rather than
increases with increasing step size, suggesting that it is more
difficult to train deeper models with higher step sizes.

Initial step
size s

Successful parameter
settings (%)

Average nonzero
feature maps (%)

Best
loss

0.00025 30.2 36.7 0.1956
0.0005 23.3 27.9 0.2032
0.001 9.7 23.8 0.2091
0.002 8.3 17.8 0.2166

TABLE IV. The same table as above for VGG13-BN. Batch
normalization appears to have a stabilizing effect, reducing the
impact of step size on the behaviors observed above.

Initial step
size s

Successful parameter
settings (%)

Average nonzero
feature maps (%)

Best
loss

0.00025 22.6 15.2 0.1732
0.0005 22.9 20.3 0.1806
0.001 21.9 15.9 0.1822
0.002 17.4 24.6 0.1977

ARCHITECTURAL OPTIMIZATION AND FEATURE LEARNING … PHYS. REV. D 107, 022009 (2023)

022009-13



function map to this half-space, this feature will be
identically zero. Moreover, it is likely to stay zero: Since

∀ x ∈ interiorðHoffÞ;
∂αðxÞ
∂w

¼ 0 and
∂αðxÞ
∂b

¼ 0;

gradient or subgradient updates to ðw; bÞ stay zero. In the
literature, this is sometimes referred to as a dead neuron. It
has been observed both experimentally and theoretically
that taking very large steps in w and b tends to push data
points x into Hoff , producing large numbers of dead
neurons, leading to very sparse representations, as reported
in Table II.

In Tables III and IV, we report the results of the same
experiment with the VGG13 and VGG13-BN models
respectively. For VGG13, we observe a similar effect as
in 1HidReLU in the number of nonzero feature maps
decreasing with increasing initial step size, but the per-
centage of successful parameter settings decreases rather
than increases. For VGG13-BN, we observe weaker effects
from varying the initial step size, suggesting that batch
normalization has a stabilizing effect.
This type of sparsification may have less overt

statistical benefits, although it could convey benefits in
terms of interpretability of the learned model and test-time
efficiency.

[1] T. Akutsu et al., Overview of KAGRA: Detector design and
construction history, Prog. Theor. Exp. Phys. 2021, 05A101
(2021).

[2] A. Buikema et al., Sensitivity and performance of the
Advanced LIGO detectors in the third observing run, Phys.
Rev. D 102, 062003 (2020).

[3] B. P.Abbott et al., Prospects for observing and localizing
gravitational-wave transients with Advanced LIGO, Ad-
vanced Virgo and KAGRA, Living Rev. Relativity 23, 3
(2020).

[4] M. Tse et al., Quantum-Enhanced Advanced LIGO Detec-
tors in the Era of Gravitational-Wave Astronomy, Phys. Rev.
Lett. 123, 231107 (2019).

[5] D. V. Martynov et al., Sensitivity of the Advanced LIGO
detectors at the beginning of gravitational wave astronomy,
Phys. Rev. D 93, 112004 (2016).

[6] K. L. Dooley et al., GEO 600 and the GEO-HF upgrade
program: Successes and challenges, Classical Quantum
Gravity 33, 075009 (2016).

[7] R. Abbott et al. (The LIGO Scientific Collaboration and The
Virgo Collaboration), GW150914: The Advanced LIGO
Detectors in the Era of First Discoveries, Phys. Rev. Lett.
116, 131103 (2016).

[8] J. Aasi, B. Abbott, R. Abbott, T. Abbott, M. Abernathy, K.
Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari et al.,
Advanced LIGO, Classical Quantum Gravity 32, 074001
(2015).

[9] F. Acernese, M. Agathos, K. Agatsuma, D. Aisa, N.
Allemandou, A. Allocca, J. Amarni, P. Astone, G.
Balestri, G. Ballardin et al., Advanced Virgo: A second-
generation interferometric gravitational wave detector,
Classical Quantum Gravity 32, 024001 (2015).

[10] C. Affeldt et al., Advanced techniques in GEO 600,
Classical Quantum Gravity 31, 224002 (2014).

[11] Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa,
T. Sekiguchi, D. Tatsumi, and H. Yamamoto, Interferometer
design of the KAGRA gravitational wave detector, Phys.
Rev. D 88, 043007 (2013).

[12] G. M. Harry (The LIGO Scientific Collaboration), Ad-
vanced LIGO: The next generation of gravitational wave
detectors, Classical Quantum Gravity 27, 084006 (2010).

[13] S. Soni et al., Discovering features in gravitational-wave
data through detector characterization, citizen science and
machine learning, Classical Quantum Gravity 38, 195016
(2021).

[14] H. Yu, R. X. Adhikari, R. Magee, S. Sachdev, and Y. Chen,
Early warning of coalescing neutron-star and neutron-star-
black-hole binaries from the nonstationary noise back-
ground using neural networks, Phys. Rev. D 104, 062004
(2021).

[15] J. Merritt, B. Farr, R. Hur, B. Edelman, and Z. Doctor,
Transient glitch mitigation in Advanced LIGO data, Phys.
Rev. D 104, 102004 (2021).

[16] D. Davis, LIGO detector characterization in the second and
third observing runs, Classical Quantum Gravity 38, 135014
(2021).

[17] S. Bianchi, A. Longo, G. Valdes, G. González, and W.
Plastino, An automated pipeline for scattered light noise
characterization, Classical Quantum Gravity 39, 195005
(2022).

[18] P. Nguyen, Environmental noise in advanced LIGO detec-
tors, Classical Quantum Gravity 38, 145001 (2021).

[19] K. Cannon, GstLAL: A software framework for gravita-
tional wave discovery, SoftwareX 14, 100680 (2021).

[20] C. Stachie, T. D. Canton, E. Burns, N. Christensen, R.
Hamburg, M. Briggs, J. Broida, A. Goldstein, F. Hayes, T.
Littenberg, P. Shawhan, J. Veitch, P. Veres, and C. A.
Wilson-Hodge, Search for advanced LIGO single interfer-
ometer compact binary coalescence signals in coincidence
with Gamma-ray events in Fermi-GBM, Classical Quantum
Gravity 37, 175001 (2020).

[21] D. Davis, L. V. White, and P. R. Saulson, Utilizing aLIGO
glitch classifications to validate gravitational-wave candi-
dates, Classical Quantum Gravity 37, 145001 (2020).

[22] R. Essick, P. Godwin, C. Hanna, L. Blackburn, and E.
Katsavounidis, iDQ: Statistical inference of non-gaussian

ROBERT E. COLGAN et al. PHYS. REV. D 107, 022009 (2023)

022009-14

https://doi.org/10.1093/ptep/ptaa125
https://doi.org/10.1093/ptep/ptaa125
https://doi.org/10.1103/PhysRevD.102.062003
https://doi.org/10.1103/PhysRevD.102.062003
https://doi.org/10.1007/s41114-020-00026-9
https://doi.org/10.1007/s41114-020-00026-9
https://doi.org/10.1103/PhysRevLett.123.231107
https://doi.org/10.1103/PhysRevLett.123.231107
https://doi.org/10.1103/PhysRevD.93.112004
https://doi.org/10.1088/0264-9381/33/7/075009
https://doi.org/10.1088/0264-9381/33/7/075009
https://doi.org/10.1103/PhysRevLett.116.131103
https://doi.org/10.1103/PhysRevLett.116.131103
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/31/22/224002
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.1088/0264-9381/27/8/084006
https://doi.org/10.1088/1361-6382/ac1ccb
https://doi.org/10.1088/1361-6382/ac1ccb
https://doi.org/10.1103/PhysRevD.104.062004
https://doi.org/10.1103/PhysRevD.104.062004
https://doi.org/10.1103/PhysRevD.104.102004
https://doi.org/10.1103/PhysRevD.104.102004
https://doi.org/10.1088/1361-6382/abfd85
https://doi.org/10.1088/1361-6382/abfd85
https://doi.org/10.1088/1361-6382/ac88b0
https://doi.org/10.1088/1361-6382/ac88b0
https://doi.org/10.1088/1361-6382/ac011a
https://doi.org/10.1016/j.softx.2021.100680
https://doi.org/10.1088/1361-6382/aba28a
https://doi.org/10.1088/1361-6382/aba28a
https://doi.org/10.1088/1361-6382/ab91e6


noise with auxiliary degrees of freedom in gravitational-
wave detectors, Mach. Learn. 2, 015004 (2020).

[23] E. Cuoco, Enhancing gravitational-wave science with ma-
chine learning, Mach. Learn. 2, 011002 (2021).

[24] M. Razzano and E. Cuoco, Image-based deep learning for
classification of noise transients in gravitational wave
detectors, Classical Quantum Gravity 35, 095016 (2018).

[25] N. Mukund, S. Abraham, S. Kandhasamy, S. Mitra, and
N. S. Philip, Transient classification in LIGO data using
difference boosting neural network, Phys. Rev. D 95,
104059 (2017).

[26] M. Zevin et al., Gravity Spy: Integrating advanced LIGO
detector characterization, machine learning, and citizen
science, Classical Quantum Gravity 34, 064003 (2017).

[27] G. A. Valdes Sanchez, Data analysis techniques for Ligo
detector characterization, Ph.D. thesis, The University of
Texas at San Antonio, 2017.

[28] T. J. Massinger, Detector characterization for advanced
LIGO, Ph.D. thesis, Syracuse University, 2016.

[29] L. K. Nuttall et al., Improving the data quality of Advanced
LIGO based on early engineering run results, Classical
Quantum Gravity 32, 245005 (2015).

[30] R. Biswas, L. Blackburn, J. Cao, R. Essick, K. A. Hodge, E.
Katsavounidis, K. Kim, Y.-M. Kim, E.-O. Le Bigot, C.-H.
Lee, J. J. Oh, S. H. Oh, E. J. Son, Y. Tao, R. Vaulin, and X.
Wang, Application of machine learning algorithms to the
study of noise artifacts in gravitational-wave data, Phys.
Rev. D 88, 062003 (2013).

[31] D. MacLeod, Improving the sensitivity of searches for
gravitational waves from compact binary coalescences,
Ph.D. thesis, Cardiff University (United Kingdom), 2013.

[32] J. Aasi, The characterization of Virgo data and its impact on
gravitational-wave searches, Classical Quantum Gravity 29,
155002 (2012).

[33] J. R. Smith, T. Abbott, E. Hirose, N. Leroy, D. MacLeod, J.
McIver, P. Saulson, and P. Shawhan, A hierarchical method
for vetoing noise transients in gravitational-wave detectors,
Classical Quantum Gravity 28, 235005 (2011).

[34] N. Christensen (LIGO Scientific Collaboration and Virgo
Collaboration), LIGO S6 detector characterization studies,
Classical Quantum Gravity 27, 194010 (2010).

[35] T. Isogai (LIGO Scientific Collaboration and Virgo Col-
laboration), Used percentage veto for LIGO and virgo binary
inspiral searches, J. Phys. Conf. Ser. 243, 012005 (2010).

[36] S. Mukherjee, R. Obaid, and B. Matkarimov, Classification
of glitch waveforms in gravitational wave detector charac-
terization, J. Phys. Conf. Ser. 243, 012006 (2010).

[37] L. Blackburn, The LSC glitch group: Monitoring noise
transients during the fifth LIGO science run, Classical
Quantum Gravity 25, 184004 (2008).

[38] D. Sigg, R. Bork, and J. Zweizig, Detector characterization
and global diagnostics system of the laser interferometer
gravitational-wave observatory (LIGO), in The Ninth Mar-
cel Grossmann Meeting, edited by V. G. Gurzadyan, R. T.
Jantzen, and R. Ruffini (2002), pp. 1841–1842, 10.1142/
9789812777386_0401.

[39] R. Gurav, B. Barish, G. Vajente, and E. E. Papalexakis,
Unsupervised matrix and tensor factorization for LIGO
glitch identification using auxiliary channels, in AAI 2020
Fall Symposium on Physics-Guided AI to Accelerate

Scientific Discovery (Association for the Advancement of
Artificial Intelligence, 2020).

[40] F. Robinet, Omicron: An algorithm to detect and character-
ize transient noise in gravitational-wave detectors, https://
tds.ego-gw.it/ql/?c=10651 (2015).

[41] J. Powell, D. Trifiro, E. Cuoco, I. S. Heng, and M. Cavaglià,
Classification methods for noise transients in advanced
gravitational-wave detectors, Classical Quantum Gravity
32, 215012 (2015).

[42] J. Powell, A. Torres-Forné, R. Lynch, D. Trifirò, E. Cuoco,
M. Cavaglià, I. S. Heng, and J. A. Font, Classification
methods for noise transients in advanced gravitational-wave
detectors II: Performance tests on Advanced LIGO data,
Classical Quantum Gravity 34, 034002 (2017).

[43] J. C. Driggers et al. (The LIGO Scientific Collaboration
Instrument Science Authors), Improving astrophysical
parameter estimation via offline noise subtraction for Ad-
vanced LIGO, Phys. Rev. D 99, 042001 (2019).

[44] G. Vajente, Y. Huang, M. Isi, J. C. Driggers, J. S. Kissel,
M. J. Szczepańczyk, and S. Vitale, Machine-learning non-
stationary noise out of gravitational-wave detectors, Phys.
Rev. D 101, 042003 (2020).

[45] R. Ormiston, T. Nguyen, M. Coughlin, R. X. Adhikari, and
E. Katsavounidis, Noise reduction in gravitational-wave
data via deep learning, Phys. Rev. Res. 2, 033066 (2020).

[46] N. J. Cornish and T. B. Littenberg, Bayeswave: Bayesian
inference for gravitational wave bursts and instrument
glitches, Classical Quantum Gravity 32, 135012 (2015).

[47] D. Davis, T. B. Littenberg, I. M. Romero-Shaw, M.
Millhouse, J. McIver, F. D. Renzo, and G. Ashton, Sub-
tracting glitches from gravitational-wave detector data
during the third LIGO-Virgo observing run, Classical
Quantum Gravity 39, 245013 (2022).

[48] R. E. Colgan, K. R. Corley, Y. Lau, I. Bartos, J. N. Wright,
Z. Márka, and S. Márka, Efficient gravitational-wave glitch
identification from environmental data through machine
learning, Phys. Rev. D 101, 102003 (2020).

[49] Y. Bengio, A. Courville, and P. Vincent, Representation
learning: A review and new perspectives, IEEE Trans.
Pattern Anal. Mach. Intell. 35, 1798 (2013).

[50] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet
Classification with Deep Convolutional Neural Networks,
Commun. ACM 60, 84 (2017).

[51] K. Simonyan and A. Zisserman, Very Deep Convolutional
Networks for Large-Scale Image Recognition, arXiv:
1409.1556.

[52] I. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning (MIT Press, Cambridge, MA, 2016), http://www
.deeplearningbook.org.

[53] R. Tibshirani, Regression shrinkage and selection via the
lasso, J. R. Stat. Soc. Ser. B 58, 267 (1996).

[54] H. Zou and T. Hastie, Regularization and variable selection
via the elastic net, J. R. Stat. Soc. Ser. B 67, 301 (2005).

[55] Y. Tsuruoka, J. Tsujii, and S. Ananiadou, Stochastic
gradient descent training for l1-regularized log-linear mod-
els with cumulative penalty, in Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language
Processing of the AFNLP (Association for Computational
Linguistics, Singapore, 2009), pp. 477–485.

ARCHITECTURAL OPTIMIZATION AND FEATURE LEARNING … PHYS. REV. D 107, 022009 (2023)

022009-15

https://doi.org/10.1088/2632-2153/abab5f
https://doi.org/10.1088/2632-2153/abb93a
https://doi.org/10.1088/1361-6382/aab793
https://doi.org/10.1103/PhysRevD.95.104059
https://doi.org/10.1103/PhysRevD.95.104059
https://doi.org/10.1088/1361-6382/aa5cea
https://doi.org/10.1088/0264-9381/32/24/245005
https://doi.org/10.1088/0264-9381/32/24/245005
https://doi.org/10.1103/PhysRevD.88.062003
https://doi.org/10.1103/PhysRevD.88.062003
https://doi.org/10.1088/0264-9381/29/15/155002
https://doi.org/10.1088/0264-9381/29/15/155002
https://doi.org/10.1088/0264-9381/28/23/235005
https://doi.org/10.1088/0264-9381/27/19/194010
https://doi.org/10.1088/1742-6596/243/1/012005
https://doi.org/10.1088/1742-6596/243/1/012006
https://doi.org/10.1088/0264-9381/25/18/184004
https://doi.org/10.1088/0264-9381/25/18/184004
https://doi.org/10.1142/9789812777386_0401
https://doi.org/10.1142/9789812777386_0401
https://tds.ego-gw.it/ql/?c=10651
https://tds.ego-gw.it/ql/?c=10651
https://tds.ego-gw.it/ql/?c=10651
https://tds.ego-gw.it/ql/?c=10651
https://doi.org/10.1088/0264-9381/32/21/215012
https://doi.org/10.1088/0264-9381/32/21/215012
https://doi.org/10.1088/1361-6382/34/3/034002
https://doi.org/10.1103/PhysRevD.99.042001
https://doi.org/10.1103/PhysRevD.101.042003
https://doi.org/10.1103/PhysRevD.101.042003
https://doi.org/10.1103/PhysRevResearch.2.033066
https://doi.org/10.1088/0264-9381/32/13/135012
https://doi.org/10.1088/1361-6382/aca238
https://doi.org/10.1088/1361-6382/aca238
https://doi.org/10.1103/PhysRevD.101.102003
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1145/3065386
https://arXiv.org/abs/1409.1556
https://arXiv.org/abs/1409.1556
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x


[56] S. Ioffe and C. Szegedy, Batch normalization: Accelerating
deep network training by reducing internal covariate shift, in
International Conference on Machine Learning (PMLR,
Lille, France, 2015), pp. 448–456.

[57] J. Yan, M. Avagyan, R. E. Colgan, D. Veske, I. Bartos, J.
Wright, Z. Márka, and S. Márka, Generalized approach to
matched filtering using neural networks, Phys. Rev. D 105,
043006 (2022).

[58] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification, in Proceedings of the IEEE International
Conference on Computer Vision (IEEE, Santiago, Chile,
2015), pp. 1026–1034.

[59] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv:1412.6980.

[60] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A.
Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A.
Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S.
Chintala, PyTorch: An imperative style, high-performance
deep learning library, in Advances in Neural Information
Processing Systems 32, edited by H.Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett
(Curran Associates, Inc., 2019), pp. 8024–8035.

[61] P. D. Hoff, Lasso, fractional norm and structured sparse
estimation using a Hadamard product parametrization,
arXiv:1611.00040.

[62] P. Zhao, Y. Yang, and Q.-C. He, High-dimensional linear
regression via implicit regularization, Biometrika 109, 1033
(2022).

ROBERT E. COLGAN et al. PHYS. REV. D 107, 022009 (2023)

022009-16

https://doi.org/10.1103/PhysRevD.105.043006
https://doi.org/10.1103/PhysRevD.105.043006
https://arXiv.org/abs/1412.6980
https://arXiv.org/abs/1611.00040
https://doi.org/10.1093/biomet/asac010
https://doi.org/10.1093/biomet/asac010

