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The Markov Chain Monte Carlo approach is frequently used within a Bayesian framework to sample the
target posterior distribution. Its efficiency strongly depends on the proposal distribution used to build the
chain. The best jump proposal is the one that closely resembles the unknown target distribution; therefore,
we suggest an adaptive proposal distribution based on kernel density estimation (KDE). We group the
model’s parameters according to their correlation and build a KDE based on the already accepted points for
each group. We update the KDE-based proposal until it stabilizes. We argue that such a proposal
distribution could be efficient in applications where the data volume is increasing. We tested it on several
astrophysical datasets (IPTA and LISA) and have shown that, in some cases, the KDE-based proposal also
helps to reduce the chains’ autocorrelation length. The efficiency of this proposal distribution is reduced in
case of strong correlations between a large group of parameters.
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I. INTRODUCTION

We live in the era of large physics and astrophysics
projects and often have to deal with large and complex
datasets. The data analysis usually requires large comput-
ing facilities, and a single computation could sometimes
last for weeks. Optimizing the analysis techniques and
pipelines is a key challenge of the data science associated
with all large (astro)physical experiments.
Nowadays, it is quite common to use the Bayesian

framework for analyzing the data when we have a para-
metrized data model (or several competing models) describ-
ing it. In this approach, we treat all parameters as random
variables with some prior probability based either on some
physical principles or informed from the previous indepen-
dent experiments. We use the observations (measurements)
to refine our prior knowledge and infer a posterior probability
distribution function for the parameters of a model and/or
perform a selection among several models. We often have to
deal with a multidimensional parameter space with a non-
trivial likelihood function that can be evaluated only numeri-
cally. One of the most used tools to perform numerical
sampling from a target probability distribution is theMarkov
Chain Monte Carlo (MCMC). Building a Markov chain that
represents the desired posterior distribution requires two key
ingredients: (i) a jump proposal distribution suggesting how
to choose point X⃗iþ1 given the last point in the chain X⃗i;
(ii) the detailed balancewhich ensures the reversibility of the
chain. One of the most successful and frequently used jump
proposals is parallel tempering (see, for example, [1] and
Appendix C). Understanding the properties of the signal and
the likelihood surface could be used to design a custom

proposal distribution suitable for a particular problem.
Custom-made proposals increase the efficiency (acceptance
rate and exploration abilities) of MCMC.
Here we suggest a generic proposal distribution based on

the kernel density estimation (KDE). The primary purpose of
KDE is to build an analytic approximation of a probability
density function represented by a set of samples. KDE
consists of a collection of individual kernel functions (often
normal distributions) with specific widths (bandwidth)
attached to each sample point, interpolating the probability
density between samples. The idea of using KDE as a
proposal is not new and was already partially explored
in [2,3]. The novelty of the work presented in this paper is in
the particular implementation of the KDE and its embedding
into a sampler. Even though the proposed method is very
generic, we will discuss its application only in the gravita-
tional waves (GWs) data analysis.
Let us summarize the key points of the KDE-based jump

proposal:
(i) KDE is used together with other jump proposals to

build a Markov chain. We assume an adaptive
approach where we use the data accumulated in a
chain to rebuild (update) the KDE regularly. We
repeat the adjustments of KDE until the convergence
criterium based on the Kulback-Leibler divergence
is satisfied.

(ii) In order to build the KDE, we split all parameters
into several groups, where parameters in each group
show evidence of mutual correlation. The perfor-
mance of the KDE-based jump proposal drops
significantly if the dimensionality of a group is
larger than 5. If possible, the KDE distribution
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should be built on the low-dimension parameter
subspace.

(iii) We have built a KDE with an optimized bandwidth
based on the distribution of the samples provided at
the input (see Sec. II B).

Note that the updates of KDE based on the accumulated
samples in the chain break the “Markovian” properties of
the chain. The “memorylessness” of the Markov process
assumes that the next point in the chain depends only on the
previous one, whereas the regular updates of the KDE-
based jump proposal bear memory of all the samples which
went into its construction. One should either stop KDE
updates at some point or identify the instance where KDE
does not change appreciably and discard a part of the
chain with evolving KDE. In the case of uninterrupted
updates, the chain is asymptotically Markovian [4]. We
give a detailed description of the implementation in
Secs. II and III.
We have implemented the KDE-based jump proposal in a

particular sampler.1 We give a detailed description of this
sampler in Appendix C. The main feature of this sampler is
that it runs several chains either entirely independently or as
parallel tempering. We compute the Gelman-Rubin ratio [5]
in themultichain implementation tomonitor the convergence
of MCMC.
We assess the performance of the suggested jump

proposal in two applications to GW data analysis. In the
first one, we analyse the data combined by International
Pulsar Timing Array (IPTA) Collaboration searching for a
continuous GW signal in the nano-Hz band. As the second
dataset, we use simulated LISA data publicly available
through LISA Data Challenge (2a) portal. We use the KDE-
based proposal distribution to infer the parameters of six
Galactic white dwarf binaries. We present the performance
of our jump proposal for those two data analysis problems
in Sec. IV; in particular, we show that the KDE-based
proposal distribution reduces the autocorrelation length
while keeping a high acceptance rate. We conclude the
paper with a discussion on the limitation and possible
extension of our method in Sec. V.

II. KERNEL DENSITY ESTIMATION

This rather short section describes our particular way of
building the KDE. We start with a short introduction to a
KDE and then give details of its bandwidth optimization.

A. Brief introduction

KDE is a nonparametric method used to estimate a
probability density function (PDF) based on a finite set of
sample points [6,7]. It is a smooth alternative to a histogram.
The advantage of KDE is that it uses no binning and gives a
continuous function interpolating (and extrapolating) across

thewhole parameter space. For a D-dimensional dataset fX⃗g
of size N and kernel Kðx; h⃗Þ, we have our KDE f̂ðx; h⃗Þ,

f̂ðx; h⃗Þ ¼ 1

N

XN−1

a¼0

Kðx − X⃗a; h⃗Þ; ð2:1Þ

with parameter h⃗ specifying the bandwidth of the kernel. We
use Latin subscripts from the first half of the alphabet to
enumerate the samples in the set. The main idea is to sum
smooth kernel functions of x centred on each sample (input)
data point X⃗a. The overlapsbetween neighboringkernelswill
add up, shaping the PDF for the set of samples fX⃗g. The
choice of the kernel is arbitrary, andwe choose toworkwith a
Gaussian kernel of the form

Kgðx − X⃗a; h⃗Þ ¼
Yd
i¼1

exp f− 1
2

jx−X⃗aj2i
h2i

gffiffiffiffiffiffi
2π

p
hi

; ð2:2Þ

where the hi is the local bandwidth corresponding to the ith
parameter jx − X⃗aji, and d is the dimensionality of the
parameter space. We use Latin letters from the second half
of the alphabet to enumerate particular parameters, and the
vector notation corresponds to a vector in the param-
eter space.

B. Optimal bandwidth

A KDE has one free parameter which we want to tune,
the bandwidth h⃗. Its value should be adapted to the samples
representing the probability distribution we want to
approximate. There is no direct way of estimating it, and
we use an optimization method [8] based on the minimi-
sation of the mean squared error (MSE) ϵ2 with respect to h⃗,

ϵ2 ¼
Z

dxðf̂ðx; h⃗Þ − fðxÞÞ2; ð2:3Þ

∂ϵ2

∂h⃗
¼ 0; ð2:4Þ

where fðxÞ is the true PDF that we want to approximate
with the KDE. The numerical evaluation of this integral is
given in Appendix B.
Instead of using a global bandwidth h⃗, we can define a

local bandwidth h⃗a for each kernel Kðx − X⃗a; h⃗aÞ [9]. In
that case, our KDE f̂ðx; h⃗Þ is

f̂ðx; h⃗Þ ¼ 1

N

XN−1

a¼0

Kðx − X⃗a; h⃗aÞ: ð2:5Þ

Intuitively we expect the local bandwidth h⃗a to be scaled
according to the local density of points. Indeed, the band-
width is chosen so that it is narrow in the regions of parameter
space where the samples are most dense, and it is broad1https://gitlab.in2p3.fr/lisa-apc/m3c2.
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where we have fewer samples. This choice ensures good
interpolation and overlap between kernels, particularly in
high-dimensional problems with sparse sample points. The
solutionofEq. (2.4) defines theoptimal local bandwidth. The
global bandwidth (if needed) could be defined as an average
over all local values (by setting the input parameter global
bw = True). In Appendix B, we have shown that each local
bandwidth h⃗a ¼ ½ha;1 ha;2…� of the kernel centered on the
point X⃗a can be approximately found as a solution of a
system of linear equations using k nearest neighboring
points X⃗b

AðX⃗bÞ

2
6664

1
h2a;1

1
h2a;2

..

.

3
7775 ¼ B⃗ðkÞ: ð2:6Þ

The matrix A and vector B⃗ are given explicitly in
Appendix B [Eq. (B6)], where we provide a detailed
description of the method. They depend on the position
of nearest neighbors, which are the knear points contained in
a hypercube centered on the point X⃗a in the parameter
space. The edge ΔXi of the hypercube for each parameter
Xi is defined as

ΔXi ¼ ðmax
fX⃗g

Xi −min
fX⃗g

XiÞ=s; ð2:7Þ

where maximization and minimization are performed over
the set of input samples and s is a scaling parameter we call
“adapt scale”.
A hypercube might contain no points (besides the

central). In that case, we cannot compute the local
bandwidth and the point is discarded. Its bandwidth is
later set to the global bandwidth as defined above. In case
of high dimensionality and if the data points are very
sparse, we change parameter s iteratively, decreasing it by a
factor of 2 until we find nonempty hypercubes. However, if
this happens, the bandwidth evaluation will probably be
flawed, and there is not much we can do about it except use
bigger datasets with more sample points. Often the number
of additional points needed to cover all “holes” could be
huge, incurring unmanageable computational costs. That is
why good parameter grouping is essential; it reduces
dimensionality without losing correlated features in the
data. This will be the main subject of the next section. s is
the scaling parameter “adapt scale”.

III. METHOD

Themain idea is to build aKDE for a givenD-dimensional
set of sample points fX⃗g. However, for a high-dimensional
KDE, we are strongly affected by the “curse of dimension-
ality” because the sample sets are often limited in size,
leaving undercovered regions of the parameter space. In

addition, the efficiency of KDE degrades if there are too
many points sincewe place the kernel on top of each sample.
For that reason, we will split a D-dimensional parameter
space into several low-dimensional subspaces, grouping
the most correlated parameters. We assume that subgroups
are not correlated and build the KDE for each of them
f̂αðxα; h⃗αÞ, so the total KDE is the product of the low-
dimensional KDEs,

F̂ðx; h⃗Þ ¼
Y
α

f̂αðxα; h⃗αÞ; ð3:1Þ

where the Greek indices enumerate the subgroups of param-
eters. Forming these subgroups relies on assessing the
correlation between parameters based on the provided set
of samples fX⃗g, which is the main subject for the following
subsection.

A. Parameter grouping

Wewant to split the parameters into several subgroups for
a D-dimensional dataset fX⃗g. Each subgroup will contain
correlated parameters, while parameters from different sub-
groups will be uncorrelated. We could use a covariance
matrix to identify correlations; however, it implicitly assumes
Gaussian distribution and cannot account for complex 2D
structures between pairs of parameters. Instead, we use a
method based on the Jensen-Shannon divergence (JSD) [10].
JSD, similarly to the Kullback-Leibler (KL) divergence,
measures the similarity between two distributions, but
with the advantage of being symmetric and bound
0 ≤ JSD ≤ ln 2. For each pair of parameters ðXi; XjÞ with
the joined probability distribution pðXi; XjÞ we compute

0 ≤ JSDðpðXi; XjÞjjpðXiÞpðXjÞÞ ≤ ln 2: ð3:2Þ

The distributions pðXiÞ; pðXjÞ are obtained by using a
provided set of samples and shuffling only parameters Xi
(or Xj) while keeping other parameters fixed. This preserves
a one-dimensional marginalized distribution for each param-
eter but destroys any correlations (see Fig. 1). If the JSD is
low, the shuffling did not affect the dataset, and the
parameters did not exhibit correlation (a product of margin-
alized 1D distributions well approximates the joint distribu-
tion). On the other hand, if the JSD is large, the shuffling did
destroy the correlation, and the parameters should be
grouped together.
We define a JSD threshold (usually chosen to be 0.1) for

which we consider that two parameters are correlated.
Starting from one parameter, we iterate the process to
extract all correlated pairs.2 Once no additional correlated

2In this paper, the dataset that we use to test correlation and
build the KDEs are the chains obtained from previous MCMC
runs carrying the correlations between parameters.
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parameter is found, we take the union of all correlated
pairs of parameters to form a sub-group. This process is
illustrated in Fig. 2.
In the case of the multimodality of the PDF that we try to

reproduce with the KDE, we implemented an additional
(optional) feature; clustering samples before building KDE.

This feature is especially welcome when the modes are
separated by very low probability valleys. We cluster the
samples (using the k-means method [11]) and apply the
KDE building approach described above to each mode.
This does not change the fundamental structure of the
KDE, but it helps the bandwidth adaptation.

B. KDE: Turning posterior into a proposal distribution

It is desirable in several applications to use posterior
points inferred for some parameters in another investiga-
tion. A KDE built from the posterior samples inferred from
the data “A” can be used as a prior probability to investigate
the data “B” or as a jump proposal probability distribution.
Let us give several concrete examples of its use:

(i) The data inferred from electromagnetic observations
in the form of samples is used as a prior for the GW
experiment. In this case, we can either build a joint
likelihood or, alternatively, build a KDE on the
external posteriors and use it as a prior while
analyzing the GW data.

(ii) In pulsar timing array (PTA) data analysis, we often
first investigate the data acquired for each pulsar and
try to build a noise model. Later this pulsar and
associated noise model is plugged into the array of
pulsars to search for a GW signal. It is proven to
boost the efficiency of the GW search significantly if
we use posteriors for the noise model inferred in the
first step as a proposal distribution in the global fit
later on.

(iii) Often, the data is taken continuously, and we want to
analyze it “on the fly”; that is true for GW data

FIG. 1. We plot three examples of datasets where we have on
the left no correlation, in the middle linear correlation and on the
right more elaborate features. On the top panels, we have the
corresponding values of the correlation coefficient based on a
simple evaluation of the covariance matrix. We see that it excels
at finding the linear correlation but completely fails with the right
panel features. In the bottom panels, we have the same three
datasets in red with their corresponding shuffled version that
destroys correlations in blue. While the left panel remains
unchanged, the others are affected, and the JS divergence
captures it.

FIG. 2. Illustration of the parameter grouping process using a JSD matrix. For this example, the JSD threshold is set to 0.25; hence the
parameter subgroups will be [0, 2, 3, 4] and [1]. Starting from parameter 0, we find that JSD for parameters 2 and 3 are above the
threshold, so they are both correlated with parameter 0. Then we check for parameters 2 and 3 and find that 4 is correlated with 3 while 2
sees no additional correlation. The last step would have been to check for 4 and find no additional correlations. Therefore, 0, 2, 3, and 4
will form a subgroup of correlated parameters. The parameter “1” is the last parameter that does not correlate with others (according to
the adopted threshold) and will be a subgroup on its own.
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analysis. In this case, we want to increment the data
with a certain cadence while using information about
the sources acquired from the analysis of the past
data. One possibility is to turn again posterior built
from the analysis of, say, the first half a year of data
into a prior in the analysis of the second half year
of data.

(iv) The product-space sampling method (see
Refs. [12,13]) gives a practical suggestion on how
to compute the Bayes factor comparing several
models without computing the evidence for each
model. In this approach, we introduce a hyper-
parameter indexing the models and jump in this
parameter (say, within MCMC) which corresponds
to jumping between the models. For this method to
be robust, the exploration within each model must be
very efficient, otherwise it will lead to very long and
poorly converging runs or spurious results. If we
have posteriors for each (or some) model, we can
turn them into a proposal distribution and use them
in the hypermodel exploration.

Grouping correlated parameters in building a KDE-
based proposal allows us also to make jumps inside a
particular (or several) subgroup(s) while keeping other
parameters fixed (Gibbs-like sampling, see Ref. [14]). The
subgroups for each iteration are chosen randomly with
equal probability. In this way, we ensure that all subgroups
are visited evenly (on average), and we explore the entire
parameter space by doing low-dimensional jumps. Let us
denote the number of sub-KDEs that are used for each jump
nkde, then the proposal probability is

F̂nkdeðx; h⃗Þ ¼
Ynkde
α

f̂αðxα; h⃗αÞ; ð3:3Þ

where the subscript in xα implies that we vary only
parameters that belong to that (α) subgroup. This proba-
bility is used to balance the chain in the Metropolis-
Hastings step of the MCMC algorithm [15]. Choosing a
point from a given sub-KDE f̂αðxα; h⃗αÞ is done by drawing
a point from the randomly chosen kernel Kðx − X⃗a; haÞ of
f̂αðxα; h⃗αÞ centered on X⃗a,

X⃗�
b → X⃗a þN ð0⃗; haÞ; ð3:4Þ

where N ð0⃗; haÞ is a normally distributed random variable
with 0⃗ mean and covariance matrix diagðhaÞ that is the
bandwidth of kernel Kðx − X⃗a; haÞ. For a random set of
nkde sub-KDEs, the newly proposed point X⃗

� is the union of
parameters from each subgroup X⃗�

b,

X⃗� ¼ ⋃
b
X⃗�
b: ð3:5Þ

C. Adaptive proposal

If we do not have samples from the previous inves-
tigations, we can still build a KDE-based proposal using the
points accepted by a running MCMC. There are several
caveats which need to be considered: (i) during the burn-in
and even sometime after, the distribution of the accepted
points is quite unstable, and that will reflect on the KDE;
(ii) we are breaking the rules of MCMC; the chain is only
asymptotically Markovian [16]. The last point refers to the
fact that the Markov chain we build should be memoryless
as the next point in the chain depends only on the current
one. Using the entire (or part of) chain to build a proposal
distribution breaks that rule, so we should stop updates and
discard the chain up to that point. The rest of this subsection
details the practical implementation of the KDE adaptation.
We select only a subset of total N samples to build a

KDE from the chain’s current state. In particular, we take ns
uniformly spaced points, from burn-in to the last point, as
illustrated in Fig. 3. The burn-in is defined as a fraction,
q (always fixed to 0.25), of the total chain length N and
those points are dismissed (hence, ns ¼ ð1 − qÞN). As the
chain evolves, the burn-in and post-burn-in increase in
length and since we keep ns fixed, the space Δn between
the selected samples grows. An extensive burn-in period
ensures the stationarity of the remaining points. We also
expect that the KDE quality improves with an increase in
Δn because of the reduced correlation in the samples taken
for its building, and that is true until Δn reaches a typical
autocorrelation length of the chain [17].
We rebuild a new KDE after each Nadapt iterations

(jumps) of the chain. We want to track the evolution of
the KDE and stop updating when it has reached stability
(that could be another indicator of the burn-in phase). We
compare the new (rebuilt) KDE F̂1ðx; h⃗1Þ with the old
F̂0ðx; h⃗0Þ by computing the KL divergence [18],

KLðF̂0jjF̂1Þ ¼
Z

dxF̂0ðxÞðlog F̂0ðxÞ − log F̂1ðxÞÞ: ð3:6Þ

This integral could be approximated as

KLðF̂0jjF̂1Þ ≃
1

ns

X
a

ðlog F̂0ðX⃗0a; h0
!Þ − log F̂1ðX⃗0a; h1

!ÞÞ;

ð3:7Þ

FIG. 3. For a chain of current length N, we get rid of the burn-
in, then we extract ns linearly-spaced samples from the remaining
fraction of the chain. These ns points are used to build the KDE.
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where fX⃗0g is the set of ns samples used to build F̂0ðx; h⃗0Þ.
This gives a measure of change in KDE between successive
updates, ΔKL. We stop updating KDE in order to preserve
the ergodicity of the process [19] as soon as the stability
criterion

jhΔKLijffiffiffiffiffiffiffiffiffiffiffiffi
hKL2i

p < 5% ð3:8Þ

is satisfied. The angular brackets denote the averaging over
the last five updates and we demand that the average
change in KL is small compared to the average KL values.
ΔKL can be negative or positive, depending on the
evolution of KL. If KL does not converge to a specific
value, this condition ensures that it is at least oscillating
around a mean value.
This procedure could also serve as an indicator of the

stationarity of the chain. The sampled distribution could
be considered stationary if: (i) the algorithm that groups
the correlated parameters returns the same subgroups, and
(ii) the KL divergence measuring changes in the KDE
between successive updates is small.

IV. RESULTS

We consider two datasets and perform search/parameter
estimation using MCMC with a KDE-based proposal
distribution.
In the first application, we consider a dataset from the

International PTA Collaboration and perform the noise
analysis for each pulsar in the array [20]. The likelihood is
expected to be quite broad and unimodal, but the dimension-
ality of the parameter space is large as well as its overall
volume.
In the second application, we work with the simulated

LISA data and search/characterize small bandwidths with
several Galactic white-dwarf binaries. The likelihood in
this case, has a more complex structure with a quite strong
correlation between parameters.
We quantify the performance of the KDE-based proposal

by evaluating the following quantities:
(i) Closeness between the KDE and the actual distri-

bution using KL divergence.3

(ii) The acceptance rate when the KDE is used as a
proposal distribution with MCMC sampler.

(iii) The autocorrelation length [17] of the MCMC chain
when the KDE is used to propose jumps (mixing of
the chain).

A. IPTA dataset

We build the KDE using ns ¼ 10000 samples from the
chains generated by previous MCMC runs. We adopt the
following choice of parameters for generating KDE:

(i) js threshold = 0.1
(ii) adapt scale = 10
(iii) use kmeans = False
(iv) global bw = True
(v) n kde = 1

Within a total of 104 parameters, the grouping algorithm
finds 76 one-dimensional subgroups, 12 two-dimensional
subgroups and 1 four-dimensional subgroup. For each
of these subgroups we calculate the KL divergence
KLðpαðxαÞjjf̂αðxα; h⃗αÞÞ of the true PDF of the subgroup
pαðxαÞ against the corresponding sub-KDE f̂αðxα; h⃗αÞ. A
good sub-KDE should give a KLðpαðxαÞjjf̂αðxα; h⃗αÞÞ that
is close to 0. Because the number of parameters is large,
we show the histogram plot in Fig. 4 depicting KL for
each subgroup.
The impact of the dimensionality of the sub-KDE on KL

can be clearly seen in Fig. 4. Close to 0, we have 76 one-
dimensional sub-KDEs, between 0.1 and 0.4, we have 12
two-dimensional sub-KDEs, and the four-dimensional sub-
KDE has KL ≈ 0.7. As discussed in the previous section,
increasing dimensionality implies sparse data samples, so
we expect KL values to rise because the KDE might fail to
interpolate the PDF correctly between neighboring points,
producing holes in the distribution. Computing KL allows
us to quantify this effect and assess the quality of the KDE
that may not be obvious by just eyeballing (see Fig. 5).
Next, we analyzed the IPTA data using MCMC sampler

[21], and ENTERPRISE [22] package for computing the
likelihood function. We chose to use two jump proposals
single component adaptive metropolis (SCAM) [23] and
differential evolution (DE) [24,25] to compare to KDE. We
search for a continuous gravitational wave signal while
fitting for pulsar noise parameters [26]. The KDE for the
noise parameters has been built using posterior samples

FIG. 4. Distribution of the KL divergence for all sub-KDEs. 1D
sub-KDEs are of best quality.

3Because we do not know the true distribution, we have to use
histograms to evaluate KL. The formula for the binned KL is
given in Appendix A.
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obtained from the preceding single-pulsar analysis. We
compare three different runs:

(i) using a KDE-basedþ default jump proposals SCAM
and DE (labeled as “KDE”);

(ii) using binned empirical distributionsþ default jump
proposals SCAM and DE (labeled as “Binned”);

(iii) using only default jump proposals SCAM and DE
(labeled as “None”).

The binned empirical distributions are essentially two-
dimensional histograms based on the same posterior
samples as used in building KDE [27]. Those carry a
similar spirit to KDE, being a pairwise approximation to
marginalized posterior, but at the same time, are funda-
mentally different from the KDE because the KDE is a
continuous function in space that interpolates between
the sample points using a smoothing kernel. In addition,
the KDE-based jump proposal makes grouping based
on the parameter correlation that could lead to more than
two-dimensional group (see Fig. 4).
Tables I and II, compare the acceptance rate of different

proposals in two independent runs. One can see that KDE
has the highest acceptance rate due to intelligent parameter

grouping and interpolation between the samples incorpo-
rated in the KDE-based proposal. We have tested jumps in
only one or simultaneously in several (nkde) subgroups of
parameters in each iteration. Increasing nkde leads to the
higher dimensionality of the jumps and substantially impacts
the acceptance rate, as shown in Fig. 6 and Table III. The best
results are achieved if we perform jumps in one subgroup at a
time; the acceptance rate decreases exponentially with nkde.
A high acceptance rate is not necessarily a sign of a good

proposal, as it has to be paired with a low-autocorrelation
length. For each run, we compute the autocorrelation
lengths for all parameters and compare the maximum,
minimum and mean autocorrelation lengths. The number of
independent samples in the chain is defined as the accu-
mulated number of samples divided by the autocorrelation
length. Only independent samples tell us the actual length
of the chain; therefore, having low autocorrelation implies
the high efficiency of sampling the target distribution.
Results are presented in Table IV. KDE performs very well
for IPTA data. The minimum autocorrelation length does
not seem to be affected much by the choice of the jump
proposal, but the maximum is reduced by a factor of 2 when
using the KDE. Reducing the maximum length is the most
important because thinning the chain by this factor ensures
that the samples are independent for all parameters. The
mean autocorrelation length is just an indicator of the
average performance of the proposal.
As for the acceptance rate, we check the influence of nkde

on the autocorrelation length. Results are given in Table V.
For high values of nkde, even though the acceptance rate
decreases, the autocorrelation drops too and mixing
improves. However, this result should be taken with

FIG. 5. Two-dimensional corner plot of binned original dataset
against smooth KDE plot. KDE is blue, original is orange. The
contour levels for the original dataset in the bottom left panel are
[0.1, 0.95]. For this sub-KDE, KL ≃ 0.11.

TABLE I. Acceptance for various proposals (KDE run).

KDE SCAM DE

Acceptance rate 0.57 0.39 0.43

TABLE II. Acceptance for various proposals (binned proposal
run).

Binned SCAM DE

Acceptance rate 0.47 0.41 0.43

TABLE III. Acceptance for different nkde.

nkde KDE SCAM DE

1 0.47 0.41 0.43
5 0.22 0.36 0.41
10 0.08 0.35 0.40

FIG. 6. Acceptance rate for several values of nkde.
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caution; using high nkde could lead to a very low acceptance
point, as shown in Fig. 6. In Fig. 7 we show the
autocorrelation length as a function of nkde and it indicates
that the optimal number is around nkde ¼ 5 with an
acceptance rate of 0.22 that is very close to the expected
optimal acceptance rate of 0.234 [28]. Based on these
results, we recommended working with values of nkde
between 1 and 5, especially when the dimensionality of the
parameter space is high, like in this IPTA example.

B. LISA dataset

Now we turn our attention to the simulated LISA data; in
particular, we use the “Sangria” dataset. It is one year long
and contains about a dozen merging massive black hole
binaries and about 30 million Galactic binaries https://lisa-
ldc.lal.in2p3.fr/. Here we are interested in Galactic binaries
in the very narrow frequency range around 4 mHz, and we
have removed all merging black holes. We have detected
six sources in that frequency interval and we use

KDE-based proposal together SCAM and DE.4 This time
we use a homemade sampler M3C2 (footnote 1), precisely
a parallel tempering version of it. This sampler uses
Metropolis-Hastings acceptance-rejection step, as well as
slice sampling [29]. We describe this sampler in detail in
Appendix C.
Each Galactic binary is characterized by eight parame-

ters, so we have 48 parameters in total [30]. We expect
some parameters (like amplitude and the orbital inclination
angle) to correlate for each source, and, in addition, some
parameters could correlate between the sources. Here we
try to build a proposal on-the-fly. The likelihood surface for
this problem is rather complex, having many well-separated
maxima (the reason for using parallel tempering). We will
build KDE as we accumulate samples by adapting the KDE
proposal with the rate of every 5000 samples and using
ns ¼ 5000 samples for each chain. Besides the KDE, we
also use the SCAM jump proposal and slice sampling. Note
that the SCAM and slice have a different nature. SCAM is
just another jump proposal that uses the principal direction
of the covariance matrix, and then the Metropolis-Hastings
ratio is computed to decide on the acceptance/rejection.
Slice is not based on the Metropolis-Hastings algorithm
but an entirely different way of sampling the posterior.
The combination of Metropolis-Hastings and slice sam-
plers already significantly reduces the autocorrelation of
the accepted points.
First, we consider the convergence of KDE adaptation.

During the burn-in stage, the KDE changes quite violently.
The correlation between parameters is quite unstable,
leading to the fluctuation in how parameters are grouped
and the number of subgroups. As burn-in proceeds, we
keep track of the grouping and fix the splitting in sub-
groups as soon as it stabilizes (when the same grouping
appears at least five times). Once we have fixed subgroups,
we check the KL divergence between the subsequent
updates of KDE (as described above). The results of
KDE adaptation are presented in Fig. 8. The consistent
grouping of parameters was reached after 26 updates, as
indicated by a dashed red line. Then we compute KL after
each KDE’s update and fix it once the condition (3.8) is met
(see the right panel of Fig. 8). Once KDE is fixed, we
dismiss all accumulated points and perform the actual
sampling.
As a next step, we want to check the acceptance rate of

the KDE-based proposal and compare it to SCAM and
slice. Note that the slice is not based on the Metropolis-
Hastings acceptance/rejection algorithm; however, we can
still introduce an effective acceptance rate as a ratio of the
total number of calls to the total number of likelihood
evaluations used by the slice.

TABLE IV. The maximum, minimum and mean autocorrelation
lengths for three runs.

Max Min Mean

KDE 578 27 113
Binned 1386 29 160
None 1032 25 208

TABLE V. The maximum, minimum, and mean autocorrelation
lengths for different nkde.

nkde Max Min Mean

1 578 27 113
5 386 25 79
10 395 28 95

FIG. 7. Mean, maximum, and minimum autocorrelation lengths
for several values of nkde.

4The DE introduced in [25] is using population MCMC. Here
we choose to use it on a single chain in the spirit described in the
snooker proposal in [24].
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We consider two cases for the subgroup jumps nkde ¼ 1
and nkde ¼ 5. Figure 9 compares acceptance rate for
nkde ¼ 1. One can see that it stabilizes around 0.31 very
fast, and, despite that, it is lower than what we had for the
PTA application as it is a very decent acceptance rate.
SCAM has a similar acceptance (but usually longer
autocorrelation length), while slice is worse by a factor
of 10 (though it usually has low autocorrelation length).
Figure 10 compares acceptance rate for nkde ¼ 5. An

increase in the dimensionality of the jumps has a drastic
effect on the acceptance rate, its value drops to about 0.015.
It is also interesting to compare the behavior of SCAM and
slice for two runs. Slice shows very stable/consistent
results, while SCAM has significant fluctuations while
preserving the trend. The two-dimensional KDE jumps
seem to be the best option in this application.

Next, we check the autocorrelation length when we
run with and without a KDE-based jump proposal. We
restrict ourselves with the case nkde ¼ 1 since nkde ¼ 5
has a very poor acceptance rate. Figure 11 compares the
maximum and mean autocorrelation of two runs. We
observe that the mean value is slightly (about 17%)
lower when we include the KDE-based jump proposal
and the maximum length remains the same. As we have
already mentioned, mixing SCAM with Metropolis-
Hastings and slice steps does reduce the autocorrelation
already (compared to the PTA example where we did
not use slice sampling). In addition, we use a parallel
tempering algorithm, where the hot chains could be
seen as yet another jump proposal. Overall, KDE does
not add much to the already reduced autocorrelation run
in the current analysis.

FIG. 9. Acceptance rate of all proposals for nkde ¼ 1. KDE and
SCAM are on top panel, SLICE on bottom panel. Red plot and
black dashed line shows where KDE finally converged and
stopped updating.

FIG. 10. Acceptance rate of all proposals for nkde ¼ 5. KDE
and SCAM are on top panel, SLICE on bottom panel. Red plot
and black-dashed line shows where KDE finally converged and
stopped updating.

FIG. 8. Evolution of KL and ΔKL. Left panel, the evolution
of KL before fixing parameter groups. Right panel, the evolution
of KL after fixing parameter groups, we start computing
ΔKL 5 updates after the grouping was fixed. The thick red line
indicates the ΔKL threshold level of 5% below which we reach
convergence.

FIG. 11. Maximum and mean autocorrelation lengths for
nkde ¼ 1, comparing a run with KDE against a run without
KDE. Black dashed line shows where KDE finally converged and
stopped updating.
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V. CONCLUSION

Bayesian formalism is a common approach in current
gravitational wave data analysis. The inference of the
parameters’ posterior distribution is often done using
MCMC, and the efficiency strongly depends on the jump
proposal it uses. In this article, we have presented a KDE-
based proposal which can be either built on-the-fly during
the extended burn-in stage or constructed using posterior
points from another run.
The suggested KDE-based jump proposal has several

extended features: (i) the adaptive bandwidth based on the
local density of points (small bandwidth in the densely
sampled regions of the parameter space); (ii) splitting the
parameter space into subgroups of the correlated param-
eters and applying KDE on each subgroup, we identify
correlations using JSD; (iii) the possibility of building KDE
adaptively.
We tested this jump proposal by running MCMC on

IPTA data using a KDE that we have built from previous
MCMC runs (i.e., nonadaptive case). The advantage of a
KDE-based jump proposal was clearly seen in the high
acceptance rate with low-autocorrelation length. We found
that using a relatively low value nkde ¼ 1–5 (number of
subgroups used in the jump simultaneously) seems to be
optimal.
Another application of the KDE-based jump proposal

was running PTMCMC on the simulated LISA data
searching for Galactic white dwarf binaries in a narrow
frequency band. In this case, we have built the KDE
adaptively during an extended burn-in stage. The addition
of the KDE jump proposal to the sampling had only a
moderate impact: it shows a decent acceptance rate (about
31%) with only a small improvement in the autocorrelation
length. Moreover, we have shown that the low-dimensional
jumps are strongly preferred.
A few things could be improved, most notably in the

adaptation. The threshold for grouping parameters was
chosen somewhat ad hoc, and the correlation of some
parameters could be close to the threshold. We did observe
the fluctuation in choosing the subgroups during the
adaptation. One possibility could be to choose not one
but two plausible groupings, build KDE for each and use
two KDE proposal distributions in a probabilistic manner.
The criteria for stopping adaptation was also chosen
somewhat arbitrarily and might benefit from further tuning.
Finally, we should implement an adaptive tuning for
optimal nkde based on the acceptance rate.
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APPENDIX A: KULLBACK-LEIBLER
DIVERGENCE

We test the quality of our KDE by computing the KL
divergence for each subgroup f̂αðxα; h⃗αÞ. Because we do
not know the actual PDF for a set of samples fX⃗g, we have
to resort to binning. From sub-KDE f̂αðxα; h⃗αÞ built on
subgroup of parameter samples fX⃗αg, we draw a new set of
samples fX⃗�

αg. We estimate the corresponding normalized
histogram distributions Pα and P�α using same grid ofN bins
to compute the KL divergence as [18]

KLðPαjjP�αÞ ¼
XN
i¼0

Pα;iðln Pα;i − ln P�α;iÞ: ðA1Þ

To avoid divergence of the logarithms, we set every Pα;i
and P�α;i that are equal to 0 to the minimum found value in
Pα ∪ P�α that is not 0.

APPENDIX B: OPTIMAL BANDWIDTH OF KDE

We start this appendix with defining few useful expres-
sions that will be used in our derivations later.

(i) The overlap between two neighbouring kernels of
same bandwidth is given by

Z
dxKðx−X⃗a;h⃗ÞKðx−X⃗b;h⃗Þ¼

Yd
i¼1

exp−1
4

jX⃗a−X⃗bj2i
h2iffiffiffi

π
p

2hi
:

ðB1Þ

Let us remind you that d is the dimensionality.
(ii) If a set of samples fX⃗g of size N drawn from the

probability density function fðxÞ, then we can
approximate the averaging integral as

Z
dxfðxÞgðxÞ ≃ 1

N

X
a

gðXaÞ; ðB2Þ

where the function g is evaluated at the sample
points X⃗a.

The main objective of this appendix is to derive the
optimal local bandwidth which is defined through the
minimization of the mean square error,

ϵ2 ¼
Z

dxðf̂ðx; hÞ − fðxÞÞ2

¼
Z

dxf̂2ðx; hÞ − 2

Z
dxf̂ðx; hÞfðxÞ þ

Z
dxf2ðxÞ

¼
Z

dxf̂2ðx; hÞ − 2

Z
dxf̂ðx; hÞfðxÞ þ const; ðB3Þ
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where fðxÞ is the true PDF, ðf̂ðx; hÞ is its KDE approxi-
mation and const is the term independent of the bandwidth
h. We introduce local bandwidth ha attached to each
sample point Xa. Next, we assume that all points in the
vicinity of each point have similar bandwidths, in other
words, hb ≈ ha for knear local points Xb. Using these
assumptions we can approximate the first term,

N2

Z
dxf̂ðx; haÞf̂x; hb

¼
X
a

Yd
i¼1

1

2
ffiffiffi
π

p
ha;i

þ
X
a

X
b≠a

Yd
i¼1

e
−1
4

ΔX2
ab;i

h2
a;i

2
ffiffiffi
π

p
ha;i

; ðB4Þ

where ha;i is ith component of bandwidth attached to

Gaussian kernel at X⃗a and ΔXab;i ¼ ðX⃗a − X⃗bÞi is ith
component of the a vector connecting two samples in
the parameter space.
Using now second bullet equation and excluding the

actual sample from the sum (for improving stability and
removing the possible bias, see “leave one out estimator”
[8]) we obtain for the second term

2

Z
dxf̂ðx; haÞf̂x ≈

2

N2

X
a

X
b≠a

Yd
i¼1

e
−1
2

ΔX2
ab;i

h2
a;iffiffiffiffiffiffi

2π
p

ha;i
; ðB5Þ

where we have assumed N ≫ 1, NðN − 1Þ ≈ N2.
Combining these terms together gives us

N2ðϵ2 − constÞ ¼
X
a

�Yd
i¼1

1

2
ffiffiffi
π

p
ha;i

þ
X
b≠a

Yd
i¼1

e
−1
4

ΔX2
ab;i

h2
a;i

2
ffiffiffi
π

p
ha;i

− 2
X
b≠a

Yd
i¼1

e
−1
2

ΔX2
ab;i

h2
a;iffiffiffiffiffiffi

2π
p

ha;i

�
:

Find the minimum of this expression by differentiating with
respect to hc;j and equating it to zero,

0 ¼ −
1

hc;j

Yd
i¼1

1

2
ffiffiffi
π

p
hc;i

�
1þ

X
b≠c

�
1 −

1

2

ΔX2
bc;j

h2c;j

�Yd
i¼1

e
−1
4

ΔX2
bc;i

h2
c;i

−2ð
ffiffiffi
2

p
Þd
�
1 −

ΔX2
bc;j

h2c;j

�Yd
i¼1

e
−1
2

ΔX2
bc;i

h2
c;i

�
:

Next we assume a quite conservative approximation;
ΔX2

bc;j

h2c;j
≪ 1 for all points X⃗b in vicinity of X⃗c and all

components j. This assumption overestimates the band-
width and is therefore conservative; this is what is used in

this paper. Expanding in these small parameters and
retaining only the quadratic terms in this small ratio we
obtain the system of linear equations for 1=h2c;j,

knearð2d=2þ1− 1Þ− 1

ð2d=2− 1Þ ¼
X
b≠c

�
3
ΔX2

bc;j

h2c;j
þ
X
i≠j

ΔX2
bc;i

h2c;i

�
: ðB6Þ

Solving this system at each point X⃗c for each direction in
the parameter space (j) gives us the desired local band-
width h⃗c.
As an alternative approach we can assume that the

bandwidth is comparable to the distance to the neighbors

and define h2c;j ¼ ΔX2
c;jð1þ εc;jÞ, where ΔX2

c;j ¼
1=knear

P
b ΔX2

bc;j is the average square distance (ith com-

ponent) to the points in vicinity of X⃗c and assume that

ΔX2
bc;j=ΔX2

c;j ∼ 1 and εc;j ≪ 1 for all b, c, j. This yields

Yd
i¼1

e
−1
4

ΔX2
bc;i

h2
c;i ≈

�
1þ 1

4

Xd
i

ΔX2
bc;i

ΔX2
c;i

�Yd
i¼1

e
−1
4

ΔX2
bc;i

ΔX2c;i : ðB7Þ

Using this approximation we arrive at the system of linear
equations for 1=h2c;j,

− 1þ
X
b≠c

2ð
ffiffiffi
2

p
Þd
Yd
i¼1

e
−1
2

ΔX2
bc;i

ΔX2c;i − Pbc

�
1 −

1

2

Xd
i

ΔX2
bc;i

ΔX2
c;i

�

¼
X
b≠c

Pbc

�
3
ΔX2

bc;j

ΔX2
c;j

εc;j þ
X
i≠j

ΔX2
bc;i

ΔX2
c;i

εc;i

�
;

where

Pbc ≡ 1

4

�Yd
i¼1

e
−1
4

ΔX2
bc;i

ΔX2c;i − 4ð
ffiffiffi
2

p
Þd
Yd
i¼1

e
−1
2

ΔX2
bc;i

ΔX2c;i

�
:

Solving this system at each point X⃗c for each direction in the
parameter space (j) gives us the desired local bandwidth h⃗c.

APPENDIX C: THE M3C2 SAMPLER

The M3C2 (footnote 1) (multiple parallel Markov Chain
Monte Carlo) is a python implementation of MCMC
sampler. This tool aims to improve the sampling robustness
of complex posterior distribution by running multiple
chains in parallel. The cross-check of the chain perfor-
mance informs us about convergence (using the Gelman-
Rubin ratio [5]). We have implemented two mechanisms of
building the chain: (1) using the slice sampling (slice)
and (2) Metropolis-Hastings algorithm (MH) which could
be used separately or together to improve the mixture of the
chains and reducing the autocorrelation length. Even
though the sampler is very generic, we primarily use it
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within the context of GW data analysis. For the Metropolis-
Hastings method, we have implemented a set of proposal
jumps:

(i) SCAM (single component adaptive Metropolis),
jumps along one randomly chosen direction given
by the eigenvectors of the covariance matrix [16,23].

(ii) DE (differential evolution), jumps along the direc-
tion given by the difference of two randomly chosen
samples of the chains, or (as in the classic imple-
mentation [24,25]) by using the state of different
chains running in parallel.

(iii) ReMHA (regional Metropolis-Hastings algorithm),
the proposal represented by a mixture of several
Gaussians distributions [16,31].

For SCAM we build the covariance matrix adaptively
based on the accumulated samples. The use of the accu-
mulated samples breaks the Markov property of the chain,
making it asymptotically Markovian. The stability of the
covariance matrix is yet another sign of the converged
chain. One can stop adaptation after the burn-in run. This
proposal is suggested in [32].
ReMHA is similarly used adaptively. We use accumulated

samples during the burn-in to estimate the number of
clusters using variational Bayesian-Gaussian mixture
(skikit-learn package) and use this Gaussian mixture
probability as a proposal. This proposal is similar to the one
suggested in [31].
DE could be used as a proposal (snooker) described in

[24] using multiple chains running in parallel or using the
accumulated samples for each chain to propose the jump. In

the case of well-converged chains, there is not much
difference between those two ways. However, the behavior
and efficiency of those two implementations is very differ-
ent during the burn-in stage.
In slice sampling, we use slicing of the parameter

space either randomly or along the eigendirections of the
covariance matrix; the choice is made with a probability set
by the user. In the case of a mixture of slice and MH, the
frequency of each method is defined by a user-specified
weight. In addition to preset proposals available in M3C2,
the user can add custom jump-proposals using a standard
interface. The weights and proposals can be set individually
for each running chain.
Besides running parallel independent chains, M3C2

sampler also has parallel tempering implementation with
an adaptive temperature ladder following [33]. In this
method, we modify the likelihood by introducing the
“temperature” [34], which makes it lower and broader,
allowing “hot chains” to explore parameter space at a larger
scale. The “melted” hot chains play the role of a proposal
there, and its efficiency depends on the interplay of the
number (and distribution) of hot chains (more chains is
better) and computational demands (increase with the
number of chains). The adaptation aims at increasing the
acceptance rate between the chains.
The multichain scheme of M3C2 can be easily deployed

on the multicore CPU infrastructure. In the case of parallel
tempering, data exchange between chains is restricted to
its minimum level (pairwise communication between the
chains) to ensure good scalability.
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[19] Y. F. Atchadé and J. S. Rosenthal, On adaptive Markov
Chain Monte Carlo algorithms, Bernoulli 11, 815 (2005).

[20] B. B. P. Perera et al., The International Pulsar Timing Array:
Second data release, Mon. Not. R. Astron. Soc. 490, 4666
(2019).

[21] J.Ellis andR. vanHaasteren, jellis18/ptmcmcsampler:Official
release, 2017, https://github.com/jellis18/PTMCMCSampler.

[22] J. A. Ellis, M. Vallisneri, S. R. Taylor, and P. T. Baker,
ENTERPRISE: Enhanced numerical toolbox enabling a
robust pulsar inference suite, Zenodo, 2020, 10.5281/zen-
odo.4059815.

[23] H. Haario, E. Saksman, and J. Tamminen, An adaptive
metropolis algorithm, Bernoulli 7, 223 (2001).

[24] Cajo J. F. Ter Braak and J. A. Vrugt, Differential evolution
Markov Chain with snooker updater and fewer chains,
Stat. Comput. 18, 435 (2008).

[25] Cajo J. F. Ter Braak, A Markov Chain Monte Carlo
version of the genetic algorithm differential evolution:
Easy Bayesian computing for real parameter spaces, Stat.
Comput. 16, 239 (2006).

[26] K. Aggarwal et al., The NANOGrav 11 yr data set: Limits
on gravitational waves from individual supermassive black
hole binaries, Astrophys. J. 880, 116 (2019).

[27] S. R. Taylor, P. T. Baker, J. S. Hazboun, J. Simon, and S. J.
Vigeland, Enterprise extensions, 2021, v2.3.3, https://github
.com/nanograv/enterprise_extensions.

[28] A. Gelman, W. R. Gilks, and G. O. Roberts, Weak con-
vergence and optimal scaling of random walk metropolis
algorithms, Ann. Appl. Probab. 7, 110 (1997).

[29] R. M. Neal, Slice sampling, Ann. Stat. 31, 705 (2003).
[30] T. B. Littenberg, A detection pipeline for galactic binaries in

LISA data, Phys. Rev. D 84, 063009 (2011).
[31] R. Craiu, J. Rosenthal, and C. Yang, Learn from thy

neighbor: Parallel-chain and regional adaptive MCMC,
J. Am. Stat. Assoc. 104, 1454 (2009).

[32] J. A. Ellis, A Bayesian analysis pipeline for continuous GW
sources in the PTA band, Classical Quantum Gravity 30,
224004 (2013).

[33] W. D. Vousden, W.M. Farr, and I. Mandel, Dynamic
temperature selection for parallel tempering in Markov
Chain Monte Carlo simulations, Mon. Not. R. Astron.
Soc. 455, 1919 (2016).

[34] R. Swendsen and J.-S. Wang, Replica Monte Carlo Sim-
ulation of Spin-Glasses, Phys. Rev. Lett. 57, 2607 (1986).

ADAPTIVE KERNEL DENSITY ESTIMATION PROPOSAL IN … PHYS. REV. D 107, 022008 (2023)

022008-13

https://doi.org/10.1080/00031305.1992.10475878
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1198/jcgs.2009.06134
https://doi.org/10.3847/1538-4365/aab76e
https://doi.org/10.3847/1538-4365/aab76e
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.3150/bj/1130077595
https://doi.org/10.1093/mnras/stz2857
https://doi.org/10.1093/mnras/stz2857
https://github.com/jellis18/PTMCMCSampler
https://github.com/jellis18/PTMCMCSampler
https://doi.org/10.5281/zenodo.4059815
https://doi.org/10.5281/zenodo.4059815
https://doi.org/10.2307/3318737
https://doi.org/10.1007/s11222-008-9104-9
https://doi.org/10.1007/s11222-006-8769-1
https://doi.org/10.1007/s11222-006-8769-1
https://doi.org/10.3847/1538-4357/ab2236
https://github.com/nanograv/enterprise_extensions
https://github.com/nanograv/enterprise_extensions
https://doi.org/10.1214/aoap/1034625254
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1103/PhysRevD.84.063009
https://doi.org/10.1198/jasa.2009.tm08393
https://doi.org/10.1088/0264-9381/30/22/224004
https://doi.org/10.1088/0264-9381/30/22/224004
https://doi.org/10.1093/mnras/stv2422
https://doi.org/10.1093/mnras/stv2422
https://doi.org/10.1103/PhysRevLett.57.2607

